HP Fortran for OpenVMS

Language Reference Manual

Order Number: BA368-90004

January 2005

This manual contains the complete description of the HP Fortran
programming language, which includes Fortran 95 and Fortran 90 features.

Revision/Update Information:

Software Version:

Operating System:

Hewlett-Packard Company
Palo Alto, California

This manual is a new manual.

HP Fortran for OpenVMS Systems Version
8.0

OpenVMS Industry Standard 64 Systems
Version 8.2
OpenVMS Alpha Systems Version 8.2

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Printed in the US

7ZK6324
This manual is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface XXi

1 Overview

1.1 Language Standards Conformance........................ 1-1
1.2 Language Compatibility 1-2
1.3 Fortran 95 Features. 1-2
1.4 Fortran 90 Features. 1-4

2 Program Structure, Characters, and Source Forms

2.1 Program Structure 2-1
211 Statements 2-2
2.1.2 Names e 2-4
2.2 Character Sets 2-5
2.3 Source Forms e 2-6
2.3.1 Free Source Form 2-9
2.3.2 Fixed and Tab Source Forms 2-11
2.3.2.1 Fixed-Format Lines 2-13
2.3.2.2 Tab-Format Lines. 2-14
2.3.3 Source Code Useable for All Source Forms 2-16

3 Data Types, Constants, and Variables

3.1 OVEIVIEW . . oot 3-1
3.2 Intrinsic Data Types 3-2
3.2.1 Integer Data Types 34
3.2.2 Real Data Types. 37
3.2.21 General Rules for Real Constants 3-7
3.2.2.2 REAL(4) Constants0 u.... 3-8
3.2.2.3 REAL(8) or DOUBLE PRECISION Constants 3-9
3.2.2.4 REAL(16) Constants, 3-10

3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
3.2.3.4
3.2.4
3.2.5
3.2.5.1
3.2.5.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.2
3.5.2.1
3.5.2.2
3.56.2.3
3.5.24

Complex Data Types 3-11

General Rules for Complex Constants 3-12
COMPLEX(4) Constants 3-12
COMPLEX(8) or DOUBLE COMPLEX Constants 3-13
COMPLEX(16) Constants 3-14
Logical Data Types.ov it 3-15
Character Data Type 3-16

C Strings in Character Constants 3-18
Character Substrings 3-19
Derived Data Types 3-21
Derived-Type Definition 3-21
Default Initialization 3-24
Structure Components u..... 3-25
Structure Constructors. 3-29
Binary, Octal, Hexadecimal, and Hollerith Constants 3-30
Binary Constants 3-30
Octal Constants 3-31
Hexadecimal Constants 3-31
Hollerith Constants 3-32
Determining the Data Type of Nondecimal Constants 3-33
Variables 3-35
Data Types of Scalar Variables 3-36
Specification of Data Type 3-36
Implicit Typing Rules 3-37

ATTaYS . . 3-37
Whole Arrays 3-40

Array Elements 3-41

Array Sections 344

Array Constructors 3-48

4 Expressions and Assignment Statements

41
411
4111
411.2
41.2
4.1.3
41.4
4.1.5
4.1.6

Expressions 4—1
Numeric Expressions0 4-3
Using Parentheses in Numeric Expressions........... 4-4

Data Type of Numeric Expressions 4-6
Character Expressions, 4-8
Relational Expressions., 4-8
Logical Expressionsiiiiiiinennnn... 4-10
Defined Operations, 4-11
Summary of Operator Precedence 4-12

41.7
41.71
41.7.2
4.2
4.2.1
4211
4212
4213
421.4
4215
422
4.2.3
424
4.2.5

Initialization and Specification Expressions

Initialization Expressions .
Specification Expressions . .
Assignment Statements
Intrinsic Assignments

Numeric Assignment Statements.
Logical Assignment Statements
Character Assignment Statements.
Derived-Type Assignment Statements
Array Assignment Statements

Defined Assignments
Pointer Assignments

WHERE Statement and Construct.
FORALL Statement and Construet

5 Specification Statements

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.4.1
5142
5143
5.1.4.4
5.2

5.3

5.4

5.5

5.6

5.7
5.7.1
5.7.2
5.7.3
5.8

5.9
5.10
511
5.12
5.13
5.14
5.15

Type Declaration Statements

Declaration Statements for Noncharacter Types
Declaration Statements for Character Types
Declaration Statements for Derived Types
Declaration Statements for Arrays.....................
Explicit-Shape Specifications
Assumed-Shape Specifications

Assumed-Size Specifications

Deferred-Shape Specifications
ALLOCATABLE Attribute and Statement
AUTOMATIC and STATIC Attributes and Statements

COMMON Statement...........
DATA Statement

DIMENSION Attribute and Statement

EQUIVALENCE Statement
Making Arrays Equivalent
Making Substrings Equivalent .

EQUIVALENCE and COMMON Interaction
EXTERNAL Attribute and Statement

IMPLICIT Statement
INTENT Attribute and Statement .

INTRINSIC Attribute and Statement

NAMELIST Statement.

OPTIONAL Attribute and Statement
PARAMETER Attribute and Statement

POINTER Attribute and Statement

5-3
5-7

5-11
5-12
5-13
5-16
5-16
5-18
5-19
5-20
5-23
5-27
5-30
5-32
5-35
5-37
5-39
5-42
5-43
5-45
5-47
5-49
5-51
5-53
5-55

5.16
5.17
5.18
5.19

PRIVATE and PUBLIC Attributes and Statements
SAVE Attribute and Statement

TARGET Attribute

and Statement.

VOLATILE Attribute and Statement

6 Dynamic Allocation

6.1
6.2
6.2.1
6.2.2
6.3
6.3.1
6.3.2
6.4

Overview

ALLOCATE Statement.,
Allocation of Allocatable Arrays
Allocation of Pointer Targets

DEALLOCATE Statement
Deallocation of Allocatable Arrays
Deallocation of Pointer Targets

NULLIFY Statement i,

7 Execution Control

vi

71

7.2
7.21
7.2.2
7.2.3
7.2.3.1
7.2.3.2
7.2.4
7.3

7.4

7.5

7.6
7.6.1
7.6.2
7.6.2.1
7.6.2.2
7.6.2.3
7.6.3
7.6.4
7.6.5
7.7

7.8
7.8.1
7.8.2
7.9

Overview
Branch Statements

Unconditional GO TO Statement
Computed GO TO Statement
ASSIGN and Assigned GO TO Statements
ASSIGN Statement
Assigned GO TO Statement
Arithmetic IF Statement

CALL Statement .
CASE Construct . .

CONTINUE Statement,

DO Constructs . ..

Forms for DO Constructs
Execution of DO Constructs
Iteration Loop Control
Nested DO Constructs
Extended Range
DO WHILE Statement
CYCLE Statement,
EXIT Statement

END Statement . .

IF Construct and Statement

IF Construct. .
IF Statement .
PAUSE Statement

6—1
62
6-3
6-5
6-5
6-6
6—7
6-9

7-1

7-3
7-3
7-4
7-4
7-5
7-6
-7
7-10
7-15
7-15
7-16
7-18
7-18
7-20
7-22
7-24
7-25
7-25
7-26
727
7-27
7-32
7-33

7.10
7.11

RETURN Statement
STOP Statement

8 Program Units and Procedures

8.1

8.2

8.3
8.3.1
8.3.2
8.4

8.5
8.5.1
8.5.1.1
8.5.1.2
8.5.1.3
8.5.2
8.5.2.1
8.5.2.2
8.5.3
8.5.4
8.6

8.7

8.8
8.8.1
8.8.1.1
8.8.1.2
8.8.2
8.8.3
8.8.4
8.8.5
8.8.6
8.8.7
8.8.8
8.8.8.1
8.8.8.2
8.8.9
8.8.9.1

8.8.9.2
8.9
8.9.1

OVEIVIEW . . oot e
Main Program
Modules and Module Procedures
Module References
USE Statement
Block Data Program Units..............................
Functions, Subroutines, and Statement Functions
General Rules for Function and Subroutine Subprograms . . .
Recursive Procedures
Pure Procedures............
Elemental Procedures
Functions
RESULT Keyword,
Function References
Subroutines
Statement Functions
External Procedures.
Internal Procedures
Argument Association
Optional Arguments.iiiurrn...
Using the PRESENT Intrinsic Function
Using the IARGCOUNT Intrinsic Function
Array Arguments
Pointer Arguments.
Assumed-Length Character Arguments
Character Constant and Hollerith Arguments
Alternate Return Arguments
Dummy Procedure Arguments
References to Generic Procedures
References to Generic Intrinsic Functions
References to Elemental Intrinsic Procedures
References to Non-Fortran Procedures..................
%DESCR, %REF, and %VAL Argument List
Functions
%LOC Function,
Procedure Interfaces
Determining When Procedures Require Explicit
Interfaces e

7-34
7-36

8-1

8-3

84

8-8

8-8
8-11
8-12
8-13
8-14
8-15
8-18
8-19
8-23
8-23
8-25
8-27
8-29
8-30
8-31
8-33
8-34
8-36
8-38
8-39
8-40
8—41
8-41
8-42
8-43
8-44
8-47
8-48

8-48
8-50
8-50

8-51

Vii

9

viii

8.9.2
8.9.3
8.9.4
8.9.5
8.10
8.11
8.11.1
8.11.2

Defining Explicit Interfaces

Defining Generic Names

for Procedures.................

Defining Generic Operators
Defining Generic Assignment.

CONTAINS Statement
ENTRY Statement

ENTRY Statements in Function Subprograms............
ENTRY Statements in Subroutine Subprograms

Intrinsic Procedures

9.1
9.2
9.3
9.3.1
9.3.2
9.3.3
9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.45
9.4.6
9.4.7
9.4.8
9.4.9
9.4.10
9.4.11
9.4.12
9.4.13
9.4.14
9.4.15
9.4.16
9.4.17
9.4.18
9.4.19
9.4.20
9.4.21
9.4.22
9.4.23
9.4.24
9.4.25

Overview of Intrinsic Procedures
Argument Keywords in Intrinsic Procedures
Categories of Intrinsic Procedures

Categories of Intrinsic Functions

Intrinsic Subroutines . .
Bit Functions

Descriptions of Intrinsic Procedures.

ABSA)
ACHARD)
ACOSX)
ACOSDX)
ADJUSTL (STRING) . .
ADJUSTR (STRING) . .
AIMAG(Z)
AINT (A [LKINDD.
ALL (MASK [,DIM]). . .
ALLOCATED (ARRAY)
ANINT (A [LKINDD . ..
ANY (MASK [, DIM]) ..
ASINX)
ASIND X)..........

ASM (STRING [,A,...]) (Alphaonly)
ASSOCIATED (POINTER [[TARGET])

ATAN(X)
ATAND X)
ATAN2 (Y, X)
ATAN2D (Y, X)
BIT_ SIZE{@)
BTEST (I, POS)
CEILING (A [[KIND]) .
CHAR (I [KIND])
CMPLX (X [,Y] [,KIND])

CDO)G)COCIDCDCDCQ

|
OO o1 OO
N—=©O©O~NOON

9.4.26
9.4.27
9.4.28
9.4.29
9.4.30
9.4.31
9.4.32
9.4.33
9.4.34
9.4.35
9.4.36
9.4.37
9.4.38
9.4.39
9.4.40
9.4.41
9.4.42
9.4.43
9.4.44
9.4.45
9.4.46
9.4.47
9.4.48

9.4.49
9.4.50
9.4.51
9.4.52
9.4.53
9.4.54
9.4.55
9.4.56
9.4.57
9.4.58
9.4.59
9.4.60
9.4.61
9.4.62
9.4.63
9.4.64
9.4.65
9.4.66
9.4.67

CONJG (Z)
COS X) ..
COSD (X)
COSH X) .

COTAN (X) . oo e
COTAND (X) .o e
COUNT (MASK [,DIM] LKIND])
CPU_TIME (TIME) i
CSHIFT (ARRAY, SHIFT [DIM]D)
DATE (BUF)
DATE_AND_TIME ([DATE] [, TIME] [,ZONE] [,VALUES]) ..

DBLE (A) .

DCMPLX X LYD . oo e
DFLOAT (A) . . .o e

DIGITS (X)
DIM (X, Y)

DOT_PRODUCT (VECTOR_A, VECTOR_B)

DPROD (X,
DREAL (A)
EOF (A) ..

Y

EOSHIFT (ARRAY, SHIFT [BOUNDARY] [[DIM])
EPSILON (X) . oot e e e e e e e e e e e e e
ERRSNS ([IO_ERR] [,SYS_ERR] [,STAT] [,UNIT]

[,COND]) .

EXIT ([STATUS])o

EXP X) ..

EXPONENT (X) . . oiie e ettt e e e e e e e e e e e e e
FLOORMAILKINDDo
FP_CLASS (X) . oot e e e e e
FRACTION (X) ..o e

FREE (A) .
HUGE (X)

TACHAR (C) . . o e

IAND (I, J)

TIARGCOUNT () ..o

TARGPTR (

IBCHNG (I,

)
POS).o

IBCLR (I, POS) ...
IBITS (I, POS, LEN)
IBSET (I, POS) e

ICHAR (C)

IDATE (I, J,K) ...

IEOR (I, J)

9-39
9-40
9-40
9-41
9-41
9-42
9-42
9-44
9-44
9-46
9-47
9-48
9-50
9-50
9-51
9-51
9-52
9-53
9-53
9-54
9-55
9-57

9-57
9-58
9-59
9-59
9-60
9-60
9-61
9-61
9-62
9-62
9-63
9-64
9-64
9-65
9-65
9-66
9-67
9-68
9-68
9-69

9.4.68
9.4.69
9.4.70
9.4.71
9.4.72
9.4.73
9.4.74
9.4.75
9.4.76
9.4.77
9.4.78
9.4.79
9.4.80
9.4.81
9.4.82
9.4.83
9.4.84
9.4.85
9.4.86
9.4.87
9.4.88
9.4.89
9.4.90
9.4.91
9.4.92
9.4.93
9.4.94
9.4.95
9.4.96
9.4.97
9.4.98
9.4.99
9.4.100
9.4.101
9.4.102
9.4.103
9.4.104
9.4.105
9.4.106
9.4.107
9.4.108
9.4.109
9.4.110

ILEN (I)

INDEX (STRING, SUBSTRING [, BACK] [KIND])
INT (ALKINDD ... e
INT_ PTR_KIND() ...t
IOR, J) oo
ISHA (I, SHIFT) ... e
ISHC (I, SHIFT) e
ISHFT (I, SHIFT) e
ISHFTC (I, SHIFT [[SIZE]) i,
ISHL (I, SHIFT) e
ISNAN (X) & v e e
KIND (X) .o e e e e
LBOUND (ARRAY [[DIM] [LKIND])
LEADZ (I) ...
LEN (STRING [LKINDD
LEN_TRIM (STRING [LKIND])
LGE (STRING_A, STRING B)
LGT (STRING_A, STRING B)
LLE (STRING_A, STRING_B)
LLT (STRING_A, STRING_B)

LOC (X)
LOG (X)

LOGI0 (X) oottt
LOGICAL (L LKINDDo
MALLOC (I) . . oottt e e
MATMUL (MATRIX A, MATRIX B)
MAX (A1, A2 [LAS,...]) ..
MAXEXPONENT (X) . ..o oo e
MAXLOC (ARRAY [,DIM] [MASK] [KINDD
MAXVAL (ARRAY [,[DIM] [MASK])
MERGE (TSOURCE, FSOURCE, MASK)
MIN (A1, A2 [A3,..]) ...
MINEXPONENT (X) ...t
MINLOC (ARRAY [,DIM] [MASK] [KINDD
MINVAL (ARRAY [[DIM] [MASK])

MOD (A,

P

MODULO (A, P). . ..o
MULT HIGH (I, J) ...
MVBITS (FROM, FROMPOS, LEN, TO, TOPOS)
MY_PROCESSOR (). ...
NEAREST (X, S) . ..o e
NINT(ALKINDD ...

NOT (I)

9.4.111

9.4.112
9.4.113
9.4.114
9.4.115
9.4.116
9.4.117
9.4.118
9.4.119
9.4.120
9.4.121
9.4.122
9.4.123
9.4.124
9.4.125
9.4.126
9.4127
9.4.128
9.4.129
9.4.130
9.4.131
9.4.132
9.4.133
9.4.134
9.4.135
9.4.136
9.4.137
9.4.138
9.4.139
9.4.140
9.4.141
9.4.142
9.4.143
9.4.144
9.4.145
9.4.146
9.4.147
9.4.148
9.4.149
9.4.150
9.4.151
9.4.152

NULL ([IMOLD]).

NUMBER_OF_PROCESSORS ([DIM])

NWORKERS ()

PACK (ARRAY, MASK [VECTOR])

POPCNT (I) ...
POPPAR (D). . ..
PRECISION (X) .
PRESENT (A) ..

PROCESSORS_SHAPE ()
PRODUCT (ARRAY [,DIM] [MASKD

QCMPLX (X [,Y])
QEXT (A)
QFLOAT (A) . ..
QREAL (A)

RADIX X)
RAN(D).......

RANDOM_NUMBER (HARVEST)
RANDOM_SEED ([SIZE] ,PUT] [GETD
RANDU (I1,I2,X) i

RANGE X)
REAL (A [[KIND])

REPEAT (STRING, NCOPIES)
RESHAPE (SOURCE, SHAPE [,PAD] [[ORDER]

RRSPACING (X)
SCALE X, D) ...

SCAN (STRING, SET [,BACK] [LKINDD

SECNDS X) ...

SELECTED_INT_ KIND (R)
SELECTED_REAL_KIND ([P [LRD

SET_EXPONENT
SHAPE (SOURCE
SIGN (A, B)

SINHX)

X, Do
LKIND])

SIZE (ARRAY [DIM] [KINDD

SIZEOF X)
SPACING X) . ..

SPREAD (SOURCE, DIM, NCOPIES)

SQRT X)

SUM (ARRAY [,DIM] [MASKD

SYSTEM_CLOCK
[,COUNT_MAX))

([COUNT] [,COUNT_RATE]

9-106
9-107
9-107
9-108
9-109
9-109
9-109
9-110
9-110
9-111
9-112
9-112
9-113
9-114
9-114
9-114
9-115
9-115
9-116
9-117
9-118
9-119
9-119
9-120
9-120
9-121
9-121
9-122
9-123
9-123
9-124
9-125
9-126
9-126
9-127
9-127
9-128
9-128
9-129
9-129
9-130

9-132

Xi

10

Xii

9.4.153
9.4.154
9.4.155
9.4.156
9.4.157
9.4.158
9.4.159
9.4.160
9.4.161
9.4.162
9.4.163
9.4.164
9.4.165

TAN (X) oot
TAND (X) .o
TANH (X) . ..o
TIME (BUF) e
TINY (X) .o
TRAILZ (I) . . . e
TRANSFER (SOURCE, MOLD [SIZE])
TRANSPOSE (MATRIX),
TRIM (STRING)
UBOUND (ARRAY [[DIM] LKINDD
UNPACK (VECTOR, MASK, FIELD)
VERIFY (STRING, SET [, BACK] [KIND])
ZEXT X LKINDD . ..o

Data Transfer I/0O Statements

10.1 Overview of Records and Files
10.2 Components of Data Transfer Statements
10.2.1 I/O Control List
10.2.1.1 Unit Specifier
10.2.1.2 Format Specifier.
10.2.1.3 Namelist Specifier
10.2.1.4 Record Specifier
10.2.1.5 Key-Field-Value Specifier
10.2.1.6 Key-of-Reference Specifier
10.2.1.7 I/O Status Specifier
10.2.1.8 Branch Specifiers
10.2.1.9 Advance Specifier.
10.2.1.10 Character Count Specifier
10.2.2 /O Lists . oo o
10.2.2.1 Simple List Items in /O Lists
10.2.2.2 Implied-Do Lists in I/O Lists
10.3 READ Statements
10.3.1 Forms for Sequential READ Statements
10.3.1.1 Rules for Formatted Sequential READ Statements
10.3.1.2 Rules for List-Directed Sequential READ Statements . . .
10.3.1.3 Rules for Namelist Sequential READ Statements
10.3.1.4 Rules for Unformatted Sequential READ Statements . . .
10.3.2 Forms for Direct-Access READ Statements
10.3.2.1 Rules for Formatted Direct-Access READ Statements . . .

10.3.2.2

Rules for Unformatted Direct-Access READ
Statements

9-133
9-133
9-134
9-134
9-135
9-135
9-136
9-137
9-137
9-138
9-139
9-140
9-140

10-1
10-2
10-3
104
10-5
10-6
10-6
10-7
10-9
10-10
10-11
10-12
10-13
10-13
10-14
10-16
10-17
10-18
10-19
10-20
10-23
10-28
10-29
10-30

10-31

11

10.3.3
10.3.3.1
10.3.3.2
10.3.4

Forms for Indexed READ Statements
Rules for Formatted Indexed READ Statements
Rules for Unformatted Indexed READ Statements

Forms and Rules for Internal READ Statements..........

10.4 ACCEPT Statement

10.5
10.5.1
10.5.1.1
10.5.1.2

10.5.1.3
10.5.1.4

10.5.2
10.5.2.1

10.5.2.2

10.5.3
10.5.3.1
10.5.3.2
10.5.4
10.6
10.7

WRITE Statements

Forms for Sequential WRITE Statements
Rules for Formatted Sequential WRITE Statements
Rules for List-Directed Sequential WRITE
Statements.
Rules for Namelist Sequential WRITE Statements
Rules for Unformatted Sequential WRITE
Statements

Forms for Direct-Access WRITE Statements
Rules for Formatted Direct-Access WRITE
Statements.
Rules for Unformatted Direct-Access WRITE
Statements

Forms for Indexed WRITE Statements
Rules for Formatted Indexed WRITE Statements
Rules for Unformatted Indexed WRITE Statements

Forms and Rules for Internal WRITE Statements

PRINT and TYPE Statements
REWRITE Statement

I/0 Formatting

11.1
1.2
11.3
11.3.1
11.3.2
11.3.3
11.3.3.1
11.3.3.2
11.3.3.3
11.3.34
11.3.4
11.3.4.1
11.3.4.2
11.3.4.3
11.3.4.4
11.3.4.5

OVEIVIEW . ottt ettt et e e e e
Format Specifications
Data Edit Descriptors

Forms for Data Edit Descriptors
General Rules for Numeric Editing
Integer Editing.
TEditing
BEditing
OEditing e
ZEditing
Real and Complex Editing
FEditing,
Eand DEditing............
ENEditing.
ESEditing
GEditing

10-31
10-32
10-33
10-34
10-36
10-37
10-37
10-39

10-39
10-41

10-43
10-43

10-44

10-45
10-45
10-46
1047
10-47
10-48
10-50

11-1
1-2
11-7
11-7
11-9
11-10
11-10
11-12
11-13
11-14
11-16
11-16
11-18
11-20
11-22
11-24

xii

11.3.4.6 Complex Editing 11-26

11.3.5 Logical Editing (L)o oo oo 11-27
11.3.6 Character Editing (A). 11-28
11.3.7 Default Widths for Data Edit Descriptors 11-30
11.3.8 Terminating Short Fields of Input Data................. 11-31
11.4 Control Edit Descriptors 11-33
11.4.1 Forms for Control Edit Descriptors 11-33
11.4.2 Positional Editing 11-34
11.4.2.1 TEditing 11-34
11.4.2.2 TL Editing 11-35
11.4.2.3 TREditing 11-35
11.4.2.4 XEditingo 11-35
11.4.3 Sign Editing 11-36
11.4.3.1 SPEditing 11-36
11.4.3.2 SSEAItING .« o oo v oo et e 11-36
11.4.3.3 SEditing 11-36
11.4.4 Blank Editing. 11-36
11.4.41 BN Editing. 11-37
11.4.4.2 BZ Editing 11-37
11.4.5 Scale Factor Editing (P) 11-37
11.4.6 Slash Editing (/) . . . oo oo oo e 11-39
11.4.7 Colon Editing (:). i 11-40
11.4.8 Dollar Sign ($) and Backslash (\) Editing 11-40
11.4.9 Character Count Editing (Q) 11-41
11.5 Character String Edit Descriptors 11-42
11.5.1 Character Constant Editing 11-42
11.5.2 HEditing e 11-42
11.6 Nested and Group Repeat Specifications 11-43
11.7 Variable Format Expressions 11-44
11.8 Printing of Formatted Records 11-45
11.9 Interaction Between Format Specifications and I/O Lists 11-46

12 File Operation I/O Statements

12.1 BACKSPACE Statement 12-2
122 CLOSE Statement 12-3
12.3 DELETE Statement 124
124 ENDFILE Statement, 12-6
12,5 INQUIRE Statement 12-7
12.5.1 ACCESS Specifier, 12-9
12.5.2 ACTION Specifieri .. 12-10
12.5.3 BLANK Specifier 12-10
1254 BLOCKSIZE Specifier 12-11

Xiv

12.5.5
12.5.6
12.5.7
12.5.8
12.5.9
12.5.10
12.5.11
12.5.12
12.5.13
12.5.14
12.5.15
12.5.16
12.5.17
12.5.18
12.5.19
12.5.20
12.5.21
12.5.22
12.5.23
12.5.24
12.5.25
12.5.26
12.5.27
12.5.28
12.6
12.6.1
12.6.2
12.6.3
12.6.4
12.6.5
12.6.6
12.6.7
12.6.8
12.6.9
12.6.10
12.6.11
12.6.12
12.6.13
12.6.14
12.6.15
12.6.16
12.6.17
12.6.18

BUFFERED Specifier.
CARRIAGECONTROL Specifier
CONVERT Specifier.

DELIM Specifier .
DIRECT Specifier.
EXIST Specifier . .
FORM Specifier . .

FORMATTED Specifier uiio.....

KEYED Specifier .
NAME Specifier . .
NAMED Specifier .

NEXTREC Specifier

NUMBER Specifier
OPENED Specifier

ORGANIZATION Specifier.,

PAD Specifier

POSITION Specifier

READ Specifier ..

READWRITE Specifier.

RECL Specifier. . .

RECORDTYPE Specifier
SEQUENTIAL Specifier
UNFORMATTED Specifier.cvi.. ...

WRITE Specifier .
OPEN Statement
ACCESS Specifier
ACTION Specifier

ASSOCIATEVARIABLE Specifier.

BLANK Specifier .

BLOCKSIZE Specifier i,
BUFFERCOUNT Specifier
BUFFERED Specifier.,
CARRIAGECONTROL Specifier
CONVERT Specifier. i
DEFAULTFILE Specifier

DELIM Specifier .
DISPOSE Specifier

EXTENDSIZE Specifier

FILE Specifier . ..
FORM Specifier . .

INITIALSIZE Specifiert

KEY Specifier. . . .
MAXREC Specifier

12—-11
12—-11
12-12
12-12
12-13
12-13
12-14
12-14
12-14
12-15
12-15
12-16
12-16
12-16
12-17
12-17
12-17
12-18
12-18
12-19
12-19
12-20
12-20
12-20
12-21
12-27
12-27
12-28
12-28
12-29
12-29
12-30
12-30
12-31
12-33
12-33
12-34
12-35
12-35
12-36
12-36
12-37
12-38

XV

12.6.19
12.6.20
12.6.21
12.6.22
12.6.23
12.6.24
12.6.25
12.6.26
12.6.27
12.6.28
12.6.29
12.6.30
12.6.31
12.7

12.8

NAME Specifier
NOSPANBLOCKS Specifier . .
ORGANIZATION Specifier. . .
PAD Specifier
POSITION Specifier........
READONLY Specifier.
RECL Specifier.
RECORDSIZE Specifier
RECORDTYPE Specifier
SHARED Specifier
STATUS Specifier.
TYPE Specifier............
USEROPEN Specifier
REWIND Statement
UNLOCK Statement

13 Compilation Control Statements

13.1
13.2
13.3

DICTIONARY Statement
INCLUDE Statement..........
OPTIONS Statement

14 Compiler Directives

XVi

141
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13
14.14
14.15
14.16
14.17
14.18
14.19

Syntax Rules for General Directives

ALIAS Directive
ATTRIBUTES Directive

DECLARE or NODECLARE Directives
DEFINE and UNDEFINE Directives

FIXEDFORMLINESIZE Directive

FREEFORM and NOFREEFORM Directives

IDENT Directive
IF and IF DEFINED Directives . .
INTEGER Directive
IVDEP Directive
MESSAGE Directive
OBJCOMMENT Directive
OPTIONS Directive
PACK Directive
PSECT Directive
REAL Directive

STRICT and NOSTRICT Directives

TITLE and SUBTITLE Directives

12-38
12-38
12-39
12-39
12-40
12-40
12—-41
1243
12-43
12-44
12-44
12-45
12-45
12-46
12-47

13-1
13-2
13-5

14-2
14-3
14-4

14-11

14-11

14-12

14-13

14-14

14-14

14-16

14-17

14-19

14-20

14-21

14-24

14-25

14-28

14-30

14-31

14.20 UNROLL Directive

15 Scope and Association

15.1 OVeIVIEW . ottt et et e e e
15.2 00D . ottt
15.3 Unambiguous Generic Procedure References
15.4 Resolving Procedure References
15.4.1 References to Generic Names
15.4.2 References to Specific Names
15.4.3 References to Nonestablished Names
155 Association e

15.5.1 Name Association.
15.5.1.1 Argument Association
15.5.1.2 Use and Host Association.
15.5.2 Pointer Association
15.5.3 Storage Association
15.5.3.1 Storage Units and Storage Sequence
15.5.3.2 Array Association.

A Deleted and Obsolescent Language Features

A1 Deleted Language Features in Fortran 95
A2 Obsolescent Language Features in Fortran 95...............
A3 Obsolescent Language Features in Fortran 90...............

B Additional Language Features

B.1 DEFINE FILE Statement
B.2 ENCODE and DECODE Statements
B.3 FIND Statement
B.4 FORTRAN-66 Interpretation of the EXTERNAL Statement
B.5 Alternative Syntax for the PARAMETER Statement
B.6 VIRTUAL Statement,
B.7 Alternative Syntax for Octal and Hexadecimal Constants
B.8 Alternative Syntax for a Record Specifier
B.9 Alternative Syntax for the DELETE Statement..............
B.10 Alternative Form for Namelist External Records
B.11 HP Fortran POINTER Statement
B.12 Record Structures

151
15-2
15-6
15-6
15-6
15-8
15-9

15-10

1511

1511

1511

15-13

15-14

15-14

15-16

A1
A-2

riumclnwmmmw
W2 OO0 OVWOWWOWWOOo Ulw =

Www®m
LLLL

XVii

B.12.1
B.12.1.1
B.12.1.2
B.12.1.3
B.12.2
B.12.3
B.12.4

Structure Declarations B-14

Type Declarations B-18
Substructure Declarations B-18
Union Declarations B-19
RECORD Statement B-21
References to Record Fields B-22
Aggregate Assignment B-25

C ASCII and DEC Multinational Character Sets

CA1 ASCII Character Set C-1
Cc.2 DEC Multinational Character Set C-4

D Data Representation Models

D.1 Model for Integer Data. D-1
D.2 Model for Real Data D-2
D.3 Model for Bit Data D4
E Summary of Language Extensions
E.A HP Fortran Language Extensions E-1
Glossary
Index
Examples
6—1 Allocating Virtual Memory, 64
8-1 Use of the PRESENT Intrinsic With a Defined Interface 8-35
82 Use of the IARGCOUNT Intrinsic 8-37
8-3 Using and Redefining an Intrinsic Function Name 8-45
11-1 Interaction Between Format Specifications and I/O Lists ... 11-48
13-1 Including Text froma File 13-4
15-1 Example of Name, Pointer, and Storage Association 15-10
B—1 Using the F66 EXTERNAL Statement.................. B-7

Xviii

Figures

2-1 Required Order of Statements
2-2 Line Formatting Example
3-1 Array Storage.
5-1 Equivalence of Substrings
5-2 Equivalence of Character Arrays
5-3 A Valid Extension of a Common Block
5-4 An Invalid Extension of a Common Block
71 Flow of Control in CASE Constructs
7-2 Nested DO Constructs
7-3 Control Transfers and Extended Range
7-4 Flow of Control in IF Constructs
B-1 Memory Map of Structure APPOINTMENT
B-2 Memory Map of Structure WORDS_LONG
C-1 Graphic Representation of the ASCII Character Set
Cc-2 Graphic Representation of the DEC Multinational Extension

to the ASCII Character Set

Tables
2—1 Statements Restricted in Scoping Units
2-2 Indicators in Source Forms
3-1 C-Style Escape Sequencescouuuiueunenn..
4-1 Precedence of Expression Operators.
4-2 Conversion Rules for Numeric Assignment Statements
5-1 Compatible Attributes,
5-2 Noncharacter Data Types.
5-3 Equivalence of Array Storage.
54 Equivalence of Arrays with Nonunity Lower Bounds.
8—1 Defaults for Argument List Functions
9-1 Functions Not Allowed as Actual Arguments.............
9-2 Categories of Intrinsic Functions
9-3 Summary of Generic Intrinsic Functions
9-4 Specific Functions with No Generic Association
9-5 Intrinsic Subroutines
101 Default Formats for List-Directed Output
11-1 Summary of Edit Descriptors

2-3
2-15
3-43
5-38
5-40
5-41
5-41
7-13
7-21
7-23
7-29
B-17
B-21

C-3

2-4
2-8
3-18
4-13
4-20
5-6
5-8
5-36
5-37
8-49

XiX

XX

1-2
11-3
11-4
11-5
12—1
12-2
12-3
141
151
15-2

Effect of Data Magnitude on G Format Conversions
Size Limits for Noncharacter Data Using A Editing
Default Widths for Data Edit Descriptors

Control Characters for Printing .

OPEN Statement Specifiers and Values
Maximum Record Lengths (RECL)

Default Record Lengths (RECL) .

Common Block Defaults and PSECT Modification

Scope of Program Entities
Data Type Storage Requirements

11-25
11-29
11-31
11-46
12-22
1242
1243
14-28

154
15-15

Preface

This manual contains the complete description of the HP Fortran programming
language, which includes Fortran 95 and Fortran 90 features. It contains
information about language syntax and semantics, adherence to various
Fortran standards, and extensions to those standards.

Note

In this manual, the term OpenVMS refers to both OpenVMS 164 and
OpenVMS Alpha systems. If there are differences in the behavior of the
HP Fortran compiler on the two operating systems, those differences
are noted in the text.

Intended Audience

This manual is intended for experienced applications programmers who have a
basic understanding of Fortran concepts and the Fortran 95/90 language, and
are using HP Fortran in either a single-platform or multiplatform environment.

Some familiarity with parallel programming concepts and OpenVMS is helpful.
This manual is not a Fortran or programming tutorial.

Document Structure

This manual consists of the following chapters and appendixes:

Chapter 1 describes language standards, language compatibility, and some
features of Fortran 95 and Fortran 90.

Chapter 2 describes program structure, the Fortran 95/90 character set,
and source forms.

Chapter 3 describes intrinsic and derived data types, constants, variables
(scalars and arrays), and substrings.

Chapter 4 describes expressions and assignment.

XXi

XXii

Chapter 5 describes specification statements, which declare the attributes
of data objects.

Chapter 6 describes dynamic allocation.

Chapter 7 describes constructs and statements that can transfer control
within a program.

Chapter 8 describes program units (including modules), subroutines and
functions, and procedure interfaces.

Chapter 9 summarizes all intrinsic procedures.
Chapter 10 describes data transfer input/output (I/O) statements.
Chapter 11 describes the rules for I/O formatting.

Chapter 12 describes auxiliary I/O statements you can use to perform file
operations.

Chapter 13 describes compilation control statements.
Chapter 14 describes compiler directives.
Chapter 15 describes scope and association.

Appendix A describes obsolescent language features in Fortran 95 and
Fortran 90.

Appendix B describes some statements and language features supported
for programs written in older versions of Fortran.

Appendix C describes the HP Fortran character sets.

Appendix D describes data representation models for numeric intrinsic
functions.

Appendix E summarizes HP Fortran extensions to the Fortran 95
Standard.

The Glossary contains abbreviated definitions of some commonly used
terms in this manual.

Note

If you are reading the printed version of this manual, be aware
that the version at the HP Fortran Web site and the version on
the Documentation CD-ROM from HP may contain updated and/or
corrected information.

Related Documents
The following documents are also useful:

e HP Fortran for OpenVMS User Manual

This manual provides information about HP Fortran program development
and the run-time environment. It describes compiling, linking, running,
and debugging HP Fortran programs, run-time error-handling and I/O,
performance guidelines, data types, numeric data conversion, calling other
procedures and library routines, and compatibility with Compaq Fortran
77.

e HP Fortran Installation Guide for OpenVMS 164 Systems or HP Fortran
Installation Guide for OpenVMS Alpha Systems

These guides provide information on how to install HP Fortran.

e OpenVMS documentation set

This set provides detailed information about components and features of
the OpenVMS operating system, such as commands, tools, libraries, and
other aspects of the programming environment.

e Standards and Specifications

The following copyrighted standard and specification documents contain
precise descriptions of many of the features found in HP Fortran:

— American National Standard Programming Language FORTRAN,
ANSI X3.9-1978

— American National Standard Programming Language Fortran 90,
ANSI X3.198-1992

This Standard is equivalent to: International Standards Organization
Programming Language Fortran, ISO/IEC 1539:1991 (E).

— American National Standard Programming Language Fortran 95,
ANSI X3J3/96-007

This Standard is equivalent to: International Standards Organization
Programming Language Fortran, ISO/IEC 1539-1:1997 (E).

xXiii

Other Sources of Information

This section alphabetically lists some commercially published documents that
provide reference or tutorial information on Fortran 95 and Fortran 90:

Fortran 90/95 for Scientists and Engineers by S. Chapman; published by
McGraw-Hill, ISBN 0-07-011938-4.

Fortran 90 Handbook by J. Adams, W. Brainerd, J. Martin, B. Smith, and
J. Wagener; published by Intertext Publications (McGraw—Hill), ISBN
0-07-000406-4.

Fortran 90 Programming by T. Ellis, I. Philips, and T. Lahey; published by
Addison—Wesley, ISBN 0201-54446-6.

Introduction to Fortran 90/95 by S. Chapman; published by WCB
McGraw-Hill, ISBN 0-07-011969-4.

Programmer’s Guide to Fortran 90, Second Edition by W. Brainerd, C.
Goldberg, and J. Adams; published by Unicomp, ISBN 0-07-000248-7.

HP does not endorse these books or recommend them over other books on the
same subjects.

Reader’s Comments

HP welcomes your comments on this or any other HP Fortran manual. You
can send comments by email to:

fortran@hp.com

HP Fortran Web Page
The HP Fortran home page is at:

http://www.hp.com/software/fortran

This Web site contains information about software patch kits, example
programs, and additional product information.

Conventions

The following product names may appear in this manual:

XXiv

HP OpenVMS Industry Standard 64 for Integrity Servers

OpenVMS 164

164

All three names—the longer form and the two abbreviated forms—refer to the
version of the OpenVMS operating system that runs on the Intel® Itanium®

architecture.

The following conventions might be used in this manual:

Ctrl/x

PF1 x

O

[]

A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key or a
pointing device button.

A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention
appears as brackets, rather than a box.

A horizontal ellipsis in examples indicates one of the
following possibilities:

e Additional optional arguments in a statement have
been omitted.

e The preceding item or items can be repeated one or
more times.

e Additional parameters, values, or other information can
be entered.

A vertical ellipsis indicates the omission of items from a
code example or command format; the items are omitted
because they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that
you must enclose choices in parentheses if you specify more
than one.

In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.

Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in
an assignment statement.

In command format descriptions, vertical bars separate
choices within brackets or braces. Within brackets, the
choices are optional; within braces, at least one choice is
required. Do not type the vertical bars on the command
line.

XXV

{}

bold type

italic type

UPPERCASE TYPE

numbers

real
complex

logical
integer

Fortran

Fortran 90

Fortran 95

In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

Bold type represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

Italic type indicates important information, complete titles
of manuals, or variables. Variables include information
that varies in system output (Internal error number), in
command lines /PRODUCER=name), and in command
parameters in text (where dd represents the predefined code
for the device type).

Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

This term refers to all floating-point intrinsic data types as
a group.

This term refers to all complex floating-point intrinsic data
types as a group.

This term refers to logical intrinsic data types as a group.
This term refers to integer intrinsic data types as a group.

This term refers to language information that is common
to ANSI FORTRAN-77, ANSI/ISO Fortran 90, ANSI/ISO
Fortran 95, and HP Fortran 90.

This term refers to language information that is common to
ANSI/ISO Fortran 90 and HP Fortran. For example, a new
language feature introduced in the Fortran 90 standard.

This term refers to language information that is common
to ISO Fortran 95 and HP Fortran. For example, a new
language feature introduced in the Fortran 95 standard.

HP Fortran Unless otherwise specified, this term (formerly Compaq
Fortran) refers to language information that is common
to the Fortran 90 and 95 standards, and any HP Fortran
extensions, running on the OpenVMS operating system.
Since the Fortran 90 standard is a superset of the
FORTRAN-77 standard, HP Fortran also supports the
FORTRAN-77 standard. HP Fortran supports all of the
deleted features of the Fortran 95 standard.

XXVil

1

Overview

This chapter describes:

e Section 1.1, Language Standards Conformance
e Section 1.2, Language Compatibility

e Section 1.3, Fortran 95 Features

e Section 1.4, Fortran 90 Features

1.1 Language Standards Conformance

Fortran 95 includes Fortran 90 and most features of FORTRAN 77. Fortran
90 is a superset that includes FORTRAN 77. HP Fortran fully supports the
Fortran 95, Fortran 90, and FORTRAN 77 Standards.

HP Fortran conforms to American National Standard Fortran 95 (ANSI
X3J3/96-007)1, American National Standard Fortran 90 (ANSI X3.198-1992)2.

The ANSI committee X3J3 is currently answering questions of interpretation
of Fortran 95 and Fortran 90 language features. Any answers given by the
ANSI committee that are related to features implemented in HP Fortran may
result in changes in future releases of the HP Fortran compiler, even if the
changes produce incompatibilities with earlier releases of HP Fortran.

HP Fortran provides a number of extensions to the Fortran 95 Standard. In
the printed version of this manual, these extensions are colored in blue.

HP Fortran also includes support for programs that conform to the previous
Fortran standards (ANSI X3.9-1978 and ANSI X3.0-1966), the International
Standards Organization standard ISO 1539-1980 (E), the Federal Information
Processing Institute standard FIPS 69-1, and the Military Standard 1753
Language Specification.

! This is the same as International Standards Organization standard ISO/IEC

1539-1:1997 (E).
2 This is the same as International Standards Organization standard ISO/IEC 1539:1991
(E).

Overview 1-1

For More Information:
On HP Fortran language extensions, see Appendix E.

1.2 Language Compatibility

HP Fortran is highly compatible with Compaq Fortran 77 on supported
platforms, and it is substantially compatible with PDP-11 and VAX FORTRAN
717.

For More Information:

On language compatibility, compiler options, and program conversion
considerations, see the HP Fortran for OpenVMS User Manual.

1.3 Fortran 95 Features

Following are some of the Fortran 95 features implemented in HP Fortran:

e FORALL statement and construct

In Fortran 90, you could build array values element-by-element by using
array constructors and the RESHAPE and SPREAD intrinsics. The
Fortran 95 FORALL statement and construct offer an alternative method.

FORALL allows array elements, array sections, character substrings,

or pointer targets to be explicitly specified as a function of the element
subscripts. A FORALL construct allows several array assignments to share
the same element subscript control.

FORALL is a generalization of WHERE. They both allow masked array
assignment, but FORALL uses element subscripts, while WHERE uses the
whole array.

For more information, see Section 4.2.5.

e PURE user-defined procedures

Pure user-defined procedures do not have side effects, such as changing the
value of a variable in a common block. To specify a pure procedure, use the
PURE prefix in the function or subroutine statement. Pure functions are
allowed in specification statements.

For more information, see Section 8.5.1.2.

e ELEMENTAL user-defined procedures

An elemental user-defined procedure is a restricted form of pure procedure.
An elemental procedure can be passed an array, which is acted upon

one element at a time. To specify an elemental procedure, use the
ELEMENTAL prefix in the function or subroutine statement.

For more information, see Sections 8.5.2 and 8.5.3.

1-2 Overview

CPU_TIME intrinsic subroutine

This intrinsic subroutine returns a processor-dependent approximation of
processor time.

For more information, see Section 9.4.33.

NULL intrinsic function

In Fortran 90, there was no way to assign a null value to the pointer by
using a pointer assignment operation. A Fortran 90 pointer had to be
explicitly allocated, nullified, or associated with a target during execution
before association status could be determined.

Fortran 95 provides the NULL intrinsic function that can be used to nullify
a pointer.

For more information, see Section 9.4.111.

Obsolescent features

Fortran 95 deletes several language features that were obsolescent in
Fortran 90, and identifies new obsolescent features.

HP Fortran fully supports features deleted in Fortran 95.

For more information, see Appendix A.

Derived-type structure default initialization

In derived-type definitions, you can now specify default initial values for
derived-type components.

For more information, see Section 3.3.2.

Pointer initialization

In Fortran 90, there was no way to define the initial value of a pointer. You
can now specify default initialization for a pointer.

For more information, see Sections 3.3.1 and 3.3.2.
Automatic deallocation of allocatable arrays

Allocatable arrays whose status is allocated upon routine exit are now
automatically deallocated.

For more information, see Section 6.2.1.

Enhanced CEILING and FLOOR intrinsic functions
KIND can now be specified for these intrinsic functions.
For more information, see Sections 9.4.23 and 9.4.52.
Enhanced MAXLOC and MINLOC intrinsic functions

DIM can now be specified for these intrinsic functions.

Overview 1-3

For more information, see Sections 9.4.96 and 9.4.101.

e Enhanced SIGN intrinsic function

When a specific compiler option is specified, the SIGN function can now
distinguish between positive and negative zero if the processor is capable
of doing so.

For more information, see Section 9.4.142.
e Printing of —0.0

When a specific compiler option is specified, a floating-point value of minus
zero (—0.0) can now be printed if the processor can represent it.

e Enhanced WHERE construct

The WHERE construct has been improved to allow nested WHERE
constructs and a masked ELSEWHERE statement. WHERE constructs
can now be named.

For more information, see Section 4.2.4.

e Generic identifier allowed in END INTERFACE statement

The END INTERFACE statement of an interface block defining a generic
routine can now specify a generic identifier.

For more information, see Section 8.9.2.

e Zero-length formats

On output, when using I, B, O, Z, and F edit descriptors, the specified
value of the field width can be zero. In such cases, the compiler selects the
smallest possible positive actual field width that does not result in the field
being filled with asterisks (*).

e Comments allowed in namelist input

Fortran 95 allows comments (beginning with !) in namelist input data.

1.4 Fortran 90 Features
Following are some of the Fortran 90 features implemented in HP Fortran:

e Free source form

Fortran 90 provides a free-source form where line positions have no special
meaning. There are no reserved columns, trailing comments can appear,
and blanks have significance under certain circumstances (for example,
PR OGRAMis not allowed as an alternative for PROGRAM).

For more information, see Section 2.3.1.

1-4 Overview

Modules

Fortran 90 provides a form of program unit called a module, which is more
powerful than (and overcomes limitations of) FORTRAN 77 block data
program units.

A module is a set of declarations that are grouped together under a single,
global name. Modules let you encapsulate a set of related items such as
data, procedures, and procedure interfaces, and make them available to
another program unit.

Module items can be made private to limit accessibility, provide data
abstraction, and to create more secure and portable programs.

For more information, see Section 8.3.

User-defined (derived) data types and operators

Fortran 90 lets you define data types derived from any combination of
the intrinsic data types and derived types. The derived-type object can be
accessed as a whole, or its individual components can be accessed directly.

You can extend the intrinsic operators (such as + and *) to user-defined
data types, and also define new operators for operands of any type.

For more information, see Sections 3.3 and 8.9.4.

Array operations and features

In Fortran 90, intrinsic operators and intrinsic functions can operate on
array-valued operands (whole arrays or array sections).

Features for arrays include whole, partial, and masked array assignment
(including the WHERE statement for selective assignment), and array-
valued constants and expressions. You can create user-defined array-valued
functions, use array constructors to specify values of a one-dimensional
array, and allocate arrays dynamically (using ALLOCATABLE and
POINTER attributes).

Intrinsic procedures create multidimensional arrays, manipulate arrays,
perform operations on arrays, and support computations involving arrays
(for example, SUM sums the elements of an array).

For more information, see Section 3.5.2 and Chapter 9.
Generic user-defined procedures

In Fortran 90, user-defined procedures can be placed in generic interface

blocks. This allows the procedures to be referenced using the generic name
of the block.

Overview 1-5

Selection of a specific procedure within the block is based on the properties
of the argument, the same way as specific intrinsic functions are selected
based on the properties of the argument when generic intrinsic function
names are used.

For more information, see Section 8.9.3.

e Pointers

Fortran 90 pointers are mechanisms that allow dynamic access and
processing of data. They allow arrays to be sized dynamically and they
allow structures to be linked together.

A pointer can be of any intrinsic or derived type. When a pointer
is associated with a target, it can appear in most expressions and
assignments.

For more information, see Sections 5.15 and 4.2.3.

e Recursion

Fortran 90 procedures can be recursive if the keyword RECURSIVE is
specified on the FUNCTION or SUBROUTINE statement line.

For more information, see Chapter 8.

e Interface blocks

A Fortran 90 procedure can contain an interface block. Interface blocks can
be used to do the following:

— Describe the characteristics of an external or dummy procedure
— Define a generic name for a procedure
— Define a new operator (or extend an intrinsic operator)

— Define a new form of assignment

For more information, see Section 8.9.

e Extensibility and redundancy

By using user-defined data types, operators, and meanings, you can extend
Fortran to suit your needs. These new data types and their operations can
be packaged in modules, which can be used by one or more program units
to provide data abstraction.

With the addition of new features and capabilities, some old features
become redundant and may eventually be removed from the language. For
example, the functionality of the ASSIGN and assigned GO TO statements
can be replaced more effectively by internal procedures. The use of certain
old features of Fortran can result in less than optimal performance on
newer hardware architectures.

1-6 Overview

For more information, see the HP Fortran for OpenVMS User Manual. For
a list of obsolescent features, see Appendix A.

Additional features for source text

Lowercase characters are now allowed in source text. A semicolon can be
used to separate multiple statements on a single source line. Additional

characters have been added to the Fortran character set, and names can
have up to 31 characters (including underscores).

For more information, see Chapter 2.

Improved facilities for numerical computation

Intrinsic data types can be specified in a portable way by using a kind type
parameter indicating the precision or accuracy required. There are also
intrinsic functions that allow you to specify numeric precision and inquire
about precision characteristics available on a processor.

For more information, see Chapters 3 and 9.

Optional procedure arguments

Procedure arguments can be made optional and keywords can be used
when calling procedures, allowing arguments to be listed in any order.

For more information, see Chapter 8.

Additional input/output features

Fortran 90 provides additional keywords for the OPEN and INQUIRE
statements. It also permits namelist formatting, and nonadvancing
(stream) character-oriented input and output.

For more information on formatting, see Chapter 10; on OPEN and
INQUIRE, see Chapter 12.

Additional control constructs

Fortran 90 provides a control construct (CASE) and improves the DO
construct. The DO construct can now use CYCLE and EXIT statements,
and can have additional (or no) control clauses (for example, WHILE). All
control constructs (CASE, DO, and IF) can now be named.

For more information, see Chapter 7.

Additional intrinsic procedures

Fortran 90 provides many more intrinsic procedures than existed in
FORTRAN 77. Many of these intrinsics support mathematical operations
on arrays, including the construction and transformation of arrays. Bit
manipulation and numerical accuracy intrinsics have been added.

For more information, see Chapter 9.

Overview 1-7

e Additional specification statements

The following specification statements are in Fortran 90:
— INTENT statement (Section 5.10)

— OPTIONAL statement (Section 5.13)

— Fortran 90 POINTER statement (Section 5.15)

— PUBLIC and PRIVATE statements (Section 5.16)

— TARGET statement (Section 5.18)

e Additional way to specify attributes

Fortran 90 lets you specify attributes (such as PARAMETER, SAVE, and
INTRINSIC) in type declaration statements, as well as in specification
statements.

For more information, see Section 5.1.

e Scope and Association

These concepts were implicit in FORTRAN 77, but they are explicitly
defined in Fortran 90. In FORTRAN 77, the term scoping unit applies
to a program unit, but Fortran 90 expands the term to include internal
procedures, interface blocks, and derived-type definitions.

For more information, see Chapter 15.

1-8 Overview

2

Program Structure, Characters, and
Source Forms

This chapter describes:
e Section 2.1, Program Structure
e Section 2.2, Character Sets

e Section 2.3, Source Forms

2.1 Program Structure

A Fortran program consists of one or more program units. A program unit
is usually a sequence of statements that define the data environment and the
steps necessary to perform calculations; it is terminated by an END statement.

A program unit can be either a main program, an external subprogram, a
module, or a block data program unit. An executable program contains one
main program, and, optionally, any number of the other kinds of program
units. Program units can be separately compiled.

An external subprogram is a function or subroutine that is not contained
within a main program, a module, or another subprogram. It defines a
procedure to be performed and can be invoked from other program units of the
Fortran program. Modules and block data program units are not executable,
so they are not considered to be procedures. (Modules can contain module
procedures, though, which are executable.)

Modules contain definitions that can be made accessible to other program
units: data and type definitions, definitions of procedures (called module
subprograms), and procedure interfaces. Module subprograms can

be either functions or subroutines. They can be invoked by other module
subprograms in the module, or by other program units that access the module.

Program Structure, Characters, and Source Forms 2-1

A block data program unit specifies initial values for data objects in named
common blocks. In Fortran 95/90, this type of program unit can be replaced by
a module program unit.

Main programs, external subprograms, and module subprograms can contain
internal subprograms. The entity that contains the internal subprogram
is its host. Internal subprograms can be invoked only by their host or by
other internal subprograms in the same host. Internal subprograms must not
contain internal subprograms.

For More Information:
On program units and procedures, see Chapter 8.

2.1.1 Statements

Program statements are grouped into two general classes: executable and
nonexecutable. An executable statement specifies an action to be performed.
A nonexecutable statement describes program attributes, such as the
arrangement and characteristics of data, as well as editing and data-conversion
information.

Order of Statements in a Program Unit

Figure 2-1 shows the required order of statements in a Fortran program unit.

In this figure, vertical lines separate statement types that can be interspersed.
For example, you can intersperse DATA statements with executable constructs.

Horizontal lines indicate statement types that cannot be interspersed.
For example, you cannot intersperse DATA statements with CONTAINS
statements.

Note that directives and the OPTIONS statement are HP Fortran language
extensions.

PUBLIC and PRIVATE statements are only allowed in the scoping units of
modules. In Fortran 95/90, NAMELIST statements can appear only among
specification statements. However, HP Fortran allows them to also appear
among executable statements. Table 2—1 shows other statements restricted
from different types of scoping units.

2-2 Program Structure, Characters, and Source Forms

Figure 2-1 Required Order of Statements

Comment
Lines,
INCLUDE
Statements,
and
Directives

OPTIONS Statements

PROGRAM, FUNCTION. SUBROUTINE,
MODULE, or BLOCK DATA Statement

USE Statements
IMPLICIT NONE Statements
PARAMETER IMPLICIT
Statements Statements
NAMELIST,
FORMAT, Derived-Type Definitions,
and PARAMETER Interface Blocks,
ENTRY and DATA Type Declaration Statements,
Statements Statements Statement Function Statements,
and Specification Statements
DATA Executable
Statements Statements
CONTAINS Statement

Internal Subprograms
or Module Subprograms

END Statement

ZK-6516A-GE

Program Structure, Characters, and Source Forms 2-3

Table 2-1 Statements Restricted in Scoping Units

Scoping Unit Restricted Statements

Main program ENTRY and RETURN statements

Module! ENTRY, FORMAT, OPTIONAL, and INTENT
statements, statement functions, and executable
statements

Block data program unit CONTAINS, ENTRY, and FORMAT statements, interface
blocks, statement functions, and executable statements

Internal subprogram CONTAINS and ENTRY statements

Interface body CONTAINS, DATA, ENTRY, SAVE, and FORMAT
statements, statement functions, and executable
statements

1The scoping unit of a module does not include any module subprograms that the module contains.

For More Information:
On scoping units, see Section 15.2.

2.1.2 Names

Names identify entities within a Fortran program unit (such as variables,
function results, common blocks, named constants, procedures, program units,
namelist groups, and dummy arguments). In FORTRAN 77, names were called
“symbolic names”.

A name can contain letters, digits, underscores (_), and the dollar sign ($)
special character. The first character must be a letter or a dollar sign.

In Fortran 95/90, a name can contain up to 31 characters. HP Fortran allows
names up to 63 characters.

The length of a module name (in MODULE and USE statements) may be
restricted by your file system.

In an executable program, the names of the following entities are global and
must be unique in the entire program:

e Program units
e External procedures
e Common blocks

e Modules

2-4 Program Structure, Characters, and Source Forms

Examples
The following examples demonstrate valid and invalid names:

Valid

NUMBER

FIND IT

X

Invalid Explanation

50 Begins with a numeral.

B.4 Contains a special character other than _ or $.
_WRONG Begins with an underscore.

For More Information:
On the scope of names, see Section 15.2.

2.2 Character Sets
HP Fortran supports the following characters:
¢ The Fortran 95/90 character set which consists of the following:
— All uppercase and lowercase letters (A through Z and a through z)
— The numerals 0 through 9
— The underscore (_)

— The following special characters:

Program Structure, Characters, and Source Forms 2-5

Character Name Character Name

A or <Tab> Blank (space) or tab : Colon

= Equal sign ! Exclamation point

+ Plus sign " Quotation mark

- Minus sign % Percent sign

* Asterisk & Ampersand

/ Slash ; Semicolon

(Left parenthesis < Less than

) Right parenthesis > Greater than

R Comma ? Question mark
Period (decimal point) $ Dollar sign (currency symbol)

Apostrophe

e Other printable characters

Printable characters include the tab character (09 hex), ASCII characters
with codes in the range 20(hex) through 7E(hex), and characters in the
DEC Multinational Extension to the ASCII Character Set with codes in the
range Al(hex) through FE(hex).

Printable characters that are not in the Fortran 95/90 character set
can only appear in comments, character constants, Hollerith constants,
character string edit descriptors, and input/output records.

Uppercase and lowercase letters are treated as equivalent when used to specify
program behavior (except in character constants and Hollerith constants).

For More Information:
On the ASCII and DEC Multinational character sets, see Appendix C.

2.3 Source Forms

Within a program, source code can be in free, fixed, or tab form. Fixed or
tab forms must not be mixed with free form in the same source program, but
different source forms can be used in different source programs.

All source forms allow lowercase characters to be used as an alternative to
uppercase characters.

Several characters are indicators in source code (unless they appear within
a comment or a Hollerith or character constant). The following are rules for
indicators in all source forms:

e Comment indicator

2-6 Program Structure, Characters, and Source Forms

A comment indicator can precede the first statement of a program unit and
appear anywhere within a program unit. If the comment indicator appears
within a source line, the comment extends to the end of the line.

An all blank line is also a comment line.
Comments have no effect on the interpretation of the program unit.

For more information on comment indicators in free source form, see
Section 2.3.1; in fixed and tab source forms, see Section 2.3.2.

e Statement separator

More than one statement (or partial statement) can appear on a single
source line if a statement separator is placed between the statements. The
statement separator is a semicolon character (;).

Consecutive semicolons (with or without intervening blanks) are considered
to be one semicolon.

If a semicolon is the last character on a line, or the last character before a
comment, it is ignored.

e (Continuation indicator

A statement can be continued for more than one line by placing
a continuation indicator on the line. HP Fortran allows up to 511
continuation lines in a source program.

Comments can occur within a continued statement, but comment lines
cannot be continued.

Within a program unit, the END statement cannot be continued, and no
other statement in the program unit can have an initial line that appears
to be the program unit END statement.

For more information on continuation indicators in free source form, see
Section 2.3.1; in fixed and tab source forms, see Section 2.3.2.

Table 2—2 summarizes characters used as indicators in source forms:

Program Structure, Characters, and Source Forms 2-7

Table 2-2 Indicators in Source Forms

Source Item Indicator’ Source Form Position
Comment ! All forms Anywhere in source code
Comment line ! Free At the beginning of the
source line
I,C,or* Fixed In column 1
Tab In column 1
Continuation line? & Free At the end of the source
line
Any character except Fixed In column 6
zero or blank
Any digit except zero Tab After the first tab
Statement separator ; All forms Between statements on
the same line
Statement label 1 to 5 decimal digits Free Before a statement
Fixed In columns 1 through 5
Tab Before the first tab
A debugging statement® D Fixed In column 1
Tab In column 1

11f the character appears in a Hollerith or character constant, it is not an indicator and is ignored.

2For all forms, up to 511 continuation lines are allowed.

3Fixed and tab forms only.

Source code can be written so that it is useable for all source forms (see

Section 2.3.3).

2-8 Program Structure, Characters, and Source Forms

Statement Labels

A statement label (or statement number) identifies a statement so that other
statements can refer to it, either to get information or to transfer control. A
label can precede any statement that is not part of another statement.

A statement label must be one to five decimal digits long; blanks and leading
zeros are ignored. An all-zero statement label is invalid, and a blank statement
cannot be labeled.

Labeled FORMAT and labeled executable statements are the only statements
that can be referred to by other statements. FORMAT statements are referred
to only in the format specifier of an I/O statement or in an ASSIGN statement.
Two statements within a scoping unit cannot have the same label.

For More Information:

On labels in free source form, see Section 2.3.1; in fixed or tab source form, see
Section 2.3.2.

2.3.1 Free Source Form

In free source form, statements are not limited to specific positions on a source
line. In Fortran 95/90, a free form source line can contain from 0 to 132
characters. HP Fortran allows the line to be of any length.

Blank characters are significant in free source form. The following are rules
for blank characters:

e Blank characters must not appear in lexical tokens, except within a
character context. For example, there can be no blanks between the
exponentiation operator **. Blank characters can be used freely between
lexical tokens to improve legibility.

e Blank characters must be used to separate names, constants, or labels from
adjacent keywords, names, constants, or labels. For example, consider the
following statements:

INTEGER NUM
GO TO 40
20 DO K=1,8

The blanks are required after INTEGER, TO, 20, and DO.

e Some adjacent keywords must have one or more blank characters between
them. Others do not require any; for example, BLOCK DATA can also
be spelled BLOCKDATA. The following list shows which keywords have
optional or required blanks:

Program Structure, Characters, and Source Forms 2-9

Optional Blanks

Required Blanks

BLOCK DATA
DOUBLE COMPLEX
DOUBLE PRECISION
ELSE IF

END BLOCK DATA
END DO

END FILE

END FORALL

END FUNCTION
END IF

END INTERFACE
END MODULE

END PROGRAM
END SELECT

END SUBROUTINE
END TYPE

END WHERE

GO TO

IN OUT

SELECT CASE

CASE DEFAULT

DO WHILE

IMPLICIT type-specifier

IMPLICIT NONE

INTERFACE ASSIGNMENT
INTERFACE OPERATOR

MODULE PROCEDURE

RECURSIVE FUNCTION
RECURSIVE SUBROUTINE
RECURSIVE type-specifier FUNCTION
type-specifier FUNCTION

type-specifier RECURSIVE FUNCTION

For information on statement separators (;) in all forms, see Section 2.3.

Comment Indicator

In free source form, the exclamation point character (!) indicates a comment
if it is within a source line, or a comment line if it is the first character in a
source line.

Continuation Indicator

In free source form, the ampersand character (&) indicates a continuation line
(unless it appears in a Hollerith or character constant, or within a comment).
The continuation line is the first noncomment line following the ampersand.
Although Fortran 95/90 permits up to 39 continuation lines in free-form
programs, HP Fortran allows up to 511 continuation lines.

2-10 Program Structure, Characters, and Source Forms

The following shows a continued statement:

TCOSH(Y) = EXP(Y) + & ! The initial statement line
EXP(-Y) | A continuation line

If the first nonblank character on the next noncomment line is an ampersand,
the statement continues at the character following the ampersand. For
example, the preceding example can be written as follows:

TCOSH(Y) = EXP(Y

) + &
& EXP(-Y)

If a lexical token must be continued, the first nonblank character on the next
noncomment line must be an ampersand followed immediately by the rest of
the token. For example:

TCOSH(Y) = EXP(Y) + EX&
&P (-Y)

If you continue a character constant, an ampersand must be the first non-
blank character of the continued line; the statement continues with the next
character following the ampersand. For example:

ADVERTISER = "Davis, O’Brien, Chalmers & Peter&
&son"
ARCHITECT = "O'’Connor, Emerson, and Davisé&

& Associatesg"

If the ampersand is omitted on the continued line, the statement continues
with the first non-blank character in the continued line. So, in the preceding
example, the whitespace before “Associates” would be ignored.

The ampersand cannot be the only nonblank character in a line, or the only
nonblank character before a comment; an ampersand in a comment is ignored.

For More Information:
On the general rules for all source forms, see Section 2.3.

2.3.2 Fixed and Tab Source Forms

In Fortran 95, fixed source form is identified as obsolescent.

In fixed and tab source forms, there are restrictions on where a statement can
appear within a line.

By default, a statement can extend to character position 72. In this case, any
text following position 72 is ignored and no warning message is printed. You
can specify a compiler option to extend source lines to character position 132.

Program Structure, Characters, and Source Forms 2-11

Except in a character context, blanks are not significant and can be used freely
throughout the program for maximum legibility.

Some Fortran compilers use blanks to pad short source lines out to 72
characters. By default, HP Fortran does not. If portability is a concern, you
can use the concatenation operator to prevent source lines from being padded
by other Fortran compilers (see the example in “Continuation Indicator” below)
or you can force short source lines to be padded by using a compiler option.

Comment Indicator

In fixed and tab source forms, the exclamation point character (!) indicates a
comment if it is within a source line. (It must not appear in column 6 of a fixed
form line; that column is reserved for a continuation indicator.)

The letter C (or c), an asterisk (*), or an exclamation point (!) indicates a
comment line when it appears in column 1 of a source line.

Continuation Indicator

In fixed and tab source forms, a continuation line is indicated by one of the
following:

e For fixed form: Any character (except a zero or blank) in column 6 of a
source line

e For tab form: Any digit (except zero) after the first tab

The compiler considers the characters following the continuation indicator to be
part of the previous line. Although Fortran 95/90 permits up to 19 continuation
lines in a fixed-form program, HP Fortran allows up to 511 continuation lines.

If a zero or blank is used as a continuation indicator, the compiler considers
the line to be an initial line of a Fortran statement.

The statement label field of a continuation line must be blank (except in the
case of a debugging statement).

When long character or Hollerith constants are continued across lines,
portability problems can occur. Use the concatenation operator to avoid such
problems. For example:

PRINT *, 'This is a very long character constant '//
+ "which is safely continued across lines’

Use this same method when initializing data with long character or Hollerith
constants. For example:

2-12 Program Structure, Characters, and Source Forms

CHARACTER* (*) LONG_CONST

PARAMETER (LONG_CONST = 'This is a very long '//

+ 'character constant which is safely continued ’//
+ 'across lines’)

CHARACTER*100 LONG_VAL

DATA LONG VAL / LONG_CONST/

Hollerith constants must be converted to character constants before using the
concatenation method of line continuation.

Debugging Statement Indicator

In fixed and tab source forms, the statement label field can contain a statement
label, a comment indicator, or a debugging statement indicator.

The letter D indicates a debugging statement when it appears in column 1
of a source line. The initial line of the debugging statement can contain a
statement label in the remaining columns of the statement label field.

If a debugging statement is continued onto more than one line, every
continuation line must begin with a D and a continuation indicator.

By default, the compiler treats debugging statements as comments. However,
you can specify a compiler option to force the compiler to treat debugging
statements as source text to be compiled.

For More Information:

¢ On the general rules for all source forms, see Section 2.3.

¢ On statement separators (;) in all forms, see Section 2.3.

¢ On compiler options, see the HP Fortran for OpenVMS User Manual.
e On the OPTIONS statement, see Section 13.3.

e On statement labels, see Section 2.3.

¢ On obsolescent features in Fortran 95, see Appendix A.

2.3.2.1 Fixed-Format Lines

In fixed source form, a source line has columns divided into fields for statement
labels, continuation indicators, statement text, and sequence numbers. Each
column represents a single character.

The column positions for each field follow:

Program Structure, Characters, and Source Forms 2-13

Field Column

Statement label 1 through 5

Continuation indicator 6

Statement 7 through 72 (or 132 with a compiler option)
Sequence number 73 through 80

By default, a sequence number or other identifying information can appear in
columns 73 through 80 of any fixed-format line in a HP Fortran program. The
compiler ignores the characters in this field.

If you extend the statement field to position 132, the sequence number field
does not exist.

Note

If you use the sequence number field, do not use tabs anywhere in the
source line, or the compiler may interpret the sequence numbers as
part of the statement field in your program.

For More Information:
¢ On the general rules for all source forms, see Section 2.3.

¢ On the general rules for fixed and tab source forms, see Section 2.3.2.

2.3.2.2 Tab-Format Lines

In tab source form, you can specify a statement label field, a continuation
indicator field, and a statement field, but not a sequence number field.

Figure 2—2 shows equivalent source lines coded with tab and fixed source
form.

2-14 Program Structure, Characters, and Source Forms

Figure 2-2 Line Formatting Example

Format using TAB Character Character-per-Column Format
112 83 4 5|6|7 8 9 1011 12 13 14 15(16 17 18 19 20
C FIRST VALUE C FII|R|S|T VIA|L|U|E
10 [TAB] I=J + 5K + 110 | = J + 51*|K +
1M e
IVAL = 1+2 I'|VIA]|L =[l1[+]2
ZK-0614-GE

The statement label field precedes the first tab character. The continuation
indicator field and statement field follow the first tab character.

The continuation indicator is any nonzero digit. The statement field can
contain any Fortran statement. A Fortran statement cannot start with a digit.

If a statement is continued, a continuation indicator must be the first character
(following the first tab) on the continuation line.

Many text editors and terminals advance the terminal print carriage to a
predefined print position when you press the key. However, the HP Fortran
compiler does not interpret the tab character in this way. It treats the tab
character in a statement field the same way it treats a blank character. In the
source listing that the compiler produces, the tab causes the character that

follows to be printed at the next tab stop (usually located at columns 9, 17, 25,
33, and so on).

Note

If you use the sequence number field, do not use tabs anywhere in the
source line, or the compiler may interpret the sequence numbers as
part of the statement field in your program.

Program Structure, Characters, and Source Forms 2-15

For More Information:

¢ On the general rules for all source forms, see Section 2.3.

¢ On the general rules for fixed and tab source forms, see Section 2.3.2.

2.3.3 Source Code Useable for All Source Forms

To write source code that is useable for all source forms (free, fixed, or tab),

follow these rules:

Blanks

Statement labels

Statements

Comment indicator

Continuation indicator

Treat as significant (see Section 2.3.1).

Place in column positions 1 through 5 (or before the
first tab character).

Start in column position 7 (or after the first tab
character).

Use only !. Place anywhere except in column position
6 (or immediately after the first tab character).

Use only &. Place in column position 73 of the initial
line and each continuation line, and in column 6 of
each continuation line (no tab character can precede
the ampersand in column 6).

The following example is valid for all source forms:

Column:
12345678. .. 73
! Define the user function MY SIN
DOUBLE PRECISION FUNCTION MY SIN(X)
MY SIN = X - X**3/FACTOR(3) + X**5/FACTOR(5) &
& - X**7/FACTOR (7)
CONTAINS
INTEGER FUNCTION FACTOR (N)
FACTOR = 1
Do 10 I =N, 1, -1
10 FACTOR = FACTOR * I

END FUNCTION FACTOR
END FUNCTION MY SIN

2-16 Program Structure, Characters, and Source Forms

3

Data Types, Constants, and Variables

This chapter describes:

Section 3.1, Overview

Section 3.2, Intrinsic Data Types

Section 3.3, Derived Data Types

Section 3.4, Binary, Octal, Hexadecimal, and Hollerith Constants

Section 3.5, Variables

3.1 Overview

Each constant, variable, array, expression, or function reference in a Fortran
statement has a data type. The data type of these items can be inherent in
their construction, implied by convention, or explicitly declared.

Each data type has the following properties:

A name

The names of the intrinsic data types are predefined, while the names

of derived types are defined in derived-type definitions. Data objects
(constants, variables, or parts of constants or variables) are declared using
the name of the data type.

A set of associated values

Each data type has a set of valid values. Integer and real data types have
a range of valid values. Complex and derived types have sets of values that
are combinations of the values of their individual components.

A way to represent constant values for the data type

A constant is a data object with a fixed value that cannot be changed
during program execution. The value of a constant can be a numeric value,
a logical value, or a character string.

Data Types, Constants, and Variables 3-1

A constant that does not have a name is a literal constant. A literal
constant must be of intrinsic type and it cannot be array-valued.

A constant that has a name is a named constant. A named constant
can be of any type, including derived type, and it can be array-valued. A
named constant has the PARAMETER attribute and is specified in a type
declaration statement or PARAMETER statement.

A set of operations to manipulate and interpret these values

The data type of a variable determines the operations that can be used
to manipulate it. Besides intrinsic operators and operations, you can also
define operators and operations.

This chapter contains information on the following topics:

Intrinsic data types and constants (Section 3.2)
Derived data types (Section 3.3)
Binary, octal, hexadecimal, and Hollerith constants (Section 3.4)

Variables, including arrays (Section 3.5)

For More Information:

On type declaration statements, see Section 5.1.
On valid operations for data types, see Section 4.1.
On defined operations, see Section 4.1.5.

On ranges for numeric literal constants, see the HP Fortran for OpenVMS
User Manual.

On named constants, see Section 5.14.

On the PARAMETER attribute and statement, see Section 5.14.

3.2 Intrinsic Data Types

HP Fortran provides the following intrinsic data types:

INTEGER (see Section 3.2.1)

There are four kind parameters for data of type integer:
— INTEGER([KIND=]1) or INTEGER*1
— INTEGER([KIND=]2) or INTEGER*2
— INTEGER([KIND=]4) or INTEGER*4
— INTEGER([KIND=]8) or INTEGER*8

3—-2 Data Types, Constants, and Variables

e REAL (see Section 3.2.2)

There are three kind parameters for data of type real:
— REAL([KIND=]4) or REAL*4

— REAL([KIND=]8) or REAL*8

— REAL([KIND=]16) or REAL*16

e DOUBLE PRECISION (see Section 3.2.2)

No kind parameter is permitted for data declared with type DOUBLE
PRECISION. This data type is the same as REAL([KIND=]8).

e COMPLEX (see Section 3.2.3)

There are three kind parameters for data of type complex:
— COMPLEX([KIND=]4) or COMPLEX*8

— COMPLEX([KIND=]8) or COMPLEX*16

— COMPLEX([KIND=]16) or COMPLEX*32

e DOUBLE COMPLEX (see Section 3.2.3)

No kind parameter is permitted for data declared with type DOUBLE
COMPLEX. This data type is the same as COMPLEX([KIND=]8).

e LOGICAL (see Section 3.2.4)

There are four kind parameters for data of type logical:
— LOGICAL(IKIND=]1) or LOGICAL*1
— LOGICAL(IKIND=]2) or LOGICAL*2
— LOGICAL(IKIND=]4) or LOGICAL*4
— LOGICAL(IKIND=]8) or LOGICAL*8
e CHARACTER (see Section 3.2.5)

There is one kind parameter for data of type character:
CHARACTER([KIND=]1).

e BYTE
This is a 1-byte value; the data type is equivalent to INTEGER([KIND=]1).

The intrinsic function KIND can be used to determine the kind type parameter
of a representation method.

Data Types, Constants, and Variables 3-3

For more portable programs, you should not use the forms INTEGER([KIND=]n)
or REAL([KIND=]n). You should instead define a PARAMETER constant using
the SELECTED_INT KIND or SELECTED_REAL_KIND function, whichever
is appropriate. For example, the following statements define a PARAMETER
constant for an INTEGER kind that has 9 digits:

INTEGER, PARAMETER :: MY INT KIND = SELECTED INT KIND(9)

INTEGER (MY _INT KIND) :: J

Note that the syntax separator :: is used in type declaration statements.

The following sections describe the intrinsic data types and forms for literal
constants for each type.

For More Information:

¢ On declaration statements for intrinsic data types, see Sections 5.1.1 and
5.1.2.

e On operations for intrinsic data types, see Section 4.1.
¢ On the KIND intrinsic function, see Section 9.4.79.
¢ On storage requirements for intrinsic data types, see Table 15-2.

e On type declaration statements, see Section 5.1.

3.2.1 Integer Data Types

Integer data types can be specified as follows:

INTEGER
INTEGER([KIND=]n)
INTEGER*n

n
Is kind 1, 2, 4, or 8.

If a kind parameter is specified, the integer has the kind specified. If a kind
parameter is not specified, integer constants are interpreted as follows:

e If the integer constant is within the default integer kind range, the kind is
default integer.

e If the integer constant is outside the default integer kind range, the kind of
the integer constant is the smallest integer kind which holds the constant.

3—-4 Data Types, Constants, and Variables

Integer Constants

An integer constant is a whole number with no decimal point. It can have a
leading sign and is interpreted as a decimal number.

Integer constants take the following form:
[sIn[n...][_K]

S
Is a sign; required if negative (—), optional if positive (+).

n
Is a decimal digit (0 through 9). Any leading zeros are ignored.

k
Is the optional kind parameter: 1 for INTEGER(1), 2 for INTEGER(2), 4 for
INTEGER4), or 8 for INTEGER(8). It must be preceded by an underscore (_).

An unsigned constant is assumed to be nonnegative.

Integers are expressed in decimal values (base 10) by default. To specify a
constant that is not in base 10, use the following syntax:

[s][[base] #]nnn...

S
Is an optional plus (+) or minus (—) sign.

base
Is any constant from 2 through 36.

If base is omitted but # is specified, the integer is interpreted in base 16. If
both base and # are omitted, the integer is interpreted in base 10.

For bases 11 through 36, the letters A through Z represent numbers greater
than 9. For example, for base 36, A represents 10, B represents 11, C
represents 12, and so on, through Z, which represents 35. The case of the
letters is not significant.

Examples

The following examples show valid and invalid integer (base 10) constants:

Valid
0
-127

Data Types, Constants, and Variables 3-5

+32123

47 2

Invalid
9999999999999999999
3.14

32,767
33 3

Explanation

Number too large.

Decimal point not allowed; this is a valid

REAL constant.

Comma not allowed.

3 is not a valid kind for integers.

The following integers (most of which are not base 10) are all assigned a value

equal to 3994575 decimal:

T#45644664
+84#17171717
#3CF3CF
+17#2DE110
3994575
36#2DM8F

BB RG3H
[T T T T TR TR

2#1111001111001111001111

You can use integer constants to assign values to data. The following table
shows assignments to different data and lists the integer and hexadecimal

values in the data:

Fortran Integer Value Hexadecimal Value
Assignment in the Data in the Data
LOGICAL(1) X

INTEGER(1) X

X =-128 -128 Z'80'
X= 127 127 Z'TF'

X = 255 -1 Z'FF'
LOGICAL(2) X

INTEGER(2) X

X = 255 255 Z'FF'

X =-32768 —32768 Z' 8000’
X = 32767 32767 Z' TFFF’'
X = 65535 -1 Z' FFFF’'

For More Information:

¢ On integer constants used in expressions, see Section 4.1.1.

3-6 Data Types, Constants, and Variables

¢ On the ranges for integer types and kinds, see the HP Fortran for
OpenVMS User Manual.

3.2.2 Real Data Types

Real data types can be specified as follows:

REAL
REAL([KIND=]n)
REAL*n

DOUBLE PRECISION

n
Is kind 4, 8, or 16.

If a kind parameter is specified, the real constant has the kind specified. If a
kind parameter is not specified, the kind is default real.

DOUBLE PRECISION is REAL(8). No kind parameter is permitted for data
declared with type DOUBLE PRECISION.

3.2.2.1 General Rules for Real Constants
A real constant approximates the value of a mathematical real number. The
value of the constant can be positive, zero, or negative.
The following is the general form of a real constant with no exponent part:
[sIn[n...][_K]
A real constant with an exponent part has one of the following forms:

[sIn[n...]JE[s]nn...[_K]
[s]n[n...]D[s]nn...
[sIn[n...]Q[s]nn...

S
Is a sign; required if negative (—), optional if positive (+).

n
Is a decimal digit (0 through 9). A decimal point must appear if the real
constant has no exponent part.

k
Is the optional kind parameter: 4 for REAL(4), 8 for REAL(8), or 16 for
REAL(16). It must be preceded by an underscore (_).

Data Types, Constants, and Variables 3-7

Rules and Behavior

Leading zeros (zeros to the left of the first nonzero digit) are ignored in
counting significant digits. For example, in the constant 0.00001234567, all of
the nonzero digits, and none of the zeros, are significant. (See the following
sections for the number of significant digits each kind type parameter typically
has).

The exponent represents a power of 10 by which the preceding real or integer
constant is to be multiplied (for example, 1.0E6 represents the value
1.0 * 10%%6).

A real constant with no exponent part and no kind type parameter is (by
default) a single-precision (REAL(4)) constant. You can change the default
behavior by specifying the compiler option that controls the default real kind.

If the real constant has no exponent part, a decimal point must appear in the
string (anywhere before the optional kind parameter). If there is an exponent
part, a decimal point is optional in the string preceding the exponent part; the
exponent part must not contain a decimal point.

The exponent letter E denotes a single-precision real (REAL(4)) constant,
unless the optional kind parameter specifies otherwise. For example, -9.E2_8
is a double-precision constant (which can also be written as —9.D2).

The exponent letter D denotes a double-precision real (REAL(8)) constant.
The exponent letter Q denotes a quad-precision real (REAL(16)) constant.

A minus sign must appear before a negative real constant; a plus sign is
optional before a positive constant. Similarly, a minus sign must appear
between the exponent letter (E, D, or Q) and a negative exponent, whereas a
plus sign is optional between the exponent letter and a positive exponent.

If the real constant includes an exponent letter, the exponent field cannot be
omitted, but it can be zero.

To specify a real constant using both an exponent letter and a kind parameter,
the exponent letter must be E, and the kind parameter must follow the
exponent part.

3.2.2.2 REAL(4) Constants

A single-precision REAL constant occupies four bytes of memory. The
number of digits is unlimited, but typically only the leftmost seven digits
are significant.

Either VAX F_floating or IEEE S_floating format is used, depending on the
compiler option specified.

3-8 Data Types, Constants, and Variables

Examples

The following examples show valid and invalid REAL(4) constants:

Valid
3.14159
3.14159 4
621712. 4
-.00127
+5.0E3
2E-3 4

Invalid

1,234,567.

3258-47
-47.F47
625. 6
100

$25.00

Explanation

Commas not allowed.

Too small for REAL; this is a valid DOUBLE PRECISION constant.
Too large for REAL; this is a valid DOUBLE PRECISION constant.
6 is not a valid kind for reals.

Decimal point missing; this is a valid integer constant.

Special character not allowed.

For More Information:

¢ On general rules for real constants, see Section 3.2.2.1.

¢ On the format and range of REAL(4) data, see the HP Fortran for
OpenVMS User Manual.

¢ On compiler options affecting REAL data, see the HP Fortran for OpenVMS

User Manual.

3.2.2.3 REAL(8) or DOUBLE PRECISION Constants
A REAL(8) or DOUBLE PRECISION constant has more than twice the
accuracy of a REAL(4) number, and greater range.

A REAL(8) or DOUBLE PRECISION constant occupies eight bytes of memory.
The number of digits that precede the exponent is unlimited, but typically only
the leftmost 15 digits are significant.

Either VAX D_floating, G_floating, or IEEE T_floating format is used,
depending on the compiler option specified.

Data Types, Constants, and Variables 3-9

Examples

The following examples show valid and invalid REAL(8) or DOUBLE
PRECISION constants:

Valid
123456789D+5
123456789E+5 8
+2.7843D00
-.522D-12
2E200_8
2.3 8
3.4E7 8
Invalid Explanation
-.25D0 2 2 is not a valid kind for reals.
+2.7182812846182 No D exponent designator is present;
this is a valid single-precision constant.
1234567890D45 Too large for D_floating format; valid for G_floating and
T_floating format.
123456789.D400 Too large for any double-precision format.
123456789.D-400 Too small for any double-precision format.

For More Information:

¢ On general rules for real constants, see Section 3.2.2.1.

¢ On the format and range of DOUBLE PRECISION (REAL(8)) data, see the
HP Fortran for OpenVMS User Manual.

¢ On compiler options affecting DOUBLE PRECISION data, see the HP
Fortran for OpenVMS User Manual.

3.2.2.4 REAL(16) Constants

A REAL(16) constant has more than four times the accuracy of a REAL(4)
number, and a greater range.

A REAL(16) constant occupies 16 bytes of memory. The number of digits that
precede the exponent is unlimited, but typically only the leftmost 33 digits are
significant.

3-10 Data Types, Constants, and Variables

Examples

The following examples demonstrate valid and invalid REAL(16) constants:
Valid

1234567890Q4000

-1.230-400

+2.72Q0

1.88 16

Invalid Explanation

1.05000 Too large.

1.0-5000 Too small.

For More Information:
¢ On general rules for real constants, see Section 3.2.2.1.

¢ On the format and range of REAL(16) data, see the HP Fortran for
OpenVMS User Manual.

3.2.3 Complex Data Types

Complex data types can be specified as follows:

COMPLEX
COMPLEX([KIND=]n)
COMPLEX*s
DOUBLE COMPLEX

n
Is kind 4, 8, or 16.

s
Is 8, 16, or 32. COMPLEX(4) is specified as COMPLEX*8; COMPLEX(8) is
specified as COMPLEX*16; COMPLEX(16) is specified as COMPLEX*32.

If a kind parameter is specified, the complex constant has the kind specified. If
no kind parameter is specified, the kind of both parts is default real, and the
constant is of type default complex.

DOUBLE COMPLEX is COMPLEX(8). No kind parameter is permitted for
data declared with type DOUBLE COMPLEX.

Data Types, Constants, and Variables 3-11

3.2.3.1 General Rules for Complex Constants

A complex constant approximates the value of a mathematical complex
number. The constant is a pair of real or integer values, separated by a
comma, and enclosed in parentheses. The first constant represents the real
part of that number; the second constant represents the imaginary part.

The following is the general form of a complex constant:
(c.c)

c
Is as follows:

e For COMPLEX(4) constants, c is an integer or REAL(4) constant.

e For COMPLEX(8) constants, ¢ is an integer, REAL(4) constant, or
DOUBLE PRECISION (REAL(8)) constant. At least one of the pair must
be DOUBLE PRECISION.

e For COMPLEX(16) constants, ¢ is an integer, REAL(4) constant, REAL(8)
constant, or REAL(16) constant. At least one of the pair must be REAL(16).

Note that the comma and parentheses are required.

3.2.3.2 COMPLEX(4) Constants

A COMPLEX(4) constant is a pair of integer or single-precision real constants
that represent a complex number.

A COMPLEX(4) constant occupies eight bytes of memory and is interpreted as
a complex number.

If the real and imaginary part of a complex literal constant are both real, the
kind parameter value is that of the part with the greater decimal precision.

The rules for REAL(4) constants apply to REAL(4) constants used in
COMPLEX constants. (See Sections 3.2.2.1 and 3.2.2.2 for the rules on forming
REAL(4) constants.)

The REAL(4) constants in a COMPLEX constant have one of the following
formats: VAX F_floating or IEEE S_floating format (depending on the
hardware (Itanium or Alpha) and the compiler option specified).

3-12 Data Types, Constants, and Variables

Examples

The following examples demonstrate valid and invalid COMPLEX(4) constants:
Valid

(1.7039,-1.70391)

(44.36_4,-12.2E16 4)

(+12739E3,0.)

(1,2)

Invalid Explanation

(1.23,) Missing second integer or single-precision real
constant.

(1.0, 2H12) Hollerith constant not allowed.

For More Information:

¢ On general rules for complex constants, see Section 3.2.3.1.

¢ On the format and range of COMPLEX (COMPLEX(4)) data, see the HP
Fortran for OpenVMS User Manual.

¢ On compiler options affecting REAL data, see the HP Fortran for OpenVMS
User Manual.

3.2.3.3 COMPLEX(8) or DOUBLE COMPLEX Constants
A COMPLEX(8) or DOUBLE COMPLEX constant is a pair of constants that
represents a complex number. One of the pair must be a double-precision real
constant, the other can be an integer, single-precision real, or double-precision
real constant.

A COMPLEX(8) or DOUBLE COMPLEX constant occupies 16 bytes of memory
and is interpreted as a complex number.

The rules for DOUBLE PRECISION (REAL(8)) constants also apply to

the double precision portion of COMPLEX(8) or DOUBLE COMPLEX
constants. (See Sections 3.2.2.1 and 3.2.2.3 for the rules on forming DOUBLE
PRECISION constants.)

The DOUBLE PRECISION constants in a COMPLEX(8) or DOUBLE
COMPLEX constant have one of the following formats: VAX D_floating, G_
floating, or IEEE T_floating format (depending on the hardware (Itanium or
Alpha) and the compiler option specified).

Data Types, Constants, and Variables 3-13

Examples

The following examples demonstrate valid and invalid COMPLEX(8) or
DOUBLE COMPLEX constants:

Valid

(1.7039,-1.7039D0)

(547.3E0 8,-1.44 8)

(1.7039E0,-1.7039D0)

(+12739D3,0.D0)

Invalid Explanation

(1.23D0,) Second constant missing.

(1D1,2H12) Hollerith constants not allowed.

(1,1.2) Neither constant is DOUBLE PRECISION; this is a

valid single-precision constant.
For More Information:
e On general rules for complex constants, see Section 3.2.3.1.

¢ On the format and range of DOUBLE COMPLEX data, see the HP Fortran
for OpenVMS User Manual.

¢ On compiler options affecting DOUBLE PRECISION data, see the HP
Fortran for OpenVMS User Manual.

3.2.3.4 COMPLEX(16) Constants

A COMPLEX(16) constant is a pair of constants that represents a complex
number. One of the pair must be a REAL(16) constant, the other can be an
integer, single-precision real, or double-precision real constant.

A COMPLEX(16) constant occupies 32 bytes of memory and is interpreted as a
complex number.

The rules for REAL(16) constants apply to REAL(16) constants used in
COMPLEX(16) constants. (See Sections 3.2.2.1 and 3.2.2.4 for the rules on
forming REAL(16) constants.)

The REAL(16) constants in a COMPLEX(16) constant have one of the following
formats: VAX X _floating or IEEE X_floating format (depending on the
hardware (Itanium or Alpha) and the compiler option specified)

3—-14 Data Types, Constants, and Variables

Examples

The following examples demonstrate valid and invalid COMPLEX(16)
constants:

Valid

(1.7039,-1.7039Q2)

(547.3E0_16,-1.44)

(+12739Q3,0.Q0)

Invalid Explanation

(1.2300,) Second constant missing.

(1D1,2H12) Hollerith constants not allowed.
(1.7039,-1.7039D0) Neither constant is REAL(16); this is a valid double-

precision constant.
For More Information:
¢ On general rules for complex constants, see Section 3.2.3.1.

e On the format and range of REAL(16) data, see the HP Fortran for
OpenVMS User Manual.

¢ On compiler options affecting REAL(16) data, see the HP Fortran for
OpenVMS User Manual.

3.2.4 Logical Data Types
Logical data types can be specified as follows:
LOGICAL

LOGICAL([KIND=]n)
LOGICAL*n

n
Is kind 1, 2, 4, or 8.

If a kind parameter is specified, the logical constant has the kind specified. If
no kind parameter is specified, the kind of the constant is default logical.

Logical Constants

A logical constant represents only the logical values true or false, and takes
one of the following forms:

TRUE.[K]
FALSE.[_K]

Data Types, Constants, and Variables 3-15

k
Is the optional kind parameter: 1 for LOGICAL(1), 2 for LOGICAL(2), 4 for
LOGICAL(4), or 8 for LOGICAL(8). It must be preceded by an underscore (_).

Logical data type ranges correspond to their comparable integer data type
ranges. For example, the LOGICAL(2) range is the same as the INTEGER(2)
range.

For More Information:
On integer data type ranges, see the HP Fortran for OpenVMS User Manual.

3.2.5 Character Data Type

The character data type can be specified as follows:

CHARACTER
CHARACTER([KIND=]n)
CHARACTER ([LEN=]len)
CHARACTER ([LEN=]len [,[KIND=]n])
CHARACTER (KIND=n [,LEN=len])
CHARACTER*len[,]

n
Is kind 1.

len
Is a string length (not a kind). For more information, see Section 5.1.2.

If no kind type parameter is specified, the kind of the constant is default
character.

Character Constants

A character constant is a character string enclosed in delimiters
(apostrophes or quotation marks). It takes one of the following forms:

[k_1[ch..]" [C]
[k_][ch...]" [C]

k

Is the optional kind parameter: 1 (the default). It must be followed by an
underscore (_). Note that in character constants, the kind must precede the
constant.

ch
Is an ASCII character.

3-16 Data Types, Constants, and Variables

C

Is a C string specifier. C strings can be used to define strings with nonprintable
characters. For more information, see Section 3.2.5.1.

Rules and Behavior

The value of a character constant is the string of characters between the
delimiters. The value does not include the delimiters, but does include all
blanks or tabs within the delimiters.

If a character constant is delimited by apostrophes, use two consecutive
apostrophes (' ') to place an apostrophe character in the character constant.

Similarly, if a character constant is delimited by quotation marks, use two
consecutive quotation marks (") to place a quotation mark character in the
character constant.

The length of the character constant is the number of characters between the
delimiters, but two consecutive delimiters are counted as one character.

The length of a character constant must be in the range of 0 to 2000. Each
character occupies one byte of memory.

If a character constant appears in a numeric context (such as an expression
on the right side of an arithmetic assignment statement), it is considered a
Hollerith constant.

A zero-length character constant is represented by two consecutive apostrophes
or quotation marks.

Examples

The following examples demonstrate valid and invalid character constants:

Valid

"WHAT KIND TYPE? "
"TODAY’ 'S DATE IS: '
"The average is: "

1

Invalid Explanation

'HEADINGS No trailing apostrophe.

'Map Number: " Beginning delimiter does not match ending
delimiter.

For More Information:
On declaring data of type character, see Section 5.1.2.

Data Types, Constants, and Variables 3-17

3.2.5.1 C Strings in Character Constants

String values in the C language are terminated with null characters (CHAR(0))
and can contain nonprintable characters (such as backspace).

Nonprintable characters are specified by escape sequences. An escape sequence
is denoted by using the backslash (\) as an escape character, followed by a
single character indicating the nonprintable character desired.

This type of string is specified by using a standard string constant followed

by the character C. The standard string constant is then interpreted as a C-
language constant. Backslashes are treated as escapes, and a null character is
automatically appended to the end of the string (even if the string already ends
in a null character).

Table 3-1 shows the escape sequences that are allowed in character
constants.

Table 3-1 C-Style Escape Sequences

Escape Sequence Represents

\aor \A A bell

\bor \B A backspace

\for \F A formfeed

\nor \N A new line

\ror \R A carriage return
\tor \T A horizontal tab
\vor\V A vertical tab

\xhh or \Xhh A hexadecimal bit pattern
\ 000 An octal bit pattern
\0 A null character

\\ A backslash (\)

If a string contains an escape sequence that isn’t in this table, the backslash is
ignored.

A C string must also be a valid Fortran character constant. If the string is
delimited by apostrophes, apostrophes in the string itself must be represented
by two consecutive apostrophes (').

For example, the escape sequence \'string causes a compiler error because
Fortran interprets the apostrophe as the end of the string. The correct form is
\’’string.

3-18 Data Types, Constants, and Variables

If the string is delimited by quotation marks, quotation marks in the string
itself must be represented by two consecutive quotation marks ().

The sequences \ ooo and \ xhh allow any ASCII character to be given as a one-
to three-digit octal or a one- to two-digit hexadecimal character code. Each
octal digit must be in the range 0 to 7, and each hexadecimal digit must be
in the range 0 to F. For example, the C strings '\010’'C and ' \x08’C both
represent a backspace character followed by a null character.

The C string ' \\abcd’C is equivalent to the string '\abcd’ with a null
character appended. The string ' ' C represents the ASCII null character.

3.2.5.2 Character Substrings

A character substring is a contiguous segment of a character string. It takes
one of the following forms:

v ([e1]:[e2])
a(s[s]...) ([et1]:[e2])

\'
Is a character scalar constant, or the name of a character scalar variable or
character structure component.

el
Is a scalar integer (or other numeric) expression specifying the leftmost
character position of the substring; the starting point.

e2
Is a scalar integer (or other numeric) expression specifying the rightmost
character position of the substring; the ending point.

a
Is the name of a character array.

S
Is a subscript expression.

Both el and e2 must be within the range 1,2, ..., len, where len is the length of
the parent character string. If el exceeds e2, the substring has length zero.

Data Types, Constants, and Variables 3-19

Rules and Behavior
Character positions within the parent character string are numbered from left
to right, beginning at 1.

If the value of the numeric expression el or e2 is not of type integer, it is
converted to an integer before use (any fractional parts are truncated).

If el is omitted, the default is 1. If 2 is omitted, the default is len. For
example, NAMES(1,3)(:7) specifies the substring starting with the first
character position and ending with the seventh character position of the
character array element NAMES(1,3).

Examples
Consider the following example:
CHARACTER*8 C, LABEL

LABEL = 'XVERSUSY’
C = LABEL(2:7)

LABEL(2:7) specifies the substring starting with the second character position
and ending with the seventh character position of the character variable
assigned to LABEL, so C has the value 'VERSUS'.

Consider the following example:

TYPE ORGANIZATION
INTEGER ID
CHARACTER*35 NAME

END TYPE ORGANIZATION

TYPE (ORGANIZATION) DIRECTOR
CHARACTER*25 BRANCH, STATE (50)

The following are valid substrings based on this example:

BRANCH (3:15) | parent string is a scalar variable
STATE (20) (1:3) | parent string is an array element
DIRECTOR%NAME | parent string is a structure component

Consider the following example:

CHARACTER (*), PARAMETER :: MY BRANCH = "CHAPTER 204"
CHARACTER (3) BRANCH_CHAP
BRANCH CHAP = MY BRANCH(9:11) ! parent string is a character constant

BRANCH_CHAP is a character string of length 3 that has the value '204'.

3-20 Data Types, Constants, and Variables

For More Information:
e On arrays, see Section 3.5.2.
¢ On array elements, see Section 3.5.2.2.

¢ On structure components, see Section 3.3.3.

3.3 Derived Data Types

You can create derived data types from intrinsic data types or previously
defined derived types.

A derived type is resolved into “ultimate” components that are either of
intrinsic type or are pointers.

The set of values for a specific derived type consists of all possible sequences of
component values permitted by the definition of that derived type. Structure
constructors are used to specify values of derived types.

Nonintrinsic assignment for derived-type entities must be defined by a
subroutine with an ASSIGNMENT interface. Any operation on derived-
type entities must be defined by a function with an OPERATOR interface.
Arguments and function values can be of any intrinsic or derived type.

For More Information:

¢ On structure components, see Section 3.3.3.

e On structure constructors, see Section 3.3.4.

e On OPERATOR interfaces, see Section 8.9.4.

e On ASSIGNMENT interfaces, see Section 8.9.5.

¢ On intrinsic assignment of derived types, see Section 4.2.1.4.

e On record structures, see Section B.12.

3.3.1 Derived-Type Definition

A derived-type definition specifies the name of a user-defined type and the
types of its components. It takes the following form:

TYPE [[, access] ::] name
component-definition
[component-definition] . . .

END TYPE [name]

Data Types, Constants, and Variables 3-21

access
Is the PRIVATE or PUBLIC keyword. The keyword can only be specified if the
derived-type definition is in the specification part of a module.

name

Is the name of the derived type. It must not be the same as the name of any
intrinsic type, or the same as the name of a derived type that can be accessed
from a module.

component-definition
Is one or more type declaration statements defining the component of derived

type.
The first component definition can be preceded by an optional PRIVATE or

SEQUENCE statement. (Only one PRIVATE or SEQUENCE statement can
appear in a given derived-type definition.)

PRIVATE specifies that the components are accessible only within the defining
module, even if the derived type itself is public.

SEQUENCE causes the components of the derived type to be stored in the
same sequence they are listed in the type definition. If SEQUENCE is
specified, all derived types specified in component definitions must be sequence

types.

A component definition takes the following form:

type [[, attr] ::] component [(a-spec)] [*char-len] [init-ex]

type

Is a type specifier. It can be an intrinsic type or a previously defined derived
type. (If the POINTER attribute follows this specifier, the type can also be any
accessible derived type, including the type being defined.)

attr

Is an optional POINTER attribute for a pointer component, or an optional
DIMENSION attribute for an array component. You can specify one or
both attributes. If DIMENSION is specified, it can be followed by an array
specification.

The POINTER or DIMENSION attribute can only appear once in a given
component-definition.

component
Is the name of the component being defined.

3—-22 Data Types, Constants, and Variables

a-spec
Is an optional array specification, enclosed in parentheses. If POINTER is
specified, the array is deferred shape; otherwise, it is explicit shape. In an
explicit-shape specification, each bound must be a constant scalar integer

expression. For more information on array specifications, see Section 5.1.4.

If the array bounds are not specified here, they must be specified following the
DIMENSION attribute.

char-len

Is an optional scalar integer literal constant; it must be preceded by an
asterisk (*). This parameter can only be specified if the component is of type
CHARACTER.

init-ex
Is an initialization expression or, for pointer components, =>NULL(). This is a
Fortran 95 feature.

If init-ex is specified, a double colon must appear in the component definition.
The equals assignment symbol (=) can only be specified for nonpointer
components.

The initialization expression is evaluated in the scoping unit of the type
definition.

Rules and Behavior
If a name is specified following the END TYPE statement, it must be the same
name that follows TYPE in the derived type statement.

A derived type can be defined only once in a scoping unit. If the same derived-
type name appears in a derived-type definition in another scoping unit, it is
treated independently.

A component name has the scope of the derived-type definition only. Therefore,
the same name can be used in another derived-type definition in the same
scoping unit.

Two data entities have the same type if they are both declared to be of the
same derived type (the derived-type definition can be accessed from a module
or a host scoping unit).

If the entities are in different scoping units, they can also have the same
derived type if they are declared with reference to different derived-type
definitions, and if both derived-type definitions have all of the following:

e The same name

e A SEQUENCE statement (they both have sequence type)

Data Types, Constants, and Variables 3-23

e Components that agree in name, order, and attributes; components cannot
be private

For More Information

¢ On intrinsic data types, see Section 3.2.

¢ On how to declare variables of derived type, see Section 5.1.3.

e On arrays, see Section 3.5.2.

¢ On pointers, see Section 5.15.

¢ On structure components, see Section 3.3.3.

e On default initialization for derived-type components, see Section 3.3.2.

e On alignment of derived-type data components, see the HP Fortran for
OpenVMS User Manual.

3.3.2 Default Initialization

Default initialization occurs if initialization appears in a derived-type
component definition. (This is a Fortran 95 feature.)

The specified initialization of the component will apply even if the definition is
PRIVATE.

Default initialization applies to dummy arguments with INTENT(OUT). It
does not imply the derived-type component has the SAVE attribute.

Explicit initialization in a type declaration statement overrides default
initialization.

To specify default initialization of an array component, use a constant
expression that includes one of the following:

e An array constructor

e A single scalar that becomes the value of each array element

Pointers can have an association status of associated, disassociated, or
undefined. If no default initialization status is specified, the status of the
pointer is undefined. To specify disassociated status for a pointer component,
use =>NULL().

3-24 Data Types, Constants, and Variables

Examples
You do not have to specify initialization for each component of a derived type.
For example:

TYPE REPORT

CHARACTER (LEN=20) REPORT NAME

INTEGER DAY

CHARACTER (LEN=3) MONTH

INTEGER :: YEAR = 1995 ! Only component with default
END TYPE REPORT ! initialization

Consider the following:
TYPE (REPORT), PARAMETER :: NOV_REPORT = REPORT ("Sales", 15, "NOV", 1996)

In this case, the explicit initialization in the type declaration statement
overrides the YEAR component of NOV_REPORT.

The default initial value of a component can also be overridden by default
initialization specified in the type definition. For example:

TYPE MGR_REPORT
TYPE (REPORT) :: STATUS = NOV_REPORT
INTEGER NUM

END TYPE MGR_REPORT

TYPE (MGR_REPORT) STARTUP
In this case, the STATUS component of STARTUP gets its initial value from
NOV_REPORT, overriding the initialization for the YEAR component.

3.3.3 Structure Components

A reference to a component of a derived-type structure takes the following
form:

parent [Yscomponent [(s-list)]]... Y%component [(s-list)]

parent
Is the name of a scalar or array of derived type. The percent sign (%) is called
a component selector.

component
Is the name of a component of the immediately preceding parent or component.

s-list
Is a list of one or more subscripts. If the list contains subscript triplets or
vector subscripts, the reference is to an array section.

Each subscript must be a scalar integer (or other numeric) expression with a
value that is within the bounds of its dimension.

Data Types, Constants, and Variables 3-25

The number of subscripts in any s-list must equal the rank of the immediately
preceding parent or component.

Rules and Behavior

Each parent or component (except the rightmost) must be of derived type.

The parent or one of the components can have nonzero rank (be an array). Any

component to the right of a parent or component of nonzero rank must not
have the POINTER attribute.

The rank of the structure component is the rank of the part (parent or
component) with nonzero rank (if any); otherwise, the rank is zero. The
type and type parameters (if any) of a structure component are those of the
rightmost part name.

The structure component must not be referenced or defined before the
declaration of the parent object.

If the parent object has the INTENT, TARGET, or PARAMETER attribute, the
structure component also has the attribute.

Examples
The following example shows a derived-type definition with two components:

TYPE EMPLOYEE

INTEGER ID

CHARACTER (LEN=40) NAME
END TYPE EMPLOYEE

The following shows how to declare CONTRACT to be of type EMPLOYEE:
TYPE (EMPLOYEE) :: CONTRACT

Note that both examples started with the keyword TYPE. The first (initial)
statement of a derived-type definition is called a derived-type statement, while
the statement that declares a derived-type object is called a TYPE statement.

The following example shows how to reference component ID of parent
structure CONTRACT:

CONTRACT%ID

The following example shows a derived type with a component that is a
previously defined type:

3-26 Data Types, Constants, and Variables

TYPE DOT
REAL X, Y
END TYPE DOT

fééé SCREEN
TYPE (DOT) C, D
END TYPE SCREEN
The following declares a variable of type SCREEN:
TYPE (SCREEN) M

Variable M has components M%C and M%D (both of type DOT); M%C has
components M%C%X and M%C%Y of type REAL.

The following example shows a derived type with a component that is an array:

TYPE CAR_INFO
INTEGER YEAR

CHARACTER (LEN=15) , DIMENSION(10) :: MAKER
CHARACTER (LEN=10) MODEL, BODY TYPE*8
REAL PRICE

END TYPE

TYPE (CAR_INFO) MY CAR

Note that MODEL has a character length of 10, but BODY_TYPE has a
character length of 8. You can assign a value to a component of a structure; for
example:

MY CAR%¥YEAR = 1985
The following shows an array structure component:
MY CARSMAKER

In the preceding example, if a subscript list (or substring) was appended to
MAKER, the reference would not be to an array structure component, but to
an array element or section.

Consider the following:
MY_CAR%MAKER(Z) (4:10)

In this case, the component is substring 4 to 10 of the second element of array
MAKER.

Consider the following:

Data Types, Constants, and Variables 3-27

TYPE CHARGE
INTEGER PARTS (40)
REAL LABOR
REAL MILEAGE

END TYPE CHARGE

TYPE (CHARGE) MONTH
TYPE (CHARGE) YEAR(12)

Some valid array references for this type follow:

MONTH%PARTS (I) An array element

|
MONTH%PARTS (I:K) ! An array section
YEAR (I) %PARTS ! An array structure component (a whole array)
YEAR (J) $PARTS (I) ! An array element
YEAR (J) $PARTS (I:K) | An array section
YEAR (J:K) $PARTS (I) ! An array section
YEAR%PARTS (I) | An array section

The following example shows a derived type with a pointer component that is
of the type being defined:

TYPE NUMBER
INTEGER NUM
TYPE (NUMBER) , POINTER :: START NUM => NULL()
TYPE (NUMBER) , POINTER :: NEXT NUM => NULL()
END TYPE

A type such as this can be used to construct linked lists of objects of type
NUMBER. Note that the pointers are given the default initialization status of
disassociated.

The following example shows a private type:

TYPE, PRIVATE :: SYMBOL

LOGICAL TEST

CHARACTER (LEN=50) EXPLANATION
END TYPE SYMBOL

This type is private to the module. The module can be used by another scoping
unit, but type SYMBOL is not available.

For More Information
e On references to array elements, see Section 3.5.2.2.
¢ On references to array sections, see Section 3.5.2.3.

¢ On examples of derived types in modules, see Section 8.3.

3-28 Data Types, Constants, and Variables

3.3.4 Structure Constructors

A structure constructor lets you specify scalar values of a derived type. It takes
the following form:

d-name (expr-list)

d-name
Is the name of the derived type.

expr-list

Is a list of expressions specifying component values. The values must agree
in number and order with the components of the derived type. If necessary,
values are converted (according to the rules of assignment), to agree with their
corresponding components in type and kind parameters.

Rules and Behavior
A structure constructor must not appear before its derived type is defined.

If a component of the derived type is an array, the shape in the expression list
must conform to the shape of the component array.

If a component of the derived type is a pointer, the value in the expression list
must evaluate to an object that would be a valid target in a pointer assignment
statement. (A constant is not a valid target in a pointer assignment
statement.)

If all the values in a structure constructor are constant expressions, the
constructor is a derived-type constant expression.
Examples
Consider the following derived-type definition:
TYPE EMPLOYEE
INTEGER ID

CHARACTER (LEN=40) NAME
END TYPE EMPLOYEE

This can be used to produce the following structure constructor:
EMPLOYEE (3472, "John Doe")
The following example shows a type with a component of derived type:

TYPE ITEM
REAL COST
CHARACTER (LEN=30) SUPPLIER
CHARACTER (LEN=20) ITEM NAME
END TYPE ITEM

Data Types, Constants, and Variables 3-29

TYPE PRODUCE

REAL MARKUP

TYPE (ITEM) FRUIT
END TYPE PRODUCE

In this case, you must use an embedded structure constructor to specify the
values of that component; for example:

PRODUCE (.70, ITEM (.25, "Daniels", "apple"))

For More Information:
On pointer assignment, see Section 4.2.3.

3.4 Binary, Octal, Hexadecimal, and Hollerith Constants

Binary, octal, hexadecimal, and Hollerith constants are nondecimal constants.
They have no intrinsic data type, but assume a numeric data type depending
on their use.

Fortran 95/90 allows unsigned binary, octal, and hexadecimal constants to be
used in DATA statements; the constant must correspond to an integer scalar
variable.

In HP Fortran, binary, octal, hexadecimal, and Hollerith constants can appear
wherever numeric constants are allowed.
3.4.1 Binary Constants

A binary constant is an alternative way to represent a numeric constant. A
binary constant takes one of the following forms:

B-d[d...]
Brd[d...]"

d
Is a binary (base 2) digit (0 or 1).

You can specify up to 256 binary digits in a binary constant. Leading zeros are
ignored.

Examples

The following examples demonstrate valid and invalid binary constants:
Valid

B’0101110'

B n 1 n

3-30 Data Types, Constants, and Variables

Invalid Explanation

B'0112’ The character 2 is invalid.
B10011’ No apostrophe after the B.
"1000001" No B before the first quotation mark.

3.4.2 Octal Constants

An octal constant is an alternative way to represent numeric constants. An
octal constant takes one of the following forms:

O-d[d...]"
Ord[d...]"
d
Is an octal (base 8) digit (0 through 7).

You can specify up to 256 bits in octal (86 octal digits) constants. Leading zeros

are ignored.

Examples

The following examples demonstrate valid and invalid octal constants:
Valid

0’07737’

omy"

Invalid Explanation

0'7782' The character 8 is invalid.

07772 No apostrophe after the O.

Q737" No O before the first quotation mark.

For More Information:
On an alternative form for octal constants, see Section B.7.

3.4.3 Hexadecimal Constants

A hexadecimal constant is an alternative way to represent numeric
constants. A hexadecimal constant takes one of the following forms:

Z:d[d..]"
Zrd[d...]"

Data Types, Constants, and Variables 3-31

d
Is a hexadecimal (base 16) digit (0 through 9, or an uppercase or lowercase
letter in the range of A to F).

You can specify up to 256 bits in hexadecimal (64 hexadecimal digits) constants.
Leading zeros are ignored.

Examples

The following examples demonstrate valid and invalid hexadecimal constants:

Valid

Z'AF9730'

Z"FFABC"

Z'84'

Invalid Explanation

Z'999." Decimal not allowed.

ZFon No quotation mark after the Z.

For More Information:
On an alternative form for hexadecimal constants, see Section B.7.

3.4.4 Hollerith Constants

A Hollerith constant is a string of printable ASCII characters preceded by
the letter H. Before the H, there must be an unsigned, nonzero default integer
constant stating the number of characters in the string (including blanks and
tabs).

Hollerith constants are strings of 1 to 2000 characters. They are stored as byte
strings, one character per byte.

Examples

The following examples demonstrate valid and invalid Hollerith constants:
Valid

16HTODAY' S DATE IS:

1HB

4H ABC

Invalid Explanation

3HABCD Wrong number of characters.

OH Hollerith constants must contain at least one
character.

3-32 Data Types, Constants, and Variables

3.4.5 Determining the Data Type of Nondecimal Constants

Binary, octal, hexadecimal, and Hollerith constants have no intrinsic data type.
These constants assume a numeric data type depending on their use.

When the constant is used with a binary operator (including the assignment
operator), the data type of the constant is the data type of the other operand.
For example:

Data Type of Length of
Statement Constant Constant (in bytes)
INTEGER (2) ICOUNT
INTEGER (4) JCOUNT
INTEGER (4) N
REAL (8) DOUBLE
REAL (4) RAFFIA, RALPHA
RAFFIA =B’'1001100111111010011' REAL(4) 4
RAFFIA = Z' 99AF2’ REAL(4) 4
RALPHA = 4HABCD REAL(4) 4
DOUBLE =B’1111111111100110011010" REAL(8) 8
DOUBLE = Z' FFF99A'’ REAL(8) 8
DOUBLE = 8HABCDEFGH REAL(8) 8
JCOUNT = ICOUNT + B’011101110111" INTEGER(2) 2
JCOUNT = ICOUNT + Q' 777’ INTEGER(2) 2
JCOUNT = ICOUNT + 2HXY INTEGER(2) 2
IF (N .EQ. B'1010100') GO TO 10 INTEGER(4) 4
IF (N .EQ. 0'123") GO TO 10 INTEGER(4) 4
IF (N. EQ. 1HZ) GO TO 10 INTEGER(4) 4

When a specific data type (generally integer) is required, that type is assumed
for the constant. For example:

Data Type of Length of Constant
Statement Constant (in bytes)
Y(IX) =Y(0'15") + 3. INTEGER(4) 4
Y(IX) = Y(1HA) + 3. INTEGER(4) 4

Data Types, Constants, and Variables 3-33

When a nondecimal constant is used as an actual argument, the following
occurs:

e For binary, octal, and hexadecimal constants, INTEGER(8) is assumed.
e For Hollerith constants, no data type is assumed.

For example:

Data Type of Length of Constant
Statement Constant (in bytes)
CALL APAC(Z'34BC2") INTEGER(8) 8
CALL APAC (9HABCDEFGHI) None 9

When a binary, octal, or hexadecimal constant is used in any other context,
the default integer data type is assumed (default integer can be affected by
compiler options). In the following examples, default integer is INTEGER(4):

Data Type of Length of Constant
Statement Constant (in bytes)
IF (Z'AF77') 1,2,3 INTEGER4) 4
IF (2HAB) 1,2,3 INTEGER(4) 4
I1=0'7777" - 2'A39'! INTEGER(4) 4
I =1HC - 1HA INTEGER(4) 4
J = .NOT. 0" 73777’ INTEGER(4) 4
J = .NOT. 1HB INTEGER4) 4

1When two typeless constants are used in an operation, they both take default integer type.

When nondecimal constants are not the same length as the length implied by a
data type, the following occurs:

e Binary, octal, and hexadecimal constants

These constants can specify up to 16 bytes of data. When the length of
the constant is less than the length implied by the data type, the leftmost
digits have a value of zero.

When the length of the constant is greater than the length implied by the
data type, the constant is truncated on the left. An error results if any
nonzero digits are truncated.

Table 15-2 lists the number of bytes that each data type requires.

e Hollerith constants

3-34 Data Types, Constants, and Variables

When the length of the constant is less than the length implied by the data
type, blanks are appended to the constant on the right.

When the length of the constant is greater than the length implied by the
data type, the constant is truncated on the right. If any characters other
than blank characters are truncated, an error occurs.

Each Hollerith character occupies one byte of memory.

For More Information:
On compiler options, see the HP Fortran for OpenVMS User Manual.

3.5 Variables

A variable is a data object whose value can be changed at any point in a
program. A variable can be any of the following:

e A scalar

A scalar is a single object that has a single value; it can be of any intrinsic
or derived (user-defined) type.

e An array

An array is a collection of scalar elements of any intrinsic or derived type.
All elements must have the same type and kind parameters.

e A subobject designator
A subobject is part of an object. The following are subobjects:

An array element

An array section

A structure component
A character substring

For example, B(3) is a subobject (array element) designator for array B. A
subobject cannot be a variable if its parent object is a constant.

The name of a variable is associated with a single storage location.

Variables are classified by data type, as constants are. The data type of a
variable indicates the type of data it contains, including its precision, and
implies its storage requirements. When data of any type is assigned to a
variable, it is converted to the data type of the variable (if necessary).

A variable is defined when you give it a value. A variable can be defined before
program execution by a DATA statement or a type declaration statement.
During program execution, variables can be defined or redefined in assignment
statements and input statements, or undefined (for example, if an I/O error
occurs). When a variable is undefined, its value is unpredictable.

Data Types, Constants, and Variables 3-35

When a variable becomes undefined, all variables associated by storage
association also become undefined.

For More Information:

¢ On arrays, see Section 3.5.2.

e On storage association of variables, see Section 15.5.3.
e On type declaration statements, see Section 5.1.

¢ On the DATA statement, see Section 5.5.

¢ On the data type of a numeric expression, see Section 4.1.1.2.

3.5.1 Data Types of Scalar Variables

The data type of a scalar variable can be explicitly declared in a type
declaration statement. If no type is declared, the variable has an implicit
data type based on predefined typing rules or definitions in an IMPLICIT
statement.

An explicit declaration of data type takes precedence over any implicit type.
Implicit type specified in an IMPLICIT statement takes precedence over
predefined typing rules.

3.5.1.1 Specification of Data Type
Type declaration statements explicitly specify the data type of scalar variables.
For example, the following statements associate VAR1 with an 8-byte complex
storage location, and VAR2 with an 8-byte double-precision storage location:

COMPLEX VARL
DOUBLE PRECISION VAR2

You can explicitly specify the data type of a scalar variable only once.

If no explicit data type specification appears, any variable with a name that
begins with the letter in the range specified in the IMPLICIT statement
becomes the data type of the variable.

Character type declaration statements specify that given variables represent
character values with the length specified. For example, the following
statements associate the variable names INLINE, NAME, and NUMBER
with storage locations containing character data of lengths 72, 12, and 9,
respectively:

CHARACTER*72 INLINE
CHARACTER NAME*12, NUMBER*9

3-36 Data Types, Constants, and Variables

In single subprograms, assumed-length character arguments can be used to
process character strings with different lengths. The assumed-length character
argument has its length specified with an asterisk, for example:

CHARACTER* (*) CHARDUMMY

The argument CHARDUMMY assumes the length of the actual argument.
For More Information:

e On type declaration statements, see Section 5.1.

e On character type declaration statements, see Section 5.1.2.

¢ On assumed-length character arguments, see Section 8.8.4.

e On the IMPLICIT statement, see Section 5.9.

3.5.1.2 Implicit Typing Rules

By default, all scalar variables with names beginning with I, J, K, L, M, or
N are assumed to be default integer variables. Scalar variables with names
beginning with any other letter are assumed to be default real variables. For

example:

Real Variables Integer Variables
ALPHA JCOUNT

BETA ITEM 1

TOTAL NUM NTOTAL

Names beginning with a dollar sign ($) are implicitly INTEGER.

You can override the default data type implied in a name by specifying data
type in either an IMPLICIT statement or a type declaration statement.

For More Information:
e On type declaration statements, see Section 5.1.

e On the IMPLICIT statement, see Section 5.9.
3.5.2 Arrays

An array is a set of scalar elements that have the same type and kind
parameters. Any object that is declared with an array specification is an
array. Arrays can be declared by using a type declaration statement, or by
using a DIMENSION, COMMON, ALLOCATABLE, POINTER, or TARGET
statement.

Data Types, Constants, and Variables 3-37

An array can be referenced by element (using subscripts), by section (using a
section subscript list), or as a whole. A subscript list (appended to the array
name) indicates which array element or array section is being referenced.

A section subscript list consists of subscripts, subscript triplets, or vector
subscripts. At least one subscript in the list must be a subscript triplet or
vector subscript.

When an array name without any subscripts appears in an intrinsic operation
(for example, addition), the operation applies to the whole array (all elements
in the array).

An array has the following properties:

e Data type

An array can have any intrinsic or derived type. The data type of an array
(like any other variable) is specified in a type declaration statement or
implied by the first letter of its name. All elements of the array have the
same type and kind parameters. If a value assigned to an individual array
element is not the same as the type of the array, it is converted to the
array’s type.

e Rank

The rank of an array is the number of dimensions in the array. An array
can have up to seven dimensions. A rank-one array represents a column
of data (a vector), a rank-two array represents a table of data arranged in
columns and rows (a matrix), a rank-three array represents a table of data
on multiple pages (or planes), and so forth.

e Bounds

Arrays have a lower and upper bound in each dimension. These bounds
determine the range of values that can be used as subscripts for the
dimension. The value of either bound can be positive, negative, or zero.

The bounds of a dimension are defined in an array specification.
o Size

The size of an array is the total number of elements in the array (the
product of the array’s extents).

The extent is the total number of elements in a particular dimension. It is
determined as follows: upper bound — lower bound + 1. If the value of any
of an array’s extents is zero, the array has a size of zero.

e Shape

3-38 Data Types, Constants, and Variables

The shape of an array is determined by its rank and extents, and can be
represented as a rank-one array (vector) where each element is the extent
of the corresponding dimension.

Two arrays with the same shape are said to be conformable. A scalar is
conformable to an array of any shape.

The name and rank of an array must be specified when the array is declared.
The extent of each dimension can be constant, but does not need to be. The
extents can vary during program execution if the array is a dummy argument
array, an automatic array, an array pointer, or an allocatable array.

A whole array is referenced by the array name. Individual elements in a
named array are referenced by a scalar subscript or list of scalar subscripts (if
there is more than one dimension). A section of a named array is referenced by
a section subscript.

Examples
The following are examples of valid array declarations:

DIMENSION A(10, 2, 3) ! DIMENSION statement

ALLOCATABLE B(:, :) | ALLOCATABLE statement

POINTER C(:y =, 1) ! POINTER statement

REAL, DIMENSION (2, 5) | Type declaration with
|

DIMENSION attribute
Consider the following array declaration:
INTEGER L(2:11,3)

The properties of array L are as follows:

Data type: INTEGER
Rank: 2 (two dimensions)
Bounds: First dimension: 2 to 11

Second dimension: 1 to 3
Size: 30; the product of the extents: 10 x 3
Shape: (/10,3/) (or 10 by 3); a vector of the extents 10 and 3

The following example shows other valid ways to declare this array:

DIMENSION L(2:11,3)
INTEGER, DIMENSION(2:11,3) :: L
COMMON L(2:11,3)

Data Types, Constants, and Variables 3-39

The following example shows references to array elements, array sections, and
a whole array:

REAL B(10) ! Declares a rank-one array with 10 elements
INTEGER C(5,8) | Declares a rank-two array with 5 elements in
! dimension one and 8 elements in dimension two
B(3) = 5.0 | Reference to an array element
B(2:5) = 1.0 ! Reference to an array section consisting of
| elements: B(2), B(3), B(4), B(5)
C(4,8) =1 | Reference to an array element
C(1:3,3:4) =4 | Reference to an array section consisting of
! elements: C(1,3) C(1,4)
! C(2,3) C(2,4)
| C(3,3) C(3,4)
B =99 | Reference to a whole array consisting of
|
|

elements: B(1), B(2), B(3), B(4), B(5),
B(6), B(7), B(8), B(9), and B(10)

For More Information:

¢ On array specifications, see Section 5.1.4.

¢ On the DIMENSION attribute, see Section 5.6.
¢ On intrinsic data types, see Section 3.2.

e On derived data types, see Section 3.3.

e On whole arrays, see Section 3.5.2.1.

e On array elements, see Section 3.5.2.2.

e On array sections, see Section 3.5.2.3.

¢ On intrinsic functions that perform array operations, see Table 9-2.

3.5.2.1 Whole Arrays

A whole array is a named array; it is either a named constant or a variable.
It is referenced by using the array name (without any subscripts).

If a whole array appears in a nonexecutable statement, the statement applies
to the entire array. For example:

INTEGER, DIMENSION(2:11,3) :: L ! Specifies the type and
! dimensions of array L

3-40 Data Types, Constants, and Variables

If a whole array appears in an executable statement, the statement applies to
all of the elements in the array. For example:

L =10 ! The value 10 is assigned to all the
! elements in array L

WRITE *, L ! Prints all the elements in array L

3.5.2.2 Array Elements

An array element is one of the scalar data items that make up an array.
A subscript list (appended to the array or array component) determines
which element is being referred to. A reference to an array element takes
the following form:

array(subscript-list)

array
Is the name of the array.

subscript-list
Is a list of one or more subscripts separated by commas. The number of
subscripts must equal the rank of the array.

Each subscript must be a scalar integer (or other numeric) expression with a
value that is within the bounds of its dimension.

Rules and Behavior

Each array element inherits the type, kind type parameter, and certain
attributes INTENT, PARAMETER, and TARGET) of the parent array. An
array element cannot inherit the POINTER attribute.

If an array element is of type character, it can be followed by a substring range
in parentheses; for example:

ARRAY D(1,2) (1:3) | Elements are substrings of length 3

However, by convention, such an object is considered to be a substring rather
than an array element.

The following are some valid array element references for an array declared as
REAL B(10,20): B(1,3), B(10,10), and B(5,8).

For information on forms for array specifications, see Section 5.1.4.

Data Types, Constants, and Variables 3-41

Array Element Order

The elements of an array form a sequence known as array element order. The
position of an element in this sequence is its subscript order value.

The elements of an array are stored as a linear sequence of values. A
one-dimensional array is stored with its first element in the first storage
location and its last element in the last storage location of the sequence. A
multidimensional array is stored so that the leftmost subscripts vary most
rapidly. This is called the order of subscript progression.

Figure 3-1 shows array storage in one, two, and three dimensions.

3-42 Data Types, Constants, and Variables

Figure 3—1 Array Storage

One-Dimensional Array BRC (6)

1

BRC(1) | 2 |BRC@) | 3 |BRC@3) | 4 |BRC@) | 5 |BRC() | 6 | BRC(6)

?

f Memory Positions

Two-Dimensional Array BAN (3,4)

1

BAN(1,1) | 4 |BAN(1,2) | 7 | BAN(1,3) | 10 | BAN(1,4)

2 |BAN(2,1) | 5 |BAN(2,2) | 8 | BAN(2,3)| 11 [BAN(2,4)
3 |BAN(3,1) | 6 [BAN(3,2) | 9 | BAN(3,3) | 12 | BAN(3,4)
? ? Memory Positions

Three—-Dimensional Array BOS (3,3,3)

19 | BOS(1,1,3) | 22 | BOS(1,2,3) | 25 | BOS(1,3,3)
20 [BOS(2,1,3) | 23 | BOS(2,2,3) | 26 | BOS(2,3,3)
BOS(1,3,2) 27 | BOS(3,3,3)

10 | BOS(1,1,2) | 13 | BOS(1,2,2) | 16
11 | BOS(2,1,2) | 14 | BOS(2,2,2) | 17 | BOS(2,3,2)

I
BOS(3,3,2) I

1 |BOS(,1,1) | 4 |BOS(1,2,1) | 7 | BOS(1,3,1) | 18
2 |BOS@2,1,1) | 5 | BOS(2,2,1) | 8 | BOS(2,3,1) |
3 |BOS@3,1,1) | 6 |BOS(3,2,1) | 9 | BOS(3,3,1) I

Memory Positions

ZK-0616-GE

For example, in two-dimensional array BAN, element BAN(1,2) has a subscript
order value of 4; in three-dimensional array BOS, element BOS(1,1,1) has a
subscript order value of 1.

In an array section, the subscript order of the elements is their order within
the section itself. For example, if an array is declared as B(20), the section

B(4:19:4) consists of elements B(4), B(8), B(12), and B(16). The subscript order
value of B(4) in the array section is 1; the subscript order value of B(12) in the

section is 3.

Data Types, Constants, and Variables 3-43

For More Information

e On substrings, see Section 3.2.5.2.

e On arrays as structure components, see Section 3.3.3.
e On array association, see Section 15.5.3.2.

¢ On storage sequence association, see Section 15.5.3.

3.5.2.3 Array Sections

An array section is a portion of an array that is an array itself. It is an array
subobject. A section subscript list (appended to the array or array component)
determines which portion is being referred to. A reference to an array section
takes the following form:

array(sect-subscript-list)

array
Is the name of the array.

sect-subscript-list
Is a list of one or more section subscripts (subscripts, subscript triplets, or
vector subscripts) indicating a set of elements along a particular dimension.

At least one of the items in the section subscript list must be a subscript triplet
or vector subscript. A subscript triplet specifies array elements in increasing or
decreasing order at a given stride. A vector subscript specifies elements in any
order.

Each subscript and subscript triplet must be a scalar integer (or other numeric)
expression. Each vector subscript must be a rank-one integer expression.

Rules and Behavior

If no section subscript list is specified, the rank and shape of the array section
is the same as the parent array.

Otherwise, the rank of the array section is the number of vector subscripts and
subscript triplets that appear in the list. Its shape is a rank-one array where
each element is the number of integer values in the sequence indicated by the
corresponding subscript triplet or vector subscript.

If any of these sequences is empty, the array section has a size of zero. The
subscript order of the elements of an array section is that of the array object
that the array section represents.

Each array section inherits the type, kind type parameter, and certain
attributes INTENT, PARAMETER, and TARGET) of the parent array. An
array section cannot inherit the POINTER attribute.

3-44 Data Types, Constants, and Variables

If an array (or array component) is of type character, it can be followed by a
substring range in parentheses. Consider the following declaration:

CHARACTER (LEN=15) C(10,10)

In this case, an array section referenced as C(:,:) (1:3) is an array of shape
(10,10), whose elements are substrings of length 3 of the corresponding
elements of C.

The following shows valid references to array sections. Note that the syntax
(/.../) denotes an array constructor (see Section 3.5.2.4).

REAL, DIMENSION(20) :: B

PRINT *, B(2:20:5) ! The section consists of elements
! B(2), B(7), B(12), and B(17)

= »1,04/)
(K) = 0.0 ! Section B(K) is a rank-one array with shape (3) and
! size 3. (0.0 is assigned to B(1l), B(3), and B(4).)

Subscript Triplets

A subscript triplet is a set of three values representing the lower bound of
the array section, the upper bound of the array section, and the increment
(stride) between them. It takes the following form:

[first-bound] : [last-bound] [:stride]

first-bound

Is a scalar integer (or other numeric) expression representing the first value in
the subscript sequence. If omitted, the declared lower bound of the dimension
is used.

last-bound

Is a scalar integer (or other numeric) expression representing the last value in
the subscript sequence. If omitted, the declared upper bound of the dimension
is used.

When indicating sections of an assumed-size array, this subscript must be
specified.

stride

Is a scalar integer (or other numeric) expression representing the increment
between successive subscripts in the sequence. It must have a nonzero value.
If it is omitted, it is assumed to be 1.

Data Types, Constants, and Variables 3-45

The stride has the following effects:

e If the stride is positive, the subscript range starts with the first subscript
and is incremented by the value of the stride, until the largest value less
than or equal to the second subscript is attained.

For example, if an array has been declared as B(6,3,2), the array section
specified as B(2:4,1:2,2) is a rank-two array with shape (3,2) and size 6. It
consists of the following six elements:

B(2,1,2) B(2,2,2)
B(3,1,2) B(3,2,2)
B(4,1,2) B(4,2,2)

If the first subscript is greater than the second subscript, the range is
empty.

e If the stride is negative, the subscript range starts with the value of the
first subscript and is decremented by the absolute value of the stride, until
the smallest value greater than or equal to the second subscript is attained.

For example, if an array has been declared as A(15), the array section
specified as A(10:3:-2) is a rank-one array with shape (4) and size 4. It
consists of the following four elements:

A(10)
A(8)
A(6)
A(4)

If the second subscript is greater than the first subscript, the range is
empty.
If a range specified by the stride is empty, the array section has a size of zero.

A subscript in a subscript triplet need not be within the declared bounds for
that dimension if all values used to select the array elements are within the
declared bounds. For example, if an array has been declared as A(15), the
array section specified as A(4:16:10) is valid. The section is a rank-one array
with shape (2) and size 2. It consists of elements A(4) and A(14).

If the subscript triplet does not specify bounds or stride, but only a colon (:),
the entire declared range for the dimension is used.

3-46 Data Types, Constants, and Variables

Vector Subscripts

A vector subscript is a one-dimensional (rank one) array of integer values
(within the declared bounds for the dimension) that selects a section of a whole
(parent) array. The elements in the section do not have to be in order and the
section can contain duplicate values.

For example, A is a rank-two array of shape (4,6). B and C are rank-one arrays
of shape (2) and (3), respectively, with the following values:

B
C

(/1,4/) ! Syntax (/.../) denotes an array constructor
(/2,1,1/) ! This constructor produces a many-one array section

Array section A(3,B) consists of elements A(3,1) and A(3,4). Array section
A(C,1) consists of elements A(2,1), A(1,1), and A(1,1). Array section A(B,C)
consists of the following elements:

A1,2) A1 AL
A4,2) A4,1) A4,1)

An array section with a vector subscript that has two or more elements with
the same value is called a many-one array section. A many-one section must
not appear on the left of the equal sign in an assignment statement, or as an
input item in a READ statement.

The following assignments to C also show examples of vector subscripts:

INTEGER A(2), B(2), C(2)

B = (/1,2/)
C(B) = A(B)

An array section with a vector subscript must not be any of the following:
e An internal file

e An actual argument associated with a dummy array that is defined or
redefined (if the INTENT attribute is specified, it must be INTENT(IN))

e The target in a pointer assignment statement

If the sequence specified by the vector subscript is empty, the array section has
a size of zero.

Data Types, Constants, and Variables 3-47

For More Information:

e On the INTENT attribute, see Section 5.10.

e On the PARAMETER attribute, see Section 5.14.

e On the TARGET attribute, see Section 5.18.

¢ On substrings, see Section 3.2.5.2.

e On array sections as structure components, see Section 3.3.3.
e On array constructors, see Section 3.5.2.4.

3.5.2.4 Array Constructors

An array constructor can be used to create and assign values to rank-one
arrays (and array constants). An array constructor takes the following form:

(/ac-value-list/)

ac-value-list
Is a list of one or more expressions or implied-do loops. Each ac-value must
have the same type and kind parameters, and be separated by commas.

An implied-do loop in an array constructor takes the following form:

(ac-value-expr, do-variable = expri1, expr2 [,expr3])

ac-value-expr
Is a scalar expression evaluated for each value of the do-variable to produce an
array element value.

do-variable
Is the name of a scalar integer variable. Its scope is that of the implied-do
loop.

expr

Is a scalar integer expression. The exprl and expr2 specify a range of values
for the loop; expr3 specifies the stride. The expr3 must be a nonzero value; if it
is omitted, it is assumed to be 1.

Rules and Behavior
The array constructed has the same type as the ac-value-list expressions.

If the sequence of values specified by the array constructor is empty (there are
no expressions or the implied-do loop produces no values), the rank-one array
has a size of zero.

3-48 Data Types, Constants, and Variables

An ac-value is interpreted as follows:

Form of ac-value Result
A scalar expression Its value is an element of the new array.
An array expression The values of the elements in the expression (in array

element order) are the corresponding sequence of elements
in the new array.

An implied-do loop It is expanded to form a list of array elements under control
of the DO variable (like a DO construct).

The following shows the three forms of an ac-value:

Cl = (/4,8,7,6/) | A scalar expression
c2 = (/B(I, 1:5), B(I:J, 7:9)/) ! An array expression
c3 = (/(I, I=1, 4)/) ! An implied-do loop

You can also mix these forms, for example:
C4 = (/4, A(1:5), (I, I=1, 4), 7/)

If every expression in an array constructor is a constant expression, the array
constructor is a constant expression.

If the expressions are of type character, Fortran 95/90 requires each expression
to have the same character length.

However, HP Fortran allows the character expressions to be of different
character lengths. The length of the resultant character array is the maximum
of the lengths of the individual character expressions. For example:

print *,len ((/'a’,’ab’,’abc’,’d"/))
print *,'++'//(/'a’,'ab’,'abc’,'d" /) /)" --"

This causes the following to be displayed:

3
++a --++ab --++abc--++d --

If an implied-do loop is contained within another implied-do loop (nested), they
cannot have the same DO variable (do-variable).

To define arrays of more than one dimension, use the RESHAPE intrinsic
function.

The following are alternative forms for array constructors:

e Square brackets (instead of parentheses and slashes) to enclose array
constructors; for example, the following two array constructors are
equivalent:

Data Types, Constants, and Variables 3-49

INTEGER C(4)
C=(/4,8,7,6/)
C = [4,8,7,6]

¢ A colon-separated triplet (instead of an implied-do loop) to specify a range
of values and a stride; for example, the following two array constructors
are equivalent:

INTEGER D(3)

D = (/1:5:2/) ! Triplet form

D= (/(1I, 1=1, 5, 2)/) ! Implied-do loop form
Examples

The following example shows an array constructor using an implied-do loop:

INTEGER ARRAY C(10)
ARRAY C = (/(I, I=30, 48, 2)/)

The values of ARRAY_C are the even numbers 30 through 48.

The following example shows an array constructor of derived type that uses a
structure constructor:

TYPE EMPLOYEE

INTEGER ID

CHARACTER (LEN=30) NAME
END TYPE EMPLOYEE

TYPE (EMPLOYEE) CC 4T (4)
CC 4T = (/EMPLOYEE(2732,"JONES"), EMPLOYEE(0217,"LEE"), &
EMPLOYEE (1889, "RYAN") , EMPLOYEE (4339, "EMERSON") /)

The following example shows how the RESHAPE intrinsic function can be used
to create a multidimensional array:

E = (/2.3, 4.7, 6.6/)
D = RESHAPE(SOURCE = (/3.5, (/2.0, 1.0/), E/), SHAPE = (/2,3/))

D is a rank-two array with shape (2,3) containing the following elements:

3.5 1.0 4.7
2.0 2.3 6.6

For More Information:

e On array element order, see Section 3.5.2.2.

e On the DO construct, see Section 7.6.

e On another way to assign values to arrays, see Section 4.2.1.5.

¢ On the RESHAPE intrinsic function, see Section 9.4.133.

3-50 Data Types, Constants, and Variables

On subscript triplets, see Section 3.5.2.3.
On derived types, see Section 3.3.
On structure constructors, see Section 3.3.4.

On array specifications, see Section 5.1.4.

Data Types, Constants, and Variables 3-51

4

Expressions and Assignment Statements

This chapter describes:
e Section 4.1, Expressions

e Section 4.2, Assignment Statements

4.1 Expressions

An expression represents either a data reference or a computation, and is
formed from operators, operands, and parentheses. The result of an expression
is either a scalar value or an array of scalar values.

If the value of an expression is of intrinsic type, it has a kind type parameter.
(If the value is of intrinsic type CHARACTER, it also has a length parameter.)
If the value of an expression is of derived type, it has no kind type parameter.

An operand is a scalar or array. An operator can be either intrinsic or defined.
An intrinsic operator is known to the compiler and is always available to any
program unit. A defined operator is described explicitly by a user in a function
subprogram and is available to each program unit that uses the subprogram.

The simplest form of an expression (a primary) can be any of the following:
¢ A constant; for example, 4.2

e A subobject of a constant; for example, ' LMNOP' (2:4)

e A variable; for example, VAR_1

e A structure constructor; for example, EMPLOYEE(3472, "JOHN DOE")
e An array constructor; for example, (/12.0,16.0/)

e A function reference; for example, COS(X)

e Another expression in parentheses; for example, (I+5)

Expressions and Assignment Statements 4-1

Any variable or function reference used as an operand in an expression must
be defined at the time the reference is executed. If the operand is a pointer,

it must be associated with a target object that is defined. An integer operand
must be defined with an integer value rather than a statement label value. All
of the characters in a character data object reference must be defined.

When a reference to an array or an array section is made, all of the
selected elements must be defined. When a structure is referenced, all of
the components must be defined.

In an expression that has intrinsic operators with an array as an operand, the
operation is performed on each element of the array. In expressions with more
than one array operand, the arrays must be conformable (they must have the
same shape). The operation is applied to corresponding elements of the arrays,
and the result is an array of the same shape (the same rank and extents) as
the operands.

In an expression that has intrinsic operators with a pointer as an operand, the
operation is performed on the value of the target associated with the pointer.

For defined operators, operations on arrays and pointers are determined by the
procedure defining the operation.

A scalar is conformable with any array. If one operand of an expression is an
array and another operand is a scalar, it is as if the value of the scalar were
replicated to form an array of the same shape as the array operand. The result
is an array of the same shape as the array operand.

The following sections describe numeric, character, relational, and logical
expressions; defined operations; a summary of operator precedence; and
initialization and specification expressions.

For More Information:

¢ On function subprograms that define operators , see Section 8.9.4.
e On arrays, see Section 3.5.2.

e On pointers, see Section 5.15.

e On derived data types, see Section 3.3.

4-2 Expressions and Assignment Statements

4.1.1 Numeric Expressions

Numeric expressions express numeric computations, and are formed with
numeric operands and numeric operators. The evaluation of a numeric
operation yields a single numeric value.

The term numeric includes logical data, because logical data is treated as
integer data when used in a numeric context. The default for .TRUE. is —1;
.FALSE. is 0.

Numeric operators specify computations to be performed on the values of
numeric operands. The result is a scalar numeric value or an array whose
elements are scalar numeric values. The following are numeric operators:

Operator Function

ok Exponentiation

* Multiplication

/ Division

+ Addition or unary plus (identity)

- Subtraction or unary minus (negation)

Unary operators operate on a single operand. Binary operators operate
on a pair of operands. The plus and minus operators can be unary or binary.
When they are unary operators, the plus or minus operators precede a
single operand and denote a positive (identity) or negative (negation) value,
respectively. The exponentiation, multiplication, and division operators are
binary operators.

Valid numeric operations must have results that are defined by the arithmetic
used by the processor. For example, raising a negative-valued real to a real
power is invalid.

Numeric expressions are evaluated in an order determined by a precedence
associated with each operator, as follows (see also Section 4.1.6):

Expressions and Assignment Statements 4-3

Operator Precedence

wE Highest
*and /
Unary + and —

Binary + and — Lowest

Operators with equal precedence are evaluated in left-to-right order. However,
exponentiation is evaluated from right to left. For example, A**B**C is
evaluated as A¥*(B**C). B**C is evaluated first, then A is raised to the
resulting power.

Normally, two operators cannot appear together. However, HP Fortran allows
two consecutive operators if the second operator is a plus or minus.

Examples
In the following example, the exponentiation operator is evaluated first because
it takes precedence over the multiplication operator:

A**B*C is evaluated as (A**B)*C

Ordinarily, the exponentiation operator would be evaluated first in the
following example. However, because HP Fortran allows the combination

of the exponentiation and minus operators, the exponentiation operator is not
evaluated until the minus operator is evaluated:

A**-B*(C is evaluated as A** (- (B*C))

Note that the multiplication operator is evaluated first, since it takes
precedence over the minus operator.

When consecutive operators are used with constants, the unary plus or minus
before the constant is treated the same as any other operator. This can produce
unexpected results. In the following example, the multiplication operator is
evaluated first, since it takes precedence over the minus operator:

X/-15.0*Y is evaluated as X/- (15.0*Y)

4.1.1.1 Using Parentheses in Numeric Expressions

You can use parentheses to force a particular order of evaluation. When part
of an expression is enclosed in parentheses, that part is evaluated first. The
resulting value is used in the evaluation of the remainder of the expression.

4-4 Expressions and Assignment Statements

In the following examples, the numbers below the operators indicate a possible
order of evaluation. Alternative evaluation orders are possible in the first
three examples because they contain operators of equal precedence that are
not enclosed in parentheses. In these cases, the compiler is free to evaluate
operators of equal precedence in any order, as long as the result is the same as
the result gained by the algebraic left-to-right order of evaluation.

44+3%2-6/2=17

T

2 1 4 3
(4+3)%2—-6/2=11
T

1 2 4 3

(4+3%2-6)/2=2

T
2 1 3 4

(4+3)%2—6)/2=14

T r 11
1 2 3 4

Expressions within parentheses are evaluated according to the normal order
of precedence. In expressions containing nested parentheses, the innermost
parentheses are evaluated first.

Nonessential parentheses do not affect expression evaluation, as shown in the
following example:

4+ (3%2) — (6/2)

However, using parentheses to specify the evaluation order is often important
in high-accuracy numerical computations. In such computations, evaluation
orders that are algebraically equivalent may not be computationally equivalent
when processed by a computer (because of the way intermediate results are
rounded off).

Parentheses can be used in argument lists to force a given argument to be
treated as an expression, rather than as the address of a memory item.

Expressions and Assignment Statements 4-5

4.1.1.2 Data Type of Numeric Expressions

If every operand in a numeric expression is of the same data type, the result is
also of that type.

If operands of different data types are combined in an expression, the
evaluation of that expression and the data type of the resulting value depend
on the ranking associated with each data type. The following table shows the
ranking assigned to each data type:

Data Type Ranking

LOGICAL(1) and BYTE Lowest
LOGICAL(2)

LOGICAL(4)

LOGICAL(8)

INTEGER(1)

INTEGER(2)

INTEGER(4)

INTEGER(8)

REAL(4)

REAL(8)"

REAL(16)

COMPLEX(4)

COMPLEX(8)? .
COMPLEX(16) Highest

'DOUBLE PRECISION
2DOUBLE COMPLEX

The data type of the value produced by an operation on two numeric operands
of different data types is the data type of the highest-ranking operand in

the operation. For example, the value resulting from an operation on an
integer and a real operand is of real type. However, an operation involving a
COMPLEX(4) or COMPLEX(8) data type and a DOUBLE PRECISION data
type produces a COMPLEX(8) result.

The data type of an expression is the data type of the result of the last
operation in that expression, and is determined according to the following
conventions:

e Integer operations: Integer operations are performed only on integer
operands. (Logical entities used in a numeric context are treated as

4-6 Expressions and Assignment Statements

integers.) In integer arithmetic, any fraction resulting from division is
truncated, not rounded. For example, the result of 1/4 + 1/4 + 1/4 + 1/4 is
0, not 1.

e Real operations: Real operations are performed only on real operands or
combinations of real, integer, and logical operands. Any integer operands
present are converted to real data type by giving each a fractional part
equal to zero. The expression is then evaluated using real arithmetic.
However, in the statement Y = (I/J)*X, an integer division operation is
performed on I and J, and a real multiplication is performed on that result
and X.

If any operand is a higher-precision real (REAL(8) or REAL(16)) type, all
other operands are converted to that higher-precision real type before the
expression is evaluated.

When a single-precision real operand is converted to a double-precision
real operand, low-order binary digits are set to zero. This conversion does
not increase accuracy; conversion of a decimal number does not produce

a succession of decimal zeros. For example, a REAL variable having the
value 0.3333333 is converted to approximately 0.3333333134651184D0. It
is not converted to either 0.3333333000000000D0 or 0.3333333333333333D0.

e Complex operations: In operations that contain any complex operands,
integer operands are converted to real type, as previously described. The
resulting single-precision or double-precision operand is designated as the
real part of a complex number and the imaginary part is assigned a value
of zero. The expression is then evaluated using complex arithmetic and the
resulting value is of complex type. Operations involving a COMPLEX(4) or
COMPLEX(8) operand and a DOUBLE PRECISION operand are performed
as COMPLEX(8) operations; the DOUBLE PRECISION operand is not
rounded.

These rules also generally apply to numeric operations in which one of the
operands is a constant. However, if a real or complex constant is used in

a higher-precision expression, additional precision will be retained for the
constant. The effect is as if a DOUBLE PRECISION (REAL(8)) or REAL(16)
representation of the constant were given. For example, the expression 1.0D0
+ 0.3333333 is treated as if it is 1.0D0 + 0.3333333000000000DO0.

Expressions and Assignment Statements 4-7

4.1.2 Character Expressions

A character expression consists of a character operator (/) that
concatenates two operands of type character. The evaluation of a character
expression produces a single value of that type.

The result of a character expression is a character string whose value is the
value of the left character operand concatenated to the value of the right
operand. The length of a character expression is the sum of the lengths of the
values of the operands. For example, the value of the character expression
"AB’//'CDE' is 'ABCDE’, which has a length of five.

Parentheses do not affect the evaluation of a character expression; for example,
the following character expressions are equivalent:

("ABC'//'DE')//"F’

"ABC'//('DE’//'F")

IABCI//IDEI//IFI

Each of these expressions has the value ' ABCDEF' .

If a character operand in a character expression contains blanks, the
blanks are included in the value of the character expression. For example,
'"ABC'//'DE'//'F ' has a value of "ABC D EF .

4.1.3 Relational Expressions

A relational expression consists of two or more expressions whose values
are compared to determine whether the relationship stated by the relational
operator is satisfied. The following are relational operators:

Operator Relationship

LT. or < Less than

LE. or <= Less than or equal to
EQ. or == Equal to

NE. or /= Not equal to

.GT. or > Greater than

.GE. or »>= Greater than or equal to

The result of the relational expression is .TRUE. if the relation specified by
the operator is satisfied; the result is .FALSE. if the relation specified by the
operator is not satisfied.

Relational operators are of equal precedence. Numeric operators and the
character operator / have a higher precedence than relational operators.

4-8 Expressions and Assignment Statements

In a numeric relational expression, the operands are numeric expressions.
Consider the following example:

APPLE+PEACH > PEAR+ORANGE

This expression states that the sum of APPLE and PEACH is greater than
the sum of PEAR and ORANGE. If this relationship is valid, the value of the
expression is .TRUE.; if not, the value is .FALSE..

Operands of type complex can only be compared using the equal operator (==
or .EQ.) or the not equal operator (/= or .NE.). Complex entities are equal if
their corresponding real and imaginary parts are both equal.

In a character relational expression, the operands are character expressions.
In character relational expressions, less than (< or .LT.) means the character
value precedes in the ASCII collating sequence, and greater than (> or .GT.)
means the character value follows in the ASCII collating sequence. For
example:

'AB'//'ZZZ' .LT. 'CCCCC’

This expression states that ' ABZZZ' is less than 'CCCCC'. In this case, the
relation specified by the operator is satisfied, so the result is .TRUE..

Character operands are compared one character at a time, in order, starting
with the first character of each operand. If the two character operands are not
the same length, the shorter one is padded on the right with blanks until the
lengths are equal; for example:

"ABC’ .EQ. 'ABC '
"AB’ .LT. 'C’
The first relational expression has the value .TRUE. even though the lengths

of the expressions are not equal, and the second has the value .TRUE. even
though 'AB’ is longer than 'C’.

A relational expression can compare two numeric expressions of different data
types. In this case, the value of the expression with the lower-ranking data
type is converted to the higher-ranking data type before the comparison is
made.

For More Information:

On the ranking of data types, see Section 4.1.1.2.

Expressions and Assignment Statements 4-9

4.1.4 Logical Expressions

A logical expression consists of one or more logical operators and logical,
numeric, or relational operands. The following are logical operators:

Operator = Example Meaning

.AND. A .AND. B Logical conjunction: the expression is true if both A and
B are true.

.OR. A .OR. B Logical disjunction (inclusive OR): the expression is true
if either A, B, or both, are true.

NEQV. A .NEQV. B Logical inequivalence (exclusive OR): the expression is
true if either A or B is true, but false if both are true.

XOR. A .XOR. B Same as .NEQV.

EQV. A .EQV. B Logical equivalence: the expression is true if both A and

B are true, or both are false.

NOT! .NOT. A Logical negation: the expression is true if A is false and
false if A is true.

LNOT. is a unary operator.

Periods cannot appear consecutively except when the second operator is .NOT.
For example, the following logical expression is valid:

A+B/(A-1) .AND. .NOT. D+B/(D-1)

Data Types Resulting from Logical Operations
Logical operations on logical operands produce single logical values ((.TRUE. or
.FALSE.) of logical type.

Logical operations on integers produce single values of integer type. The
operation is carried out bit-by-bit on corresponding bits of the internal (binary)
representation of the integer operands.

Logical operations on a combination of integer and logical values also produce
single values of integer type. The operation first converts logical values to
integers, then operates as it does with integers.

Logical operations cannot be performed on other data types.

4-10 Expressions and Assignment Statements

Evaluation of Logical Expressions

Logical expressions are evaluated according to the precedence of their
operators. Consider the following expression:

A*B+C*ABC == X*Y+DM/ZZ .AND. .NOT. K*B > TT

This expression is evaluated in the following sequence:

(((A*B)+(C*ABC)) == ((X*Y)+(DM/ZZ))) .AND. (.NOT. ((K*B) > TT))

As with numeric expressions, you can use parentheses to alter the sequence of
evaluation.

When operators have equal precedence, the compiler can evaluate them in any
order, as long as the result is the same as the result gained by the algebraic
left-to-right order of evaluation (except for exponentiation, which is evaluated
from right to left).

You should not write logical expressions whose results might depend on
the evaluation order of subexpressions. The compiler is free to evaluate
subexpressions in any order. In the following example, either (A(I)+1.0) or
B(1)*2.0 could be evaluated first:

(A(I)+1.0) .GT. B(I)*2.0

Some subexpressions might not be evaluated if the compiler can determine the
result by testing other subexpressions in the logical expression. Consider the
following expression:

A .AND. (F(X,Y) .GT. 2.0) .AND. B

If the compiler evaluates A first, and A is false, the compiler might determine
that the expression is false and might not call the subprogram F(X)Y).

For More Information:

On the precedence of numeric, relational, and logical operators, see
Section 4.1.6.

4.1.5 Defined Operations

When operators are defined for functions, the functions can then be referenced
as defined operations.

The operators are defined by using a generic interface block specifying
OPERATOR, followed by the defined operator (in parentheses).

A defined operation is not an intrinsic operation. However, you can use a
defined operation to extend the meaning of an intrinsic operator.

Expressions and Assignment Statements 4-11

For defined unary operations, the function must contain one argument. For
defined binary operations, the function must contain two arguments.

Interpretation of the operation is provided by the function that defines the
operation.

A Fortran 95/90 defined operator can contain up to 31 letters, and is enclosed
in periods (.). Its name cannot be the same name as any of the following:

e The intrinsic operators (NOT., .AND., .OR., .XOR., .EQV,, .NEQV., .EQ.,
.NE., .GT,, .GE., .LT., and .LE.)

e The logical literal constants (TRUE. or .FALSE.).
An intrinsic operator can be followed by a defined unary operator.

The result of a defined operation can have any type. The type of the result
(and its value) must be specified by the defining function.

The following examples show expressions containing defined operators:

.COMPLEMENT. A
X .PLUS. Y .PLUS. Z
M * .MINUS. N

For More Information:
¢ On defining generic operators, see Section 8.9.4.
¢ On operator precedence, see Section 4.1.6.

4.1.6 Summary of Operator Precedence

Table 4—-1 shows the precedence of all intrinsic and defined operators:

4-12 Expressions and Assignment Statements

Table 4-1 Precedence of Expression Operators

Category Operator Precedence
Defined Unary Operators Highest

Numeric o

Numeric *or/

Numeric Unary + or —

Numeric Binary + or —

Character /!

Relational .EQ., NE., .LT,, .LE., .GT., .GE.
==, /= <, <= > >=

Logical .NOT.

Logical AND.

Logical .OR.

Logical XOR., .EQV., NEQV. .
Defined Binary Operators Lowest

4.1.7 Initialization and Specification Expressions

A constant expression contains intrinsic operations and parts that are all
constants. An initialization expression is a constant expression that is
evaluated when a program is compiled. A specification expression is a scalar,

integer expression that is restricted to declarations of array bounds and
character lengths.

Initialization and specification expressions can appear in specification
statements, with some restrictions.

4.1.7.1 Initialization Expressions

An initialization expression must evaluate at compile time to a constant. It is
used to specify an initial value for an entity.

In an initialization expression, each operation is intrinsic and each operand is
one of the following:

e A constant or subobject of a constant

¢ An array constructor where each element and the bounds and strides

of each implied-do, are expressions whose primaries are initialization
expressions

A structure constructor whose components are initialization expressions

Expressions and Assignment Statements 4-13

e An elemental intrinsic function reference of type integer or character,
whose arguments are initialization expressions of type integer or character

e A reference to one of the following inquiry functions:

BIT_SIZE MINEXPONENT
DIGITS PRECISION
EPSILON RADIX

HUGE RANGE

ILEN SHAPE

KIND SIZE

LBOUND TINY

LEN UBOUND
MAXEXPONENT

Each function argument must be one of the following:
— An initialization expression

— A variable whose kind type parameter and bounds are not assumed
or defined by an ALLOCATE statement, pointer assignment, or an
expression that is not an initialization expression

e A reference to one of the following transformational functions (each
argument must be an initialization expression):

REPEAT SELECTED_REAL_KIND
RESHAPE TRANSFER
SELECTED_INT_KIND TRIM

e A reference to the transformational function NULL

e An implied-do variable within an array constructor, where the bounds and
strides of the corresponding implied-do are initialization expressions

e Another initialization expression enclosed in parentheses

Each subscript, section subscript, and substring starting and ending point
must be an initialization expression.

If an initialization expression invokes an inquiry function for a type parameter
or an array bound of an object, the type parameter or array bound must be
specified in a prior specification statement (or to the left of the inquiry function
in the same statement).

In a specification expression, the number of arguments for a function reference
is limited to 255.

4-14 Expressions and Assignment Statements

Examples
The following examples show valid and invalid initialization (constant)

expressions:

Valid

-1+3

SIZE(B) ! B is a named constant

72

INT (J, 4) ! J is a named constant

SELECTED INT KIND (2)

Invalid Explanation

SUM (A) Not an allowed function.

A/4.1 - K**1.2 Exponential does not have integer power (A and
K are named constants).

HUGE (4.0) Argument is not an integer.

For More Information:
e On array constructors, see Section 3.5.2.4.
¢ On structure constructors, see Section 3.3.4.

¢ On intrinsic functions, see Chapter 9.

4.1.7.2 Specification Expressions

A specification expression is a restricted expression that is of type integer and
has a scalar value. This type of expression appears only in the declaration of
array bounds and character lengths.

In a restricted expression, each operation is intrinsic and each operand is one
of the following:

e A constant or subobject of a constant
e A variable that is one of the following:

— A dummy argument that does not have the OPTIONAL or INTENT
(OUT) attribute (or the subobject of such a variable)

— In a common block (or the subobject of such a variable)

— Made accessible by use or host association (or the subobject of such a
variable)

e A structure constructor whose components are restricted expressions

Expressions and Assignment Statements 4-15

e An implied-do variable within an array constructor, where the bounds and
strides of the corresponding implied-do are restricted expressions

e A reference to one of the following inquiry functions:

BIT_SIZE NWORKERS

DIGITS PRECISION

EPSILON PROCESSORS_SHAPE
HUGE RADIX

ILEN RANGE

KIND SHAPE

LBOUND SIZE

LEN SIZEOF
MAXEXPONENT TINY

MINEXPONENT UBOUND

NUMBER_OF_PROCESSORS
Each function argument must be one of the following:
— A restricted expression

— A variable whose properties inquired about are not dependent on the
upper bound of the last dimension of an assumed-size array, are not
defined by an expression that is a restricted expression, or are not
definable by an ALLOCATE or pointer assignment statement.

e A reference to any other intrinsic function where each argument is a
restricted expression.

e A reference to a specification function (see below) where each argument is
a restricted expression

e An array constructor where each element and the bounds and strides of
each implied-do, are expressions whose primaries are restricted expressions

e Another restricted expression enclosed in parentheses

Each subscript, section subscript, and substring starting and ending point
must be a restricted expression.

Specification functions can be used in specification expressions to indicate
the attributes of data objects. A specification function is a pure function. It
cannot have a dummy procedure argument or be any of the following:

e An intrinsic function

e An internal function

4-16 Expressions and Assignment Statements

e A statement function
e Defined as RECURSIVE

A variable in a specification expression must have its type and type parameters
(if any) specified in one of the following ways:

e By a previous declaration in the same scoping unit
e By the implicit typing rules currently in effect for the scoping unit
e By host or use association

If a variable in a specification expression is typed by the implicit typing rules,
its appearance in any subsequent type declaration statement must confirm the
implied type and type parameters.

If a specification expression invokes an inquiry function for a type parameter
or an array bound of an object, the type parameter or array bound must be
specified in a prior specification statement (or to the left of the inquiry function
in the same statement).

Examples
The following shows valid specification expressions:

MAX(I) + J ! T and J are scalar integer variables
UBOUND (ARRAY B,20) ! ARRAY B is an assumed-shape dummy array

For More Information:

e On array constructors, see Section 3.5.2.4.

¢ On implicit typing rules, see Section 3.5.1.2.

¢ On structure constructors, see Section 3.3.4.

¢ On intrinsic functions, see Chapter 9.

e On use and host association, see Section 15.5.1.2.

¢ On pure procedures, see Section 8.5.1.2.

4.2 Assignment Statements

An assignment statement causes variables to be defined or redefined. This
section describes the following kinds of assignment statements: intrinsic,
defined, pointer, masked array (WHERE), and element array (FORALL).

The ASSIGN statement assigns a label to an integer variable. It is discussed
in Section 7.2.3.

Expressions and Assignment Statements 4-17

4.2.1 Intrinsic Assignments

Intrinsic assignment is used to assign a value to a nonpointer variable. In the
case of pointers, intrinsic assignment is used to assign a value to the target
associated with the pointer variable. The value assigned to the variable (or
target) is determined by evaluation of the expression to the right of the equal
sign.

An intrinsic assignment statement takes the following form:

variable = expression

variable

Is the name of a scalar or array of intrinsic or derived type (with no defined
assignment). The array cannot be an assumed-size array, and neither the
scalar nor the array can be declared with the PARAMETER or INTENT(IN)
attribute.

expression

Is of intrinsic type or the same derived type as variable. Its shape must
conform with variable. If necessary, it is converted to the same type and kind
as variable.

Rules and Behavior

Before a value is assigned to the variable, the expression part of the
assignment statement and any expressions within the variable are evaluated.
No definition of expressions in the variable can affect or be affected by the
evaluation of the expression part of the assignment statement.

Note

When the run-time system assigns a value to a scalar integer or
character variable and the variable is shorter than the value being
assigned, the assigned value may be truncated and significant bits (or
characters) lost. This truncation can occur without warning, and can
cause the run-time system to pass incorrect information back to the
program.

If the variable is a pointer, it must be associated with a definable target. The
shape of the target and expression must conform and their type and kind
parameters must match.

The following sections discuss numeric, logical, character, derived-type, and
array intrinsic assignment.

4-18 Expressions and Assignment Statements

For More Information:

¢ On subroutine subprograms that define assignment, see Section 8.9.5.
¢ On arrays, see Section 3.5.2.

¢ On pointers, see Section 5.15.

¢ On derived data types, see Section 3.3.

4.2.1.1 Numeric Assignment Statements

For numeric assignment statements, the variable and expression must be
numeric type.

The expression must yield a value that conforms to the range requirements of
the variable. For example, a real expression that produces a value greater than
32767 is invalid if the entity on the left of the equal sign is an INTEGER(2)
variable.

Significance can be lost if an INTEGER(4) value, which can exactly represent
values of approximately the range —2*10**9 to +2*10**9, is converted to
REAL(4) (including the real part of a complex constant), which is accurate to
only about seven digits.

If the variable has the same data type as that of the expression on the right,
the statement assigns the value directly. If the data types are different, the
value of the expression is converted to the data type of the variable before it is
assigned.

Table 4-2 summarizes the data conversion rules for numeric assignment
statements.

Expressions and Assignment Statements 4-19

Table 4-2 Conversion Rules for Numeric Assignment Statements

Scalar Memory
Reference (V)

Expression (E)

Integer, Logical or Real

Complex

Integer or
Logical

REAL
(KIND=4)

REAL
(KIND=8)

REAL
(KIND=16)

COMPLEX
(KIND=4)

COMPLEX
(KIND=8)

COMPLEX
(KIND=16)

V=INT(E)

V=REAL(E)

V=DBLE(E)

V=QEXT(E)

V=CMPLX(REAL(E), 0.0)

V=CMPLX(DBLE(E), 0.0)

V=CMPLX(QEXT(E), 0.0)

V=INT(REAL(E))
Imaginary part of E is not used.

V=REAL(REAL(E))
Imaginary part of E is not used.

V=DBLE(REAL(E))
Imaginary part of E is not used.

V=QEXT(REAL(E))

Imaginary part of E is not used.

V=CMPLX(REAL(REAL(E)), REAL(AIMAG(E)))

V=CMPLX(DBLE(REAL(E)), DBLE(AIMAG(E)))

V=CMPLX(QEXT(REAL(E)), QEXT(AIMAG(E)))

For more information on the referenced intrinsic functions, see Chapter 9.

Examples

The following examples demonstrate valid and invalid numeric assignment
statements:

Valid
BETA = -1./(2.%X) +A*A/ (4.* (X*X))

PI =3.14159
SUM = SUM + 1.
ARRAY A = ARRAY B + ARRAY C + SCALAR I ! Valid if all arrays conform in

4-20 Expressions and Assignment Statements

! shape

Invalid Explanation

3.14=A-B Entity on the left must be a
variable.

ICOUNT =A//B(3:7) Implicitly typed data types do not
match.

SCALAR I = ARRAY A(:) Shapes do not match.

4.2.1.2 Logical Assignment Statements

For logical assignment statements, the variable must be of logical type and the
expression can be of logical or numeric type.

If necessary, the expression is converted to the same type and kind as the
variable.

Examples

The following examples demonstrate valid logical assignment statements:
PAGEND = .FALSE.

PRNTOK = LINE .LE. 132 .AND. .NOT. PAGEND

ABIG = A.GT.B .AND. A.GT.C .AND. A.GT.D

LOGICAL VAR = 123 ! Moves binary value of 123 to LOGICAL VAR

4.2.1.3 Character Assignment Statements

For character assignment statements, the variable and expression must be of
character type and have the same kind parameter.

The variable and expression can have different lengths. If the length of the
expression is greater than the length of the variable, the character expression
is truncated on the right. If the length of the expression is less than the
length of the variable, the character expression is filled on the right with blank
characters.

If you assign a value to a character substring, you do not affect character
positions in any part of the character scalar variable not included in the
substring. If a character position outside of the substring has a value
previously assigned, it remains unchanged. If the character position is
undefined, it remains undefined.

Expressions and Assignment Statements 4-21

Examples

The following examples demonstrate valid and invalid character assignment
statements. (In the valid examples, all variables are of type character.)

Valid

FILE = 'PROG2’

REVOL (1) = 'MAR’ //'CIA’
LOCA(3:8) = 'PLANT5'
TEXT(I,J+1) (2:N-1) = NAME//X

Invalid Explanation

"ABC’' = CHARS Left element must be a character variable, array
element, or substring reference.

CHARS = 25 Expression does not have a character data type.

STRING = 5HBEGIN Expression does not have a character data type.

(Hollerith constants are numeric, not character.)

4.2.1.4 Derived-Type Assignment Statements

In derived-type assignment statements, the variable and expression must be
of the same derived type. There must be no accessible interface block with
defined assignment for objects of this derived type.

The derived-type assignment is performed as if each component of the
expression is assigned to the corresponding component of the variable. Pointer
assignment is performed for pointer components, and intrinsic assignment is
performed for nonpointer components.

Examples
The following example demonstrates derived-type assignment:

TYPE DATE
LOGICAL(1) DAY, MONTH
INTEGER (2) YEAR

END TYPE DATE

TYPE (DATE) TODAY, THIS WEEK(7)
TYPE APPOINTMENT

TYPE (DATE) APP_DATE
END TYPE

TYPE (APPOINTMENT) MEETING

4-22 Expressions and Assignment Statements

DO I = 1,7
CALL GET DATE (TODAY)
THIS_WEEK(I) = TODAY

END DO

MEETING$APP DATE = TODAY

For More Information:
e On derived types, see Section 3.3.

¢ On pointer assignment, see Section 4.2.3.

4.2.1.5 Array Assignment Statements

Array assignment is permitted when the array expression on the right has the
same shape as the array variable on the left, or the expression on the right is a
scalar.

If the expression is a scalar, and the variable is an array, the scalar value is
assigned to every element of the array.

If the expression is an array, the variable must also be an array. The
array element values of the expression are assigned (element by element)
to corresponding elements of the array variable.

A many-one array section is a vector-valued subscript that has two or more
elements with the same value. In intrinsic assignment, the variable cannot be
a many-one array section because the result of the assignment is undefined.

Examples
In the following example, X and Y are arrays of the same shape:

X=Y

The corresponding elements of Y are assigned to those of X element by element;
the first element of Y is assigned to the first element of X, and so forth. The
processor can perform the element-by-element assignment in any order.

The following example shows a scalar assigned to an array:
B(C+1:N, C) =0
This sets the elements B (C+1,C), B (C+2,C),...B (N,C) to zero.

The following example causes the values of the elements of array A to be
reversed:

REAL A(20)

Aki:ZO) = A(20:1:-1)

Expressions and Assignment Statements 4-23

For More Information:

e On arrays, see Section 3.5.2.

¢ On masked array assignment, see Section 4.2.4.
e On element array assignment, see Section 4.2.5.

¢ On array constructors, see Section 3.5.2.4.

4.2.2 Defined Assignments

Defined assignment specifies an assignment operation. It is defined by a
subroutine subprogram containing a generic interface block with the specifier
ASSIGNMENT(=). The subroutine is specified by a SUBROUTINE or ENTRY
statement that has two nonoptional dummy arguments.

Defined elemental assignment is indicated by specifying ELEMENTAL in the
SUBROUTINE statement.

The dummy arguments represent the variable and expression, in that order.
The rank (and shape, if either or both are arrays), type, and kind parameters
of the variable and expression in the assignment statement must match those
of the corresponding dummy arguments.

The dummy arguments must not both be numeric, or of type logical or
character with the same kind parameter.

If the variable in an elemental assignment is an array, the defined assignment
is performed element-by-element, in any order, on corresponding elements of
the variable and expression. If the expression is scalar, it is treated as if it
were an array of the same shape as the variable with every element of the
array equal to the scalar value of the expression.

For More Information:

¢ On subroutine subprograms, see Section 8.5.3.

¢ On subroutine subprograms that define assignment, see Section 8.9.5.
¢ On derived data types, see Section 3.3.

¢ On intrinsic operations, see Sections 4.1.1 and 4.1.2.

4-24 Expressions and Assignment Statements

4.2.3 Pointer Assignments

In ordinary assignment involving pointers, the pointer is an alias for its target.
In pointer assignment, the pointer is associated with a target. If the target is
undefined or disassociated, the pointer acquires the same status as the target.
The pointer assignment statement has the following form:

pointer-object => target

pointer-object
Is a variable name or structure component declared with the POINTER
attribute.

target

Is a variable or expression. Its type and kind parameters, and rank must

be the same as pointer-object. It cannot be an array section with a vector
subscript.

Rules and Behavior

If the target is a variable, it must have the POINTER or TARGET attribute, or
be a subobject whose parent object has the TARGET attribute.

If the target is an expression, the result must be a pointer.

If the target is not a pointer (it has the TARGET attribute), the pointer object
is associated with the target.

If the target is a pointer (it has the POINTER attribute), its status determines
the status of the pointer object, as follows:

e If the pointer is associated, the pointer object is associated with the same
object as the target

e If the pointer is disassociated, the pointer object becomes disassociated
e If the pointer is undefined, the pointer object becomes undefined

A pointer must not be referenced or defined unless it is associated with a target
that can be referenced or defined.

When pointer assignment occurs, any previous association between the pointer
object and a target is terminated.

Pointers can also be assigned for a pointer structure component by execution
of a derived-type intrinsic assignment statement or a defined assignment
statement.

Pointers can also become associated by using the ALLOCATE statement to
allocate the pointer.

Expressions and Assignment Statements 4-25

Pointers can become disassociated by deallocation, nullification of the pointer
(using the DEALLOCATE or NULLIFY statements), or by reference to the
NULL intrinsic function.

Examples

The following are examples of pointer assignments:

HOUR => MINUTES (1:60) ! target is an array

M_YEAR => MY CAR%YEAR | target is a structure component

NEW ROW$RIGHT => CURRENT ROW ! pointer object is a structure component
PTR => M | target is a variable

POINTER C => NULL () ! reference to NULL intrinsic

The following example shows a target as a pointer:

INTEGER, POINTER :: P, N
INTEGER, TARGET :: M

INTEGER S

M =14

N =>M ! N is associated with M

P=>N ! P is associated with M through N
S=P+5

The value assigned to S is 19 (14 + 5).
For More Information:

e On arrays, see Section 3.5.2.

e On pointers, see Section 5.15.

¢ On the ALLOCATE, DEALLOCATE, and NULLIFY statements, see
Chapter 6.

e On derived-type intrinsic assignments, see Section 4.2.1.
¢ On defined assignment, see Section 4.2.2.

¢ On the NULL intrinsic function, see Section 9.4.111.
4.2.4 WHERE Statement and Construct

The WHERE statement and construct let you use masked array assignment,
which performs an array operation on selected elements. This kind of
assignment applies a logical test to an array on an element-by-element
basis.

The WHERE statement takes the following form:
WHERE (mask-expr1) assign-stmt

4-26 Expressions and Assignment Statements

The WHERE construct takes the following form:

[name:] WHERE (mask-expr1)
[where-body-stmt]...

[ELSEWHERE (mask-expr2) [name]
[where-body-stmt]...]

[ELSEWHERE [name]
[where-body-stmt]...]

END WHERE [name]

mask-expri, mask-expr2
Are logical array expressions (called mask expressions).

assign-stmt
Is an assignment statement of the form: array variable = array expression.

name
Is the name of the WHERE construct.

where-body-stmt

Is one of the following:

e An assign-stmt
This can be a defined assignment only if the routine implementing the
defined assignment is elemental.

e A WHERE statement or construct

Rules and Behavior

If a construct name is specified in a WHERE statement, the same name must
appear in the corresponding END WHERE statement. The same construct
name can optionally appear in any ELSEWHERE statement in the construct.
(ELSEWHERE cannot specify a different name.)

In each assignment statement, the mask expression, the variable being
assigned to, and the expression on the right side, must all be conformable.
Also, the assignment statement cannot be a defined assignment.

Only the WHERE statement (or the first line of the WHERE construct) can be
labeled as a branch target statement.

The following is an example of a WHERE statement:

Expressions and Assignment Statements 4-27

INTEGER A, B, C

DIMENSION A(5), B(5), C(5)

DATA A /0,1,1,1,0/

DATA B /10,11,12,13,14/

Cc=-1

WHERE(A .NE. 0) C =B / A

The resulting array C contains: —1,11,12,13, and -1.

The assignment statement is only executed for those elements where the mask
is true. Think of the mask expression as being evaluated first into a logical
array that has the value true for those elements where A is positive. This
array of trues and falses is applied to the arrays A, B and C in the assignment
statement. The right side is only evaluated for elements for which the mask is
true; assignment on the left side is only performed for those elements for which
the mask is true. The elements for which the mask is false do not get assigned
a value.

In a WHERE construct, the mask expression is evaluated first and only

once. Every assignment statement following the WHERE is executed as

if it were a WHERE statement with “mask-expr1” and every assignment
statement following the ELSEWHERE is executed as if it were a WHERE
statement with “NOT. mask-expr1”. If ELSEWHERE specifies “mask-expr2”, it
is executed as “((NOT. mask-exprl) .AND. mask-expr2” during the processing of
the ELSEWHERE statement.

You should be careful if the statements have side effects, or modify each other
or the mask expression.

The following is an example of the WHERE construct:

DIMENSION PRESSURE(1000), TEMP(1000), PRECIPITATION(1000)
WHERE (PRESSURE .GE. 1.0)
PRESSURE = PRESSURE + 1.0
TEMP = TEMP - 10.0
ELSEWHERE
PRECIPITATION = .TRUE.
ENDWHERE

The mask is applied to the arguments of functions on the right side of the
assignment if they are considered to be elemental functions. Only elemental
intrinsics are considered elemental functions. Transformational intrinsics,
inquiry intrinsics, and functions or operations defined in the subprogram are
considered to be nonelemental functions.

Consider the following example using LOG, an elemental function:

WHERE (A .GT. 0) B = LOG(A)

4-28 Expressions and Assignment Statements

The mask is applied to A, and LOG is executed only for the positive values of
A. The result of the LOG is assigned to those elements of B where the mask is
true.

Consider the following example using SUM, a nonelemental function:

REAL A, B
DIMENSION A(10,10), B(10)
WHERE(B .GT. 0.0) B = SUM(A, DIM=1)

Since SUM is nonelemental, it is evaluated fully for all of A. Then, the
assignment only happens for those elements for which the mask evaluated
to true.

Consider the following example:

REAL A, B, C
DIMENSION A(10,10), B(10), C(10)
WHERE (C .GT. 0.0) B = SUM(LOG(A), DIM=1)/C

Because SUM is nonelemental, all of its arguments are evaluated fully
regardless of whether they are elemental or not. In this example, LOG(A)

is fully evaluated for all elements in A even though LOG is elemental. Notice
that the mask is applied to the result of the SUM and to C to determine

the right side. One way of thinking about this is that everything inside the
argument list of a nonelemental function does not use the mask, everything
outside does.

For More Information:

On a generalized form of masked array assignment, see Section 4.2.5.

4.2.5 FORALL Statement and Construct

The FORALL statement and construct is a generalization of the Fortran 95/90
masked array assignment (WHERE statement and construct). It allows more
general array shapes to be assigned, especially in construct form.

FORALL is a feature of Fortran 95. It takes the following form:
FORALL (triplet-spec [,triplet-spec]...[,mask-expr]) assign-stmt
The FORALL construct takes the following form:

[name:] FORALL (triplet-spec [,triplet-spec]...[,mask-expr])
forall-body-stmt
[forall-body-stmt]...

END FORALL [name]

Expressions and Assignment Statements 4-29

triplet-spec
Is a triplet specification with the following form:

subscript-name = subscript-1 : subscript-2 [:stride]

The subscript-name must be a scalar of type integer. It is valid only within the
scope of the FORALL; its value is undefined on completion of the FORALL.

The subscripts and stride cannot contain a reference to any subscript-name in
triplet-spec.

The stride cannot be zero. If it is omitted, the default value is 1.

Evaluation of an expression in a triplet specification must not affect the result
of evaluating any other expression in another triplet specification.

mask-expr

Is a logical array expression (called the mask expression). If it is omitted, the
value .TRUE. is assumed. The mask expression can reference the subscript
name in triplet-spec.

assign-stmt

Is an assignment statement or a pointer assignment statement. The variable
being assigned to must be an array element or array section and must
reference all subscript names included in all ¢riplet-specs.

name
Is the name of the FORALL construct.

forall-body-stmt
Is one of the following:

e An assignment-stmt

e A WHERE statement or construct
The WHERE statement and construct use a mask to make the array
assignments (see Section 4.2.4).

e A FORALL statement or construct

Rules and Behavior

If a construct name is specified in the FORALL statement, the same name
must appear in the corresponding END FORALL statement.

A FORALL statement is executed by first evaluating all bounds and stride
expressions in the triplet specifications, giving a set of values for each subscript
name. The FORALL assignment statement is executed for all combinations of
subscript name values for which the mask expression is true.

4-30 Expressions and Assignment Statements

The FORALL assignment statement is executed as if all expressions (on both
sides of the assignment) are completely evaluated before any part of the left
side is changed. Valid values are assigned to corresponding elements of the
array being assigned to. No element of an array can be assigned a value more
than once.

A FORALL construct is executed as if it were multiple FORALL statements,
with the same triplet specifications and mask expressions. Each statement in

the FORALL body is executed completely before execution begins on the next
FORALL body statement.

Any procedure referenced in the mask expression or FORALL assignment
statement must be pure.

Pure functions can be used in the mask expression or called directly in a
FORALL statement. Pure subroutines cannot be called directly in a FORALL
statement, but can be called from other pure procedures.

Examples

Consider the following:

FORALL(I = 1:N, J = 1:N, A(I, J) .NE. 0.0) B(I, J) = 1.0 / A(I, J)

This statement takes the reciprocal of each nonzero element of array A(1:N,
1:N) and assigns it to the corresponding element of array B. Elements of A that
are zero do not have their reciprocal taken, and no assignments are made to
corresponding elements of B.

Every array assignment statement and WHERE statement can be written
as a FORALL statement, but some FORALL statements cannot be written
using just array syntax. For example, the preceding FORALL statement is
equivalent to the following:

WHERE(A /= 0.0) B=1.0 /A
It is also equivalent to:
FORALL (I = 1:N, J = 1:N)
WHERE (A(I, J) .NE. 0.0) B(I, J) = 1.0/A(I, J)
END FORALL

However, the following FORALL example cannot be written using just array
syntax:

FORALL(I = 1:N, J = 1:N) H(I, J) = 1.0/REAL(I + J - 1)

This statement sets array element H(I, J) to the value 1.0/REAL(I + J - 1) for
values of I and J between 1 and N.

Expressions and Assignment Statements 4-31

Consider the following:

TYPE MONARCH
INTEGER, POINTER :: P
END TYPE MONARCH

TYPE (MONARCH) , DIMENSION (8) :: PATTERN
INTEGER, DIMENSION(8), TARGET :: OBJECT
FORALL (J=1:8) PATTERN(J)%P => OBJECT (1+IEOR(J-1,2))

This FORALL statement causes elements 1 through 8 of array PATTERN to
point to elements 3, 4, 1, 2, 7, 8, 5, and 6, respectively, of OBJECT. IEOR can
be referenced here because it is pure.

The following example shows a FORALL construct:

FORALL(I = 3:N + 1, J = 3:N + 1)
C(I, J) =C(I, d+2) +C(I, J-2)+C(T+2,J +C(I-2, 10
D(I, J) = C(I, J)

END FORALL

The assignment to array D uses the values of C computed in the first statement
in the construct, not the values before the construct began execution.

For More Information:

e On subscript triplets, see Section 3.5.2.3.

¢ On pointer assignment, see Section 4.2.3.

e On the WHERE statement and construct, see Section 4.2.4.
¢ On pure procedures, see Section 8.5.1.2.

¢ On the FORALL statement and construct, see the HP Fortran for
OpenVMS User Manual.

4-32 Expressions and Assignment Statements

O

Specification Statements

A specification statement is a nonexecutable statement that declares the

attributes of data objects. In Fortran 95/90, many of the attributes that can
be defined in specification statements can also be optionally specified in type
declaration statements.

This chapter contains information on the following topics:

Type declaration statement (Section 5.1)

Explicitly specifies the properties (for example: data type, rank, and
extent) of data objects.

ALLOCATABLE attribute and statement (Section 5.2)

Specifies a list of array names that are allocatable (have a deferred-shape).
AUTOMATIC and STATIC attributes and statements (Section 5.3)

Control the storage allocation of variables in subprograms.

COMMON statement (Section 5.4)

Defines one or more contiguous areas, or blocks, of physical storage (called
common blocks).

DATA statement (Section 5.5)

Assigns initial values to variables before program execution.
DIMENSION attribute and statement (Section 5.6)

Specifies that an object is an array, and defines the shape of the array.
EQUIVALENCE statement (Section 5.7)

Specifies that a storage area is shared by two or more objects in a program
unit.

EXTERNAL attribute and statement (Section 5.8)

Allows external (user-supplied) procedures to be used as arguments to
other subprograms.

Specification Statements 5-1

e IMPLICIT statement (Section 5.9)
Overrides the implicit data type of names.
e INTENT attribute and statement (Section 5.10)
Specifies the intended use of a dummy argument.
e INTRINSIC attribute and statement (Section 5.11)
Allows intrinsic procedures to be used as arguments to subprograms.
e NAMELIST statement (Section 5.12)

Associates a name with a list of variables. This group name can be
referenced in some input/output operations.

e OPTIONAL attribute and statement (Section 5.13)
Allows a procedure reference to omit arguments.
e PARAMETER attribute and statement (Section 5.14)
Defines a named constant.
e POINTER attribute and statement (Section 5.15)
Specifies that an object is a pointer.
e PRIVATE and PUBLIC attributes and statements (Section 5.16)
Declare the accessibility of entities in a module.
e SAVE attribute and statement (Section 5.17)

Causes the definition and status of objects to be retained after the
subprogram in which they are declared completes execution.

e TARGET attribute and statement (Section 5.18)

Specifies a pointer target.

e VOLATILE attribute and statement (Section 5.19)

Prevents optimizations from being performed on specified objects.

For more information on BLOCK DATA and PROGRAM statements, see
Chapter 8.

5-2 Specification Statements

5.1 Type Declaration Statements

A type declaration statement explicitly specifies the properties of data objects
or functions.

The general form of a type declaration statement follows:

type [[,att]... ::] v [/c-list/] [,v [/c-list/]]...

type
Is one of the following data type specifiers:
BYTE DOUBLE COMPLEX

INTEGERI[([KIND=]k)]
REAL[([KIND=]k)]
DOUBLE PRECISION
COMPLEX|[([KIND=]k)]
In the optional kind selector “([KIND=]k)”, & is the kind parameter. It must
be an acceptable kind parameter for that data type. If the kind selector is

not present, entities declared are of default type. (For a list of the valid
noncharacter data types, see Table 5-2.)

CHARACTERI[([LEN=]n)[,[KIND=]k]]
LOGICALI[([KIND=]k)]
TYPE (derived-type-name)

Kind parameters for intrinsic numeric and logical data types can also be
specified using the *n format, where n is the length (in bytes) of the entity; for
example, INTEGER*4.

att

Is one of the following attribute specifiers:

ALLOCATABLE (Section 5.2) POINTER (Section 5.15)
AUTOMATIC (Section 5.3) PRIVATE! (Section 5.16)
DIMENSION (Section 5.6) PUBLIC! (Section 5.16)
EXTERNAL (Section 5.8) SAVE (Section 5.17)
INTENT (Section 5.10) STATIC (Section 5.3)
INTRINSIC (Section 5.11) TARGET (Section 5.18)
OPTIONAL (Section 5.13) VOLATILE (Section 5.19)
PARAMETER (Section 5.14)

IThese are access specifiers.

\")

Is the name of a data object or function. It can optionally be followed by:

e An array specification, if the object is an array.

Specification Statements 5-3

In a function declaration, an array must be a deferred-shape array if it has
the POINTER attribute; otherwise, it must be an explicit-shape array.

e A character length, if the object is of type character.
e An initialization expression or, for pointer objects, => NULL().

A function name must be the name of an intrinsic function, external function,
function dummy procedure, or statement function.

c-list
Is a list of constants, as in a DATA statement. If v is the name of a constant or
an initialization expression, the c-list cannot be present.

The c-list cannot specify more than one value unless it initializes an array.
When initializing an array, the c-list must contain a value for every element in
the array.

Rules and Behavior

Type declaration statements must precede all executable statements.

In most cases, a type declaration statement overrides (or confirms) the implicit
type of an entity. However, a variable that appears in a DATA statement and

is typed implicitly can appear in a subsequent type declaration only if that
declaration confirms the implicit typing.

The double colon separator (::) is required only if the declaration contains an
attribute specifier or initialization; otherwise it is optional.

If att appears, c-list cannot be specified; for example:

INTEGER I /2/ ! Valid
INTEGER, SAVE :: I /2/ ! Invalid

The same attribute must not appear more than once in a given type declaration
statement, and an entity cannot be given the same attribute more than once in
a scoping unit.

If the PARAMETER attribute is specified, the declaration must contain an
initialization expression.

If => NULL() is specified for a pointer, its initial association status is
disassociated.

A variable (or variable subobject) can only be initialized once in an executable
program.

5-4 Specification Statements

If a declaration contains an initialization expression, but no PARAMETER
attribute is specified, the object is a variable whose value is initially defined.
The object becomes defined with the value determined from the initialization
expression according to the rules of intrinsic assignment.

The presence of initialization implies that the name of the object is saved,
except for objects in named common blocks or objects with the PARAMETER
attribute.

The following objects cannot be initialized in a type declaration statement:

Dummy argument
Function result

Object in a named common block (unless the type declaration is in a block
data program unit)

Object in blank common
Allocatable array
External name

Intrinsic name
Automatic object

Object that has the AUTOMATIC attribute

An object can have more than one attribute. Table 5-1 shows compatible
attributes.

Specification Statements 5-5

Table 5-1 Compatible Attributes

Attribute Compatible with:

ALLOCATABLE AUTOMATIC, DIMENSION!, PRIVATE, PUBLIC, SAVE,
STATIC, TARGET, VOLATILE

AUTOMATIC ALLOCATABLE, DIMENSION, POINTER, TARGET,
VOLATILE

DIMENSION ALLOCATABLE, AUTOMATIC, INTENT, OPTIONAL,
PARAMETER, POINTER, PRIVATE, PUBLIC, SAVE, STATIC,
TARGET, VOLATILE

EXTERNAL OPTIONAL, PRIVATE, PUBLIC

INTENT DIMENSION, OPTIONAL, TARGET, VOLATILE

INTRINSIC PRIVATE, PUBLIC

OPTIONAL DIMENSION, EXTERNAL, INTENT, POINTER, TARGET,
VOLATILE

PARAMETER DIMENSION, PRIVATE, PUBLIC

POINTER AUTOMATIC, DIMENSION!, OPTIONAL, PRIVATE, PUBLIC,
SAVE, STATIC, VOLATILE

PRIVATE ALLOCATABLE, DIMENSION, EXTERNAL, INTRINSIC,
PARAMETER, POINTER, SAVE, STATIC, TARGET,
VOLATILE

PUBLIC ALLOCATABLE, DIMENSION, EXTERNAL, INTRINSIC,
PARAMETER, POINTER, SAVE, STATIC, TARGET,
VOLATILE

SAVE ALLOCATABLE, DIMENSION, POINTER, PRIVATE, PUBLIC,
STATIC, TARGET, VOLATILE

STATIC ALLOCATABLE, DIMENSION, POINTER, PRIVATE, PUBLIC,
SAVE, TARGET, VOLATILE

TARGET ALLOCATABLE, AUTOMATIC, DIMENSION, INTENT,
OPTIONAL, PRIVATE, PUBLIC, SAVE, STATIC, VOLATILE

VOLATILE ALLOCATABLE, AUTOMATIC, DIMENSION, INTENT,

OPTIONAL, POINTER, PRIVATE, PUBLIC, SAVE, STATIC,
TARGET

1With deferred shape.

Examples

The following show valid type declaration statements:

5—6 Specification Statements

DOUBLE PRECISION B(6)

INTEGER (KIND=2) I

REAL (KIND=4) X, Y

REAL(4) X, Y

LOGICAL, DIMENSION(10,10) :: ARRAY A, ARRAY B
INTEGER, PARAMETER :: SMALLEST = SELECTED REAL KIND(6, 70)
REAL (KIND (0.0)) M

COMPLEX (KIND=8) :: D

TYPE (EMPLOYEE) :: MANAGER

REAL, INTRINSIC :: COS

CHARACTER (15) PROMPT

CHARACTER*12, SAVE :: HELLO MSG

INTEGER COUNT, MATRIX(4,4), SUM

LOGICAL*2 SWITCH

REAL :: X = 2.0

TYPE (NUM), POINTER :: FIRST => NULL()

For More Information:

¢ On specific kind parameters of intrinsic data types, see Section 3.2.
e On derived data types, see Section 3.3.

¢ On implicit typing, see Section 3.5.1.2.

e On the DATA statement, see Section 5.5.

¢ On initialization expressions, see Section 4.1.7.1.

5.1.1 Declaration Statements for Noncharacter Types

Table 5-2 shows the data types that can appear in noncharacter type
declaration statements.

Specification Statements 5-7

Table 5-2 Noncharacter Data Types

BYTE!

LOGICAL?

LOGICAL(1) (or LOGICAL*1)

LOGICAL(2) (or LOGICAL*2)

LOGICAL(4) (or LOGICAL*4)

LOGICAL(8) (or LOGICAL*8)

INTEGER?

INTEGER(1) (or INTEGER*1)

INTEGER(2) (or INTEGER*2)

INTEGER(4) (or INTEGER*4)

INTEGER(8) (or INTEGER*8)

REAL*

REAL(4) (or REAL*4)

DOUBLE PRECISION (REAL(8) or REAL*8)
REAL(16) (or REAL*16)

COMPLEX®

COMPLEX(4) (or COMPLEX*8)

DOUBLE COMPLEX (COMPLEX(8) or COMPLEX*16)
COMPLEX(16) (or COMPLEX*32)

1Same as INTEGER(1).

2This is treated as default logical.
3This is treated as default integer.
4This is treated as default real.
5This is treated as default complex.

In noncharacter type declaration statements, you can optionally specify the
name of the data object or function as v*n, where n is the length (in bytes) of
v. The length specified overrides the length implied by the data type.

The value for n must be a valid length for the type of v (see Table 15-2). The
type specifiers BYTE, DOUBLE PRECISION, and DOUBLE COMPLEX have
one valid length, so the n specifier is invalid for them.

For an array specification, the n must be placed immediately following the
array name; for example, in an INTEGER declaration statement, IVEC*2(10)
is an INTEGER(2) array of 10 elements.

5-8 Specification Statements

Examples

In a noncharacter type declaration statement, a subsequent kind parameter
overrides any initial kind parameter. For example, consider the following
statements:

INTEGER (2) I, J, K, M12%4, Q, IVEC*4(10)
REAL(8) WX1, WXZ, WX3*4, WX5, WX6+%4
REAL(8) PI/3.14159E0/, E/2.72E0/, QARRAY(10)/5%0.0,5%1.0/

In the first statement, M12%4 and IVEC*4 override the KIND=2 specification.
In the second statement, WX3%4 and WX6%4 override the KIND=8 specifica-
tion. In the third statement, QARRAY is initialized with implicit conversion of
the REAL(4) constants to a REAL(8) data type.

For More Information:

e On compiler options that can affect the defaults for numeric and logical
data types, see the HP Fortran for OpenVMS User Manual.

e On the general form and rules for type declaration statements, see
Section 5.1.

5.1.2 Declaration Statements for Character Types

A CHARACTER type specifier can be immediately followed by the length of the
character object or function. It takes one of the following forms:

Keyword Forms
CHARACTER [([LEN=]len)]
CHARACTER [([LEN=]len [,[KIND=]n])]
CHARACTER [(KIND=n [,LEN=len])]
Nonkeyword Form
CHARACTERlen[,]

len
Is one of the following:

e In keyword forms

The len is a specification expression or an asterisk (*). If no length is
specified, the default length is 1.

If the length evaluates to a negative value, the length of the character
entity is zero.

¢ In nonkeyword form

Specification Statements 5-9

The len is a specification expression or an asterisk enclosed in parentheses,
or a scalar integer literal constant (with no kind parameter). The comma
is permitted only if no double colon (::) appears in the type declaration
statement.

This form can also (optionally) be specified following the name of the data
object or function (v*len). In this case, the length specified overrides any
length following the CHARACTER type specifier.

The largest valid value for len in both forms is 65535. Negative values are
treated as zero.

n
Is a scalar integer initialization expression specifying a valid kind parameter.
Currently the only kind available is 1.

Rules and Behavior

An automatic object can appear in a character declaration. The object cannot
be a dummy argument, and its length must be declared with a specification
expression that is not a constant expression.

The length specified for a character-valued statement function or statement
function dummy argument of type character must be an integer constant
expression.

When an asterisk length specification *(*) is used for a function name

or dummy argument, it assumes the length of the corresponding function
reference or actual argument. Similarly, when an asterisk length specification
is used for a named constant, the name assumes the length of the actual
constant it represents. For example, STRING assumes a 9-byte length in the
following statements:

CHARACTER* (*) STRING
PARAMETER (STRING = 'VALUE IS:’)

A function name must not be declared with a * length if the function is an
internal or module function, or if it is array-valued, pointer-valued, recursive,
or pure.

The form CHARACTER*(*) is an obsolescent feature in Fortran 95.

Examples

The following example declares an array NAMES containing 100 32-character
elements, an array SOCSEC containing 100 9-character elements, and a
variable NAMETY that is 10 characters long and has an initial value of
"ABCDEFGHIJ'.

CHARACTER*32 NAMES (100),SOCSEC(100)*9,NAMETY*10 /’'ABCDEFGHIJ’/

5-10 Specification Statements

The following example includes a CHARACTER statement declaring two
8-character variables, LAST and FIRST.

INTEGER, PARAMETER :: LENGTH=4
CHARACTER* (4+LENGTH) LAST, FIRST

The following example shows a CHARACTER statement declaring an array
LETTER containing 26 one-character elements. It also declares a dummy
argument BUBBLE that has a passed length defined by the calling program.

SUBROUTINE S1 (BUBBLE)
CHARACTER LETTER (26), BUBBLE* (*)

In the following example, NAME2 is an automatic object:

SUBROUTINE AUTO NAME (NAMEL)
CHARACTER (LEN = *) NAME1
CHARACTER (LEN = LEN(NAME1)) NAME2

For More Information:
¢ On asterisk length specifications, see Sections 3.5.1.1 and 8.8.4.

¢ On the general form and rules for type declaration statements, see
Section 5.1.

e On obsolescent features in Fortran 95, see Appendix A.

5.1.3 Declaration Statements for Derived Types

The derived-type (TYPE) declaration statement specifies the properties of
objects and functions of derived (user-defined) type.

The derived type must be defined before you can specify objects of that type in
a TYPE type declaration statement.

An object of derived type must not have the PUBLIC attribute if its type is
PRIVATE.

A structure constructor specifies values for derived-type objects.

Examples
The following are examples of derived-type declaration statements:

TYPE (EMPLOYEE) CONTRACT

TYPE (SETS) , DIMENSION(:,:), ALLOCATABLE :: SUBSET 1

Specification Statements 5-11

The following example shows a public type with private components:

TYPE LIST ITEMS
PRIVATE

TYPE (LIST ITEMS), POINTER :: NEXT, PREVIOUS
END TYPE LIST ITEMS

For More Information:
¢ On derived data types, see Section 3.3.

e On the general form and rules for type declaration statements, see
Section 5.1.

¢ On use and host association, see Section 15.5.1.2.
¢ On the PUBLIC and PRIVATE attributes, see Section 5.16.

¢ On structure constructors, see Section 3.3.4.

5.1.4 Declaration Statements for Arrays

An array declaration (or array declarator) declares the shape of an array. It
takes the following form:

(a-spec)
a-spec
Is one of the following array specifications:
e Explicit-shape (see Section 5.1.4.1)
e Assumed-shape (see Section 5.1.4.2)
e Assumed-size (see Section 5.1.4.3)
e Deferred-shape (see Section 5.1.4.4)

The array specification can be appended to the name of the array when the
array is declared.

Examples
The following examples show array declarations:

SUBROUTINE SUB(N, C, D, Z)

REAL, DIMENSION(N, 15) :: IARRY ! An explicit-shape array

REAL C(:), D(0:) ! An assumed-shape array

REAL, POINTER :: B(:,:) ! A deferred-shape array pointer
REAL, ALLOCATABLE, DIMENSION(:) :: K | A deferred-shape allocatable array
REAL :: Z(N,*) ! An assumed-size array

5-12 Specification Statements

For More Information:
On the general form and rules for type declaration statements, see Section 5.1.

5.1.4.1 Explicit-Shape Specifications
An explicit-shape array is declared with explicit values for the bounds in
each dimension of the array. An explicit-shape specification takes the following
form:

dl

([dl:] du[, [dI:] du]...)

Is a specification expression indicating the lower bound of the dimension. The
expression can have a positive, negative, or zero value. If necessary, the value
is converted to integer type.

If the lower bound is not specified, it is assumed to be 1.

du

Is a specification expression indicating the upper bound of the dimension. The
expression can have a positive, negative, or zero value. If necessary, the value
is converted to integer type.

The bounds can be specified as constant or nonconstant expressions, as follows:

If the bounds are constant expressions, the subscript range of the array in
a dimension is the set of integer values between and including the lower
and upper bounds. If the lower bound is greater than the upper bound, the
range is empty, the extent in that dimension is zero, and the array has a
size of zero.

If the bounds are nonconstant expressions, the array must be declared in a
procedure. The bounds can have different values each time the procedure
is executed, since they are determined when the procedure is entered.

The bounds are not affected by any redefinition or undefinition of the
variables in the specification expression that occurs while the procedure is
executing.

The following explicit-shape arrays can specify nonconstant bounds:
— An automatic array (the array is a local variable)

— An adjustable array (the array is a dummy argument to a subprogram)

Specification Statements 5-13

The following are examples of explicit-shape specifications:

INTEGER I(3:8, -2:5) | Rank-two array; range of dimension one is
o ! 3 to 8, range of dimension two is -2 to 5
SUBROUTINE SUB(A, B, C)
INTEGER :: B, C
REAL, DIMENSION(B:C) :: A | Rank-one array; range is B to C

Automatic Arrays

An automatic array is an explicit-shape array that is a local variable.
Automatic arrays are only allowed in function and subroutine subprograms,
and are declared in the specification part of the subprogram. At least one
bound of an automatic array must be a nonconstant specification expression.
The bounds are determined when the subprogram is called.

The following example shows automatic arrays:

SUBROUTINE SUB1 (A, B)
INTEGER A, B, LOWER
COMMON /BOUND/ LOWER

INTEGER AUTO ARRAY1 (B)
INTEGER AUTO ARRAY2 (LOWER:B)

INTEGER AUTO ARRAY3 (20, B*A/2)
END SUBROUTINE

Adjustable Arrays

An adjustable array is an explicit-shape array that is a dummy argument
to a subprogram. At least one bound of an adjustable array must be a
nonconstant specification expression. The bounds are determined when the
subprogram is called.

The array specification can contain integer variables that are either dummy
arguments or variables in a common block.

When the subprogram is entered, each dummy argument specified in the
bounds must be associated with an actual argument. If the specification
includes a variable in a common block, the variable must have a defined
value. The array specification is evaluated using the values of the actual
arguments, as well as any constants or common block variables that appear in
the specification.

The size of the adjustable array must be less than or equal to the size of the
array that is its corresponding actual argument.

5-14 Specification Statements

To avoid possible errors in subscript evaluation, make sure that the bounds
expressions used to declare multidimensional adjustable arrays match the
bounds as declared by the caller.

In the following example, the function computes the sum of the elements of
a rank-two array. Notice how the dummy arguments M and N control the
iteration:

FUNCTION THE SUM(A, M, N)
DIMENSION A (M, N)
SUMX = 0.0
D0OJ =1, N
DO I =1,
SUMX =
END DO
END DO
THE_SUM = SUMX
END FUNCTION

The following are examples of calls on THE_SUM:
DIMENSION Al1(10,35), A2(3,56)

SUM1 = THE SUM(A1,10,35)
SUM2 = THE SUM(A2,3,56)

M
SUMX + A(I, J)

The following example shows how the array bounds determined when the
procedure is entered do not change during execution:

DIMENSION ARRAY (9,5)
L=29

M=5

CALL SUB(ARRAY,L,M)
END

SUBROUTINE SUB(X,I,J)
DIMENSION X(-I/2:I/2,J)
X(I/2,J3) = 999

J=1
I =2
END

The assignments to I and J do not affect the declaration of adjustable array X
as X(—4:4,5) on entry to subroutine SUB.

For More Information:
On specification expressions, see Section 4.1.7.2.

Specification Statements 5-15

5.1.4.2 Assumed-Shape Specifications

An assumed-shape array is a dummy argument array that assumes the
shape of its associated actual argument array. An assumed-shape specification
takes the following form:

(AL, [d1]:]...)

di

Is a specification expression indicating the lower bound of the dimension. The
expression can have a positive, negative, or zero value. If necessary, the value
is converted to integer type.

If the lower bound is not specified, it