
HP Fortran for OpenVMS
Language Reference Manual
Order Number: BA368-90004

January 2005

This manual contains the complete description of the HP Fortran
programming language, which includes Fortran 95 and Fortran 90 features.

Revision/Update Information: This manual is a new manual.

Software Version: HP Fortran for OpenVMS Systems Version
8.0

Operating System: OpenVMS Industry Standard 64 Systems
Version 8.2
OpenVMS Alpha Systems Version 8.2

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Printed in the US

ZK6324

This manual is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . xxi

1 Overview

1.1 Language Standards Conformance . 1–1
1.2 Language Compatibility . 1–2
1.3 Fortran 95 Features . 1–2
1.4 Fortran 90 Features . 1–4

2 Program Structure, Characters, and Source Forms

2.1 Program Structure . 2–1
2.1.1 Statements . 2–2
2.1.2 Names . 2–4
2.2 Character Sets . 2–5
2.3 Source Forms . 2–6
2.3.1 Free Source Form . 2–9
2.3.2 Fixed and Tab Source Forms . 2–11
2.3.2.1 Fixed-Format Lines . 2–13
2.3.2.2 Tab-Format Lines . 2–14
2.3.3 Source Code Useable for All Source Forms 2–16

3 Data Types, Constants, and Variables

3.1 Overview . 3–1
3.2 Intrinsic Data Types . 3–2
3.2.1 Integer Data Types . 3–4
3.2.2 Real Data Types . 3–7
3.2.2.1 General Rules for Real Constants 3–7
3.2.2.2 REAL(4) Constants . 3–8
3.2.2.3 REAL(8) or DOUBLE PRECISION Constants 3–9
3.2.2.4 REAL(16) Constants . 3–10

iii

3.2.3 Complex Data Types . 3–11
3.2.3.1 General Rules for Complex Constants 3–12
3.2.3.2 COMPLEX(4) Constants . 3–12
3.2.3.3 COMPLEX(8) or DOUBLE COMPLEX Constants 3–13
3.2.3.4 COMPLEX(16) Constants . 3–14
3.2.4 Logical Data Types . 3–15
3.2.5 Character Data Type . 3–16
3.2.5.1 C Strings in Character Constants 3–18
3.2.5.2 Character Substrings . 3–19
3.3 Derived Data Types . 3–21
3.3.1 Derived-Type Definition . 3–21
3.3.2 Default Initialization . 3–24
3.3.3 Structure Components . 3–25
3.3.4 Structure Constructors . 3–29
3.4 Binary, Octal, Hexadecimal, and Hollerith Constants 3–30
3.4.1 Binary Constants . 3–30
3.4.2 Octal Constants . 3–31
3.4.3 Hexadecimal Constants . 3–31
3.4.4 Hollerith Constants . 3–32
3.4.5 Determining the Data Type of Nondecimal Constants 3–33
3.5 Variables . 3–35
3.5.1 Data Types of Scalar Variables . 3–36
3.5.1.1 Specification of Data Type . 3–36
3.5.1.2 Implicit Typing Rules . 3–37
3.5.2 Arrays . 3–37
3.5.2.1 Whole Arrays . 3–40
3.5.2.2 Array Elements . 3–41
3.5.2.3 Array Sections . 3–44
3.5.2.4 Array Constructors . 3–48

4 Expressions and Assignment Statements

4.1 Expressions . 4–1
4.1.1 Numeric Expressions . 4–3
4.1.1.1 Using Parentheses in Numeric Expressions 4–4
4.1.1.2 Data Type of Numeric Expressions 4–6
4.1.2 Character Expressions . 4–8
4.1.3 Relational Expressions . 4–8
4.1.4 Logical Expressions . 4–10
4.1.5 Defined Operations . 4–11
4.1.6 Summary of Operator Precedence . 4–12

iv

4.1.7 Initialization and Specification Expressions 4–13
4.1.7.1 Initialization Expressions . 4–13
4.1.7.2 Specification Expressions . 4–15
4.2 Assignment Statements . 4–17
4.2.1 Intrinsic Assignments . 4–18
4.2.1.1 Numeric Assignment Statements 4–19
4.2.1.2 Logical Assignment Statements . 4–21
4.2.1.3 Character Assignment Statements 4–21
4.2.1.4 Derived-Type Assignment Statements 4–22
4.2.1.5 Array Assignment Statements . 4–23
4.2.2 Defined Assignments . 4–24
4.2.3 Pointer Assignments . 4–25
4.2.4 WHERE Statement and Construct . 4–26
4.2.5 FORALL Statement and Construct . 4–29

5 Specification Statements

5.1 Type Declaration Statements . 5–3
5.1.1 Declaration Statements for Noncharacter Types 5–7
5.1.2 Declaration Statements for Character Types 5–9
5.1.3 Declaration Statements for Derived Types 5–11
5.1.4 Declaration Statements for Arrays . 5–12
5.1.4.1 Explicit-Shape Specifications . 5–13
5.1.4.2 Assumed-Shape Specifications . 5–16
5.1.4.3 Assumed-Size Specifications . 5–16
5.1.4.4 Deferred-Shape Specifications . 5–18
5.2 ALLOCATABLE Attribute and Statement 5–19
5.3 AUTOMATIC and STATIC Attributes and Statements 5–20
5.4 COMMON Statement . 5–23
5.5 DATA Statement . 5–27
5.6 DIMENSION Attribute and Statement . 5–30
5.7 EQUIVALENCE Statement . 5–32
5.7.1 Making Arrays Equivalent . 5–35
5.7.2 Making Substrings Equivalent . 5–37
5.7.3 EQUIVALENCE and COMMON Interaction 5–39
5.8 EXTERNAL Attribute and Statement . 5–42
5.9 IMPLICIT Statement . 5–43
5.10 INTENT Attribute and Statement . 5–45
5.11 INTRINSIC Attribute and Statement . 5–47
5.12 NAMELIST Statement . 5–49
5.13 OPTIONAL Attribute and Statement . 5–51
5.14 PARAMETER Attribute and Statement . 5–53
5.15 POINTER Attribute and Statement . 5–55

v

5.16 PRIVATE and PUBLIC Attributes and Statements 5–57
5.17 SAVE Attribute and Statement . 5–60
5.18 TARGET Attribute and Statement . 5–62
5.19 VOLATILE Attribute and Statement . 5–63

6 Dynamic Allocation

6.1 Overview . 6–1
6.2 ALLOCATE Statement . 6–2
6.2.1 Allocation of Allocatable Arrays . 6–3
6.2.2 Allocation of Pointer Targets . 6–5
6.3 DEALLOCATE Statement . 6–5
6.3.1 Deallocation of Allocatable Arrays . 6–6
6.3.2 Deallocation of Pointer Targets . 6–7
6.4 NULLIFY Statement . 6–9

7 Execution Control

7.1 Overview . 7–1
7.2 Branch Statements . 7–2
7.2.1 Unconditional GO TO Statement . 7–3
7.2.2 Computed GO TO Statement . 7–3
7.2.3 ASSIGN and Assigned GO TO Statements 7–4
7.2.3.1 ASSIGN Statement . 7–4
7.2.3.2 Assigned GO TO Statement . 7–5
7.2.4 Arithmetic IF Statement . 7–6
7.3 CALL Statement . 7–7
7.4 CASE Construct . 7–10
7.5 CONTINUE Statement . 7–15
7.6 DO Constructs . 7–15
7.6.1 Forms for DO Constructs . 7–16
7.6.2 Execution of DO Constructs . 7–18
7.6.2.1 Iteration Loop Control . 7–18
7.6.2.2 Nested DO Constructs . 7–20
7.6.2.3 Extended Range . 7–22
7.6.3 DO WHILE Statement . 7–24
7.6.4 CYCLE Statement . 7–25
7.6.5 EXIT Statement . 7–25
7.7 END Statement . 7–26
7.8 IF Construct and Statement . 7–27
7.8.1 IF Construct . 7–27
7.8.2 IF Statement . 7–32
7.9 PAUSE Statement . 7–33

vi

7.10 RETURN Statement . 7–34
7.11 STOP Statement . 7–36

8 Program Units and Procedures

8.1 Overview . 8–1
8.2 Main Program . 8–3
8.3 Modules and Module Procedures . 8–4
8.3.1 Module References . 8–8
8.3.2 USE Statement . 8–8
8.4 Block Data Program Units . 8–11
8.5 Functions, Subroutines, and Statement Functions 8–12
8.5.1 General Rules for Function and Subroutine Subprograms . . . 8–13
8.5.1.1 Recursive Procedures . 8–14
8.5.1.2 Pure Procedures . 8–15
8.5.1.3 Elemental Procedures . 8–18
8.5.2 Functions . 8–19
8.5.2.1 RESULT Keyword . 8–23
8.5.2.2 Function References . 8–23
8.5.3 Subroutines . 8–25
8.5.4 Statement Functions . 8–27
8.6 External Procedures . 8–29
8.7 Internal Procedures . 8–30
8.8 Argument Association . 8–31
8.8.1 Optional Arguments . 8–33
8.8.1.1 Using the PRESENT Intrinsic Function 8–34
8.8.1.2 Using the IARGCOUNT Intrinsic Function 8–36
8.8.2 Array Arguments . 8–38
8.8.3 Pointer Arguments . 8–39
8.8.4 Assumed-Length Character Arguments 8–40
8.8.5 Character Constant and Hollerith Arguments 8–41
8.8.6 Alternate Return Arguments . 8–41
8.8.7 Dummy Procedure Arguments . 8–42
8.8.8 References to Generic Procedures . 8–43
8.8.8.1 References to Generic Intrinsic Functions 8–44
8.8.8.2 References to Elemental Intrinsic Procedures 8–47
8.8.9 References to Non-Fortran Procedures 8–48
8.8.9.1 %DESCR, %REF, and %VAL Argument List

Functions . 8–48
8.8.9.2 %LOC Function . 8–50
8.9 Procedure Interfaces . 8–50
8.9.1 Determining When Procedures Require Explicit

Interfaces . 8–51

vii

8.9.2 Defining Explicit Interfaces . 8–52
8.9.3 Defining Generic Names for Procedures 8–55
8.9.4 Defining Generic Operators . 8–56
8.9.5 Defining Generic Assignment . 8–57
8.10 CONTAINS Statement . 8–59
8.11 ENTRY Statement . 8–59
8.11.1 ENTRY Statements in Function Subprograms 8–61
8.11.2 ENTRY Statements in Subroutine Subprograms 8–62

9 Intrinsic Procedures

9.1 Overview of Intrinsic Procedures . 9–1
9.2 Argument Keywords in Intrinsic Procedures 9–4
9.3 Categories of Intrinsic Procedures . 9–5
9.3.1 Categories of Intrinsic Functions . 9–5
9.3.2 Intrinsic Subroutines . 9–17
9.3.3 Bit Functions . 9–18
9.4 Descriptions of Intrinsic Procedures . 9–21
9.4.1 ABS (A) . 9–22
9.4.2 ACHAR (I) . 9–22
9.4.3 ACOS (X) . 9–23
9.4.4 ACOSD (X) . 9–23
9.4.5 ADJUSTL (STRING) . 9–24
9.4.6 ADJUSTR (STRING) . 9–24
9.4.7 AIMAG (Z) . 9–25
9.4.8 AINT (A [,KIND]) . 9–25
9.4.9 ALL (MASK [,DIM]) . 9–26
9.4.10 ALLOCATED (ARRAY) . 9–27
9.4.11 ANINT (A [,KIND]) . 9–27
9.4.12 ANY (MASK [,DIM]) . 9–28
9.4.13 ASIN (X) . 9–29
9.4.14 ASIND (X) . 9–29
9.4.15 ASM (STRING [,A,...]) (Alpha only) 9–30
9.4.16 ASSOCIATED (POINTER [,TARGET]) 9–31
9.4.17 ATAN (X) . 9–33
9.4.18 ATAND (X) . 9–33
9.4.19 ATAN2 (Y, X) . 9–34
9.4.20 ATAN2D (Y, X) . 9–35
9.4.21 BIT_SIZE (I) . 9–35
9.4.22 BTEST (I, POS) . 9–36
9.4.23 CEILING (A [,KIND]) . 9–37
9.4.24 CHAR (I [,KIND]) . 9–37
9.4.25 CMPLX (X [,Y] [,KIND]) . 9–38

viii

9.4.26 CONJG (Z) . 9–39
9.4.27 COS (X) . 9–40
9.4.28 COSD (X) . 9–40
9.4.29 COSH (X) . 9–41
9.4.30 COTAN (X) . 9–41
9.4.31 COTAND (X) . 9–42
9.4.32 COUNT (MASK [,DIM] [,KIND]) . 9–42
9.4.33 CPU_TIME (TIME) . 9–44
9.4.34 CSHIFT (ARRAY, SHIFT [,DIM]) . 9–44
9.4.35 DATE (BUF) . 9–46
9.4.36 DATE_AND_TIME ([DATE] [,TIME] [,ZONE] [,VALUES]) . . 9–47
9.4.37 DBLE (A) . 9–48
9.4.38 DCMPLX (X [,Y]) . 9–50
9.4.39 DFLOAT (A) . 9–50
9.4.40 DIGITS (X) . 9–51
9.4.41 DIM (X, Y) . 9–51
9.4.42 DOT_PRODUCT (VECTOR_A, VECTOR_B) 9–52
9.4.43 DPROD (X, Y) . 9–53
9.4.44 DREAL (A) . 9–53
9.4.45 EOF (A) . 9–54
9.4.46 EOSHIFT (ARRAY, SHIFT [,BOUNDARY] [,DIM]) 9–55
9.4.47 EPSILON (X) . 9–57
9.4.48 ERRSNS ([IO_ERR] [,SYS_ERR] [,STAT] [,UNIT]

[,COND]) . 9–57
9.4.49 EXIT ([STATUS]) . 9–58
9.4.50 EXP (X) . 9–59
9.4.51 EXPONENT (X) . 9–59
9.4.52 FLOOR (A [,KIND]) . 9–60
9.4.53 FP_CLASS (X) . 9–60
9.4.54 FRACTION (X) . 9–61
9.4.55 FREE (A) . 9–61
9.4.56 HUGE (X) . 9–62
9.4.57 IACHAR (C) . 9–62
9.4.58 IAND (I, J) . 9–63
9.4.59 IARGCOUNT () . 9–64
9.4.60 IARGPTR () . 9–64
9.4.61 IBCHNG (I, POS) . 9–65
9.4.62 IBCLR (I, POS) . 9–65
9.4.63 IBITS (I, POS, LEN) . 9–66
9.4.64 IBSET (I, POS) . 9–67
9.4.65 ICHAR (C) . 9–68
9.4.66 IDATE (I, J, K) . 9–68
9.4.67 IEOR (I, J) . 9–69

ix

9.4.68 ILEN (I) . 9–70
9.4.69 INDEX (STRING, SUBSTRING [,BACK] [,KIND]) 9–70
9.4.70 INT (A [,KIND]) . 9–71
9.4.71 INT_PTR_KIND() . 9–73
9.4.72 IOR (I, J) . 9–74
9.4.73 ISHA (I, SHIFT) . 9–75
9.4.74 ISHC (I, SHIFT) . 9–76
9.4.75 ISHFT (I, SHIFT) . 9–77
9.4.76 ISHFTC (I, SHIFT [,SIZE]) . 9–77
9.4.77 ISHL (I, SHIFT) . 9–78
9.4.78 ISNAN (X) . 9–79
9.4.79 KIND (X) . 9–80
9.4.80 LBOUND (ARRAY [,DIM] [,KIND]) . 9–80
9.4.81 LEADZ (I) . 9–81
9.4.82 LEN (STRING [,KIND]) . 9–81
9.4.83 LEN_TRIM (STRING [,KIND]) . 9–82
9.4.84 LGE (STRING_A, STRING_B) . 9–83
9.4.85 LGT (STRING_A, STRING_B) . 9–83
9.4.86 LLE (STRING_A, STRING_B) . 9–84
9.4.87 LLT (STRING_A, STRING_B) . 9–85
9.4.88 LOC (X) . 9–85
9.4.89 LOG (X) . 9–86
9.4.90 LOG10 (X) . 9–87
9.4.91 LOGICAL (L [,KIND]) . 9–87
9.4.92 MALLOC (I) . 9–88
9.4.93 MATMUL (MATRIX_A, MATRIX_B) 9–88
9.4.94 MAX (A1, A2 [,A3,...]) . 9–89
9.4.95 MAXEXPONENT (X) . 9–91
9.4.96 MAXLOC (ARRAY [,DIM] [,MASK] [,KIND]) 9–91
9.4.97 MAXVAL (ARRAY [,DIM] [,MASK]) . 9–93
9.4.98 MERGE (TSOURCE, FSOURCE, MASK) 9–95
9.4.99 MIN (A1, A2 [,A3,...]) . 9–96
9.4.100 MINEXPONENT (X) . 9–97
9.4.101 MINLOC (ARRAY [,DIM] [,MASK] [,KIND]) 9–97
9.4.102 MINVAL (ARRAY [,DIM] [,MASK]) . 9–99
9.4.103 MOD (A, P) . 9–101
9.4.104 MODULO (A, P) . 9–101
9.4.105 MULT_HIGH (I, J) . 9–102
9.4.106 MVBITS (FROM, FROMPOS, LEN, TO, TOPOS) 9–103
9.4.107 MY_PROCESSOR () . 9–104
9.4.108 NEAREST (X, S) . 9–104
9.4.109 NINT (A [,KIND]) . 9–104
9.4.110 NOT (I) . 9–105

x

9.4.111 NULL ([MOLD]) . 9–106
9.4.112 NUMBER_OF_PROCESSORS ([DIM]) 9–107
9.4.113 NWORKERS () . 9–107
9.4.114 PACK (ARRAY, MASK [,VECTOR]) . 9–108
9.4.115 POPCNT (I) . 9–109
9.4.116 POPPAR (I) . 9–109
9.4.117 PRECISION (X) . 9–109
9.4.118 PRESENT (A) . 9–110
9.4.119 PROCESSORS_SHAPE () . 9–110
9.4.120 PRODUCT (ARRAY [,DIM] [,MASK]) 9–111
9.4.121 QCMPLX (X [,Y]) . 9–112
9.4.122 QEXT (A) . 9–112
9.4.123 QFLOAT (A) . 9–113
9.4.124 QREAL (A) . 9–114
9.4.125 RADIX (X) . 9–114
9.4.126 RAN (I) . 9–114
9.4.127 RANDOM_NUMBER (HARVEST) . 9–115
9.4.128 RANDOM_SEED ([SIZE] [,PUT] [,GET]) 9–115
9.4.129 RANDU (I1, I2, X) . 9–116
9.4.130 RANGE (X) . 9–117
9.4.131 REAL (A [,KIND]) . 9–118
9.4.132 REPEAT (STRING, NCOPIES) . 9–119
9.4.133 RESHAPE (SOURCE, SHAPE [,PAD] [,ORDER]) 9–119
9.4.134 RRSPACING (X) . 9–120
9.4.135 SCALE (X, I) . 9–120
9.4.136 SCAN (STRING, SET [,BACK] [,KIND]) 9–121
9.4.137 SECNDS (X) . 9–121
9.4.138 SELECTED_INT_KIND (R) . 9–122
9.4.139 SELECTED_REAL_KIND ([P] [,R]) . 9–123
9.4.140 SET_EXPONENT (X, I) . 9–123
9.4.141 SHAPE (SOURCE [,KIND]) . 9–124
9.4.142 SIGN (A, B) . 9–125
9.4.143 SIN (X) . 9–126
9.4.144 SIND (X) . 9–126
9.4.145 SINH (X) . 9–127
9.4.146 SIZE (ARRAY [,DIM] [,KIND]) . 9–127
9.4.147 SIZEOF (X) . 9–128
9.4.148 SPACING (X) . 9–128
9.4.149 SPREAD (SOURCE, DIM, NCOPIES) 9–129
9.4.150 SQRT (X) . 9–129
9.4.151 SUM (ARRAY [,DIM] [,MASK]) . 9–130
9.4.152 SYSTEM_CLOCK ([COUNT] [,COUNT_RATE]

[,COUNT_MAX]) . 9–132

xi

9.4.153 TAN (X) . 9–133
9.4.154 TAND (X) . 9–133
9.4.155 TANH (X) . 9–134
9.4.156 TIME (BUF) . 9–134
9.4.157 TINY (X) . 9–135
9.4.158 TRAILZ (I) . 9–135
9.4.159 TRANSFER (SOURCE, MOLD [,SIZE]) 9–136
9.4.160 TRANSPOSE (MATRIX) . 9–137
9.4.161 TRIM (STRING) . 9–137
9.4.162 UBOUND (ARRAY [,DIM] [,KIND]) . 9–138
9.4.163 UNPACK (VECTOR, MASK, FIELD) 9–139
9.4.164 VERIFY (STRING, SET [,BACK] [,KIND]) 9–140
9.4.165 ZEXT (X [,KIND]) . 9–140

10 Data Transfer I/O Statements

10.1 Overview of Records and Files . 10–1
10.2 Components of Data Transfer Statements 10–2
10.2.1 I/O Control List . 10–3
10.2.1.1 Unit Specifier . 10–4
10.2.1.2 Format Specifier . 10–5
10.2.1.3 Namelist Specifier . 10–6
10.2.1.4 Record Specifier . 10–6
10.2.1.5 Key-Field-Value Specifier . 10–7
10.2.1.6 Key-of-Reference Specifier . 10–9
10.2.1.7 I/O Status Specifier . 10–10
10.2.1.8 Branch Specifiers . 10–11
10.2.1.9 Advance Specifier . 10–12
10.2.1.10 Character Count Specifier . 10–13
10.2.2 I/O Lists . 10–13
10.2.2.1 Simple List Items in I/O Lists . 10–14
10.2.2.2 Implied-Do Lists in I/O Lists . 10–16
10.3 READ Statements . 10–17
10.3.1 Forms for Sequential READ Statements 10–18
10.3.1.1 Rules for Formatted Sequential READ Statements 10–19
10.3.1.2 Rules for List-Directed Sequential READ Statements . . . 10–20
10.3.1.3 Rules for Namelist Sequential READ Statements 10–23
10.3.1.4 Rules for Unformatted Sequential READ Statements . . . 10–28
10.3.2 Forms for Direct-Access READ Statements 10–29
10.3.2.1 Rules for Formatted Direct-Access READ Statements . . . 10–30
10.3.2.2 Rules for Unformatted Direct-Access READ

Statements . 10–31

xii

10.3.3 Forms for Indexed READ Statements 10–31
10.3.3.1 Rules for Formatted Indexed READ Statements 10–32
10.3.3.2 Rules for Unformatted Indexed READ Statements 10–33
10.3.4 Forms and Rules for Internal READ Statements 10–34
10.4 ACCEPT Statement . 10–36
10.5 WRITE Statements . 10–37
10.5.1 Forms for Sequential WRITE Statements 10–37
10.5.1.1 Rules for Formatted Sequential WRITE Statements 10–39
10.5.1.2 Rules for List-Directed Sequential WRITE

Statements . 10–39
10.5.1.3 Rules for Namelist Sequential WRITE Statements 10–41
10.5.1.4 Rules for Unformatted Sequential WRITE

Statements . 10–43
10.5.2 Forms for Direct-Access WRITE Statements 10–43
10.5.2.1 Rules for Formatted Direct-Access WRITE

Statements . 10–44
10.5.2.2 Rules for Unformatted Direct-Access WRITE

Statements . 10–45
10.5.3 Forms for Indexed WRITE Statements 10–45
10.5.3.1 Rules for Formatted Indexed WRITE Statements 10–46
10.5.3.2 Rules for Unformatted Indexed WRITE Statements 10–47
10.5.4 Forms and Rules for Internal WRITE Statements 10–47
10.6 PRINT and TYPE Statements . 10–48
10.7 REWRITE Statement . 10–50

11 I/O Formatting

11.1 Overview . 11–1
11.2 Format Specifications . 11–2
11.3 Data Edit Descriptors . 11–7
11.3.1 Forms for Data Edit Descriptors . 11–7
11.3.2 General Rules for Numeric Editing . 11–9
11.3.3 Integer Editing . 11–10
11.3.3.1 I Editing . 11–10
11.3.3.2 B Editing . 11–12
11.3.3.3 O Editing . 11–13
11.3.3.4 Z Editing . 11–14
11.3.4 Real and Complex Editing . 11–16
11.3.4.1 F Editing . 11–16
11.3.4.2 E and D Editing . 11–18
11.3.4.3 EN Editing . 11–20
11.3.4.4 ES Editing . 11–22
11.3.4.5 G Editing . 11–24

xiii

11.3.4.6 Complex Editing . 11–26
11.3.5 Logical Editing (L) . 11–27
11.3.6 Character Editing (A) . 11–28
11.3.7 Default Widths for Data Edit Descriptors 11–30
11.3.8 Terminating Short Fields of Input Data 11–31
11.4 Control Edit Descriptors . 11–33
11.4.1 Forms for Control Edit Descriptors . 11–33
11.4.2 Positional Editing . 11–34
11.4.2.1 T Editing . 11–34
11.4.2.2 TL Editing . 11–35
11.4.2.3 TR Editing . 11–35
11.4.2.4 X Editing . 11–35
11.4.3 Sign Editing . 11–36
11.4.3.1 SP Editing . 11–36
11.4.3.2 SS Editing . 11–36
11.4.3.3 S Editing . 11–36
11.4.4 Blank Editing . 11–36
11.4.4.1 BN Editing . 11–37
11.4.4.2 BZ Editing . 11–37
11.4.5 Scale Factor Editing (P) . 11–37
11.4.6 Slash Editing (/) . 11–39
11.4.7 Colon Editing (:) . 11–40
11.4.8 Dollar Sign ($) and Backslash (\) Editing 11–40
11.4.9 Character Count Editing (Q) . 11–41
11.5 Character String Edit Descriptors . 11–42
11.5.1 Character Constant Editing . 11–42
11.5.2 H Editing . 11–42
11.6 Nested and Group Repeat Specifications 11–43
11.7 Variable Format Expressions . 11–44
11.8 Printing of Formatted Records . 11–45
11.9 Interaction Between Format Specifications and I/O Lists 11–46

12 File Operation I/O Statements

12.1 BACKSPACE Statement . 12–2
12.2 CLOSE Statement . 12–3
12.3 DELETE Statement . 12–4
12.4 ENDFILE Statement . 12–6
12.5 INQUIRE Statement . 12–7
12.5.1 ACCESS Specifier . 12–9
12.5.2 ACTION Specifier . 12–10
12.5.3 BLANK Specifier . 12–10
12.5.4 BLOCKSIZE Specifier . 12–11

xiv

12.5.5 BUFFERED Specifier . 12–11
12.5.6 CARRIAGECONTROL Specifier . 12–11
12.5.7 CONVERT Specifier . 12–12
12.5.8 DELIM Specifier . 12–12
12.5.9 DIRECT Specifier . 12–13
12.5.10 EXIST Specifier . 12–13
12.5.11 FORM Specifier . 12–14
12.5.12 FORMATTED Specifier . 12–14
12.5.13 KEYED Specifier . 12–14
12.5.14 NAME Specifier . 12–15
12.5.15 NAMED Specifier . 12–15
12.5.16 NEXTREC Specifier . 12–16
12.5.17 NUMBER Specifier . 12–16
12.5.18 OPENED Specifier . 12–16
12.5.19 ORGANIZATION Specifier . 12–17
12.5.20 PAD Specifier . 12–17
12.5.21 POSITION Specifier . 12–17
12.5.22 READ Specifier . 12–18
12.5.23 READWRITE Specifier . 12–18
12.5.24 RECL Specifier . 12–19
12.5.25 RECORDTYPE Specifier . 12–19
12.5.26 SEQUENTIAL Specifier . 12–20
12.5.27 UNFORMATTED Specifier . 12–20
12.5.28 WRITE Specifier . 12–20
12.6 OPEN Statement . 12–21
12.6.1 ACCESS Specifier . 12–27
12.6.2 ACTION Specifier . 12–27
12.6.3 ASSOCIATEVARIABLE Specifier . 12–28
12.6.4 BLANK Specifier . 12–28
12.6.5 BLOCKSIZE Specifier . 12–29
12.6.6 BUFFERCOUNT Specifier . 12–29
12.6.7 BUFFERED Specifier . 12–30
12.6.8 CARRIAGECONTROL Specifier . 12–30
12.6.9 CONVERT Specifier . 12–31
12.6.10 DEFAULTFILE Specifier . 12–33
12.6.11 DELIM Specifier . 12–33
12.6.12 DISPOSE Specifier . 12–34
12.6.13 EXTENDSIZE Specifier . 12–35
12.6.14 FILE Specifier . 12–35
12.6.15 FORM Specifier . 12–36
12.6.16 INITIALSIZE Specifier . 12–36
12.6.17 KEY Specifier . 12–37
12.6.18 MAXREC Specifier . 12–38

xv

12.6.19 NAME Specifier . 12–38
12.6.20 NOSPANBLOCKS Specifier . 12–38
12.6.21 ORGANIZATION Specifier . 12–39
12.6.22 PAD Specifier . 12–39
12.6.23 POSITION Specifier . 12–40
12.6.24 READONLY Specifier . 12–40
12.6.25 RECL Specifier . 12–41
12.6.26 RECORDSIZE Specifier . 12–43
12.6.27 RECORDTYPE Specifier . 12–43
12.6.28 SHARED Specifier . 12–44
12.6.29 STATUS Specifier . 12–44
12.6.30 TYPE Specifier . 12–45
12.6.31 USEROPEN Specifier . 12–45
12.7 REWIND Statement . 12–46
12.8 UNLOCK Statement . 12–47

13 Compilation Control Statements

13.1 DICTIONARY Statement . 13–1
13.2 INCLUDE Statement . 13–2
13.3 OPTIONS Statement . 13–5

14 Compiler Directives

14.1 Syntax Rules for General Directives . 14–2
14.2 ALIAS Directive . 14–3
14.3 ATTRIBUTES Directive . 14–4
14.4 DECLARE or NODECLARE Directives . 14–11
14.5 DEFINE and UNDEFINE Directives . 14–11
14.6 FIXEDFORMLINESIZE Directive . 14–12
14.7 FREEFORM and NOFREEFORM Directives 14–13
14.8 IDENT Directive . 14–14
14.9 IF and IF DEFINED Directives . 14–14
14.10 INTEGER Directive . 14–16
14.11 IVDEP Directive . 14–17
14.12 MESSAGE Directive . 14–19
14.13 OBJCOMMENT Directive . 14–20
14.14 OPTIONS Directive . 14–21
14.15 PACK Directive . 14–24
14.16 PSECT Directive . 14–25
14.17 REAL Directive . 14–28
14.18 STRICT and NOSTRICT Directives . 14–30
14.19 TITLE and SUBTITLE Directives . 14–31

xvi

14.20 UNROLL Directive . 14–32

15 Scope and Association

15.1 Overview . 15–1
15.2 Scope . 15–2
15.3 Unambiguous Generic Procedure References 15–6
15.4 Resolving Procedure References . 15–6
15.4.1 References to Generic Names . 15–6
15.4.2 References to Specific Names . 15–8
15.4.3 References to Nonestablished Names 15–9
15.5 Association . 15–10
15.5.1 Name Association . 15–11
15.5.1.1 Argument Association . 15–11
15.5.1.2 Use and Host Association . 15–11
15.5.2 Pointer Association . 15–13
15.5.3 Storage Association . 15–14
15.5.3.1 Storage Units and Storage Sequence 15–14
15.5.3.2 Array Association . 15–16

A Deleted and Obsolescent Language Features

A.1 Deleted Language Features in Fortran 95 A–1
A.2 Obsolescent Language Features in Fortran 95 A–2
A.3 Obsolescent Language Features in Fortran 90 A–3

B Additional Language Features

B.1 DEFINE FILE Statement . B–1
B.2 ENCODE and DECODE Statements . B–3
B.3 FIND Statement . B–5
B.4 FORTRAN-66 Interpretation of the EXTERNAL Statement B–6
B.5 Alternative Syntax for the PARAMETER Statement B–8
B.6 VIRTUAL Statement . B–9
B.7 Alternative Syntax for Octal and Hexadecimal Constants B–9
B.8 Alternative Syntax for a Record Specifier B–9
B.9 Alternative Syntax for the DELETE Statement B–10
B.10 Alternative Form for Namelist External Records B–10
B.11 HP Fortran POINTER Statement . B–11
B.12 Record Structures . B–13

xvii

B.12.1 Structure Declarations . B–14
B.12.1.1 Type Declarations . B–18
B.12.1.2 Substructure Declarations . B–18
B.12.1.3 Union Declarations . B–19
B.12.2 RECORD Statement . B–21
B.12.3 References to Record Fields . B–22
B.12.4 Aggregate Assignment . B–25

C ASCII and DEC Multinational Character Sets

C.1 ASCII Character Set . C–1
C.2 DEC Multinational Character Set . C–4

D Data Representation Models

D.1 Model for Integer Data . D–1
D.2 Model for Real Data . D–2
D.3 Model for Bit Data . D–4

E Summary of Language Extensions

E.1 HP Fortran Language Extensions . E–1

Glossary

Index

Examples

6–1 Allocating Virtual Memory . 6–4
8–1 Use of the PRESENT Intrinsic With a Defined Interface 8–35
8–2 Use of the IARGCOUNT Intrinsic . 8–37
8–3 Using and Redefining an Intrinsic Function Name 8–45
11–1 Interaction Between Format Specifications and I/O Lists . . . 11–48
13–1 Including Text from a File . 13–4
15–1 Example of Name, Pointer, and Storage Association 15–10
B–1 Using the F66 EXTERNAL Statement B–7

xviii

Figures

2–1 Required Order of Statements . 2–3
2–2 Line Formatting Example . 2–15
3–1 Array Storage . 3–43
5–1 Equivalence of Substrings . 5–38
5–2 Equivalence of Character Arrays . 5–40
5–3 A Valid Extension of a Common Block 5–41
5–4 An Invalid Extension of a Common Block 5–41
7–1 Flow of Control in CASE Constructs 7–13
7–2 Nested DO Constructs . 7–21
7–3 Control Transfers and Extended Range 7–23
7–4 Flow of Control in IF Constructs . 7–29
B–1 Memory Map of Structure APPOINTMENT B–17
B–2 Memory Map of Structure WORDS_LONG B–21
C–1 Graphic Representation of the ASCII Character Set C–3
C–2 Graphic Representation of the DEC Multinational Extension

to the ASCII Character Set . C–5

Tables

2–1 Statements Restricted in Scoping Units 2–4
2–2 Indicators in Source Forms . 2–8
3–1 C-Style Escape Sequences . 3–18
4–1 Precedence of Expression Operators . 4–13
4–2 Conversion Rules for Numeric Assignment Statements 4–20
5–1 Compatible Attributes . 5–6
5–2 Noncharacter Data Types . 5–8
5–3 Equivalence of Array Storage . 5–36
5–4 Equivalence of Arrays with Nonunity Lower Bounds 5–37
8–1 Defaults for Argument List Functions 8–49
9–1 Functions Not Allowed as Actual Arguments 9–3
9–2 Categories of Intrinsic Functions . 9–5
9–3 Summary of Generic Intrinsic Functions 9–8
9–4 Specific Functions with No Generic Association 9–17
9–5 Intrinsic Subroutines . 9–18
10–1 Default Formats for List-Directed Output 10–40
11–1 Summary of Edit Descriptors . 11–3

xix

11–2 Effect of Data Magnitude on G Format Conversions 11–25
11–3 Size Limits for Noncharacter Data Using A Editing 11–29
11–4 Default Widths for Data Edit Descriptors 11–31
11–5 Control Characters for Printing . 11–46
12–1 OPEN Statement Specifiers and Values 12–22
12–2 Maximum Record Lengths (RECL) . 12–42
12–3 Default Record Lengths (RECL) . 12–43
14–1 Common Block Defaults and PSECT Modification 14–28
15–1 Scope of Program Entities . 15–4
15–2 Data Type Storage Requirements . 15–15

xx

Preface

This manual contains the complete description of the HP Fortran programming
language, which includes Fortran 95 and Fortran 90 features. It contains
information about language syntax and semantics, adherence to various
Fortran standards, and extensions to those standards.

Note

In this manual, the term OpenVMS refers to both OpenVMS I64 and
OpenVMS Alpha systems. If there are differences in the behavior of the
HP Fortran compiler on the two operating systems, those differences
are noted in the text.

Intended Audience
This manual is intended for experienced applications programmers who have a
basic understanding of Fortran concepts and the Fortran 95/90 language, and
are using HP Fortran in either a single-platform or multiplatform environment.

Some familiarity with parallel programming concepts and OpenVMS is helpful.
This manual is not a Fortran or programming tutorial.

Document Structure
This manual consists of the following chapters and appendixes:

• Chapter 1 describes language standards, language compatibility, and some
features of Fortran 95 and Fortran 90.

• Chapter 2 describes program structure, the Fortran 95/90 character set,
and source forms.

• Chapter 3 describes intrinsic and derived data types, constants, variables
(scalars and arrays), and substrings.

• Chapter 4 describes expressions and assignment.

xxi

• Chapter 5 describes specification statements, which declare the attributes
of data objects.

• Chapter 6 describes dynamic allocation.

• Chapter 7 describes constructs and statements that can transfer control
within a program.

• Chapter 8 describes program units (including modules), subroutines and
functions, and procedure interfaces.

• Chapter 9 summarizes all intrinsic procedures.

• Chapter 10 describes data transfer input/output (I/O) statements.

• Chapter 11 describes the rules for I/O formatting.

• Chapter 12 describes auxiliary I/O statements you can use to perform file
operations.

• Chapter 13 describes compilation control statements.

• Chapter 14 describes compiler directives.

• Chapter 15 describes scope and association.

• Appendix A describes obsolescent language features in Fortran 95 and
Fortran 90.

• Appendix B describes some statements and language features supported
for programs written in older versions of Fortran.

• Appendix C describes the HP Fortran character sets.

• Appendix D describes data representation models for numeric intrinsic
functions.

• Appendix E summarizes HP Fortran extensions to the Fortran 95
Standard.

• The Glossary contains abbreviated definitions of some commonly used
terms in this manual.

Note

If you are reading the printed version of this manual, be aware
that the version at the HP Fortran Web site and the version on
the Documentation CD-ROM from HP may contain updated and/or
corrected information.

xxii

Related Documents
The following documents are also useful:

• HP Fortran for OpenVMS User Manual

This manual provides information about HP Fortran program development
and the run-time environment. It describes compiling, linking, running,
and debugging HP Fortran programs, run-time error-handling and I/O,
performance guidelines, data types, numeric data conversion, calling other
procedures and library routines, and compatibility with Compaq Fortran
77.

• HP Fortran Installation Guide for OpenVMS I64 Systems or HP Fortran
Installation Guide for OpenVMS Alpha Systems

These guides provide information on how to install HP Fortran.

• OpenVMS documentation set

This set provides detailed information about components and features of
the OpenVMS operating system, such as commands, tools, libraries, and
other aspects of the programming environment.

• Standards and Specifications

The following copyrighted standard and specification documents contain
precise descriptions of many of the features found in HP Fortran:

American National Standard Programming Language FORTRAN,
ANSI X3.9-1978

American National Standard Programming Language Fortran 90,
ANSI X3.198-1992

This Standard is equivalent to: International Standards Organization
Programming Language Fortran, ISO/IEC 1539:1991 (E).

American National Standard Programming Language Fortran 95,
ANSI X3J3/96-007

This Standard is equivalent to: International Standards Organization
Programming Language Fortran, ISO/IEC 1539-1:1997 (E).

xxiii

Other Sources of Information
This section alphabetically lists some commercially published documents that
provide reference or tutorial information on Fortran 95 and Fortran 90:

• Fortran 90/95 for Scientists and Engineers by S. Chapman; published by
McGraw-Hill, ISBN 0-07-011938-4.

• Fortran 90 Handbook by J. Adams, W. Brainerd, J. Martin, B. Smith, and
J. Wagener; published by Intertext Publications (McGraw–Hill), ISBN
0-07-000406-4.

• Fortran 90 Programming by T. Ellis, I. Philips, and T. Lahey; published by
Addison–Wesley, ISBN 0201-54446-6.

• Introduction to Fortran 90/95 by S. Chapman; published by WCB
McGraw–Hill, ISBN 0-07-011969-4.

• Programmer’s Guide to Fortran 90, Second Edition by W. Brainerd, C.
Goldberg, and J. Adams; published by Unicomp, ISBN 0-07-000248-7.

HP does not endorse these books or recommend them over other books on the
same subjects.

Reader’s Comments
HP welcomes your comments on this or any other HP Fortran manual. You
can send comments by email to:

fortran@hp.com

HP Fortran Web Page
The HP Fortran home page is at:

http://www.hp.com/software/fortran

This Web site contains information about software patch kits, example
programs, and additional product information.

Conventions
The following product names may appear in this manual:

• HP OpenVMS Industry Standard 64 for Integrity Servers

• OpenVMS I64

• I64

xxiv

All three names—the longer form and the two abbreviated forms—refer to the
version of the OpenVMS operating system that runs on the Intel® Itanium®
architecture.

The following conventions might be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key or a
pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention
appears as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the
following possibilities:

• Additional optional arguments in a statement have
been omitted.

• The preceding item or items can be repeated one or
more times.

• Additional parameters, values, or other information can
be entered.

.

.

.

A vertical ellipsis indicates the omission of items from a
code example or command format; the items are omitted
because they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that
you must enclose choices in parentheses if you specify more
than one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in
an assignment statement.

| In command format descriptions, vertical bars separate
choices within brackets or braces. Within brackets, the
choices are optional; within braces, at least one choice is
required. Do not type the vertical bars on the command
line.

xxv

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold type Bold type represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

italic type Italic type indicates important information, complete titles
of manuals, or variables. Variables include information
that varies in system output (Internal error number), in
command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code
for the device type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

real This term refers to all floating-point intrinsic data types as
a group.

complex This term refers to all complex floating-point intrinsic data
types as a group.

logical This term refers to logical intrinsic data types as a group.

integer This term refers to integer intrinsic data types as a group.

Fortran This term refers to language information that is common
to ANSI FORTRAN-77, ANSI/ISO Fortran 90, ANSI/ISO
Fortran 95, and HP Fortran 90.

Fortran 90 This term refers to language information that is common to
ANSI/ISO Fortran 90 and HP Fortran. For example, a new
language feature introduced in the Fortran 90 standard.

Fortran 95 This term refers to language information that is common
to ISO Fortran 95 and HP Fortran. For example, a new
language feature introduced in the Fortran 95 standard.

xxvi

HP Fortran Unless otherwise specified, this term (formerly Compaq
Fortran) refers to language information that is common
to the Fortran 90 and 95 standards, and any HP Fortran
extensions, running on the OpenVMS operating system.
Since the Fortran 90 standard is a superset of the
FORTRAN-77 standard, HP Fortran also supports the
FORTRAN-77 standard. HP Fortran supports all of the
deleted features of the Fortran 95 standard.

xxvii

1
Overview

This chapter describes:

• Section 1.1, Language Standards Conformance

• Section 1.2, Language Compatibility

• Section 1.3, Fortran 95 Features

• Section 1.4, Fortran 90 Features

1.1 Language Standards Conformance
Fortran 95 includes Fortran 90 and most features of FORTRAN 77. Fortran
90 is a superset that includes FORTRAN 77. HP Fortran fully supports the
Fortran 95, Fortran 90, and FORTRAN 77 Standards.

HP Fortran conforms to American National Standard Fortran 95 (ANSI
X3J3/96-007)1, American National Standard Fortran 90 (ANSI X3.198-1992)2.

The ANSI committee X3J3 is currently answering questions of interpretation
of Fortran 95 and Fortran 90 language features. Any answers given by the
ANSI committee that are related to features implemented in HP Fortran may
result in changes in future releases of the HP Fortran compiler, even if the
changes produce incompatibilities with earlier releases of HP Fortran.

HP Fortran provides a number of extensions to the Fortran 95 Standard. In
the printed version of this manual, these extensions are colored in blue.

HP Fortran also includes support for programs that conform to the previous
Fortran standards (ANSI X3.9-1978 and ANSI X3.0-1966), the International
Standards Organization standard ISO 1539-1980 (E), the Federal Information
Processing Institute standard FIPS 69-1, and the Military Standard 1753
Language Specification.

1 This is the same as International Standards Organization standard ISO/IEC
1539-1:1997 (E).

2 This is the same as International Standards Organization standard ISO/IEC 1539:1991
(E).

Overview 1–1

For More Information:
On HP Fortran language extensions, see Appendix E.

1.2 Language Compatibility
HP Fortran is highly compatible with Compaq Fortran 77 on supported
platforms, and it is substantially compatible with PDP-11 and VAX FORTRAN
77.

For More Information:
On language compatibility, compiler options, and program conversion
considerations, see the HP Fortran for OpenVMS User Manual.

1.3 Fortran 95 Features
Following are some of the Fortran 95 features implemented in HP Fortran:

• FORALL statement and construct

In Fortran 90, you could build array values element-by-element by using
array constructors and the RESHAPE and SPREAD intrinsics. The
Fortran 95 FORALL statement and construct offer an alternative method.

FORALL allows array elements, array sections, character substrings,
or pointer targets to be explicitly specified as a function of the element
subscripts. A FORALL construct allows several array assignments to share
the same element subscript control.

FORALL is a generalization of WHERE. They both allow masked array
assignment, but FORALL uses element subscripts, while WHERE uses the
whole array.

For more information, see Section 4.2.5.

• PURE user-defined procedures

Pure user-defined procedures do not have side effects, such as changing the
value of a variable in a common block. To specify a pure procedure, use the
PURE prefix in the function or subroutine statement. Pure functions are
allowed in specification statements.

For more information, see Section 8.5.1.2.

• ELEMENTAL user-defined procedures

An elemental user-defined procedure is a restricted form of pure procedure.
An elemental procedure can be passed an array, which is acted upon
one element at a time. To specify an elemental procedure, use the
ELEMENTAL prefix in the function or subroutine statement.

For more information, see Sections 8.5.2 and 8.5.3.

1–2 Overview

• CPU_TIME intrinsic subroutine

This intrinsic subroutine returns a processor-dependent approximation of
processor time.

For more information, see Section 9.4.33.

• NULL intrinsic function

In Fortran 90, there was no way to assign a null value to the pointer by
using a pointer assignment operation. A Fortran 90 pointer had to be
explicitly allocated, nullified, or associated with a target during execution
before association status could be determined.

Fortran 95 provides the NULL intrinsic function that can be used to nullify
a pointer.

For more information, see Section 9.4.111.

• Obsolescent features

Fortran 95 deletes several language features that were obsolescent in
Fortran 90, and identifies new obsolescent features.

HP Fortran fully supports features deleted in Fortran 95.

For more information, see Appendix A.

• Derived-type structure default initialization

In derived-type definitions, you can now specify default initial values for
derived-type components.

For more information, see Section 3.3.2.

• Pointer initialization

In Fortran 90, there was no way to define the initial value of a pointer. You
can now specify default initialization for a pointer.

For more information, see Sections 3.3.1 and 3.3.2.

• Automatic deallocation of allocatable arrays

Allocatable arrays whose status is allocated upon routine exit are now
automatically deallocated.

For more information, see Section 6.2.1.

• Enhanced CEILING and FLOOR intrinsic functions

KIND can now be specified for these intrinsic functions.

For more information, see Sections 9.4.23 and 9.4.52.

• Enhanced MAXLOC and MINLOC intrinsic functions

DIM can now be specified for these intrinsic functions.

Overview 1–3

For more information, see Sections 9.4.96 and 9.4.101.

• Enhanced SIGN intrinsic function

When a specific compiler option is specified, the SIGN function can now
distinguish between positive and negative zero if the processor is capable
of doing so.

For more information, see Section 9.4.142.

• Printing of –0.0

When a specific compiler option is specified, a floating-point value of minus
zero (–0.0) can now be printed if the processor can represent it.

• Enhanced WHERE construct

The WHERE construct has been improved to allow nested WHERE
constructs and a masked ELSEWHERE statement. WHERE constructs
can now be named.

For more information, see Section 4.2.4.

• Generic identifier allowed in END INTERFACE statement

The END INTERFACE statement of an interface block defining a generic
routine can now specify a generic identifier.

For more information, see Section 8.9.2.

• Zero-length formats

On output, when using I, B, O, Z, and F edit descriptors, the specified
value of the field width can be zero. In such cases, the compiler selects the
smallest possible positive actual field width that does not result in the field
being filled with asterisks (*).

• Comments allowed in namelist input

Fortran 95 allows comments (beginning with !) in namelist input data.

1.4 Fortran 90 Features
Following are some of the Fortran 90 features implemented in HP Fortran:

• Free source form

Fortran 90 provides a free-source form where line positions have no special
meaning. There are no reserved columns, trailing comments can appear,
and blanks have significance under certain circumstances (for example,
P R O G R A M is not allowed as an alternative for PROGRAM).

For more information, see Section 2.3.1.

1–4 Overview

• Modules

Fortran 90 provides a form of program unit called a module, which is more
powerful than (and overcomes limitations of) FORTRAN 77 block data
program units.

A module is a set of declarations that are grouped together under a single,
global name. Modules let you encapsulate a set of related items such as
data, procedures, and procedure interfaces, and make them available to
another program unit.

Module items can be made private to limit accessibility, provide data
abstraction, and to create more secure and portable programs.

For more information, see Section 8.3.

• User-defined (derived) data types and operators

Fortran 90 lets you define data types derived from any combination of
the intrinsic data types and derived types. The derived-type object can be
accessed as a whole, or its individual components can be accessed directly.

You can extend the intrinsic operators (such as + and *) to user-defined
data types, and also define new operators for operands of any type.

For more information, see Sections 3.3 and 8.9.4.

• Array operations and features

In Fortran 90, intrinsic operators and intrinsic functions can operate on
array-valued operands (whole arrays or array sections).

Features for arrays include whole, partial, and masked array assignment
(including the WHERE statement for selective assignment), and array-
valued constants and expressions. You can create user-defined array-valued
functions, use array constructors to specify values of a one-dimensional
array, and allocate arrays dynamically (using ALLOCATABLE and
POINTER attributes).

Intrinsic procedures create multidimensional arrays, manipulate arrays,
perform operations on arrays, and support computations involving arrays
(for example, SUM sums the elements of an array).

For more information, see Section 3.5.2 and Chapter 9.

• Generic user-defined procedures

In Fortran 90, user-defined procedures can be placed in generic interface
blocks. This allows the procedures to be referenced using the generic name
of the block.

Overview 1–5

Selection of a specific procedure within the block is based on the properties
of the argument, the same way as specific intrinsic functions are selected
based on the properties of the argument when generic intrinsic function
names are used.

For more information, see Section 8.9.3.

• Pointers

Fortran 90 pointers are mechanisms that allow dynamic access and
processing of data. They allow arrays to be sized dynamically and they
allow structures to be linked together.

A pointer can be of any intrinsic or derived type. When a pointer
is associated with a target, it can appear in most expressions and
assignments.

For more information, see Sections 5.15 and 4.2.3.

• Recursion

Fortran 90 procedures can be recursive if the keyword RECURSIVE is
specified on the FUNCTION or SUBROUTINE statement line.

For more information, see Chapter 8.

• Interface blocks

A Fortran 90 procedure can contain an interface block. Interface blocks can
be used to do the following:

Describe the characteristics of an external or dummy procedure

Define a generic name for a procedure

Define a new operator (or extend an intrinsic operator)

Define a new form of assignment

For more information, see Section 8.9.

• Extensibility and redundancy

By using user-defined data types, operators, and meanings, you can extend
Fortran to suit your needs. These new data types and their operations can
be packaged in modules, which can be used by one or more program units
to provide data abstraction.

With the addition of new features and capabilities, some old features
become redundant and may eventually be removed from the language. For
example, the functionality of the ASSIGN and assigned GO TO statements
can be replaced more effectively by internal procedures. The use of certain
old features of Fortran can result in less than optimal performance on
newer hardware architectures.

1–6 Overview

For more information, see the HP Fortran for OpenVMS User Manual. For
a list of obsolescent features, see Appendix A.

• Additional features for source text

Lowercase characters are now allowed in source text. A semicolon can be
used to separate multiple statements on a single source line. Additional
characters have been added to the Fortran character set, and names can
have up to 31 characters (including underscores).

For more information, see Chapter 2.

• Improved facilities for numerical computation

Intrinsic data types can be specified in a portable way by using a kind type
parameter indicating the precision or accuracy required. There are also
intrinsic functions that allow you to specify numeric precision and inquire
about precision characteristics available on a processor.

For more information, see Chapters 3 and 9.

• Optional procedure arguments

Procedure arguments can be made optional and keywords can be used
when calling procedures, allowing arguments to be listed in any order.

For more information, see Chapter 8.

• Additional input/output features

Fortran 90 provides additional keywords for the OPEN and INQUIRE
statements. It also permits namelist formatting, and nonadvancing
(stream) character-oriented input and output.

For more information on formatting, see Chapter 10; on OPEN and
INQUIRE, see Chapter 12.

• Additional control constructs

Fortran 90 provides a control construct (CASE) and improves the DO
construct. The DO construct can now use CYCLE and EXIT statements,
and can have additional (or no) control clauses (for example, WHILE). All
control constructs (CASE, DO, and IF) can now be named.

For more information, see Chapter 7.

• Additional intrinsic procedures

Fortran 90 provides many more intrinsic procedures than existed in
FORTRAN 77. Many of these intrinsics support mathematical operations
on arrays, including the construction and transformation of arrays. Bit
manipulation and numerical accuracy intrinsics have been added.

For more information, see Chapter 9.

Overview 1–7

• Additional specification statements

The following specification statements are in Fortran 90:

INTENT statement (Section 5.10)

OPTIONAL statement (Section 5.13)

Fortran 90 POINTER statement (Section 5.15)

PUBLIC and PRIVATE statements (Section 5.16)

TARGET statement (Section 5.18)

• Additional way to specify attributes

Fortran 90 lets you specify attributes (such as PARAMETER, SAVE, and
INTRINSIC) in type declaration statements, as well as in specification
statements.

For more information, see Section 5.1.

• Scope and Association

These concepts were implicit in FORTRAN 77, but they are explicitly
defined in Fortran 90. In FORTRAN 77, the term scoping unit applies
to a program unit, but Fortran 90 expands the term to include internal
procedures, interface blocks, and derived-type definitions.

For more information, see Chapter 15.

1–8 Overview

2
Program Structure, Characters, and

Source Forms

This chapter describes:

• Section 2.1, Program Structure

• Section 2.2, Character Sets

• Section 2.3, Source Forms

2.1 Program Structure
A Fortran program consists of one or more program units. A program unit
is usually a sequence of statements that define the data environment and the
steps necessary to perform calculations; it is terminated by an END statement.

A program unit can be either a main program, an external subprogram, a
module, or a block data program unit. An executable program contains one
main program, and, optionally, any number of the other kinds of program
units. Program units can be separately compiled.

An external subprogram is a function or subroutine that is not contained
within a main program, a module, or another subprogram. It defines a
procedure to be performed and can be invoked from other program units of the
Fortran program. Modules and block data program units are not executable,
so they are not considered to be procedures. (Modules can contain module
procedures, though, which are executable.)

Modules contain definitions that can be made accessible to other program
units: data and type definitions, definitions of procedures (called module
subprograms), and procedure interfaces. Module subprograms can
be either functions or subroutines. They can be invoked by other module
subprograms in the module, or by other program units that access the module.

Program Structure, Characters, and Source Forms 2–1

A block data program unit specifies initial values for data objects in named
common blocks. In Fortran 95/90, this type of program unit can be replaced by
a module program unit.

Main programs, external subprograms, and module subprograms can contain
internal subprograms. The entity that contains the internal subprogram
is its host. Internal subprograms can be invoked only by their host or by
other internal subprograms in the same host. Internal subprograms must not
contain internal subprograms.

For More Information:
On program units and procedures, see Chapter 8.

2.1.1 Statements
Program statements are grouped into two general classes: executable and
nonexecutable. An executable statement specifies an action to be performed.
A nonexecutable statement describes program attributes, such as the
arrangement and characteristics of data, as well as editing and data-conversion
information.

Order of Statements in a Program Unit
Figure 2–1 shows the required order of statements in a Fortran program unit.
In this figure, vertical lines separate statement types that can be interspersed.
For example, you can intersperse DATA statements with executable constructs.

Horizontal lines indicate statement types that cannot be interspersed.
For example, you cannot intersperse DATA statements with CONTAINS
statements.

Note that directives and the OPTIONS statement are HP Fortran language
extensions.

PUBLIC and PRIVATE statements are only allowed in the scoping units of
modules. In Fortran 95/90, NAMELIST statements can appear only among
specification statements. However, HP Fortran allows them to also appear
among executable statements. Table 2–1 shows other statements restricted
from different types of scoping units.

2–2 Program Structure, Characters, and Source Forms

Figure 2–1 Required Order of Statements

ZK-6516A-GE

OPTIONS Statements

USE Statements

IMPLICIT NONE Statements

PROGRAM, FUNCTION. SUBROUTINE,
MODULE, or BLOCK DATA Statement

PARAMETER
Statements

IMPLICIT
Statements

NAMELIST,
FORMAT,

and
ENTRY

Statements

Derived-Type Definitions,
Interface Blocks,

Type Declaration Statements,
Statement Function Statements,

and Specification Statements

DATA
Statements

Executable
Statements

CONTAINS Statement

END Statement

Internal Subprograms
or Module Subprograms

PARAMETER
and DATA
Statements

Comment
Lines,

INCLUDE
Statements,

and
Directives

Program Structure, Characters, and Source Forms 2–3

Table 2–1 Statements Restricted in Scoping Units

Scoping Unit Restricted Statements

Main program ENTRY and RETURN statements

Module1 ENTRY, FORMAT, OPTIONAL, and INTENT
statements, statement functions, and executable
statements

Block data program unit CONTAINS, ENTRY, and FORMAT statements, interface
blocks, statement functions, and executable statements

Internal subprogram CONTAINS and ENTRY statements

Interface body CONTAINS, DATA, ENTRY, SAVE, and FORMAT
statements, statement functions, and executable
statements

1The scoping unit of a module does not include any module subprograms that the module contains.

For More Information:
On scoping units, see Section 15.2.

2.1.2 Names
Names identify entities within a Fortran program unit (such as variables,
function results, common blocks, named constants, procedures, program units,
namelist groups, and dummy arguments). In FORTRAN 77, names were called
‘‘symbolic names’’.

A name can contain letters, digits, underscores (_), and the dollar sign ($)
special character. The first character must be a letter or a dollar sign.

In Fortran 95/90, a name can contain up to 31 characters. HP Fortran allows
names up to 63 characters.

The length of a module name (in MODULE and USE statements) may be
restricted by your file system.

In an executable program, the names of the following entities are global and
must be unique in the entire program:

• Program units

• External procedures

• Common blocks

• Modules

2–4 Program Structure, Characters, and Source Forms

Examples
The following examples demonstrate valid and invalid names:

Valid

NUMBER

FIND_IT

X

Invalid Explanation

5Q Begins with a numeral.

B.4 Contains a special character other than _ or $.

_WRONG Begins with an underscore.

For More Information:
On the scope of names, see Section 15.2.

2.2 Character Sets
HP Fortran supports the following characters:

• The Fortran 95/90 character set which consists of the following:

All uppercase and lowercase letters (A through Z and a through z)

The numerals 0 through 9

The underscore (_)

The following special characters:

Program Structure, Characters, and Source Forms 2–5

Character Name Character Name

� or <Tab> Blank (space) or tab : Colon

= Equal sign ! Exclamation point

+ Plus sign " Quotation mark

– Minus sign % Percent sign

* Asterisk & Ampersand

/ Slash ; Semicolon

(Left parenthesis < Less than

) Right parenthesis > Greater than

, Comma ? Question mark

. Period (decimal point) $ Dollar sign (currency symbol)

’ Apostrophe

• Other printable characters

Printable characters include the tab character (09 hex), ASCII characters
with codes in the range 20(hex) through 7E(hex), and characters in the
DEC Multinational Extension to the ASCII Character Set with codes in the
range A1(hex) through FE(hex).

Printable characters that are not in the Fortran 95/90 character set
can only appear in comments, character constants, Hollerith constants,
character string edit descriptors, and input/output records.

Uppercase and lowercase letters are treated as equivalent when used to specify
program behavior (except in character constants and Hollerith constants).

For More Information:
On the ASCII and DEC Multinational character sets, see Appendix C.

2.3 Source Forms
Within a program, source code can be in free, fixed, or tab form. Fixed or
tab forms must not be mixed with free form in the same source program, but
different source forms can be used in different source programs.

All source forms allow lowercase characters to be used as an alternative to
uppercase characters.

Several characters are indicators in source code (unless they appear within
a comment or a Hollerith or character constant). The following are rules for
indicators in all source forms:

• Comment indicator

2–6 Program Structure, Characters, and Source Forms

A comment indicator can precede the first statement of a program unit and
appear anywhere within a program unit. If the comment indicator appears
within a source line, the comment extends to the end of the line.

An all blank line is also a comment line.

Comments have no effect on the interpretation of the program unit.

For more information on comment indicators in free source form, see
Section 2.3.1; in fixed and tab source forms, see Section 2.3.2.

• Statement separator

More than one statement (or partial statement) can appear on a single
source line if a statement separator is placed between the statements. The
statement separator is a semicolon character (;).

Consecutive semicolons (with or without intervening blanks) are considered
to be one semicolon.

If a semicolon is the last character on a line, or the last character before a
comment, it is ignored.

• Continuation indicator

A statement can be continued for more than one line by placing
a continuation indicator on the line. HP Fortran allows up to 511
continuation lines in a source program.

Comments can occur within a continued statement, but comment lines
cannot be continued.

Within a program unit, the END statement cannot be continued, and no
other statement in the program unit can have an initial line that appears
to be the program unit END statement.

For more information on continuation indicators in free source form, see
Section 2.3.1; in fixed and tab source forms, see Section 2.3.2.

Table 2–2 summarizes characters used as indicators in source forms:

Program Structure, Characters, and Source Forms 2–7

Table 2–2 Indicators in Source Forms

Source Item Indicator1 Source Form Position

Comment ! All forms Anywhere in source code

Comment line ! Free At the beginning of the
source line

!, C, or * Fixed In column 1

Tab In column 1

Continuation line2 & Free At the end of the source
line

Any character except
zero or blank

Fixed In column 6

Any digit except zero Tab After the first tab

Statement separator ; All forms Between statements on
the same line

Statement label 1 to 5 decimal digits Free Before a statement

Fixed In columns 1 through 5

Tab Before the first tab

A debugging statement3 D Fixed In column 1

Tab In column 1

1If the character appears in a Hollerith or character constant, it is not an indicator and is ignored.
2For all forms, up to 511 continuation lines are allowed.
3Fixed and tab forms only.

Source code can be written so that it is useable for all source forms (see
Section 2.3.3).

2–8 Program Structure, Characters, and Source Forms

Statement Labels
A statement label (or statement number) identifies a statement so that other
statements can refer to it, either to get information or to transfer control. A
label can precede any statement that is not part of another statement.

A statement label must be one to five decimal digits long; blanks and leading
zeros are ignored. An all-zero statement label is invalid, and a blank statement
cannot be labeled.

Labeled FORMAT and labeled executable statements are the only statements
that can be referred to by other statements. FORMAT statements are referred
to only in the format specifier of an I/O statement or in an ASSIGN statement.
Two statements within a scoping unit cannot have the same label.

For More Information:
On labels in free source form, see Section 2.3.1; in fixed or tab source form, see
Section 2.3.2.

2.3.1 Free Source Form
In free source form, statements are not limited to specific positions on a source
line. In Fortran 95/90, a free form source line can contain from 0 to 132
characters. HP Fortran allows the line to be of any length.

Blank characters are significant in free source form. The following are rules
for blank characters:

• Blank characters must not appear in lexical tokens, except within a
character context. For example, there can be no blanks between the
exponentiation operator **. Blank characters can be used freely between
lexical tokens to improve legibility.

• Blank characters must be used to separate names, constants, or labels from
adjacent keywords, names, constants, or labels. For example, consider the
following statements:

INTEGER NUM
GO TO 40
20 DO K=1,8

The blanks are required after INTEGER, TO, 20, and DO.

• Some adjacent keywords must have one or more blank characters between
them. Others do not require any; for example, BLOCK DATA can also
be spelled BLOCKDATA. The following list shows which keywords have
optional or required blanks:

Program Structure, Characters, and Source Forms 2–9

Optional Blanks Required Blanks

BLOCK DATA CASE DEFAULT

DOUBLE COMPLEX DO WHILE

DOUBLE PRECISION IMPLICIT type-specifier

ELSE IF IMPLICIT NONE

END BLOCK DATA INTERFACE ASSIGNMENT

END DO INTERFACE OPERATOR

END FILE MODULE PROCEDURE

END FORALL RECURSIVE FUNCTION

END FUNCTION RECURSIVE SUBROUTINE

END IF RECURSIVE type-specifier FUNCTION

END INTERFACE type-specifier FUNCTION

END MODULE type-specifier RECURSIVE FUNCTION

END PROGRAM

END SELECT

END SUBROUTINE

END TYPE

END WHERE

GO TO

IN OUT

SELECT CASE

For information on statement separators (;) in all forms, see Section 2.3.

Comment Indicator
In free source form, the exclamation point character (!) indicates a comment
if it is within a source line, or a comment line if it is the first character in a
source line.

Continuation Indicator
In free source form, the ampersand character (&) indicates a continuation line
(unless it appears in a Hollerith or character constant, or within a comment).
The continuation line is the first noncomment line following the ampersand.
Although Fortran 95/90 permits up to 39 continuation lines in free-form
programs, HP Fortran allows up to 511 continuation lines.

2–10 Program Structure, Characters, and Source Forms

The following shows a continued statement:

TCOSH(Y) = EXP(Y) + & ! The initial statement line
EXP(-Y) ! A continuation line

If the first nonblank character on the next noncomment line is an ampersand,
the statement continues at the character following the ampersand. For
example, the preceding example can be written as follows:

TCOSH(Y) = EXP(Y) + &
& EXP(-Y)

If a lexical token must be continued, the first nonblank character on the next
noncomment line must be an ampersand followed immediately by the rest of
the token. For example:

TCOSH(Y) = EXP(Y) + EX&
&P(-Y)

If you continue a character constant, an ampersand must be the first non-
blank character of the continued line; the statement continues with the next
character following the ampersand. For example:

ADVERTISER = "Davis, O’Brien, Chalmers & Peter&
&son"

ARCHITECT = "O’Connor, Emerson, and Davis&
& Associates"

If the ampersand is omitted on the continued line, the statement continues
with the first non-blank character in the continued line. So, in the preceding
example, the whitespace before ‘‘Associates’’ would be ignored.

The ampersand cannot be the only nonblank character in a line, or the only
nonblank character before a comment; an ampersand in a comment is ignored.

For More Information:
On the general rules for all source forms, see Section 2.3.

2.3.2 Fixed and Tab Source Forms
In Fortran 95, fixed source form is identified as obsolescent.

In fixed and tab source forms, there are restrictions on where a statement can
appear within a line.

By default, a statement can extend to character position 72. In this case, any
text following position 72 is ignored and no warning message is printed. You
can specify a compiler option to extend source lines to character position 132.

Program Structure, Characters, and Source Forms 2–11

Except in a character context, blanks are not significant and can be used freely
throughout the program for maximum legibility.

Some Fortran compilers use blanks to pad short source lines out to 72
characters. By default, HP Fortran does not. If portability is a concern, you
can use the concatenation operator to prevent source lines from being padded
by other Fortran compilers (see the example in ‘‘Continuation Indicator’’ below)
or you can force short source lines to be padded by using a compiler option.

Comment Indicator
In fixed and tab source forms, the exclamation point character (!) indicates a
comment if it is within a source line. (It must not appear in column 6 of a fixed
form line; that column is reserved for a continuation indicator.)

The letter C (or c), an asterisk (*), or an exclamation point (!) indicates a
comment line when it appears in column 1 of a source line.

Continuation Indicator
In fixed and tab source forms, a continuation line is indicated by one of the
following:

• For fixed form: Any character (except a zero or blank) in column 6 of a
source line

• For tab form: Any digit (except zero) after the first tab

The compiler considers the characters following the continuation indicator to be
part of the previous line. Although Fortran 95/90 permits up to 19 continuation
lines in a fixed-form program, HP Fortran allows up to 511 continuation lines.

If a zero or blank is used as a continuation indicator, the compiler considers
the line to be an initial line of a Fortran statement.

The statement label field of a continuation line must be blank (except in the
case of a debugging statement).

When long character or Hollerith constants are continued across lines,
portability problems can occur. Use the concatenation operator to avoid such
problems. For example:

PRINT *, ’This is a very long character constant ’//
+ ’which is safely continued across lines’

Use this same method when initializing data with long character or Hollerith
constants. For example:

2–12 Program Structure, Characters, and Source Forms

CHARACTER*(*) LONG_CONST
PARAMETER (LONG_CONST = ’This is a very long ’//
+ ’character constant which is safely continued ’//
+ ’across lines’)
CHARACTER*100 LONG_VAL
DATA LONG_VAL /LONG_CONST/

Hollerith constants must be converted to character constants before using the
concatenation method of line continuation.

Debugging Statement Indicator
In fixed and tab source forms, the statement label field can contain a statement
label, a comment indicator, or a debugging statement indicator.

The letter D indicates a debugging statement when it appears in column 1
of a source line. The initial line of the debugging statement can contain a
statement label in the remaining columns of the statement label field.

If a debugging statement is continued onto more than one line, every
continuation line must begin with a D and a continuation indicator.

By default, the compiler treats debugging statements as comments. However,
you can specify a compiler option to force the compiler to treat debugging
statements as source text to be compiled.

For More Information:

• On the general rules for all source forms, see Section 2.3.

• On statement separators (;) in all forms, see Section 2.3.

• On compiler options, see the HP Fortran for OpenVMS User Manual.

• On the OPTIONS statement, see Section 13.3.

• On statement labels, see Section 2.3.

• On obsolescent features in Fortran 95, see Appendix A.

2.3.2.1 Fixed-Format Lines
In fixed source form, a source line has columns divided into fields for statement
labels, continuation indicators, statement text, and sequence numbers. Each
column represents a single character.

The column positions for each field follow:

Program Structure, Characters, and Source Forms 2–13

Field Column

Statement label 1 through 5

Continuation indicator 6

Statement 7 through 72 (or 132 with a compiler option)

Sequence number 73 through 80

By default, a sequence number or other identifying information can appear in
columns 73 through 80 of any fixed-format line in a HP Fortran program. The
compiler ignores the characters in this field.

If you extend the statement field to position 132, the sequence number field
does not exist.

Note

If you use the sequence number field, do not use tabs anywhere in the
source line, or the compiler may interpret the sequence numbers as
part of the statement field in your program.

For More Information:

• On the general rules for all source forms, see Section 2.3.

• On the general rules for fixed and tab source forms, see Section 2.3.2.

2.3.2.2 Tab-Format Lines
In tab source form, you can specify a statement label field, a continuation
indicator field, and a statement field, but not a sequence number field.

Figure 2–2 shows equivalent source lines coded with tab and fixed source
form.

2–14 Program Structure, Characters, and Source Forms

Figure 2–2 Line Formatting Example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C F I R S T V A L U E

1 0 I = J + 5 * K +

1 L * M

I L IV A = + 2

ZK−0614−GE

TAB

TAB

TABC FIRST VALUE

TAB10 I = J + 5*K +

1 L*M

IVAL = I+2

Character−per−Column FormatFormat using TAB Character

The statement label field precedes the first tab character. The continuation
indicator field and statement field follow the first tab character.

The continuation indicator is any nonzero digit. The statement field can
contain any Fortran statement. A Fortran statement cannot start with a digit.

If a statement is continued, a continuation indicator must be the first character
(following the first tab) on the continuation line.

Many text editors and terminals advance the terminal print carriage to a
predefined print position when you press the Tab key. However, the HP Fortran
compiler does not interpret the tab character in this way. It treats the tab
character in a statement field the same way it treats a blank character. In the
source listing that the compiler produces, the tab causes the character that
follows to be printed at the next tab stop (usually located at columns 9, 17, 25,
33, and so on).

Note

If you use the sequence number field, do not use tabs anywhere in the
source line, or the compiler may interpret the sequence numbers as
part of the statement field in your program.

Program Structure, Characters, and Source Forms 2–15

For More Information:

• On the general rules for all source forms, see Section 2.3.

• On the general rules for fixed and tab source forms, see Section 2.3.2.

2.3.3 Source Code Useable for All Source Forms
To write source code that is useable for all source forms (free, fixed, or tab),
follow these rules:

Blanks Treat as significant (see Section 2.3.1).

Statement labels Place in column positions 1 through 5 (or before the
first tab character).

Statements Start in column position 7 (or after the first tab
character).

Comment indicator Use only !. Place anywhere except in column position
6 (or immediately after the first tab character).

Continuation indicator Use only &. Place in column position 73 of the initial
line and each continuation line, and in column 6 of
each continuation line (no tab character can precede
the ampersand in column 6).

The following example is valid for all source forms:

Column:

12345678... 73

! Define the user function MY_SIN

DOUBLE PRECISION FUNCTION MY_SIN(X)
MY_SIN = X - X**3/FACTOR(3) + X**5/FACTOR(5) &

& - X**7/FACTOR(7)
CONTAINS
INTEGER FUNCTION FACTOR(N)
FACTOR = 1
DO 10 I = N, 1, -1

10 FACTOR = FACTOR * I
END FUNCTION FACTOR

END FUNCTION MY_SIN

2–16 Program Structure, Characters, and Source Forms

3
Data Types, Constants, and Variables

This chapter describes:

• Section 3.1, Overview

• Section 3.2, Intrinsic Data Types

• Section 3.3, Derived Data Types

• Section 3.4, Binary, Octal, Hexadecimal, and Hollerith Constants

• Section 3.5, Variables

3.1 Overview
Each constant, variable, array, expression, or function reference in a Fortran
statement has a data type. The data type of these items can be inherent in
their construction, implied by convention, or explicitly declared.

Each data type has the following properties:

• A name

The names of the intrinsic data types are predefined, while the names
of derived types are defined in derived-type definitions. Data objects
(constants, variables, or parts of constants or variables) are declared using
the name of the data type.

• A set of associated values

Each data type has a set of valid values. Integer and real data types have
a range of valid values. Complex and derived types have sets of values that
are combinations of the values of their individual components.

• A way to represent constant values for the data type

A constant is a data object with a fixed value that cannot be changed
during program execution. The value of a constant can be a numeric value,
a logical value, or a character string.

Data Types, Constants, and Variables 3–1

A constant that does not have a name is a literal constant. A literal
constant must be of intrinsic type and it cannot be array-valued.

A constant that has a name is a named constant. A named constant
can be of any type, including derived type, and it can be array-valued. A
named constant has the PARAMETER attribute and is specified in a type
declaration statement or PARAMETER statement.

• A set of operations to manipulate and interpret these values

The data type of a variable determines the operations that can be used
to manipulate it. Besides intrinsic operators and operations, you can also
define operators and operations.

This chapter contains information on the following topics:

• Intrinsic data types and constants (Section 3.2)

• Derived data types (Section 3.3)

• Binary, octal, hexadecimal, and Hollerith constants (Section 3.4)

• Variables, including arrays (Section 3.5)

For More Information:

• On type declaration statements, see Section 5.1.

• On valid operations for data types, see Section 4.1.

• On defined operations, see Section 4.1.5.

• On ranges for numeric literal constants, see the HP Fortran for OpenVMS
User Manual.

• On named constants, see Section 5.14.

• On the PARAMETER attribute and statement, see Section 5.14.

3.2 Intrinsic Data Types
HP Fortran provides the following intrinsic data types:

• INTEGER (see Section 3.2.1)

There are four kind parameters for data of type integer:

INTEGER([KIND=]1) or INTEGER*1

INTEGER([KIND=]2) or INTEGER*2

INTEGER([KIND=]4) or INTEGER*4

INTEGER([KIND=]8) or INTEGER*8

3–2 Data Types, Constants, and Variables

• REAL (see Section 3.2.2)

There are three kind parameters for data of type real:

REAL([KIND=]4) or REAL*4

REAL([KIND=]8) or REAL*8

REAL([KIND=]16) or REAL*16

• DOUBLE PRECISION (see Section 3.2.2)

No kind parameter is permitted for data declared with type DOUBLE
PRECISION. This data type is the same as REAL([KIND=]8).

• COMPLEX (see Section 3.2.3)

There are three kind parameters for data of type complex:

COMPLEX([KIND=]4) or COMPLEX*8

COMPLEX([KIND=]8) or COMPLEX*16

COMPLEX([KIND=]16) or COMPLEX*32

• DOUBLE COMPLEX (see Section 3.2.3)

No kind parameter is permitted for data declared with type DOUBLE
COMPLEX. This data type is the same as COMPLEX([KIND=]8).

• LOGICAL (see Section 3.2.4)

There are four kind parameters for data of type logical:

LOGICAL([KIND=]1) or LOGICAL*1

LOGICAL([KIND=]2) or LOGICAL*2

LOGICAL([KIND=]4) or LOGICAL*4

LOGICAL([KIND=]8) or LOGICAL*8

• CHARACTER (see Section 3.2.5)

There is one kind parameter for data of type character:
CHARACTER([KIND=]1).

• BYTE

This is a 1-byte value; the data type is equivalent to INTEGER([KIND=]1).

The intrinsic function KIND can be used to determine the kind type parameter
of a representation method.

Data Types, Constants, and Variables 3–3

For more portable programs, you should not use the forms INTEGER([KIND=]n)
or REAL([KIND=]n). You should instead define a PARAMETER constant using
the SELECTED_INT_KIND or SELECTED_REAL_KIND function, whichever
is appropriate. For example, the following statements define a PARAMETER
constant for an INTEGER kind that has 9 digits:

INTEGER, PARAMETER :: MY_INT_KIND = SELECTED_INT_KIND(9)
...

INTEGER(MY_INT_KIND) :: J
...

Note that the syntax separator :: is used in type declaration statements.

The following sections describe the intrinsic data types and forms for literal
constants for each type.

For More Information:

• On declaration statements for intrinsic data types, see Sections 5.1.1 and
5.1.2.

• On operations for intrinsic data types, see Section 4.1.

• On the KIND intrinsic function, see Section 9.4.79.

• On storage requirements for intrinsic data types, see Table 15–2.

• On type declaration statements, see Section 5.1.

3.2.1 Integer Data Types
Integer data types can be specified as follows:

INTEGER
INTEGER([KIND=]n)
INTEGER*n

n
Is kind 1, 2, 4, or 8.

If a kind parameter is specified, the integer has the kind specified. If a kind
parameter is not specified, integer constants are interpreted as follows:

• If the integer constant is within the default integer kind range, the kind is
default integer.

• If the integer constant is outside the default integer kind range, the kind of
the integer constant is the smallest integer kind which holds the constant.

3–4 Data Types, Constants, and Variables

Integer Constants
An integer constant is a whole number with no decimal point. It can have a
leading sign and is interpreted as a decimal number.

Integer constants take the following form:

[s]n[n...][_k]

s
Is a sign; required if negative (–), optional if positive (+).

n
Is a decimal digit (0 through 9). Any leading zeros are ignored.

k
Is the optional kind parameter: 1 for INTEGER(1), 2 for INTEGER(2), 4 for
INTEGER(4), or 8 for INTEGER(8). It must be preceded by an underscore (_).

An unsigned constant is assumed to be nonnegative.

Integers are expressed in decimal values (base 10) by default. To specify a
constant that is not in base 10, use the following syntax:

[s][[base] #]nnn...

s
Is an optional plus (+) or minus (–) sign.

base
Is any constant from 2 through 36.

If base is omitted but # is specified, the integer is interpreted in base 16. If
both base and # are omitted, the integer is interpreted in base 10.

For bases 11 through 36, the letters A through Z represent numbers greater
than 9. For example, for base 36, A represents 10, B represents 11, C
represents 12, and so on, through Z, which represents 35. The case of the
letters is not significant.

Examples
The following examples show valid and invalid integer (base 10) constants:

Valid

0

-127

Data Types, Constants, and Variables 3–5

+32123

47_2

Invalid Explanation

9999999999999999999 Number too large.

3.14 Decimal point not allowed; this is a valid
REAL constant.

32,767 Comma not allowed.

33_3 3 is not a valid kind for integers.

The following integers (most of which are not base 10) are all assigned a value
equal to 3994575 decimal:

I = 2#1111001111001111001111
m = 7#45644664
J = +8#17171717
K = #3CF3CF
n = +17#2DE110
L = 3994575
index = 36#2DM8F

You can use integer constants to assign values to data. The following table
shows assignments to different data and lists the integer and hexadecimal
values in the data:

Fortran
Assignment

Integer Value
in the Data

Hexadecimal Value
in the Data

LOGICAL(1) X
INTEGER(1) X

X = –128 –128 Z’80’

X = 127 127 Z’7F’

X = 255 –1 Z’FF’

LOGICAL(2) X
INTEGER(2) X

X = 255 255 Z’FF’

X = –32768 –32768 Z’8000’

X = 32767 32767 Z’7FFF’

X = 65535 –1 Z’FFFF’

For More Information:

• On integer constants used in expressions, see Section 4.1.1.

3–6 Data Types, Constants, and Variables

• On the ranges for integer types and kinds, see the HP Fortran for
OpenVMS User Manual.

3.2.2 Real Data Types
Real data types can be specified as follows:

REAL
REAL([KIND=]n)
REAL*n
DOUBLE PRECISION

n
Is kind 4, 8, or 16.

If a kind parameter is specified, the real constant has the kind specified. If a
kind parameter is not specified, the kind is default real.

DOUBLE PRECISION is REAL(8). No kind parameter is permitted for data
declared with type DOUBLE PRECISION.

3.2.2.1 General Rules for Real Constants
A real constant approximates the value of a mathematical real number. The
value of the constant can be positive, zero, or negative.

The following is the general form of a real constant with no exponent part:

[s]n[n...][_k]

A real constant with an exponent part has one of the following forms:

[s]n[n...]E[s]nn...[_k]
[s]n[n...]D[s]nn...
[s]n[n...]Q[s]nn...

s
Is a sign; required if negative (–), optional if positive (+).

n
Is a decimal digit (0 through 9). A decimal point must appear if the real
constant has no exponent part.

k
Is the optional kind parameter: 4 for REAL(4), 8 for REAL(8), or 16 for
REAL(16). It must be preceded by an underscore (_).

Data Types, Constants, and Variables 3–7

Rules and Behavior
Leading zeros (zeros to the left of the first nonzero digit) are ignored in
counting significant digits. For example, in the constant 0.00001234567, all of
the nonzero digits, and none of the zeros, are significant. (See the following
sections for the number of significant digits each kind type parameter typically
has).

The exponent represents a power of 10 by which the preceding real or integer
constant is to be multiplied (for example, 1.0E6 represents the value
1.0 * 10**6).

A real constant with no exponent part and no kind type parameter is (by
default) a single-precision (REAL(4)) constant. You can change the default
behavior by specifying the compiler option that controls the default real kind.

If the real constant has no exponent part, a decimal point must appear in the
string (anywhere before the optional kind parameter). If there is an exponent
part, a decimal point is optional in the string preceding the exponent part; the
exponent part must not contain a decimal point.

The exponent letter E denotes a single-precision real (REAL(4)) constant,
unless the optional kind parameter specifies otherwise. For example, –9.E2_8
is a double-precision constant (which can also be written as –9.D2).

The exponent letter D denotes a double-precision real (REAL(8)) constant.

The exponent letter Q denotes a quad-precision real (REAL(16)) constant.

A minus sign must appear before a negative real constant; a plus sign is
optional before a positive constant. Similarly, a minus sign must appear
between the exponent letter (E, D, or Q) and a negative exponent, whereas a
plus sign is optional between the exponent letter and a positive exponent.

If the real constant includes an exponent letter, the exponent field cannot be
omitted, but it can be zero.

To specify a real constant using both an exponent letter and a kind parameter,
the exponent letter must be E, and the kind parameter must follow the
exponent part.

3.2.2.2 REAL(4) Constants
A single-precision REAL constant occupies four bytes of memory. The
number of digits is unlimited, but typically only the leftmost seven digits
are significant.

Either VAX F_floating or IEEE S_floating format is used, depending on the
compiler option specified.

3–8 Data Types, Constants, and Variables

Examples
The following examples show valid and invalid REAL(4) constants:

Valid

3.14159

3.14159_4

621712._4

-.00127

+5.0E3

2E-3_4

Invalid Explanation

1,234,567. Commas not allowed.

325E-47 Too small for REAL; this is a valid DOUBLE PRECISION constant.

-47.E47 Too large for REAL; this is a valid DOUBLE PRECISION constant.

625._6 6 is not a valid kind for reals.

100 Decimal point missing; this is a valid integer constant.

$25.00 Special character not allowed.

For More Information:

• On general rules for real constants, see Section 3.2.2.1.

• On the format and range of REAL(4) data, see the HP Fortran for
OpenVMS User Manual.

• On compiler options affecting REAL data, see the HP Fortran for OpenVMS
User Manual.

3.2.2.3 REAL(8) or DOUBLE PRECISION Constants
A REAL(8) or DOUBLE PRECISION constant has more than twice the
accuracy of a REAL(4) number, and greater range.

A REAL(8) or DOUBLE PRECISION constant occupies eight bytes of memory.
The number of digits that precede the exponent is unlimited, but typically only
the leftmost 15 digits are significant.

Either VAX D_floating, G_floating, or IEEE T_floating format is used,
depending on the compiler option specified.

Data Types, Constants, and Variables 3–9

Examples
The following examples show valid and invalid REAL(8) or DOUBLE
PRECISION constants:

Valid

123456789D+5

123456789E+5_8

+2.7843D00

-.522D-12

2E200_8

2.3_8

3.4E7_8

Invalid Explanation

-.25D0_2 2 is not a valid kind for reals.

+2.7182812846182 No D exponent designator is present;
this is a valid single-precision constant.

1234567890D45 Too large for D_floating format; valid for G_floating and
T_floating format.

123456789.D400 Too large for any double-precision format.

123456789.D-400 Too small for any double-precision format.

For More Information:

• On general rules for real constants, see Section 3.2.2.1.

• On the format and range of DOUBLE PRECISION (REAL(8)) data, see the
HP Fortran for OpenVMS User Manual.

• On compiler options affecting DOUBLE PRECISION data, see the HP
Fortran for OpenVMS User Manual.

3.2.2.4 REAL(16) Constants
A REAL(16) constant has more than four times the accuracy of a REAL(4)
number, and a greater range.

A REAL(16) constant occupies 16 bytes of memory. The number of digits that
precede the exponent is unlimited, but typically only the leftmost 33 digits are
significant.

3–10 Data Types, Constants, and Variables

Examples
The following examples demonstrate valid and invalid REAL(16) constants:

Valid

123456789Q4000

-1.23Q-400

+2.72Q0

1.88_16

Invalid Explanation

1.Q5000 Too large.

1.Q-5000 Too small.

For More Information:

• On general rules for real constants, see Section 3.2.2.1.

• On the format and range of REAL(16) data, see the HP Fortran for
OpenVMS User Manual.

3.2.3 Complex Data Types
Complex data types can be specified as follows:

COMPLEX
COMPLEX([KIND=]n)
COMPLEX*s
DOUBLE COMPLEX

n
Is kind 4, 8, or 16.

s
Is 8, 16, or 32. COMPLEX(4) is specified as COMPLEX*8; COMPLEX(8) is
specified as COMPLEX*16; COMPLEX(16) is specified as COMPLEX*32.

If a kind parameter is specified, the complex constant has the kind specified. If
no kind parameter is specified, the kind of both parts is default real, and the
constant is of type default complex.

DOUBLE COMPLEX is COMPLEX(8). No kind parameter is permitted for
data declared with type DOUBLE COMPLEX.

Data Types, Constants, and Variables 3–11

3.2.3.1 General Rules for Complex Constants
A complex constant approximates the value of a mathematical complex
number. The constant is a pair of real or integer values, separated by a
comma, and enclosed in parentheses. The first constant represents the real
part of that number; the second constant represents the imaginary part.

The following is the general form of a complex constant:

(c,c)

c
Is as follows:

• For COMPLEX(4) constants, c is an integer or REAL(4) constant.

• For COMPLEX(8) constants, c is an integer, REAL(4) constant, or
DOUBLE PRECISION (REAL(8)) constant. At least one of the pair must
be DOUBLE PRECISION.

• For COMPLEX(16) constants, c is an integer, REAL(4) constant, REAL(8)
constant, or REAL(16) constant. At least one of the pair must be REAL(16).

Note that the comma and parentheses are required.

3.2.3.2 COMPLEX(4) Constants
A COMPLEX(4) constant is a pair of integer or single-precision real constants
that represent a complex number.

A COMPLEX(4) constant occupies eight bytes of memory and is interpreted as
a complex number.

If the real and imaginary part of a complex literal constant are both real, the
kind parameter value is that of the part with the greater decimal precision.

The rules for REAL(4) constants apply to REAL(4) constants used in
COMPLEX constants. (See Sections 3.2.2.1 and 3.2.2.2 for the rules on forming
REAL(4) constants.)

The REAL(4) constants in a COMPLEX constant have one of the following
formats: VAX F_floating or IEEE S_floating format (depending on the
hardware (Itanium or Alpha) and the compiler option specified).

3–12 Data Types, Constants, and Variables

Examples
The following examples demonstrate valid and invalid COMPLEX(4) constants:

Valid

(1.7039,-1.70391)

(44.36_4,-12.2E16_4)

(+12739E3,0.)

(1,2)

Invalid Explanation

(1.23,) Missing second integer or single-precision real
constant.

(1.0, 2H12) Hollerith constant not allowed.

For More Information:

• On general rules for complex constants, see Section 3.2.3.1.

• On the format and range of COMPLEX (COMPLEX(4)) data, see the HP
Fortran for OpenVMS User Manual.

• On compiler options affecting REAL data, see the HP Fortran for OpenVMS
User Manual.

3.2.3.3 COMPLEX(8) or DOUBLE COMPLEX Constants
A COMPLEX(8) or DOUBLE COMPLEX constant is a pair of constants that
represents a complex number. One of the pair must be a double-precision real
constant, the other can be an integer, single-precision real, or double-precision
real constant.

A COMPLEX(8) or DOUBLE COMPLEX constant occupies 16 bytes of memory
and is interpreted as a complex number.

The rules for DOUBLE PRECISION (REAL(8)) constants also apply to
the double precision portion of COMPLEX(8) or DOUBLE COMPLEX
constants. (See Sections 3.2.2.1 and 3.2.2.3 for the rules on forming DOUBLE
PRECISION constants.)

The DOUBLE PRECISION constants in a COMPLEX(8) or DOUBLE
COMPLEX constant have one of the following formats: VAX D_floating, G_
floating, or IEEE T_floating format (depending on the hardware (Itanium or
Alpha) and the compiler option specified).

Data Types, Constants, and Variables 3–13

Examples
The following examples demonstrate valid and invalid COMPLEX(8) or
DOUBLE COMPLEX constants:

Valid

(1.7039,-1.7039D0)

(547.3E0_8,-1.44_8)

(1.7039E0,-1.7039D0)

(+12739D3,0.D0)

Invalid Explanation

(1.23D0,) Second constant missing.

(1D1,2H12) Hollerith constants not allowed.

(1,1.2) Neither constant is DOUBLE PRECISION; this is a
valid single-precision constant.

For More Information:

• On general rules for complex constants, see Section 3.2.3.1.

• On the format and range of DOUBLE COMPLEX data, see the HP Fortran
for OpenVMS User Manual.

• On compiler options affecting DOUBLE PRECISION data, see the HP
Fortran for OpenVMS User Manual.

3.2.3.4 COMPLEX(16) Constants
A COMPLEX(16) constant is a pair of constants that represents a complex
number. One of the pair must be a REAL(16) constant, the other can be an
integer, single-precision real, or double-precision real constant.

A COMPLEX(16) constant occupies 32 bytes of memory and is interpreted as a
complex number.

The rules for REAL(16) constants apply to REAL(16) constants used in
COMPLEX(16) constants. (See Sections 3.2.2.1 and 3.2.2.4 for the rules on
forming REAL(16) constants.)

The REAL(16) constants in a COMPLEX(16) constant have one of the following
formats: VAX X_floating or IEEE X_floating format (depending on the
hardware (Itanium or Alpha) and the compiler option specified)

3–14 Data Types, Constants, and Variables

Examples
The following examples demonstrate valid and invalid COMPLEX(16)
constants:

Valid

(1.7039,-1.7039Q2)

(547.3E0_16,-1.44)

(+12739Q3,0.Q0)

Invalid Explanation

(1.23Q0,) Second constant missing.

(1D1,2H12) Hollerith constants not allowed.

(1.7039,-1.7039D0) Neither constant is REAL(16); this is a valid double-
precision constant.

For More Information:

• On general rules for complex constants, see Section 3.2.3.1.

• On the format and range of REAL(16) data, see the HP Fortran for
OpenVMS User Manual.

• On compiler options affecting REAL(16) data, see the HP Fortran for
OpenVMS User Manual.

3.2.4 Logical Data Types
Logical data types can be specified as follows:

LOGICAL
LOGICAL([KIND=]n)
LOGICAL*n

n
Is kind 1, 2, 4, or 8.

If a kind parameter is specified, the logical constant has the kind specified. If
no kind parameter is specified, the kind of the constant is default logical.

Logical Constants
A logical constant represents only the logical values true or false, and takes
one of the following forms:

.TRUE.[_k]

.FALSE.[_k]

Data Types, Constants, and Variables 3–15

k
Is the optional kind parameter: 1 for LOGICAL(1), 2 for LOGICAL(2), 4 for
LOGICAL(4), or 8 for LOGICAL(8). It must be preceded by an underscore (_).

Logical data type ranges correspond to their comparable integer data type
ranges. For example, the LOGICAL(2) range is the same as the INTEGER(2)
range.

For More Information:
On integer data type ranges, see the HP Fortran for OpenVMS User Manual.

3.2.5 Character Data Type
The character data type can be specified as follows:

CHARACTER
CHARACTER([KIND=]n)
CHARACTER ([LEN=]len)
CHARACTER ([LEN=]len [,[KIND=]n])
CHARACTER (KIND=n [,LEN=len])
CHARACTER*len[,]

n
Is kind 1.

len
Is a string length (not a kind). For more information, see Section 5.1.2.

If no kind type parameter is specified, the kind of the constant is default
character.

Character Constants
A character constant is a character string enclosed in delimiters
(apostrophes or quotation marks). It takes one of the following forms:

[k_]’[ch...]’ [C]
[k_]"[ch...]" [C]

k
Is the optional kind parameter: 1 (the default). It must be followed by an
underscore (_). Note that in character constants, the kind must precede the
constant.

ch
Is an ASCII character.

3–16 Data Types, Constants, and Variables

C
Is a C string specifier. C strings can be used to define strings with nonprintable
characters. For more information, see Section 3.2.5.1.

Rules and Behavior
The value of a character constant is the string of characters between the
delimiters. The value does not include the delimiters, but does include all
blanks or tabs within the delimiters.

If a character constant is delimited by apostrophes, use two consecutive
apostrophes (’’) to place an apostrophe character in the character constant.

Similarly, if a character constant is delimited by quotation marks, use two
consecutive quotation marks ("") to place a quotation mark character in the
character constant.

The length of the character constant is the number of characters between the
delimiters, but two consecutive delimiters are counted as one character.

The length of a character constant must be in the range of 0 to 2000. Each
character occupies one byte of memory.

If a character constant appears in a numeric context (such as an expression
on the right side of an arithmetic assignment statement), it is considered a
Hollerith constant.

A zero-length character constant is represented by two consecutive apostrophes
or quotation marks.

Examples
The following examples demonstrate valid and invalid character constants:

Valid

"WHAT KIND TYPE? "

’TODAY’’S DATE IS: ’

"The average is: "

’’

Invalid Explanation

’HEADINGS No trailing apostrophe.

’Map Number:" Beginning delimiter does not match ending
delimiter.

For More Information:
On declaring data of type character, see Section 5.1.2.

Data Types, Constants, and Variables 3–17

3.2.5.1 C Strings in Character Constants
String values in the C language are terminated with null characters (CHAR(0))
and can contain nonprintable characters (such as backspace).

Nonprintable characters are specified by escape sequences. An escape sequence
is denoted by using the backslash (\) as an escape character, followed by a
single character indicating the nonprintable character desired.

This type of string is specified by using a standard string constant followed
by the character C. The standard string constant is then interpreted as a C-
language constant. Backslashes are treated as escapes, and a null character is
automatically appended to the end of the string (even if the string already ends
in a null character).

Table 3–1 shows the escape sequences that are allowed in character
constants.

Table 3–1 C-Style Escape Sequences

Escape Sequence Represents

\a or \A A bell

\b or \B A backspace

\f or \F A formfeed

\n or \N A new line

\r or \R A carriage return

\t or \T A horizontal tab

\v or \V A vertical tab

\xhh or \Xhh A hexadecimal bit pattern

\ooo An octal bit pattern

\0 A null character

\\ A backslash (\)

If a string contains an escape sequence that isn’t in this table, the backslash is
ignored.

A C string must also be a valid Fortran character constant. If the string is
delimited by apostrophes, apostrophes in the string itself must be represented
by two consecutive apostrophes (’’).

For example, the escape sequence \’string causes a compiler error because
Fortran interprets the apostrophe as the end of the string. The correct form is
\’’string.

3–18 Data Types, Constants, and Variables

If the string is delimited by quotation marks, quotation marks in the string
itself must be represented by two consecutive quotation marks ("").

The sequences \ooo and \xhh allow any ASCII character to be given as a one-
to three-digit octal or a one- to two-digit hexadecimal character code. Each
octal digit must be in the range 0 to 7, and each hexadecimal digit must be
in the range 0 to F. For example, the C strings ’\010’C and ’\x08’C both
represent a backspace character followed by a null character.

The C string ’\\abcd’C is equivalent to the string ’\abcd’ with a null
character appended. The string ’’C represents the ASCII null character.

3.2.5.2 Character Substrings
A character substring is a contiguous segment of a character string. It takes
one of the following forms:

v ([e1]:[e2])
a (s [,s] . . .) ([e1]:[e2])

v
Is a character scalar constant, or the name of a character scalar variable or
character structure component.

e1
Is a scalar integer (or other numeric) expression specifying the leftmost
character position of the substring; the starting point.

e2
Is a scalar integer (or other numeric) expression specifying the rightmost
character position of the substring; the ending point.

a
Is the name of a character array.

s
Is a subscript expression.

Both e1 and e2 must be within the range 1,2, ..., len, where len is the length of
the parent character string. If e1 exceeds e2, the substring has length zero.

Data Types, Constants, and Variables 3–19

Rules and Behavior
Character positions within the parent character string are numbered from left
to right, beginning at 1.

If the value of the numeric expression e1 or e2 is not of type integer, it is
converted to an integer before use (any fractional parts are truncated).

If e1 is omitted, the default is 1. If e2 is omitted, the default is len. For
example, NAMES(1,3)(:7) specifies the substring starting with the first
character position and ending with the seventh character position of the
character array element NAMES(1,3).

Examples
Consider the following example:

CHARACTER*8 C, LABEL
LABEL = ’XVERSUSY’
C = LABEL(2:7)

LABEL(2:7) specifies the substring starting with the second character position
and ending with the seventh character position of the character variable
assigned to LABEL, so C has the value ’VERSUS’.

Consider the following example:

TYPE ORGANIZATION
INTEGER ID
CHARACTER*35 NAME

END TYPE ORGANIZATION

TYPE(ORGANIZATION) DIRECTOR
CHARACTER*25 BRANCH, STATE(50)

The following are valid substrings based on this example:

BRANCH(3:15) ! parent string is a scalar variable
STATE(20) (1:3) ! parent string is an array element
DIRECTOR%NAME ! parent string is a structure component

Consider the following example:

CHARACTER(*), PARAMETER :: MY_BRANCH = "CHAPTER 204"
CHARACTER(3) BRANCH_CHAP
BRANCH_CHAP = MY_BRANCH(9:11) ! parent string is a character constant

BRANCH_CHAP is a character string of length 3 that has the value ’204’.

3–20 Data Types, Constants, and Variables

For More Information:

• On arrays, see Section 3.5.2.

• On array elements, see Section 3.5.2.2.

• On structure components, see Section 3.3.3.

3.3 Derived Data Types
You can create derived data types from intrinsic data types or previously
defined derived types.

A derived type is resolved into ‘‘ultimate’’ components that are either of
intrinsic type or are pointers.

The set of values for a specific derived type consists of all possible sequences of
component values permitted by the definition of that derived type. Structure
constructors are used to specify values of derived types.

Nonintrinsic assignment for derived-type entities must be defined by a
subroutine with an ASSIGNMENT interface. Any operation on derived-
type entities must be defined by a function with an OPERATOR interface.
Arguments and function values can be of any intrinsic or derived type.

For More Information:

• On structure components, see Section 3.3.3.

• On structure constructors, see Section 3.3.4.

• On OPERATOR interfaces, see Section 8.9.4.

• On ASSIGNMENT interfaces, see Section 8.9.5.

• On intrinsic assignment of derived types, see Section 4.2.1.4.

• On record structures, see Section B.12.

3.3.1 Derived-Type Definition
A derived-type definition specifies the name of a user-defined type and the
types of its components. It takes the following form:

TYPE [[, access] ::] name
component-definition
[component-definition] . . .

END TYPE [name]

Data Types, Constants, and Variables 3–21

access
Is the PRIVATE or PUBLIC keyword. The keyword can only be specified if the
derived-type definition is in the specification part of a module.

name
Is the name of the derived type. It must not be the same as the name of any
intrinsic type, or the same as the name of a derived type that can be accessed
from a module.

component-definition
Is one or more type declaration statements defining the component of derived
type.

The first component definition can be preceded by an optional PRIVATE or
SEQUENCE statement. (Only one PRIVATE or SEQUENCE statement can
appear in a given derived-type definition.)

PRIVATE specifies that the components are accessible only within the defining
module, even if the derived type itself is public.

SEQUENCE causes the components of the derived type to be stored in the
same sequence they are listed in the type definition. If SEQUENCE is
specified, all derived types specified in component definitions must be sequence
types.

A component definition takes the following form:

type [[, attr] ::] component [(a-spec)] [*char-len] [init-ex]

type
Is a type specifier. It can be an intrinsic type or a previously defined derived
type. (If the POINTER attribute follows this specifier, the type can also be any
accessible derived type, including the type being defined.)

attr
Is an optional POINTER attribute for a pointer component, or an optional
DIMENSION attribute for an array component. You can specify one or
both attributes. If DIMENSION is specified, it can be followed by an array
specification.

The POINTER or DIMENSION attribute can only appear once in a given
component-definition.

component
Is the name of the component being defined.

3–22 Data Types, Constants, and Variables

a-spec
Is an optional array specification, enclosed in parentheses. If POINTER is
specified, the array is deferred shape; otherwise, it is explicit shape. In an
explicit-shape specification, each bound must be a constant scalar integer
expression. For more information on array specifications, see Section 5.1.4.

If the array bounds are not specified here, they must be specified following the
DIMENSION attribute.

char-len
Is an optional scalar integer literal constant; it must be preceded by an
asterisk (*). This parameter can only be specified if the component is of type
CHARACTER.

init-ex
Is an initialization expression or, for pointer components, =>NULL(). This is a
Fortran 95 feature.

If init-ex is specified, a double colon must appear in the component definition.
The equals assignment symbol (=) can only be specified for nonpointer
components.

The initialization expression is evaluated in the scoping unit of the type
definition.

Rules and Behavior
If a name is specified following the END TYPE statement, it must be the same
name that follows TYPE in the derived type statement.

A derived type can be defined only once in a scoping unit. If the same derived-
type name appears in a derived-type definition in another scoping unit, it is
treated independently.

A component name has the scope of the derived-type definition only. Therefore,
the same name can be used in another derived-type definition in the same
scoping unit.

Two data entities have the same type if they are both declared to be of the
same derived type (the derived-type definition can be accessed from a module
or a host scoping unit).

If the entities are in different scoping units, they can also have the same
derived type if they are declared with reference to different derived-type
definitions, and if both derived-type definitions have all of the following:

• The same name

• A SEQUENCE statement (they both have sequence type)

Data Types, Constants, and Variables 3–23

• Components that agree in name, order, and attributes; components cannot
be private

For More Information

• On intrinsic data types, see Section 3.2.

• On how to declare variables of derived type, see Section 5.1.3.

• On arrays, see Section 3.5.2.

• On pointers, see Section 5.15.

• On structure components, see Section 3.3.3.

• On default initialization for derived-type components, see Section 3.3.2.

• On alignment of derived-type data components, see the HP Fortran for
OpenVMS User Manual.

3.3.2 Default Initialization
Default initialization occurs if initialization appears in a derived-type
component definition. (This is a Fortran 95 feature.)

The specified initialization of the component will apply even if the definition is
PRIVATE.

Default initialization applies to dummy arguments with INTENT(OUT). It
does not imply the derived-type component has the SAVE attribute.

Explicit initialization in a type declaration statement overrides default
initialization.

To specify default initialization of an array component, use a constant
expression that includes one of the following:

• An array constructor

• A single scalar that becomes the value of each array element

Pointers can have an association status of associated, disassociated, or
undefined. If no default initialization status is specified, the status of the
pointer is undefined. To specify disassociated status for a pointer component,
use =>NULL().

3–24 Data Types, Constants, and Variables

Examples
You do not have to specify initialization for each component of a derived type.
For example:

TYPE REPORT
CHARACTER (LEN=20) REPORT_NAME
INTEGER DAY
CHARACTER (LEN=3) MONTH
INTEGER :: YEAR = 1995 ! Only component with default

END TYPE REPORT ! initialization

Consider the following:

TYPE (REPORT), PARAMETER :: NOV_REPORT = REPORT ("Sales", 15, "NOV", 1996)

In this case, the explicit initialization in the type declaration statement
overrides the YEAR component of NOV_REPORT.

The default initial value of a component can also be overridden by default
initialization specified in the type definition. For example:

TYPE MGR_REPORT
TYPE (REPORT) :: STATUS = NOV_REPORT
INTEGER NUM

END TYPE MGR_REPORT

TYPE (MGR_REPORT) STARTUP

In this case, the STATUS component of STARTUP gets its initial value from
NOV_REPORT, overriding the initialization for the YEAR component.

3.3.3 Structure Components
A reference to a component of a derived-type structure takes the following
form:

parent [%component [(s-list)]]... %component [(s-list)]

parent
Is the name of a scalar or array of derived type. The percent sign (%) is called
a component selector.

component
Is the name of a component of the immediately preceding parent or component.

s-list
Is a list of one or more subscripts. If the list contains subscript triplets or
vector subscripts, the reference is to an array section.

Each subscript must be a scalar integer (or other numeric) expression with a
value that is within the bounds of its dimension.

Data Types, Constants, and Variables 3–25

The number of subscripts in any s-list must equal the rank of the immediately
preceding parent or component.

Rules and Behavior
Each parent or component (except the rightmost) must be of derived type.

The parent or one of the components can have nonzero rank (be an array). Any
component to the right of a parent or component of nonzero rank must not
have the POINTER attribute.

The rank of the structure component is the rank of the part (parent or
component) with nonzero rank (if any); otherwise, the rank is zero. The
type and type parameters (if any) of a structure component are those of the
rightmost part name.

The structure component must not be referenced or defined before the
declaration of the parent object.

If the parent object has the INTENT, TARGET, or PARAMETER attribute, the
structure component also has the attribute.

Examples
The following example shows a derived-type definition with two components:

TYPE EMPLOYEE
INTEGER ID
CHARACTER(LEN=40) NAME

END TYPE EMPLOYEE

The following shows how to declare CONTRACT to be of type EMPLOYEE:

TYPE(EMPLOYEE) :: CONTRACT

Note that both examples started with the keyword TYPE. The first (initial)
statement of a derived-type definition is called a derived-type statement, while
the statement that declares a derived-type object is called a TYPE statement.

The following example shows how to reference component ID of parent
structure CONTRACT:

CONTRACT%ID

The following example shows a derived type with a component that is a
previously defined type:

3–26 Data Types, Constants, and Variables

TYPE DOT
REAL X, Y

END TYPE DOT
....
TYPE SCREEN
TYPE(DOT) C, D

END TYPE SCREEN

The following declares a variable of type SCREEN:

TYPE(SCREEN) M

Variable M has components M%C and M%D (both of type DOT); M%C has
components M%C%X and M%C%Y of type REAL.

The following example shows a derived type with a component that is an array:

TYPE CAR_INFO
INTEGER YEAR
CHARACTER(LEN=15), DIMENSION(10) :: MAKER
CHARACTER(LEN=10) MODEL, BODY_TYPE*8
REAL PRICE

END TYPE
...
TYPE(CAR_INFO) MY_CAR

Note that MODEL has a character length of 10, but BODY_TYPE has a
character length of 8. You can assign a value to a component of a structure; for
example:

MY_CAR%YEAR = 1985

The following shows an array structure component:

MY_CAR%MAKER

In the preceding example, if a subscript list (or substring) was appended to
MAKER, the reference would not be to an array structure component, but to
an array element or section.

Consider the following:

MY_CAR%MAKER(2) (4:10)

In this case, the component is substring 4 to 10 of the second element of array
MAKER.

Consider the following:

Data Types, Constants, and Variables 3–27

TYPE CHARGE
INTEGER PARTS(40)
REAL LABOR
REAL MILEAGE

END TYPE CHARGE

TYPE(CHARGE) MONTH
TYPE(CHARGE) YEAR(12)

Some valid array references for this type follow:

MONTH%PARTS(I) ! An array element
MONTH%PARTS(I:K) ! An array section
YEAR(I)%PARTS ! An array structure component (a whole array)
YEAR(J)%PARTS(I) ! An array element
YEAR(J)%PARTS(I:K) ! An array section
YEAR(J:K)%PARTS(I) ! An array section
YEAR%PARTS(I) ! An array section

The following example shows a derived type with a pointer component that is
of the type being defined:

TYPE NUMBER
INTEGER NUM
TYPE(NUMBER), POINTER :: START_NUM => NULL()
TYPE(NUMBER), POINTER :: NEXT_NUM => NULL()

END TYPE

A type such as this can be used to construct linked lists of objects of type
NUMBER. Note that the pointers are given the default initialization status of
disassociated.

The following example shows a private type:

TYPE, PRIVATE :: SYMBOL
LOGICAL TEST
CHARACTER(LEN=50) EXPLANATION

END TYPE SYMBOL

This type is private to the module. The module can be used by another scoping
unit, but type SYMBOL is not available.

For More Information

• On references to array elements, see Section 3.5.2.2.

• On references to array sections, see Section 3.5.2.3.

• On examples of derived types in modules, see Section 8.3.

3–28 Data Types, Constants, and Variables

3.3.4 Structure Constructors
A structure constructor lets you specify scalar values of a derived type. It takes
the following form:

d-name (expr-list)

d-name
Is the name of the derived type.

expr-list
Is a list of expressions specifying component values. The values must agree
in number and order with the components of the derived type. If necessary,
values are converted (according to the rules of assignment), to agree with their
corresponding components in type and kind parameters.

Rules and Behavior
A structure constructor must not appear before its derived type is defined.

If a component of the derived type is an array, the shape in the expression list
must conform to the shape of the component array.

If a component of the derived type is a pointer, the value in the expression list
must evaluate to an object that would be a valid target in a pointer assignment
statement. (A constant is not a valid target in a pointer assignment
statement.)

If all the values in a structure constructor are constant expressions, the
constructor is a derived-type constant expression.

Examples
Consider the following derived-type definition:

TYPE EMPLOYEE
INTEGER ID
CHARACTER(LEN=40) NAME

END TYPE EMPLOYEE

This can be used to produce the following structure constructor:

EMPLOYEE(3472, "John Doe")

The following example shows a type with a component of derived type:

TYPE ITEM
REAL COST
CHARACTER(LEN=30) SUPPLIER
CHARACTER(LEN=20) ITEM_NAME

END TYPE ITEM

Data Types, Constants, and Variables 3–29

TYPE PRODUCE
REAL MARKUP
TYPE(ITEM) FRUIT

END TYPE PRODUCE

In this case, you must use an embedded structure constructor to specify the
values of that component; for example:

PRODUCE(.70, ITEM (.25, "Daniels", "apple"))

For More Information:
On pointer assignment, see Section 4.2.3.

3.4 Binary, Octal, Hexadecimal, and Hollerith Constants
Binary, octal, hexadecimal, and Hollerith constants are nondecimal constants.
They have no intrinsic data type, but assume a numeric data type depending
on their use.

Fortran 95/90 allows unsigned binary, octal, and hexadecimal constants to be
used in DATA statements; the constant must correspond to an integer scalar
variable.

In HP Fortran, binary, octal, hexadecimal, and Hollerith constants can appear
wherever numeric constants are allowed.

3.4.1 Binary Constants
A binary constant is an alternative way to represent a numeric constant. A
binary constant takes one of the following forms:

B’d[d...]’
B"d[d...]"

d
Is a binary (base 2) digit (0 or 1).

You can specify up to 256 binary digits in a binary constant. Leading zeros are
ignored.

Examples
The following examples demonstrate valid and invalid binary constants:

Valid

B’0101110’

B"1"

3–30 Data Types, Constants, and Variables

Invalid Explanation

B’0112’ The character 2 is invalid.

B10011’ No apostrophe after the B.

"1000001" No B before the first quotation mark.

3.4.2 Octal Constants
An octal constant is an alternative way to represent numeric constants. An
octal constant takes one of the following forms:

O’d[d...]’
O"d[d...]"

d
Is an octal (base 8) digit (0 through 7).

You can specify up to 256 bits in octal (86 octal digits) constants. Leading zeros
are ignored.

Examples
The following examples demonstrate valid and invalid octal constants:

Valid

O’07737’

O"1"

Invalid Explanation

O’7782’ The character 8 is invalid.

O7772’ No apostrophe after the O.

"0737" No O before the first quotation mark.

For More Information:
On an alternative form for octal constants, see Section B.7.

3.4.3 Hexadecimal Constants
A hexadecimal constant is an alternative way to represent numeric
constants. A hexadecimal constant takes one of the following forms:

Z’d[d...]’
Z"d[d...]"

Data Types, Constants, and Variables 3–31

d
Is a hexadecimal (base 16) digit (0 through 9, or an uppercase or lowercase
letter in the range of A to F).

You can specify up to 256 bits in hexadecimal (64 hexadecimal digits) constants.
Leading zeros are ignored.

Examples
The following examples demonstrate valid and invalid hexadecimal constants:

Valid

Z’AF9730’

Z"FFABC"

Z’84’

Invalid Explanation

Z’999.’ Decimal not allowed.

ZF9" No quotation mark after the Z.

For More Information:
On an alternative form for hexadecimal constants, see Section B.7.

3.4.4 Hollerith Constants
A Hollerith constant is a string of printable ASCII characters preceded by
the letter H. Before the H, there must be an unsigned, nonzero default integer
constant stating the number of characters in the string (including blanks and
tabs).

Hollerith constants are strings of 1 to 2000 characters. They are stored as byte
strings, one character per byte.

Examples
The following examples demonstrate valid and invalid Hollerith constants:

Valid

16HTODAY’S DATE IS:

1HB

4H ABC

Invalid Explanation

3HABCD Wrong number of characters.

0H Hollerith constants must contain at least one
character.

3–32 Data Types, Constants, and Variables

3.4.5 Determining the Data Type of Nondecimal Constants
Binary, octal, hexadecimal, and Hollerith constants have no intrinsic data type.
These constants assume a numeric data type depending on their use.

When the constant is used with a binary operator (including the assignment
operator), the data type of the constant is the data type of the other operand.
For example:

Statement
Data Type of
Constant

Length of
Constant (in bytes)

INTEGER(2) ICOUNT

INTEGER(4) JCOUNT

INTEGER(4) N

REAL(8) DOUBLE

REAL(4) RAFFIA, RALPHA

RAFFIA = B’1001100111111010011’ REAL(4) 4

RAFFIA = Z’99AF2’ REAL(4) 4

RALPHA = 4HABCD REAL(4) 4

DOUBLE = B’1111111111100110011010’ REAL(8) 8

DOUBLE = Z’FFF99A’ REAL(8) 8

DOUBLE = 8HABCDEFGH REAL(8) 8

JCOUNT = ICOUNT + B’011101110111’ INTEGER(2) 2

JCOUNT = ICOUNT + O’777’ INTEGER(2) 2

JCOUNT = ICOUNT + 2HXY INTEGER(2) 2

IF (N .EQ. B’1010100’) GO TO 10 INTEGER(4) 4

IF (N .EQ. O’123’) GO TO 10 INTEGER(4) 4

IF (N. EQ. 1HZ) GO TO 10 INTEGER(4) 4

When a specific data type (generally integer) is required, that type is assumed
for the constant. For example:

Statement
Data Type of
Constant

Length of Constant
(in bytes)

Y(IX) = Y(O’15’) + 3. INTEGER(4) 4

Y(IX) = Y(1HA) + 3. INTEGER(4) 4

Data Types, Constants, and Variables 3–33

When a nondecimal constant is used as an actual argument, the following
occurs:

• For binary, octal, and hexadecimal constants, INTEGER(8) is assumed.

• For Hollerith constants, no data type is assumed.

For example:

Statement
Data Type of
Constant

Length of Constant
(in bytes)

CALL APAC(Z’34BC2’) INTEGER(8) 8

CALL APAC(9HABCDEFGHI) None 9

When a binary, octal, or hexadecimal constant is used in any other context,
the default integer data type is assumed (default integer can be affected by
compiler options). In the following examples, default integer is INTEGER(4):

Statement
Data Type of
Constant

Length of Constant
(in bytes)

IF (Z’AF77’) 1,2,3 INTEGER(4) 4

IF (2HAB) 1,2,3 INTEGER(4) 4

I = O’7777’ - Z’A39’1 INTEGER(4) 4

I = 1HC - 1HA INTEGER(4) 4

J = .NOT. O’73777’ INTEGER(4) 4

J = .NOT. 1HB INTEGER(4) 4

1When two typeless constants are used in an operation, they both take default integer type.

When nondecimal constants are not the same length as the length implied by a
data type, the following occurs:

• Binary, octal, and hexadecimal constants

These constants can specify up to 16 bytes of data. When the length of
the constant is less than the length implied by the data type, the leftmost
digits have a value of zero.

When the length of the constant is greater than the length implied by the
data type, the constant is truncated on the left. An error results if any
nonzero digits are truncated.

Table 15–2 lists the number of bytes that each data type requires.

• Hollerith constants

3–34 Data Types, Constants, and Variables

When the length of the constant is less than the length implied by the data
type, blanks are appended to the constant on the right.

When the length of the constant is greater than the length implied by the
data type, the constant is truncated on the right. If any characters other
than blank characters are truncated, an error occurs.

Each Hollerith character occupies one byte of memory.

For More Information:
On compiler options, see the HP Fortran for OpenVMS User Manual.

3.5 Variables
A variable is a data object whose value can be changed at any point in a
program. A variable can be any of the following:

• A scalar

A scalar is a single object that has a single value; it can be of any intrinsic
or derived (user-defined) type.

• An array

An array is a collection of scalar elements of any intrinsic or derived type.
All elements must have the same type and kind parameters.

• A subobject designator

A subobject is part of an object. The following are subobjects:

An array element
An array section
A structure component
A character substring

For example, B(3) is a subobject (array element) designator for array B. A
subobject cannot be a variable if its parent object is a constant.

The name of a variable is associated with a single storage location.

Variables are classified by data type, as constants are. The data type of a
variable indicates the type of data it contains, including its precision, and
implies its storage requirements. When data of any type is assigned to a
variable, it is converted to the data type of the variable (if necessary).

A variable is defined when you give it a value. A variable can be defined before
program execution by a DATA statement or a type declaration statement.
During program execution, variables can be defined or redefined in assignment
statements and input statements, or undefined (for example, if an I/O error
occurs). When a variable is undefined, its value is unpredictable.

Data Types, Constants, and Variables 3–35

When a variable becomes undefined, all variables associated by storage
association also become undefined.

For More Information:

• On arrays, see Section 3.5.2.

• On storage association of variables, see Section 15.5.3.

• On type declaration statements, see Section 5.1.

• On the DATA statement, see Section 5.5.

• On the data type of a numeric expression, see Section 4.1.1.2.

3.5.1 Data Types of Scalar Variables
The data type of a scalar variable can be explicitly declared in a type
declaration statement. If no type is declared, the variable has an implicit
data type based on predefined typing rules or definitions in an IMPLICIT
statement.

An explicit declaration of data type takes precedence over any implicit type.
Implicit type specified in an IMPLICIT statement takes precedence over
predefined typing rules.

3.5.1.1 Specification of Data Type
Type declaration statements explicitly specify the data type of scalar variables.
For example, the following statements associate VAR1 with an 8-byte complex
storage location, and VAR2 with an 8-byte double-precision storage location:

COMPLEX VAR1
DOUBLE PRECISION VAR2

You can explicitly specify the data type of a scalar variable only once.

If no explicit data type specification appears, any variable with a name that
begins with the letter in the range specified in the IMPLICIT statement
becomes the data type of the variable.

Character type declaration statements specify that given variables represent
character values with the length specified. For example, the following
statements associate the variable names INLINE, NAME, and NUMBER
with storage locations containing character data of lengths 72, 12, and 9,
respectively:

CHARACTER*72 INLINE
CHARACTER NAME*12, NUMBER*9

3–36 Data Types, Constants, and Variables

In single subprograms, assumed-length character arguments can be used to
process character strings with different lengths. The assumed-length character
argument has its length specified with an asterisk, for example:

CHARACTER*(*) CHARDUMMY

The argument CHARDUMMY assumes the length of the actual argument.

For More Information:

• On type declaration statements, see Section 5.1.

• On character type declaration statements, see Section 5.1.2.

• On assumed-length character arguments, see Section 8.8.4.

• On the IMPLICIT statement, see Section 5.9.

3.5.1.2 Implicit Typing Rules
By default, all scalar variables with names beginning with I, J, K, L, M, or
N are assumed to be default integer variables. Scalar variables with names
beginning with any other letter are assumed to be default real variables. For
example:

Real Variables Integer Variables

ALPHA JCOUNT

BETA ITEM_1

TOTAL_NUM NTOTAL

Names beginning with a dollar sign ($) are implicitly INTEGER.

You can override the default data type implied in a name by specifying data
type in either an IMPLICIT statement or a type declaration statement.

For More Information:

• On type declaration statements, see Section 5.1.

• On the IMPLICIT statement, see Section 5.9.

3.5.2 Arrays
An array is a set of scalar elements that have the same type and kind
parameters. Any object that is declared with an array specification is an
array. Arrays can be declared by using a type declaration statement, or by
using a DIMENSION, COMMON, ALLOCATABLE, POINTER, or TARGET
statement.

Data Types, Constants, and Variables 3–37

An array can be referenced by element (using subscripts), by section (using a
section subscript list), or as a whole. A subscript list (appended to the array
name) indicates which array element or array section is being referenced.

A section subscript list consists of subscripts, subscript triplets, or vector
subscripts. At least one subscript in the list must be a subscript triplet or
vector subscript.

When an array name without any subscripts appears in an intrinsic operation
(for example, addition), the operation applies to the whole array (all elements
in the array).

An array has the following properties:

• Data type

An array can have any intrinsic or derived type. The data type of an array
(like any other variable) is specified in a type declaration statement or
implied by the first letter of its name. All elements of the array have the
same type and kind parameters. If a value assigned to an individual array
element is not the same as the type of the array, it is converted to the
array’s type.

• Rank

The rank of an array is the number of dimensions in the array. An array
can have up to seven dimensions. A rank-one array represents a column
of data (a vector), a rank-two array represents a table of data arranged in
columns and rows (a matrix), a rank-three array represents a table of data
on multiple pages (or planes), and so forth.

• Bounds

Arrays have a lower and upper bound in each dimension. These bounds
determine the range of values that can be used as subscripts for the
dimension. The value of either bound can be positive, negative, or zero.

The bounds of a dimension are defined in an array specification.

• Size

The size of an array is the total number of elements in the array (the
product of the array’s extents).

The extent is the total number of elements in a particular dimension. It is
determined as follows: upper bound � lower bound � 1. If the value of any
of an array’s extents is zero, the array has a size of zero.

• Shape

3–38 Data Types, Constants, and Variables

The shape of an array is determined by its rank and extents, and can be
represented as a rank-one array (vector) where each element is the extent
of the corresponding dimension.

Two arrays with the same shape are said to be conformable. A scalar is
conformable to an array of any shape.

The name and rank of an array must be specified when the array is declared.
The extent of each dimension can be constant, but does not need to be. The
extents can vary during program execution if the array is a dummy argument
array, an automatic array, an array pointer, or an allocatable array.

A whole array is referenced by the array name. Individual elements in a
named array are referenced by a scalar subscript or list of scalar subscripts (if
there is more than one dimension). A section of a named array is referenced by
a section subscript.

Examples
The following are examples of valid array declarations:

DIMENSION A(10, 2, 3) ! DIMENSION statement
ALLOCATABLE B(:, :) ! ALLOCATABLE statement
POINTER C(:, :, :) ! POINTER statement
REAL, DIMENSION (2, 5) ! Type declaration with

! DIMENSION attribute

Consider the following array declaration:

INTEGER L(2:11,3)

The properties of array L are as follows:

Data type: INTEGER

Rank: 2 (two dimensions)

Bounds: First dimension: 2 to 11

Second dimension: 1 to 3

Size: 30; the product of the extents: 10 x 3

Shape: (/10,3/) (or 10 by 3); a vector of the extents 10 and 3

The following example shows other valid ways to declare this array:

DIMENSION L(2:11,3)
INTEGER, DIMENSION(2:11,3) :: L
COMMON L(2:11,3)

Data Types, Constants, and Variables 3–39

The following example shows references to array elements, array sections, and
a whole array:

REAL B(10) ! Declares a rank-one array with 10 elements

INTEGER C(5,8) ! Declares a rank-two array with 5 elements in
! dimension one and 8 elements in dimension two

...
B(3) = 5.0 ! Reference to an array element
B(2:5) = 1.0 ! Reference to an array section consisting of

! elements: B(2), B(3), B(4), B(5)
...
C(4,8) = I ! Reference to an array element
C(1:3,3:4) = J ! Reference to an array section consisting of

! elements: C(1,3) C(1,4)
! C(2,3) C(2,4)
! C(3,3) C(3,4)

B = 99 ! Reference to a whole array consisting of
! elements: B(1), B(2), B(3), B(4), B(5),
! B(6), B(7), B(8), B(9), and B(10)

For More Information:

• On array specifications, see Section 5.1.4.

• On the DIMENSION attribute, see Section 5.6.

• On intrinsic data types, see Section 3.2.

• On derived data types, see Section 3.3.

• On whole arrays, see Section 3.5.2.1.

• On array elements, see Section 3.5.2.2.

• On array sections, see Section 3.5.2.3.

• On intrinsic functions that perform array operations, see Table 9–2.

3.5.2.1 Whole Arrays
A whole array is a named array; it is either a named constant or a variable.
It is referenced by using the array name (without any subscripts).

If a whole array appears in a nonexecutable statement, the statement applies
to the entire array. For example:

INTEGER, DIMENSION(2:11,3) :: L ! Specifies the type and
! dimensions of array L

3–40 Data Types, Constants, and Variables

If a whole array appears in an executable statement, the statement applies to
all of the elements in the array. For example:

L = 10 ! The value 10 is assigned to all the
! elements in array L

WRITE *, L ! Prints all the elements in array L

3.5.2.2 Array Elements
An array element is one of the scalar data items that make up an array.
A subscript list (appended to the array or array component) determines
which element is being referred to. A reference to an array element takes
the following form:

array(subscript-list)

array
Is the name of the array.

subscript-list
Is a list of one or more subscripts separated by commas. The number of
subscripts must equal the rank of the array.

Each subscript must be a scalar integer (or other numeric) expression with a
value that is within the bounds of its dimension.

Rules and Behavior
Each array element inherits the type, kind type parameter, and certain
attributes (INTENT, PARAMETER, and TARGET) of the parent array. An
array element cannot inherit the POINTER attribute.

If an array element is of type character, it can be followed by a substring range
in parentheses; for example:

ARRAY_D(1,2) (1:3) ! Elements are substrings of length 3

However, by convention, such an object is considered to be a substring rather
than an array element.

The following are some valid array element references for an array declared as
REAL B(10,20): B(1,3), B(10,10), and B(5,8).

For information on forms for array specifications, see Section 5.1.4.

Data Types, Constants, and Variables 3–41

Array Element Order
The elements of an array form a sequence known as array element order. The
position of an element in this sequence is its subscript order value.

The elements of an array are stored as a linear sequence of values. A
one-dimensional array is stored with its first element in the first storage
location and its last element in the last storage location of the sequence. A
multidimensional array is stored so that the leftmost subscripts vary most
rapidly. This is called the order of subscript progression.

Figure 3–1 shows array storage in one, two, and three dimensions.

3–42 Data Types, Constants, and Variables

Figure 3–1 Array Storage

BAN(1,3)7BAN(1,2)4BAN(1,1)1

2

3

BAN(2,1)

BAN(3,1) BAN(3,2)6

5 BAN(2,2)

9

8 BAN(2,3)

BAN(3,3)

10

11

12

BAN(1,4)

BAN(2,4)

BAN(3,4)

1 BRC(1) 2 BRC(2) 3 BRC(3) 4 BRC(4) 5 BRC(5) 6 BRC(6)

One−Dimensional Array BRC (6)

Two−Dimensional Array BAN (3,4)

Three−Dimensional Array BOS (3,3,3)

ZK−0616−GE

Memory Positions

Memory Positions

Memory Positions

19

20

21

BOS(1,1,3)

BOS(2,1,3)

BOS(3,1,3)

22

23

24

BOS(1,2,3)

BOS(2,2,3)

BOS(3,2,3)

25

26

27

BOS(1,3,3)

BOS(2,3,3)

BOS(3,3,3)10

11

12

BOS(1,1,2)

BOS(2,1,2)

BOS(3,1,2)

13

14

15

BOS(1,2,2)

BOS(2,2,2)

BOS(3,2,2)

16

17

18

BOS(1,3,2)

BOS(2,3,2)

BOS(3,3,2)1

2

3

BOS(1,1,1)

BOS(2,1,1)

BOS(3,1,1)

4

5

6

BOS(1,2,1)

BOS(2,2,1)

BOS(3,2,1)

7

8

9

BOS(1,3,1)

BOS(2,3,1)

BOS(3,3,1)

For example, in two-dimensional array BAN, element BAN(1,2) has a subscript
order value of 4; in three-dimensional array BOS, element BOS(1,1,1) has a
subscript order value of 1.

In an array section, the subscript order of the elements is their order within
the section itself. For example, if an array is declared as B(20), the section
B(4:19:4) consists of elements B(4), B(8), B(12), and B(16). The subscript order
value of B(4) in the array section is 1; the subscript order value of B(12) in the
section is 3.

Data Types, Constants, and Variables 3–43

For More Information

• On substrings, see Section 3.2.5.2.

• On arrays as structure components, see Section 3.3.3.

• On array association, see Section 15.5.3.2.

• On storage sequence association, see Section 15.5.3.

3.5.2.3 Array Sections
An array section is a portion of an array that is an array itself. It is an array
subobject. A section subscript list (appended to the array or array component)
determines which portion is being referred to. A reference to an array section
takes the following form:

array(sect-subscript-list)

array
Is the name of the array.

sect-subscript-list
Is a list of one or more section subscripts (subscripts, subscript triplets, or
vector subscripts) indicating a set of elements along a particular dimension.

At least one of the items in the section subscript list must be a subscript triplet
or vector subscript. A subscript triplet specifies array elements in increasing or
decreasing order at a given stride. A vector subscript specifies elements in any
order.

Each subscript and subscript triplet must be a scalar integer (or other numeric)
expression. Each vector subscript must be a rank-one integer expression.

Rules and Behavior
If no section subscript list is specified, the rank and shape of the array section
is the same as the parent array.

Otherwise, the rank of the array section is the number of vector subscripts and
subscript triplets that appear in the list. Its shape is a rank-one array where
each element is the number of integer values in the sequence indicated by the
corresponding subscript triplet or vector subscript.

If any of these sequences is empty, the array section has a size of zero. The
subscript order of the elements of an array section is that of the array object
that the array section represents.

Each array section inherits the type, kind type parameter, and certain
attributes (INTENT, PARAMETER, and TARGET) of the parent array. An
array section cannot inherit the POINTER attribute.

3–44 Data Types, Constants, and Variables

If an array (or array component) is of type character, it can be followed by a
substring range in parentheses. Consider the following declaration:

CHARACTER(LEN=15) C(10,10)

In this case, an array section referenced as C(:,:) (1:3) is an array of shape
(10,10), whose elements are substrings of length 3 of the corresponding
elements of C.

The following shows valid references to array sections. Note that the syntax
(/.../) denotes an array constructor (see Section 3.5.2.4).

REAL, DIMENSION(20) :: B
...
PRINT *, B(2:20:5) ! The section consists of elements

! B(2), B(7), B(12), and B(17)

K = (/3, 1, 4/)
B(K) = 0.0 ! Section B(K) is a rank-one array with shape (3) and

! size 3. (0.0 is assigned to B(1), B(3), and B(4).)

Subscript Triplets
A subscript triplet is a set of three values representing the lower bound of
the array section, the upper bound of the array section, and the increment
(stride) between them. It takes the following form:

[first-bound] : [last-bound] [:stride]

first-bound
Is a scalar integer (or other numeric) expression representing the first value in
the subscript sequence. If omitted, the declared lower bound of the dimension
is used.

last-bound
Is a scalar integer (or other numeric) expression representing the last value in
the subscript sequence. If omitted, the declared upper bound of the dimension
is used.

When indicating sections of an assumed-size array, this subscript must be
specified.

stride
Is a scalar integer (or other numeric) expression representing the increment
between successive subscripts in the sequence. It must have a nonzero value.
If it is omitted, it is assumed to be 1.

Data Types, Constants, and Variables 3–45

The stride has the following effects:

• If the stride is positive, the subscript range starts with the first subscript
and is incremented by the value of the stride, until the largest value less
than or equal to the second subscript is attained.

For example, if an array has been declared as B(6,3,2), the array section
specified as B(2:4,1:2,2) is a rank-two array with shape (3,2) and size 6. It
consists of the following six elements:

B(2,1,2) B(2,2,2)
B(3,1,2) B(3,2,2)
B(4,1,2) B(4,2,2)

If the first subscript is greater than the second subscript, the range is
empty.

• If the stride is negative, the subscript range starts with the value of the
first subscript and is decremented by the absolute value of the stride, until
the smallest value greater than or equal to the second subscript is attained.

For example, if an array has been declared as A(15), the array section
specified as A(10:3:-2) is a rank-one array with shape (4) and size 4. It
consists of the following four elements:

A(10)
A(8)
A(6)
A(4)

If the second subscript is greater than the first subscript, the range is
empty.

If a range specified by the stride is empty, the array section has a size of zero.

A subscript in a subscript triplet need not be within the declared bounds for
that dimension if all values used to select the array elements are within the
declared bounds. For example, if an array has been declared as A(15), the
array section specified as A(4:16:10) is valid. The section is a rank-one array
with shape (2) and size 2. It consists of elements A(4) and A(14).

If the subscript triplet does not specify bounds or stride, but only a colon (:),
the entire declared range for the dimension is used.

3–46 Data Types, Constants, and Variables

Vector Subscripts
A vector subscript is a one-dimensional (rank one) array of integer values
(within the declared bounds for the dimension) that selects a section of a whole
(parent) array. The elements in the section do not have to be in order and the
section can contain duplicate values.

For example, A is a rank-two array of shape (4,6). B and C are rank-one arrays
of shape (2) and (3), respectively, with the following values:

B = (/1,4/) ! Syntax (/.../) denotes an array constructor
C = (/2,1,1/) ! This constructor produces a many-one array section

Array section A(3,B) consists of elements A(3,1) and A(3,4). Array section
A(C,1) consists of elements A(2,1), A(1,1), and A(1,1). Array section A(B,C)
consists of the following elements:

A(1,2) A(1,1) A(1,1)
A(4,2) A(4,1) A(4,1)

An array section with a vector subscript that has two or more elements with
the same value is called a many-one array section. A many-one section must
not appear on the left of the equal sign in an assignment statement, or as an
input item in a READ statement.

The following assignments to C also show examples of vector subscripts:

INTEGER A(2), B(2), C(2)
...
B = (/1,2/)
C(B) = A(B)
C = A((/1,2/))

An array section with a vector subscript must not be any of the following:

• An internal file

• An actual argument associated with a dummy array that is defined or
redefined (if the INTENT attribute is specified, it must be INTENT(IN))

• The target in a pointer assignment statement

If the sequence specified by the vector subscript is empty, the array section has
a size of zero.

Data Types, Constants, and Variables 3–47

For More Information:

• On the INTENT attribute, see Section 5.10.

• On the PARAMETER attribute, see Section 5.14.

• On the TARGET attribute, see Section 5.18.

• On substrings, see Section 3.2.5.2.

• On array sections as structure components, see Section 3.3.3.

• On array constructors, see Section 3.5.2.4.

3.5.2.4 Array Constructors
An array constructor can be used to create and assign values to rank-one
arrays (and array constants). An array constructor takes the following form:

(/ac-value-list/)

ac-value-list
Is a list of one or more expressions or implied-do loops. Each ac-value must
have the same type and kind parameters, and be separated by commas.

An implied-do loop in an array constructor takes the following form:

(ac-value-expr, do-variable = expr1, expr2 [,expr3])

ac-value-expr
Is a scalar expression evaluated for each value of the do-variable to produce an
array element value.

do-variable
Is the name of a scalar integer variable. Its scope is that of the implied-do
loop.

expr
Is a scalar integer expression. The expr1 and expr2 specify a range of values
for the loop; expr3 specifies the stride. The expr3 must be a nonzero value; if it
is omitted, it is assumed to be 1.

Rules and Behavior
The array constructed has the same type as the ac-value-list expressions.

If the sequence of values specified by the array constructor is empty (there are
no expressions or the implied-do loop produces no values), the rank-one array
has a size of zero.

3–48 Data Types, Constants, and Variables

An ac-value is interpreted as follows:

Form of ac-value Result

A scalar expression Its value is an element of the new array.

An array expression The values of the elements in the expression (in array
element order) are the corresponding sequence of elements
in the new array.

An implied-do loop It is expanded to form a list of array elements under control
of the DO variable (like a DO construct).

The following shows the three forms of an ac-value:

C1 = (/4,8,7,6/) ! A scalar expression
C2 = (/B(I, 1:5), B(I:J, 7:9)/) ! An array expression
C3 = (/(I, I=1, 4)/) ! An implied-do loop

You can also mix these forms, for example:

C4 = (/4, A(1:5), (I, I=1, 4), 7/)

If every expression in an array constructor is a constant expression, the array
constructor is a constant expression.

If the expressions are of type character, Fortran 95/90 requires each expression
to have the same character length.

However, HP Fortran allows the character expressions to be of different
character lengths. The length of the resultant character array is the maximum
of the lengths of the individual character expressions. For example:

print *,len ((/’a’,’ab’,’abc’,’d’/))
print *,’++’//(/’a’,’ab’,’abc’,’d’/)//’--’

This causes the following to be displayed:

3
++a --++ab --++abc--++d --

If an implied-do loop is contained within another implied-do loop (nested), they
cannot have the same DO variable (do-variable).

To define arrays of more than one dimension, use the RESHAPE intrinsic
function.

The following are alternative forms for array constructors:

• Square brackets (instead of parentheses and slashes) to enclose array
constructors; for example, the following two array constructors are
equivalent:

Data Types, Constants, and Variables 3–49

INTEGER C(4)
C = (/4,8,7,6/)
C = [4,8,7,6]

• A colon-separated triplet (instead of an implied-do loop) to specify a range
of values and a stride; for example, the following two array constructors
are equivalent:

INTEGER D(3)
D = (/1:5:2/) ! Triplet form
D = (/(I, I=1, 5, 2)/) ! Implied-do loop form

Examples
The following example shows an array constructor using an implied-do loop:

INTEGER ARRAY_C(10)
ARRAY_C = (/(I, I=30, 48, 2)/)

The values of ARRAY_C are the even numbers 30 through 48.

The following example shows an array constructor of derived type that uses a
structure constructor:

TYPE EMPLOYEE
INTEGER ID
CHARACTER(LEN=30) NAME

END TYPE EMPLOYEE

TYPE(EMPLOYEE) CC_4T(4)
CC_4T = (/EMPLOYEE(2732,"JONES"), EMPLOYEE(0217,"LEE"), &

EMPLOYEE(1889,"RYAN"), EMPLOYEE(4339,"EMERSON")/)

The following example shows how the RESHAPE intrinsic function can be used
to create a multidimensional array:

E = (/2.3, 4.7, 6.6/)
D = RESHAPE(SOURCE = (/3.5, (/2.0, 1.0/), E/), SHAPE = (/2,3/))

D is a rank-two array with shape (2,3) containing the following elements:

3.5 1.0 4.7
2.0 2.3 6.6

For More Information:

• On array element order, see Section 3.5.2.2.

• On the DO construct, see Section 7.6.

• On another way to assign values to arrays, see Section 4.2.1.5.

• On the RESHAPE intrinsic function, see Section 9.4.133.

3–50 Data Types, Constants, and Variables

• On subscript triplets, see Section 3.5.2.3.

• On derived types, see Section 3.3.

• On structure constructors, see Section 3.3.4.

• On array specifications, see Section 5.1.4.

Data Types, Constants, and Variables 3–51

4
Expressions and Assignment Statements

This chapter describes:

• Section 4.1, Expressions

• Section 4.2, Assignment Statements

4.1 Expressions
An expression represents either a data reference or a computation, and is
formed from operators, operands, and parentheses. The result of an expression
is either a scalar value or an array of scalar values.

If the value of an expression is of intrinsic type, it has a kind type parameter.
(If the value is of intrinsic type CHARACTER, it also has a length parameter.)
If the value of an expression is of derived type, it has no kind type parameter.

An operand is a scalar or array. An operator can be either intrinsic or defined.
An intrinsic operator is known to the compiler and is always available to any
program unit. A defined operator is described explicitly by a user in a function
subprogram and is available to each program unit that uses the subprogram.

The simplest form of an expression (a primary) can be any of the following:

• A constant; for example, 4.2

• A subobject of a constant; for example, ’LMNOP’(2:4)

• A variable; for example, VAR_1

• A structure constructor; for example, EMPLOYEE(3472, "JOHN DOE")

• An array constructor; for example, (/12.0,16.0/)

• A function reference; for example, COS(X)

• Another expression in parentheses; for example, (I+5)

Expressions and Assignment Statements 4–1

Any variable or function reference used as an operand in an expression must
be defined at the time the reference is executed. If the operand is a pointer,
it must be associated with a target object that is defined. An integer operand
must be defined with an integer value rather than a statement label value. All
of the characters in a character data object reference must be defined.

When a reference to an array or an array section is made, all of the
selected elements must be defined. When a structure is referenced, all of
the components must be defined.

In an expression that has intrinsic operators with an array as an operand, the
operation is performed on each element of the array. In expressions with more
than one array operand, the arrays must be conformable (they must have the
same shape). The operation is applied to corresponding elements of the arrays,
and the result is an array of the same shape (the same rank and extents) as
the operands.

In an expression that has intrinsic operators with a pointer as an operand, the
operation is performed on the value of the target associated with the pointer.

For defined operators, operations on arrays and pointers are determined by the
procedure defining the operation.

A scalar is conformable with any array. If one operand of an expression is an
array and another operand is a scalar, it is as if the value of the scalar were
replicated to form an array of the same shape as the array operand. The result
is an array of the same shape as the array operand.

The following sections describe numeric, character, relational, and logical
expressions; defined operations; a summary of operator precedence; and
initialization and specification expressions.

For More Information:

• On function subprograms that define operators , see Section 8.9.4.

• On arrays, see Section 3.5.2.

• On pointers, see Section 5.15.

• On derived data types, see Section 3.3.

4–2 Expressions and Assignment Statements

4.1.1 Numeric Expressions
Numeric expressions express numeric computations, and are formed with
numeric operands and numeric operators. The evaluation of a numeric
operation yields a single numeric value.

The term numeric includes logical data, because logical data is treated as
integer data when used in a numeric context. The default for .TRUE. is –1;
.FALSE. is 0.

Numeric operators specify computations to be performed on the values of
numeric operands. The result is a scalar numeric value or an array whose
elements are scalar numeric values. The following are numeric operators:

Operator Function

** Exponentiation

* Multiplication

/ Division

+ Addition or unary plus (identity)

– Subtraction or unary minus (negation)

Unary operators operate on a single operand. Binary operators operate
on a pair of operands. The plus and minus operators can be unary or binary.
When they are unary operators, the plus or minus operators precede a
single operand and denote a positive (identity) or negative (negation) value,
respectively. The exponentiation, multiplication, and division operators are
binary operators.

Valid numeric operations must have results that are defined by the arithmetic
used by the processor. For example, raising a negative-valued real to a real
power is invalid.

Numeric expressions are evaluated in an order determined by a precedence
associated with each operator, as follows (see also Section 4.1.6):

Expressions and Assignment Statements 4–3

Operator Precedence

** Highest

* and / .

Unary + and – .

Binary + and – Lowest

Operators with equal precedence are evaluated in left-to-right order. However,
exponentiation is evaluated from right to left. For example, A**B**C is
evaluated as A**(B**C). B**C is evaluated first, then A is raised to the
resulting power.

Normally, two operators cannot appear together. However, HP Fortran allows
two consecutive operators if the second operator is a plus or minus.

Examples
In the following example, the exponentiation operator is evaluated first because
it takes precedence over the multiplication operator:

A**B*C is evaluated as (A**B)*C

Ordinarily, the exponentiation operator would be evaluated first in the
following example. However, because HP Fortran allows the combination
of the exponentiation and minus operators, the exponentiation operator is not
evaluated until the minus operator is evaluated:

A**-B*C is evaluated as A**(-(B*C))

Note that the multiplication operator is evaluated first, since it takes
precedence over the minus operator.

When consecutive operators are used with constants, the unary plus or minus
before the constant is treated the same as any other operator. This can produce
unexpected results. In the following example, the multiplication operator is
evaluated first, since it takes precedence over the minus operator:

X/-15.0*Y is evaluated as X/-(15.0*Y)

4.1.1.1 Using Parentheses in Numeric Expressions
You can use parentheses to force a particular order of evaluation. When part
of an expression is enclosed in parentheses, that part is evaluated first. The
resulting value is used in the evaluation of the remainder of the expression.

4–4 Expressions and Assignment Statements

In the following examples, the numbers below the operators indicate a possible
order of evaluation. Alternative evaluation orders are possible in the first
three examples because they contain operators of equal precedence that are
not enclosed in parentheses. In these cases, the compiler is free to evaluate
operators of equal precedence in any order, as long as the result is the same as
the result gained by the algebraic left-to-right order of evaluation.

� � � � �� ��� � �
� � � �

� � � �

�� � �	 � �� ��� � ��
� � � �

� � � �

�� � � � �� �	�� � �
� � � �

� � � �

��� � �	 � �� �	�� � �
� � � �

� � � �

Expressions within parentheses are evaluated according to the normal order
of precedence. In expressions containing nested parentheses, the innermost
parentheses are evaluated first.

Nonessential parentheses do not affect expression evaluation, as shown in the
following example:

� � �� � �	� ����	

However, using parentheses to specify the evaluation order is often important
in high-accuracy numerical computations. In such computations, evaluation
orders that are algebraically equivalent may not be computationally equivalent
when processed by a computer (because of the way intermediate results are
rounded off).

Parentheses can be used in argument lists to force a given argument to be
treated as an expression, rather than as the address of a memory item.

Expressions and Assignment Statements 4–5

4.1.1.2 Data Type of Numeric Expressions
If every operand in a numeric expression is of the same data type, the result is
also of that type.

If operands of different data types are combined in an expression, the
evaluation of that expression and the data type of the resulting value depend
on the ranking associated with each data type. The following table shows the
ranking assigned to each data type:

Data Type Ranking

LOGICAL(1) and BYTE Lowest

LOGICAL(2) .

LOGICAL(4) .

LOGICAL(8) .

INTEGER(1) .

INTEGER(2) .

INTEGER(4) .

INTEGER(8) .

REAL(4) .

REAL(8)1 .

REAL(16) .

COMPLEX(4) .

COMPLEX(8)2 .

COMPLEX(16) Highest

1DOUBLE PRECISION
2DOUBLE COMPLEX

The data type of the value produced by an operation on two numeric operands
of different data types is the data type of the highest-ranking operand in
the operation. For example, the value resulting from an operation on an
integer and a real operand is of real type. However, an operation involving a
COMPLEX(4) or COMPLEX(8) data type and a DOUBLE PRECISION data
type produces a COMPLEX(8) result.

The data type of an expression is the data type of the result of the last
operation in that expression, and is determined according to the following
conventions:

• Integer operations: Integer operations are performed only on integer
operands. (Logical entities used in a numeric context are treated as

4–6 Expressions and Assignment Statements

integers.) In integer arithmetic, any fraction resulting from division is
truncated, not rounded. For example, the result of 1/4 + 1/4 + 1/4 + 1/4 is
0, not 1.

• Real operations: Real operations are performed only on real operands or
combinations of real, integer, and logical operands. Any integer operands
present are converted to real data type by giving each a fractional part
equal to zero. The expression is then evaluated using real arithmetic.
However, in the statement Y = (I/J)*X, an integer division operation is
performed on I and J, and a real multiplication is performed on that result
and X.

If any operand is a higher-precision real (REAL(8) or REAL(16)) type, all
other operands are converted to that higher-precision real type before the
expression is evaluated.

When a single-precision real operand is converted to a double-precision
real operand, low-order binary digits are set to zero. This conversion does
not increase accuracy; conversion of a decimal number does not produce
a succession of decimal zeros. For example, a REAL variable having the
value 0.3333333 is converted to approximately 0.3333333134651184D0. It
is not converted to either 0.3333333000000000D0 or 0.3333333333333333D0.

• Complex operations: In operations that contain any complex operands,
integer operands are converted to real type, as previously described. The
resulting single-precision or double-precision operand is designated as the
real part of a complex number and the imaginary part is assigned a value
of zero. The expression is then evaluated using complex arithmetic and the
resulting value is of complex type. Operations involving a COMPLEX(4) or
COMPLEX(8) operand and a DOUBLE PRECISION operand are performed
as COMPLEX(8) operations; the DOUBLE PRECISION operand is not
rounded.

These rules also generally apply to numeric operations in which one of the
operands is a constant. However, if a real or complex constant is used in
a higher-precision expression, additional precision will be retained for the
constant. The effect is as if a DOUBLE PRECISION (REAL(8)) or REAL(16)
representation of the constant were given. For example, the expression 1.0D0
� 0.3333333 is treated as if it is 1.0D0 � 0.3333333000000000D0.

Expressions and Assignment Statements 4–7

4.1.2 Character Expressions
A character expression consists of a character operator (//) that
concatenates two operands of type character. The evaluation of a character
expression produces a single value of that type.

The result of a character expression is a character string whose value is the
value of the left character operand concatenated to the value of the right
operand. The length of a character expression is the sum of the lengths of the
values of the operands. For example, the value of the character expression
’AB’//’CDE’ is ’ABCDE’, which has a length of five.

Parentheses do not affect the evaluation of a character expression; for example,
the following character expressions are equivalent:

(’ABC’//’DE’)//’F’
’ABC’//(’DE’//’F’)
’ABC’//’DE’//’F’

Each of these expressions has the value ’ABCDEF’.

If a character operand in a character expression contains blanks, the
blanks are included in the value of the character expression. For example,
’ABC ’//’D E’//’F ’ has a value of ’ABC D EF ’.

4.1.3 Relational Expressions
A relational expression consists of two or more expressions whose values
are compared to determine whether the relationship stated by the relational
operator is satisfied. The following are relational operators:

Operator Relationship

.LT. or < Less than

.LE. or <= Less than or equal to

.EQ. or = = Equal to

.NE. or /= Not equal to

.GT. or > Greater than

.GE. or >= Greater than or equal to

The result of the relational expression is .TRUE. if the relation specified by
the operator is satisfied; the result is .FALSE. if the relation specified by the
operator is not satisfied.

Relational operators are of equal precedence. Numeric operators and the
character operator // have a higher precedence than relational operators.

4–8 Expressions and Assignment Statements

In a numeric relational expression, the operands are numeric expressions.
Consider the following example:

APPLE+PEACH > PEAR+ORANGE

This expression states that the sum of APPLE and PEACH is greater than
the sum of PEAR and ORANGE. If this relationship is valid, the value of the
expression is .TRUE.; if not, the value is .FALSE..

Operands of type complex can only be compared using the equal operator (= =
or .EQ.) or the not equal operator (/= or .NE.). Complex entities are equal if
their corresponding real and imaginary parts are both equal.

In a character relational expression, the operands are character expressions.
In character relational expressions, less than (< or .LT.) means the character
value precedes in the ASCII collating sequence, and greater than (> or .GT.)
means the character value follows in the ASCII collating sequence. For
example:

’AB’//’ZZZ’ .LT. ’CCCCC’

This expression states that ’ABZZZ’ is less than ’CCCCC’. In this case, the
relation specified by the operator is satisfied, so the result is .TRUE..

Character operands are compared one character at a time, in order, starting
with the first character of each operand. If the two character operands are not
the same length, the shorter one is padded on the right with blanks until the
lengths are equal; for example:

’ABC’ .EQ. ’ABC ’

’AB’ .LT. ’C’

The first relational expression has the value .TRUE. even though the lengths
of the expressions are not equal, and the second has the value .TRUE. even
though ’AB’ is longer than ’C’.

A relational expression can compare two numeric expressions of different data
types. In this case, the value of the expression with the lower-ranking data
type is converted to the higher-ranking data type before the comparison is
made.

For More Information:
On the ranking of data types, see Section 4.1.1.2.

Expressions and Assignment Statements 4–9

4.1.4 Logical Expressions
A logical expression consists of one or more logical operators and logical,
numeric, or relational operands. The following are logical operators:

Operator Example Meaning

.AND. A .AND. B Logical conjunction: the expression is true if both A and
B are true.

.OR. A .OR. B Logical disjunction (inclusive OR): the expression is true
if either A, B, or both, are true.

.NEQV. A .NEQV. B Logical inequivalence (exclusive OR): the expression is
true if either A or B is true, but false if both are true.

.XOR. A .XOR. B Same as .NEQV.

.EQV. A .EQV. B Logical equivalence: the expression is true if both A and
B are true, or both are false.

.NOT.1 .NOT. A Logical negation: the expression is true if A is false and
false if A is true.

1.NOT. is a unary operator.

Periods cannot appear consecutively except when the second operator is .NOT.
For example, the following logical expression is valid:

A+B/(A-1) .AND. .NOT. D+B/(D-1)

Data Types Resulting from Logical Operations
Logical operations on logical operands produce single logical values (.TRUE. or
.FALSE.) of logical type.

Logical operations on integers produce single values of integer type. The
operation is carried out bit-by-bit on corresponding bits of the internal (binary)
representation of the integer operands.

Logical operations on a combination of integer and logical values also produce
single values of integer type. The operation first converts logical values to
integers, then operates as it does with integers.

Logical operations cannot be performed on other data types.

4–10 Expressions and Assignment Statements

Evaluation of Logical Expressions
Logical expressions are evaluated according to the precedence of their
operators. Consider the following expression:

A*B+C*ABC == X*Y+DM/ZZ .AND. .NOT. K*B > TT

This expression is evaluated in the following sequence:

(((A*B)+(C*ABC)) == ((X*Y)+(DM/ZZ))) .AND. (.NOT. ((K*B) > TT))

As with numeric expressions, you can use parentheses to alter the sequence of
evaluation.

When operators have equal precedence, the compiler can evaluate them in any
order, as long as the result is the same as the result gained by the algebraic
left-to-right order of evaluation (except for exponentiation, which is evaluated
from right to left).

You should not write logical expressions whose results might depend on
the evaluation order of subexpressions. The compiler is free to evaluate
subexpressions in any order. In the following example, either (A(I)+1.0) or
B(I)*2.0 could be evaluated first:

(A(I)+1.0) .GT. B(I)*2.0

Some subexpressions might not be evaluated if the compiler can determine the
result by testing other subexpressions in the logical expression. Consider the
following expression:

A .AND. (F(X,Y) .GT. 2.0) .AND. B

If the compiler evaluates A first, and A is false, the compiler might determine
that the expression is false and might not call the subprogram F(X,Y).

For More Information:
On the precedence of numeric, relational, and logical operators, see
Section 4.1.6.

4.1.5 Defined Operations
When operators are defined for functions, the functions can then be referenced
as defined operations.

The operators are defined by using a generic interface block specifying
OPERATOR, followed by the defined operator (in parentheses).

A defined operation is not an intrinsic operation. However, you can use a
defined operation to extend the meaning of an intrinsic operator.

Expressions and Assignment Statements 4–11

For defined unary operations, the function must contain one argument. For
defined binary operations, the function must contain two arguments.

Interpretation of the operation is provided by the function that defines the
operation.

A Fortran 95/90 defined operator can contain up to 31 letters, and is enclosed
in periods (.). Its name cannot be the same name as any of the following:

• The intrinsic operators (.NOT., .AND., .OR., .XOR., .EQV., .NEQV., .EQ.,
.NE., .GT., .GE., .LT., and .LE.)

• The logical literal constants (.TRUE. or .FALSE.).

An intrinsic operator can be followed by a defined unary operator.

The result of a defined operation can have any type. The type of the result
(and its value) must be specified by the defining function.

The following examples show expressions containing defined operators:

.COMPLEMENT. A
X .PLUS. Y .PLUS. Z
M * .MINUS. N

For More Information:

• On defining generic operators, see Section 8.9.4.

• On operator precedence, see Section 4.1.6.

4.1.6 Summary of Operator Precedence
Table 4–1 shows the precedence of all intrinsic and defined operators:

4–12 Expressions and Assignment Statements

Table 4–1 Precedence of Expression Operators

Category Operator Precedence

Defined Unary Operators Highest

Numeric ** .

Numeric * or / .

Numeric Unary + or – .

Numeric Binary + or – .

Character // .

Relational .EQ., .NE., .LT., .LE., .GT., .GE.
= =, /=, <, <=, >, >=

.

Logical .NOT. .

Logical .AND. .

Logical .OR. .

Logical .XOR., .EQV., .NEQV. .

Defined Binary Operators Lowest

4.1.7 Initialization and Specification Expressions
A constant expression contains intrinsic operations and parts that are all
constants. An initialization expression is a constant expression that is
evaluated when a program is compiled. A specification expression is a scalar,
integer expression that is restricted to declarations of array bounds and
character lengths.

Initialization and specification expressions can appear in specification
statements, with some restrictions.

4.1.7.1 Initialization Expressions
An initialization expression must evaluate at compile time to a constant. It is
used to specify an initial value for an entity.

In an initialization expression, each operation is intrinsic and each operand is
one of the following:

• A constant or subobject of a constant

• An array constructor where each element and the bounds and strides
of each implied-do, are expressions whose primaries are initialization
expressions

• A structure constructor whose components are initialization expressions

Expressions and Assignment Statements 4–13

• An elemental intrinsic function reference of type integer or character,
whose arguments are initialization expressions of type integer or character

• A reference to one of the following inquiry functions:

BIT_SIZE MINEXPONENT

DIGITS PRECISION

EPSILON RADIX

HUGE RANGE

ILEN SHAPE

KIND SIZE

LBOUND TINY

LEN UBOUND

MAXEXPONENT

Each function argument must be one of the following:

An initialization expression

A variable whose kind type parameter and bounds are not assumed
or defined by an ALLOCATE statement, pointer assignment, or an
expression that is not an initialization expression

• A reference to one of the following transformational functions (each
argument must be an initialization expression):

REPEAT SELECTED_REAL_KIND

RESHAPE TRANSFER

SELECTED_INT_KIND TRIM

• A reference to the transformational function NULL

• An implied-do variable within an array constructor, where the bounds and
strides of the corresponding implied-do are initialization expressions

• Another initialization expression enclosed in parentheses

Each subscript, section subscript, and substring starting and ending point
must be an initialization expression.

If an initialization expression invokes an inquiry function for a type parameter
or an array bound of an object, the type parameter or array bound must be
specified in a prior specification statement (or to the left of the inquiry function
in the same statement).

In a specification expression, the number of arguments for a function reference
is limited to 255.

4–14 Expressions and Assignment Statements

Examples
The following examples show valid and invalid initialization (constant)
expressions:

Valid

-1 + 3

SIZE(B) ! B is a named constant

7_2

INT(J, 4) ! J is a named constant

SELECTED_INT_KIND (2)

Invalid Explanation

SUM(A) Not an allowed function.

A/4.1 - K**1.2 Exponential does not have integer power (A and
K are named constants).

HUGE(4.0) Argument is not an integer.

For More Information:

• On array constructors, see Section 3.5.2.4.

• On structure constructors, see Section 3.3.4.

• On intrinsic functions, see Chapter 9.

4.1.7.2 Specification Expressions
A specification expression is a restricted expression that is of type integer and
has a scalar value. This type of expression appears only in the declaration of
array bounds and character lengths.

In a restricted expression, each operation is intrinsic and each operand is one
of the following:

• A constant or subobject of a constant

• A variable that is one of the following:

A dummy argument that does not have the OPTIONAL or INTENT
(OUT) attribute (or the subobject of such a variable)

In a common block (or the subobject of such a variable)

Made accessible by use or host association (or the subobject of such a
variable)

• A structure constructor whose components are restricted expressions

Expressions and Assignment Statements 4–15

• An implied-do variable within an array constructor, where the bounds and
strides of the corresponding implied-do are restricted expressions

• A reference to one of the following inquiry functions:

BIT_SIZE NWORKERS

DIGITS PRECISION

EPSILON PROCESSORS_SHAPE

HUGE RADIX

ILEN RANGE

KIND SHAPE

LBOUND SIZE

LEN SIZEOF

MAXEXPONENT TINY

MINEXPONENT UBOUND

NUMBER_OF_PROCESSORS

Each function argument must be one of the following:

A restricted expression

A variable whose properties inquired about are not dependent on the
upper bound of the last dimension of an assumed-size array, are not
defined by an expression that is a restricted expression, or are not
definable by an ALLOCATE or pointer assignment statement.

• A reference to any other intrinsic function where each argument is a
restricted expression.

• A reference to a specification function (see below) where each argument is
a restricted expression

• An array constructor where each element and the bounds and strides of
each implied-do, are expressions whose primaries are restricted expressions

• Another restricted expression enclosed in parentheses

Each subscript, section subscript, and substring starting and ending point
must be a restricted expression.

Specification functions can be used in specification expressions to indicate
the attributes of data objects. A specification function is a pure function. It
cannot have a dummy procedure argument or be any of the following:

• An intrinsic function

• An internal function

4–16 Expressions and Assignment Statements

• A statement function

• Defined as RECURSIVE

A variable in a specification expression must have its type and type parameters
(if any) specified in one of the following ways:

• By a previous declaration in the same scoping unit

• By the implicit typing rules currently in effect for the scoping unit

• By host or use association

If a variable in a specification expression is typed by the implicit typing rules,
its appearance in any subsequent type declaration statement must confirm the
implied type and type parameters.

If a specification expression invokes an inquiry function for a type parameter
or an array bound of an object, the type parameter or array bound must be
specified in a prior specification statement (or to the left of the inquiry function
in the same statement).

Examples
The following shows valid specification expressions:

MAX(I) + J ! I and J are scalar integer variables
UBOUND(ARRAY_B,20) ! ARRAY_B is an assumed-shape dummy array

For More Information:

• On array constructors, see Section 3.5.2.4.

• On implicit typing rules, see Section 3.5.1.2.

• On structure constructors, see Section 3.3.4.

• On intrinsic functions, see Chapter 9.

• On use and host association, see Section 15.5.1.2.

• On pure procedures, see Section 8.5.1.2.

4.2 Assignment Statements
An assignment statement causes variables to be defined or redefined. This
section describes the following kinds of assignment statements: intrinsic,
defined, pointer, masked array (WHERE), and element array (FORALL).

The ASSIGN statement assigns a label to an integer variable. It is discussed
in Section 7.2.3.

Expressions and Assignment Statements 4–17

4.2.1 Intrinsic Assignments
Intrinsic assignment is used to assign a value to a nonpointer variable. In the
case of pointers, intrinsic assignment is used to assign a value to the target
associated with the pointer variable. The value assigned to the variable (or
target) is determined by evaluation of the expression to the right of the equal
sign.

An intrinsic assignment statement takes the following form:

variable = expression

variable
Is the name of a scalar or array of intrinsic or derived type (with no defined
assignment). The array cannot be an assumed-size array, and neither the
scalar nor the array can be declared with the PARAMETER or INTENT(IN)
attribute.

expression
Is of intrinsic type or the same derived type as variable. Its shape must
conform with variable. If necessary, it is converted to the same type and kind
as variable.

Rules and Behavior
Before a value is assigned to the variable, the expression part of the
assignment statement and any expressions within the variable are evaluated.
No definition of expressions in the variable can affect or be affected by the
evaluation of the expression part of the assignment statement.

Note

When the run-time system assigns a value to a scalar integer or
character variable and the variable is shorter than the value being
assigned, the assigned value may be truncated and significant bits (or
characters) lost. This truncation can occur without warning, and can
cause the run-time system to pass incorrect information back to the
program.

If the variable is a pointer, it must be associated with a definable target. The
shape of the target and expression must conform and their type and kind
parameters must match.

The following sections discuss numeric, logical, character, derived-type, and
array intrinsic assignment.

4–18 Expressions and Assignment Statements

For More Information:

• On subroutine subprograms that define assignment, see Section 8.9.5.

• On arrays, see Section 3.5.2.

• On pointers, see Section 5.15.

• On derived data types, see Section 3.3.

4.2.1.1 Numeric Assignment Statements
For numeric assignment statements, the variable and expression must be
numeric type.

The expression must yield a value that conforms to the range requirements of
the variable. For example, a real expression that produces a value greater than
32767 is invalid if the entity on the left of the equal sign is an INTEGER(2)
variable.

Significance can be lost if an INTEGER(4) value, which can exactly represent
values of approximately the range –2*10**9 to +2*10**9, is converted to
REAL(4) (including the real part of a complex constant), which is accurate to
only about seven digits.

If the variable has the same data type as that of the expression on the right,
the statement assigns the value directly. If the data types are different, the
value of the expression is converted to the data type of the variable before it is
assigned.

Table 4–2 summarizes the data conversion rules for numeric assignment
statements.

Expressions and Assignment Statements 4–19

Table 4–2 Conversion Rules for Numeric Assignment Statements

Scalar Memory
Expression (E)

Reference (V) Integer, Logical or Real Complex

Integer or
Logical

V=INT(E) V=INT(REAL(E))
Imaginary part of E is not used.

REAL
(KIND=4)

V=REAL(E) V=REAL(REAL(E))
Imaginary part of E is not used.

REAL
(KIND=8)

V=DBLE(E) V=DBLE(REAL(E))
Imaginary part of E is not used.

REAL
(KIND=16)

V=QEXT(E) V=QEXT(REAL(E))
Imaginary part of E is not used.

COMPLEX
(KIND=4)

V=CMPLX(REAL(E), 0.0) V=CMPLX(REAL(REAL(E)), REAL(AIMAG(E)))

COMPLEX
(KIND=8)

V=CMPLX(DBLE(E), 0.0) V=CMPLX(DBLE(REAL(E)), DBLE(AIMAG(E)))

COMPLEX
(KIND=16)

V=CMPLX(QEXT(E), 0.0) V=CMPLX(QEXT(REAL(E)), QEXT(AIMAG(E)))

For more information on the referenced intrinsic functions, see Chapter 9.

Examples
The following examples demonstrate valid and invalid numeric assignment
statements:

Valid

BETA = -1./(2.*X)+A*A/(4.*(X*X))

PI = 3.14159

SUM = SUM + 1.

ARRAY_A = ARRAY_B + ARRAY_C + SCALAR_I ! Valid if all arrays conform in
! shape

4–20 Expressions and Assignment Statements

Invalid Explanation

3.14 = A - B Entity on the left must be a
variable.

ICOUNT = A//B(3:7) Implicitly typed data types do not
match.

SCALAR_I = ARRAY_A(:) Shapes do not match.

4.2.1.2 Logical Assignment Statements
For logical assignment statements, the variable must be of logical type and the
expression can be of logical or numeric type.

If necessary, the expression is converted to the same type and kind as the
variable.

Examples
The following examples demonstrate valid logical assignment statements:

PAGEND = .FALSE.

PRNTOK = LINE .LE. 132 .AND. .NOT. PAGEND

ABIG = A.GT.B .AND. A.GT.C .AND. A.GT.D

LOGICAL_VAR = 123 ! Moves binary value of 123 to LOGICAL_VAR

4.2.1.3 Character Assignment Statements
For character assignment statements, the variable and expression must be of
character type and have the same kind parameter.

The variable and expression can have different lengths. If the length of the
expression is greater than the length of the variable, the character expression
is truncated on the right. If the length of the expression is less than the
length of the variable, the character expression is filled on the right with blank
characters.

If you assign a value to a character substring, you do not affect character
positions in any part of the character scalar variable not included in the
substring. If a character position outside of the substring has a value
previously assigned, it remains unchanged. If the character position is
undefined, it remains undefined.

Expressions and Assignment Statements 4–21

Examples
The following examples demonstrate valid and invalid character assignment
statements. (In the valid examples, all variables are of type character.)

Valid

FILE = ’PROG2’

REVOL(1) = ’MAR’//’CIA’

LOCA(3:8) = ’PLANT5’

TEXT(I,J+1)(2:N-1) = NAME//X

Invalid Explanation

’ABC’ = CHARS Left element must be a character variable, array
element, or substring reference.

CHARS = 25 Expression does not have a character data type.

STRING = 5HBEGIN Expression does not have a character data type.
(Hollerith constants are numeric, not character.)

4.2.1.4 Derived-Type Assignment Statements
In derived-type assignment statements, the variable and expression must be
of the same derived type. There must be no accessible interface block with
defined assignment for objects of this derived type.

The derived-type assignment is performed as if each component of the
expression is assigned to the corresponding component of the variable. Pointer
assignment is performed for pointer components, and intrinsic assignment is
performed for nonpointer components.

Examples
The following example demonstrates derived-type assignment:

TYPE DATE
LOGICAL(1) DAY, MONTH
INTEGER(2) YEAR

END TYPE DATE

TYPE(DATE) TODAY, THIS_WEEK(7)

TYPE APPOINTMENT
...

TYPE(DATE) APP_DATE
END TYPE

TYPE(APPOINTMENT) MEETING

4–22 Expressions and Assignment Statements

DO I = 1,7
CALL GET_DATE(TODAY)
THIS_WEEK(I) = TODAY

END DO
MEETING%APP_DATE = TODAY

For More Information:

• On derived types, see Section 3.3.

• On pointer assignment, see Section 4.2.3.

4.2.1.5 Array Assignment Statements
Array assignment is permitted when the array expression on the right has the
same shape as the array variable on the left, or the expression on the right is a
scalar.

If the expression is a scalar, and the variable is an array, the scalar value is
assigned to every element of the array.

If the expression is an array, the variable must also be an array. The
array element values of the expression are assigned (element by element)
to corresponding elements of the array variable.

A many-one array section is a vector-valued subscript that has two or more
elements with the same value. In intrinsic assignment, the variable cannot be
a many-one array section because the result of the assignment is undefined.

Examples
In the following example, X and Y are arrays of the same shape:

X = Y

The corresponding elements of Y are assigned to those of X element by element;
the first element of Y is assigned to the first element of X, and so forth. The
processor can perform the element-by-element assignment in any order.

The following example shows a scalar assigned to an array:

B(C+1:N, C) = 0

This sets the elements B (C+1,C), B (C+2,C),...B (N,C) to zero.

The following example causes the values of the elements of array A to be
reversed:

REAL A(20)
...
A(1:20) = A(20:1:-1)

Expressions and Assignment Statements 4–23

For More Information:

• On arrays, see Section 3.5.2.

• On masked array assignment, see Section 4.2.4.

• On element array assignment, see Section 4.2.5.

• On array constructors, see Section 3.5.2.4.

4.2.2 Defined Assignments
Defined assignment specifies an assignment operation. It is defined by a
subroutine subprogram containing a generic interface block with the specifier
ASSIGNMENT(=). The subroutine is specified by a SUBROUTINE or ENTRY
statement that has two nonoptional dummy arguments.

Defined elemental assignment is indicated by specifying ELEMENTAL in the
SUBROUTINE statement.

The dummy arguments represent the variable and expression, in that order.
The rank (and shape, if either or both are arrays), type, and kind parameters
of the variable and expression in the assignment statement must match those
of the corresponding dummy arguments.

The dummy arguments must not both be numeric, or of type logical or
character with the same kind parameter.

If the variable in an elemental assignment is an array, the defined assignment
is performed element-by-element, in any order, on corresponding elements of
the variable and expression. If the expression is scalar, it is treated as if it
were an array of the same shape as the variable with every element of the
array equal to the scalar value of the expression.

For More Information:

• On subroutine subprograms, see Section 8.5.3.

• On subroutine subprograms that define assignment, see Section 8.9.5.

• On derived data types, see Section 3.3.

• On intrinsic operations, see Sections 4.1.1 and 4.1.2.

4–24 Expressions and Assignment Statements

4.2.3 Pointer Assignments
In ordinary assignment involving pointers, the pointer is an alias for its target.
In pointer assignment, the pointer is associated with a target. If the target is
undefined or disassociated, the pointer acquires the same status as the target.
The pointer assignment statement has the following form:

pointer-object => target

pointer-object
Is a variable name or structure component declared with the POINTER
attribute.

target
Is a variable or expression. Its type and kind parameters, and rank must
be the same as pointer-object. It cannot be an array section with a vector
subscript.

Rules and Behavior
If the target is a variable, it must have the POINTER or TARGET attribute, or
be a subobject whose parent object has the TARGET attribute.

If the target is an expression, the result must be a pointer.

If the target is not a pointer (it has the TARGET attribute), the pointer object
is associated with the target.

If the target is a pointer (it has the POINTER attribute), its status determines
the status of the pointer object, as follows:

• If the pointer is associated, the pointer object is associated with the same
object as the target

• If the pointer is disassociated, the pointer object becomes disassociated

• If the pointer is undefined, the pointer object becomes undefined

A pointer must not be referenced or defined unless it is associated with a target
that can be referenced or defined.

When pointer assignment occurs, any previous association between the pointer
object and a target is terminated.

Pointers can also be assigned for a pointer structure component by execution
of a derived-type intrinsic assignment statement or a defined assignment
statement.

Pointers can also become associated by using the ALLOCATE statement to
allocate the pointer.

Expressions and Assignment Statements 4–25

Pointers can become disassociated by deallocation, nullification of the pointer
(using the DEALLOCATE or NULLIFY statements), or by reference to the
NULL intrinsic function.

Examples
The following are examples of pointer assignments:

HOUR => MINUTES(1:60) ! target is an array
M_YEAR => MY_CAR%YEAR ! target is a structure component
NEW_ROW%RIGHT => CURRENT_ROW ! pointer object is a structure component
PTR => M ! target is a variable
POINTER_C => NULL () ! reference to NULL intrinsic

The following example shows a target as a pointer:

INTEGER, POINTER :: P, N
INTEGER, TARGET :: M
INTEGER S
M = 14
N => M ! N is associated with M
P => N ! P is associated with M through N
S = P + 5

The value assigned to S is 19 (14 + 5).

For More Information:

• On arrays, see Section 3.5.2.

• On pointers, see Section 5.15.

• On the ALLOCATE, DEALLOCATE, and NULLIFY statements, see
Chapter 6.

• On derived-type intrinsic assignments, see Section 4.2.1.

• On defined assignment, see Section 4.2.2.

• On the NULL intrinsic function, see Section 9.4.111.

4.2.4 WHERE Statement and Construct
The WHERE statement and construct let you use masked array assignment,
which performs an array operation on selected elements. This kind of
assignment applies a logical test to an array on an element-by-element
basis.

The WHERE statement takes the following form:

WHERE (mask-expr1) assign-stmt

4–26 Expressions and Assignment Statements

The WHERE construct takes the following form:

[name:] WHERE (mask-expr1)
[where-body-stmt]...

[ELSEWHERE (mask-expr2) [name]
[where-body-stmt]...]

[ELSEWHERE [name]
[where-body-stmt]...]

END WHERE [name]

mask-expr1, mask-expr2
Are logical array expressions (called mask expressions).

assign-stmt
Is an assignment statement of the form: array variable = array expression.

name
Is the name of the WHERE construct.

where-body-stmt
Is one of the following:

• An assign-stmt

This can be a defined assignment only if the routine implementing the
defined assignment is elemental.

• A WHERE statement or construct

Rules and Behavior
If a construct name is specified in a WHERE statement, the same name must
appear in the corresponding END WHERE statement. The same construct
name can optionally appear in any ELSEWHERE statement in the construct.
(ELSEWHERE cannot specify a different name.)

In each assignment statement, the mask expression, the variable being
assigned to, and the expression on the right side, must all be conformable.
Also, the assignment statement cannot be a defined assignment.

Only the WHERE statement (or the first line of the WHERE construct) can be
labeled as a branch target statement.

The following is an example of a WHERE statement:

Expressions and Assignment Statements 4–27

INTEGER A, B, C
DIMENSION A(5), B(5), C(5)
DATA A /0,1,1,1,0/
DATA B /10,11,12,13,14/
C = -1

WHERE(A .NE. 0) C = B / A

The resulting array C contains: –1,11,12,13, and –1.

The assignment statement is only executed for those elements where the mask
is true. Think of the mask expression as being evaluated first into a logical
array that has the value true for those elements where A is positive. This
array of trues and falses is applied to the arrays A, B and C in the assignment
statement. The right side is only evaluated for elements for which the mask is
true; assignment on the left side is only performed for those elements for which
the mask is true. The elements for which the mask is false do not get assigned
a value.

In a WHERE construct, the mask expression is evaluated first and only
once. Every assignment statement following the WHERE is executed as
if it were a WHERE statement with ‘‘mask-expr1’’ and every assignment
statement following the ELSEWHERE is executed as if it were a WHERE
statement with ‘‘.NOT. mask-expr1’’. If ELSEWHERE specifies ‘‘mask-expr2’’, it
is executed as ‘‘(.NOT. mask-expr1) .AND. mask-expr2’’ during the processing of
the ELSEWHERE statement.

You should be careful if the statements have side effects, or modify each other
or the mask expression.

The following is an example of the WHERE construct:

DIMENSION PRESSURE(1000), TEMP(1000), PRECIPITATION(1000)
WHERE(PRESSURE .GE. 1.0)
PRESSURE = PRESSURE + 1.0
TEMP = TEMP - 10.0

ELSEWHERE
PRECIPITATION = .TRUE.

ENDWHERE

The mask is applied to the arguments of functions on the right side of the
assignment if they are considered to be elemental functions. Only elemental
intrinsics are considered elemental functions. Transformational intrinsics,
inquiry intrinsics, and functions or operations defined in the subprogram are
considered to be nonelemental functions.

Consider the following example using LOG, an elemental function:

WHERE(A .GT. 0) B = LOG(A)

4–28 Expressions and Assignment Statements

The mask is applied to A, and LOG is executed only for the positive values of
A. The result of the LOG is assigned to those elements of B where the mask is
true.

Consider the following example using SUM, a nonelemental function:

REAL A, B
DIMENSION A(10,10), B(10)
WHERE(B .GT. 0.0) B = SUM(A, DIM=1)

Since SUM is nonelemental, it is evaluated fully for all of A. Then, the
assignment only happens for those elements for which the mask evaluated
to true.

Consider the following example:

REAL A, B, C
DIMENSION A(10,10), B(10), C(10)
WHERE(C .GT. 0.0) B = SUM(LOG(A), DIM=1)/C

Because SUM is nonelemental, all of its arguments are evaluated fully
regardless of whether they are elemental or not. In this example, LOG(A)
is fully evaluated for all elements in A even though LOG is elemental. Notice
that the mask is applied to the result of the SUM and to C to determine
the right side. One way of thinking about this is that everything inside the
argument list of a nonelemental function does not use the mask, everything
outside does.

For More Information:
On a generalized form of masked array assignment, see Section 4.2.5.

4.2.5 FORALL Statement and Construct
The FORALL statement and construct is a generalization of the Fortran 95/90
masked array assignment (WHERE statement and construct). It allows more
general array shapes to be assigned, especially in construct form.

FORALL is a feature of Fortran 95. It takes the following form:

FORALL (triplet-spec [,triplet-spec]...[,mask-expr]) assign-stmt

The FORALL construct takes the following form:

[name:] FORALL (triplet-spec [,triplet-spec]...[,mask-expr])
forall-body-stmt
[forall-body-stmt]...

END FORALL [name]

Expressions and Assignment Statements 4–29

triplet-spec
Is a triplet specification with the following form:

subscript-name = subscript-1 : subscript-2 [:stride]

The subscript-name must be a scalar of type integer. It is valid only within the
scope of the FORALL; its value is undefined on completion of the FORALL.

The subscripts and stride cannot contain a reference to any subscript-name in
triplet-spec.

The stride cannot be zero. If it is omitted, the default value is 1.

Evaluation of an expression in a triplet specification must not affect the result
of evaluating any other expression in another triplet specification.

mask-expr
Is a logical array expression (called the mask expression). If it is omitted, the
value .TRUE. is assumed. The mask expression can reference the subscript
name in triplet-spec.

assign-stmt
Is an assignment statement or a pointer assignment statement. The variable
being assigned to must be an array element or array section and must
reference all subscript names included in all triplet-specs.

name
Is the name of the FORALL construct.

forall-body-stmt
Is one of the following:

• An assignment-stmt

• A WHERE statement or construct

The WHERE statement and construct use a mask to make the array
assignments (see Section 4.2.4).

• A FORALL statement or construct

Rules and Behavior
If a construct name is specified in the FORALL statement, the same name
must appear in the corresponding END FORALL statement.

A FORALL statement is executed by first evaluating all bounds and stride
expressions in the triplet specifications, giving a set of values for each subscript
name. The FORALL assignment statement is executed for all combinations of
subscript name values for which the mask expression is true.

4–30 Expressions and Assignment Statements

The FORALL assignment statement is executed as if all expressions (on both
sides of the assignment) are completely evaluated before any part of the left
side is changed. Valid values are assigned to corresponding elements of the
array being assigned to. No element of an array can be assigned a value more
than once.

A FORALL construct is executed as if it were multiple FORALL statements,
with the same triplet specifications and mask expressions. Each statement in
the FORALL body is executed completely before execution begins on the next
FORALL body statement.

Any procedure referenced in the mask expression or FORALL assignment
statement must be pure.

Pure functions can be used in the mask expression or called directly in a
FORALL statement. Pure subroutines cannot be called directly in a FORALL
statement, but can be called from other pure procedures.

Examples
Consider the following:

FORALL(I = 1:N, J = 1:N, A(I, J) .NE. 0.0) B(I, J) = 1.0 / A(I, J)

This statement takes the reciprocal of each nonzero element of array A(1:N,
1:N) and assigns it to the corresponding element of array B. Elements of A that
are zero do not have their reciprocal taken, and no assignments are made to
corresponding elements of B.

Every array assignment statement and WHERE statement can be written
as a FORALL statement, but some FORALL statements cannot be written
using just array syntax. For example, the preceding FORALL statement is
equivalent to the following:

WHERE(A /= 0.0) B = 1.0 / A

It is also equivalent to:

FORALL (I = 1:N, J = 1:N)
WHERE(A(I, J) .NE. 0.0) B(I, J) = 1.0/A(I, J)

END FORALL

However, the following FORALL example cannot be written using just array
syntax:

FORALL(I = 1:N, J = 1:N) H(I, J) = 1.0/REAL(I + J - 1)

This statement sets array element H(I, J) to the value 1.0/REAL(I + J - 1) for
values of I and J between 1 and N.

Expressions and Assignment Statements 4–31

Consider the following:

TYPE MONARCH
INTEGER, POINTER :: P

END TYPE MONARCH

TYPE(MONARCH), DIMENSION(8) :: PATTERN
INTEGER, DIMENSION(8), TARGET :: OBJECT
FORALL(J=1:8) PATTERN(J)%P => OBJECT(1+IEOR(J-1,2))

This FORALL statement causes elements 1 through 8 of array PATTERN to
point to elements 3, 4, 1, 2, 7, 8, 5, and 6, respectively, of OBJECT. IEOR can
be referenced here because it is pure.

The following example shows a FORALL construct:

FORALL(I = 3:N + 1, J = 3:N + 1)
C(I, J) = C(I, J + 2) + C(I, J - 2) + C(I + 2, J) + C(I - 2, J)
D(I, J) = C(I, J)

END FORALL

The assignment to array D uses the values of C computed in the first statement
in the construct, not the values before the construct began execution.

For More Information:

• On subscript triplets, see Section 3.5.2.3.

• On pointer assignment, see Section 4.2.3.

• On the WHERE statement and construct, see Section 4.2.4.

• On pure procedures, see Section 8.5.1.2.

• On the FORALL statement and construct, see the HP Fortran for
OpenVMS User Manual.

4–32 Expressions and Assignment Statements

5
Specification Statements

A specification statement is a nonexecutable statement that declares the
attributes of data objects. In Fortran 95/90, many of the attributes that can
be defined in specification statements can also be optionally specified in type
declaration statements.

This chapter contains information on the following topics:

• Type declaration statement (Section 5.1)

Explicitly specifies the properties (for example: data type, rank, and
extent) of data objects.

• ALLOCATABLE attribute and statement (Section 5.2)

Specifies a list of array names that are allocatable (have a deferred-shape).

• AUTOMATIC and STATIC attributes and statements (Section 5.3)

Control the storage allocation of variables in subprograms.

• COMMON statement (Section 5.4)

Defines one or more contiguous areas, or blocks, of physical storage (called
common blocks).

• DATA statement (Section 5.5)

Assigns initial values to variables before program execution.

• DIMENSION attribute and statement (Section 5.6)

Specifies that an object is an array, and defines the shape of the array.

• EQUIVALENCE statement (Section 5.7)

Specifies that a storage area is shared by two or more objects in a program
unit.

• EXTERNAL attribute and statement (Section 5.8)

Allows external (user-supplied) procedures to be used as arguments to
other subprograms.

Specification Statements 5–1

• IMPLICIT statement (Section 5.9)

Overrides the implicit data type of names.

• INTENT attribute and statement (Section 5.10)

Specifies the intended use of a dummy argument.

• INTRINSIC attribute and statement (Section 5.11)

Allows intrinsic procedures to be used as arguments to subprograms.

• NAMELIST statement (Section 5.12)

Associates a name with a list of variables. This group name can be
referenced in some input/output operations.

• OPTIONAL attribute and statement (Section 5.13)

Allows a procedure reference to omit arguments.

• PARAMETER attribute and statement (Section 5.14)

Defines a named constant.

• POINTER attribute and statement (Section 5.15)

Specifies that an object is a pointer.

• PRIVATE and PUBLIC attributes and statements (Section 5.16)

Declare the accessibility of entities in a module.

• SAVE attribute and statement (Section 5.17)

Causes the definition and status of objects to be retained after the
subprogram in which they are declared completes execution.

• TARGET attribute and statement (Section 5.18)

Specifies a pointer target.

• VOLATILE attribute and statement (Section 5.19)

Prevents optimizations from being performed on specified objects.

For more information on BLOCK DATA and PROGRAM statements, see
Chapter 8.

5–2 Specification Statements

5.1 Type Declaration Statements
A type declaration statement explicitly specifies the properties of data objects
or functions.

The general form of a type declaration statement follows:

type [[,att]... ::] v [/c-list/] [,v [/c-list/]]...

type
Is one of the following data type specifiers:

BYTE DOUBLE COMPLEX

INTEGER[([KIND=]k)] CHARACTER[([LEN=]n)[,[KIND=]k]]

REAL[([KIND=]k)] LOGICAL[([KIND=]k)]

DOUBLE PRECISION TYPE (derived-type-name)

COMPLEX[([KIND=]k)]

In the optional kind selector ‘‘([KIND=]k)’’, k is the kind parameter. It must
be an acceptable kind parameter for that data type. If the kind selector is
not present, entities declared are of default type. (For a list of the valid
noncharacter data types, see Table 5–2.)

Kind parameters for intrinsic numeric and logical data types can also be
specified using the *n format, where n is the length (in bytes) of the entity; for
example, INTEGER*4.

att
Is one of the following attribute specifiers:

ALLOCATABLE (Section 5.2) POINTER (Section 5.15)

AUTOMATIC (Section 5.3) PRIVATE1 (Section 5.16)

DIMENSION (Section 5.6) PUBLIC1 (Section 5.16)

EXTERNAL (Section 5.8) SAVE (Section 5.17)

INTENT (Section 5.10) STATIC (Section 5.3)

INTRINSIC (Section 5.11) TARGET (Section 5.18)

OPTIONAL (Section 5.13) VOLATILE (Section 5.19)

PARAMETER (Section 5.14)

1These are access specifiers.

v
Is the name of a data object or function. It can optionally be followed by:

• An array specification, if the object is an array.

Specification Statements 5–3

In a function declaration, an array must be a deferred-shape array if it has
the POINTER attribute; otherwise, it must be an explicit-shape array.

• A character length, if the object is of type character.

• An initialization expression or, for pointer objects, => NULL().

A function name must be the name of an intrinsic function, external function,
function dummy procedure, or statement function.

c-list
Is a list of constants, as in a DATA statement. If v is the name of a constant or
an initialization expression, the c-list cannot be present.

The c-list cannot specify more than one value unless it initializes an array.
When initializing an array, the c-list must contain a value for every element in
the array.

Rules and Behavior
Type declaration statements must precede all executable statements.

In most cases, a type declaration statement overrides (or confirms) the implicit
type of an entity. However, a variable that appears in a DATA statement and
is typed implicitly can appear in a subsequent type declaration only if that
declaration confirms the implicit typing.

The double colon separator (::) is required only if the declaration contains an
attribute specifier or initialization; otherwise it is optional.

If att appears, c-list cannot be specified; for example:

INTEGER I /2/ ! Valid
INTEGER, SAVE :: I /2/ ! Invalid

The same attribute must not appear more than once in a given type declaration
statement, and an entity cannot be given the same attribute more than once in
a scoping unit.

If the PARAMETER attribute is specified, the declaration must contain an
initialization expression.

If => NULL() is specified for a pointer, its initial association status is
disassociated.

A variable (or variable subobject) can only be initialized once in an executable
program.

5–4 Specification Statements

If a declaration contains an initialization expression, but no PARAMETER
attribute is specified, the object is a variable whose value is initially defined.
The object becomes defined with the value determined from the initialization
expression according to the rules of intrinsic assignment.

The presence of initialization implies that the name of the object is saved,
except for objects in named common blocks or objects with the PARAMETER
attribute.

The following objects cannot be initialized in a type declaration statement:

• Dummy argument

• Function result

• Object in a named common block (unless the type declaration is in a block
data program unit)

• Object in blank common

• Allocatable array

• External name

• Intrinsic name

• Automatic object

• Object that has the AUTOMATIC attribute

An object can have more than one attribute. Table 5–1 shows compatible
attributes.

Specification Statements 5–5

Table 5–1 Compatible Attributes

Attribute Compatible with:

ALLOCATABLE AUTOMATIC, DIMENSION1, PRIVATE, PUBLIC, SAVE,
STATIC, TARGET, VOLATILE

AUTOMATIC ALLOCATABLE, DIMENSION, POINTER, TARGET,
VOLATILE

DIMENSION ALLOCATABLE, AUTOMATIC, INTENT, OPTIONAL,
PARAMETER, POINTER, PRIVATE, PUBLIC, SAVE, STATIC,
TARGET, VOLATILE

EXTERNAL OPTIONAL, PRIVATE, PUBLIC

INTENT DIMENSION, OPTIONAL, TARGET, VOLATILE

INTRINSIC PRIVATE, PUBLIC

OPTIONAL DIMENSION, EXTERNAL, INTENT, POINTER, TARGET,
VOLATILE

PARAMETER DIMENSION, PRIVATE, PUBLIC

POINTER AUTOMATIC, DIMENSION1, OPTIONAL, PRIVATE, PUBLIC,
SAVE, STATIC, VOLATILE

PRIVATE ALLOCATABLE, DIMENSION, EXTERNAL, INTRINSIC,
PARAMETER, POINTER, SAVE, STATIC, TARGET,
VOLATILE

PUBLIC ALLOCATABLE, DIMENSION, EXTERNAL, INTRINSIC,
PARAMETER, POINTER, SAVE, STATIC, TARGET,
VOLATILE

SAVE ALLOCATABLE, DIMENSION, POINTER, PRIVATE, PUBLIC,
STATIC, TARGET, VOLATILE

STATIC ALLOCATABLE, DIMENSION, POINTER, PRIVATE, PUBLIC,
SAVE, TARGET, VOLATILE

TARGET ALLOCATABLE, AUTOMATIC, DIMENSION, INTENT,
OPTIONAL, PRIVATE, PUBLIC, SAVE, STATIC, VOLATILE

VOLATILE ALLOCATABLE, AUTOMATIC, DIMENSION, INTENT,
OPTIONAL, POINTER, PRIVATE, PUBLIC, SAVE, STATIC,
TARGET

1With deferred shape.

Examples
The following show valid type declaration statements:

5–6 Specification Statements

DOUBLE PRECISION B(6)
INTEGER(KIND=2) I
REAL(KIND=4) X, Y
REAL(4) X, Y
LOGICAL, DIMENSION(10,10) :: ARRAY_A, ARRAY_B
INTEGER, PARAMETER :: SMALLEST = SELECTED_REAL_KIND(6, 70)
REAL(KIND (0.0)) M
COMPLEX(KIND=8) :: D
TYPE(EMPLOYEE) :: MANAGER
REAL, INTRINSIC :: COS
CHARACTER(15) PROMPT
CHARACTER*12, SAVE :: HELLO_MSG
INTEGER COUNT, MATRIX(4,4), SUM
LOGICAL*2 SWITCH
REAL :: X = 2.0
TYPE (NUM), POINTER :: FIRST => NULL()

For More Information:

• On specific kind parameters of intrinsic data types, see Section 3.2.

• On derived data types, see Section 3.3.

• On implicit typing, see Section 3.5.1.2.

• On the DATA statement, see Section 5.5.

• On initialization expressions, see Section 4.1.7.1.

5.1.1 Declaration Statements for Noncharacter Types
Table 5–2 shows the data types that can appear in noncharacter type
declaration statements.

Specification Statements 5–7

Table 5–2 Noncharacter Data Types

BYTE1

LOGICAL2

LOGICAL(1) (or LOGICAL*1)

LOGICAL(2) (or LOGICAL*2)

LOGICAL(4) (or LOGICAL*4)

LOGICAL(8) (or LOGICAL*8)

INTEGER3

INTEGER(1) (or INTEGER*1)

INTEGER(2) (or INTEGER*2)

INTEGER(4) (or INTEGER*4)

INTEGER(8) (or INTEGER*8)

REAL4

REAL(4) (or REAL*4)

DOUBLE PRECISION (REAL(8) or REAL*8)

REAL(16) (or REAL*16)

COMPLEX5

COMPLEX(4) (or COMPLEX*8)

DOUBLE COMPLEX (COMPLEX(8) or COMPLEX*16)

COMPLEX(16) (or COMPLEX*32)

1Same as INTEGER(1).
2This is treated as default logical.
3This is treated as default integer.
4This is treated as default real.
5This is treated as default complex.

In noncharacter type declaration statements, you can optionally specify the
name of the data object or function as v*n, where n is the length (in bytes) of
v. The length specified overrides the length implied by the data type.

The value for n must be a valid length for the type of v (see Table 15–2). The
type specifiers BYTE, DOUBLE PRECISION, and DOUBLE COMPLEX have
one valid length, so the n specifier is invalid for them.

For an array specification, the n must be placed immediately following the
array name; for example, in an INTEGER declaration statement, IVEC*2(10)
is an INTEGER(2) array of 10 elements.

5–8 Specification Statements

Examples
In a noncharacter type declaration statement, a subsequent kind parameter
overrides any initial kind parameter. For example, consider the following
statements:

INTEGER(2) I, J, K, M12*4, Q, IVEC*4(10)
REAL(8) WX1, WXZ, WX3*4, WX5, WX6*4
REAL(8) PI/3.14159E0/, E/2.72E0/, QARRAY(10)/5*0.0,5*1.0/

In the first statement, M12*4 and IVEC*4 override the KIND=2 specification.
In the second statement, WX3*4 and WX6*4 override the KIND=8 specifica-
tion. In the third statement, QARRAY is initialized with implicit conversion of
the REAL(4) constants to a REAL(8) data type.

For More Information:

• On compiler options that can affect the defaults for numeric and logical
data types, see the HP Fortran for OpenVMS User Manual.

• On the general form and rules for type declaration statements, see
Section 5.1.

5.1.2 Declaration Statements for Character Types
A CHARACTER type specifier can be immediately followed by the length of the
character object or function. It takes one of the following forms:

Keyword Forms

CHARACTER [([LEN=]len)]
CHARACTER [([LEN=]len [,[KIND=]n])]
CHARACTER [(KIND=n [,LEN=len])]

Nonkeyword Form

CHARACTER*len[,]

len
Is one of the following:

• In keyword forms

The len is a specification expression or an asterisk (*). If no length is
specified, the default length is 1.

If the length evaluates to a negative value, the length of the character
entity is zero.

• In nonkeyword form

Specification Statements 5–9

The len is a specification expression or an asterisk enclosed in parentheses,
or a scalar integer literal constant (with no kind parameter). The comma
is permitted only if no double colon (::) appears in the type declaration
statement.

This form can also (optionally) be specified following the name of the data
object or function (v*len). In this case, the length specified overrides any
length following the CHARACTER type specifier.

The largest valid value for len in both forms is 65535. Negative values are
treated as zero.

n
Is a scalar integer initialization expression specifying a valid kind parameter.
Currently the only kind available is 1.

Rules and Behavior
An automatic object can appear in a character declaration. The object cannot
be a dummy argument, and its length must be declared with a specification
expression that is not a constant expression.

The length specified for a character-valued statement function or statement
function dummy argument of type character must be an integer constant
expression.

When an asterisk length specification *(*) is used for a function name
or dummy argument, it assumes the length of the corresponding function
reference or actual argument. Similarly, when an asterisk length specification
is used for a named constant, the name assumes the length of the actual
constant it represents. For example, STRING assumes a 9-byte length in the
following statements:

CHARACTER*(*) STRING
PARAMETER (STRING = ’VALUE IS:’)

A function name must not be declared with a * length if the function is an
internal or module function, or if it is array-valued, pointer-valued, recursive,
or pure.

The form CHARACTER*(*) is an obsolescent feature in Fortran 95.

Examples
The following example declares an array NAMES containing 100 32-character
elements, an array SOCSEC containing 100 9-character elements, and a
variable NAMETY that is 10 characters long and has an initial value of
’ABCDEFGHIJ’.

CHARACTER*32 NAMES(100),SOCSEC(100)*9,NAMETY*10 /’ABCDEFGHIJ’/

5–10 Specification Statements

The following example includes a CHARACTER statement declaring two
8-character variables, LAST and FIRST.

INTEGER, PARAMETER :: LENGTH=4
CHARACTER*(4+LENGTH) LAST, FIRST

The following example shows a CHARACTER statement declaring an array
LETTER containing 26 one-character elements. It also declares a dummy
argument BUBBLE that has a passed length defined by the calling program.

SUBROUTINE S1(BUBBLE)
CHARACTER LETTER(26), BUBBLE*(*)

In the following example, NAME2 is an automatic object:

SUBROUTINE AUTO_NAME(NAME1)
CHARACTER(LEN = *) NAME1
CHARACTER(LEN = LEN(NAME1)) NAME2

For More Information:

• On asterisk length specifications, see Sections 3.5.1.1 and 8.8.4.

• On the general form and rules for type declaration statements, see
Section 5.1.

• On obsolescent features in Fortran 95, see Appendix A.

5.1.3 Declaration Statements for Derived Types
The derived-type (TYPE) declaration statement specifies the properties of
objects and functions of derived (user-defined) type.

The derived type must be defined before you can specify objects of that type in
a TYPE type declaration statement.

An object of derived type must not have the PUBLIC attribute if its type is
PRIVATE.

A structure constructor specifies values for derived-type objects.

Examples
The following are examples of derived-type declaration statements:

TYPE(EMPLOYEE) CONTRACT
...
TYPE(SETS), DIMENSION(:,:), ALLOCATABLE :: SUBSET_1

Specification Statements 5–11

The following example shows a public type with private components:

TYPE LIST_ITEMS
PRIVATE
...
TYPE(LIST_ITEMS), POINTER :: NEXT, PREVIOUS

END TYPE LIST_ITEMS

For More Information:

• On derived data types, see Section 3.3.

• On the general form and rules for type declaration statements, see
Section 5.1.

• On use and host association, see Section 15.5.1.2.

• On the PUBLIC and PRIVATE attributes, see Section 5.16.

• On structure constructors, see Section 3.3.4.

5.1.4 Declaration Statements for Arrays
An array declaration (or array declarator) declares the shape of an array. It
takes the following form:

(a-spec)

a-spec
Is one of the following array specifications:

• Explicit-shape (see Section 5.1.4.1)

• Assumed-shape (see Section 5.1.4.2)

• Assumed-size (see Section 5.1.4.3)

• Deferred-shape (see Section 5.1.4.4)

The array specification can be appended to the name of the array when the
array is declared.

Examples
The following examples show array declarations:

SUBROUTINE SUB(N, C, D, Z)
REAL, DIMENSION(N, 15) :: IARRY ! An explicit-shape array
REAL C(:), D(0:) ! An assumed-shape array
REAL, POINTER :: B(:,:) ! A deferred-shape array pointer
REAL, ALLOCATABLE, DIMENSION(:) :: K ! A deferred-shape allocatable array
REAL :: Z(N,*) ! An assumed-size array

5–12 Specification Statements

For More Information:
On the general form and rules for type declaration statements, see Section 5.1.

5.1.4.1 Explicit-Shape Specifications
An explicit-shape array is declared with explicit values for the bounds in
each dimension of the array. An explicit-shape specification takes the following
form:

([dl:] du[, [dl:] du]...)

dl
Is a specification expression indicating the lower bound of the dimension. The
expression can have a positive, negative, or zero value. If necessary, the value
is converted to integer type.

If the lower bound is not specified, it is assumed to be 1.

du
Is a specification expression indicating the upper bound of the dimension. The
expression can have a positive, negative, or zero value. If necessary, the value
is converted to integer type.

The bounds can be specified as constant or nonconstant expressions, as follows:

• If the bounds are constant expressions, the subscript range of the array in
a dimension is the set of integer values between and including the lower
and upper bounds. If the lower bound is greater than the upper bound, the
range is empty, the extent in that dimension is zero, and the array has a
size of zero.

• If the bounds are nonconstant expressions, the array must be declared in a
procedure. The bounds can have different values each time the procedure
is executed, since they are determined when the procedure is entered.

The bounds are not affected by any redefinition or undefinition of the
variables in the specification expression that occurs while the procedure is
executing.

The following explicit-shape arrays can specify nonconstant bounds:

An automatic array (the array is a local variable)

An adjustable array (the array is a dummy argument to a subprogram)

Specification Statements 5–13

The following are examples of explicit-shape specifications:

INTEGER I(3:8, -2:5) ! Rank-two array; range of dimension one is
... ! 3 to 8, range of dimension two is -2 to 5
SUBROUTINE SUB(A, B, C)
INTEGER :: B, C
REAL, DIMENSION(B:C) :: A ! Rank-one array; range is B to C

Automatic Arrays
An automatic array is an explicit-shape array that is a local variable.
Automatic arrays are only allowed in function and subroutine subprograms,
and are declared in the specification part of the subprogram. At least one
bound of an automatic array must be a nonconstant specification expression.
The bounds are determined when the subprogram is called.

The following example shows automatic arrays:

SUBROUTINE SUB1 (A, B)
INTEGER A, B, LOWER
COMMON /BOUND/ LOWER
...
INTEGER AUTO_ARRAY1(B)
...
INTEGER AUTO_ARRAY2(LOWER:B)
...
INTEGER AUTO_ARRAY3(20, B*A/2)

END SUBROUTINE

Adjustable Arrays
An adjustable array is an explicit-shape array that is a dummy argument
to a subprogram. At least one bound of an adjustable array must be a
nonconstant specification expression. The bounds are determined when the
subprogram is called.

The array specification can contain integer variables that are either dummy
arguments or variables in a common block.

When the subprogram is entered, each dummy argument specified in the
bounds must be associated with an actual argument. If the specification
includes a variable in a common block, the variable must have a defined
value. The array specification is evaluated using the values of the actual
arguments, as well as any constants or common block variables that appear in
the specification.

The size of the adjustable array must be less than or equal to the size of the
array that is its corresponding actual argument.

5–14 Specification Statements

To avoid possible errors in subscript evaluation, make sure that the bounds
expressions used to declare multidimensional adjustable arrays match the
bounds as declared by the caller.

In the following example, the function computes the sum of the elements of
a rank-two array. Notice how the dummy arguments M and N control the
iteration:

FUNCTION THE_SUM(A, M, N)
DIMENSION A(M, N)
SUMX = 0.0
DO J = 1, N
DO I = 1, M
SUMX = SUMX + A(I, J)

END DO
END DO
THE_SUM = SUMX

END FUNCTION

The following are examples of calls on THE_SUM:

DIMENSION A1(10,35), A2(3,56)
SUM1 = THE_SUM(A1,10,35)
SUM2 = THE_SUM(A2,3,56)

The following example shows how the array bounds determined when the
procedure is entered do not change during execution:

DIMENSION ARRAY(9,5)
L = 9
M = 5
CALL SUB(ARRAY,L,M)
END

SUBROUTINE SUB(X,I,J)
DIMENSION X(-I/2:I/2,J)
X(I/2,J) = 999
J = 1
I = 2

END

The assignments to I and J do not affect the declaration of adjustable array X
as X(–4:4,5) on entry to subroutine SUB.

For More Information:
On specification expressions, see Section 4.1.7.2.

Specification Statements 5–15

5.1.4.2 Assumed-Shape Specifications
An assumed-shape array is a dummy argument array that assumes the
shape of its associated actual argument array. An assumed-shape specification
takes the following form:

([dl]:[, [dl]:]...)

dl
Is a specification expression indicating the lower bound of the dimension. The
expression can have a positive, negative, or zero value. If necessary, the value
is converted to integer type.

If the lower bound is not specified, it is assumed to be 1.

The rank of the array is the number of colons (:) specified.

The value of the upper bound is the extent of the corresponding dimension of
the associated actual argument array � lower-bound � 1.

The following is an example of an assumed-shape specification:

INTERFACE
SUBROUTINE SUB(M)
INTEGER M(:, 1:, 5:)

END SUBROUTINE
END INTERFACE
INTEGER L(20, 5:25, 10)
CALL SUB(L)

SUBROUTINE SUB(M)
INTEGER M(:, 1:, 5:)

END SUBROUTINE

Array M has the same extents as array L, but array M has bounds (1:20, 1:21,
5:14).

Note that an explicit interface is required when calling a routine that expects
an assumed-shape or pointer array.

5.1.4.3 Assumed-Size Specifications
An assumed-size array is a dummy argument array that assumes the size
(only) of its associated actual argument array; the rank and extents can differ
for the actual and dummy arrays. An assumed-size specification takes the
following form:

([expli-shape-spec,] [expli-shape-spec,]... [dl:] *)

5–16 Specification Statements

expli-shape-spec
Is an explicit-shape specification (see Section 5.1.4.1).

dl
Is a specification expression indicating the lower bound of the dimension. The
expression can have a positive, negative, or zero value. If necessary, the value
is converted to integer type.

If the lower bound is not specified, it is assumed to be 1.

*
Is the upper bound of the last dimension.

The rank of the array is the number of explicit-shape specifications plus 1.

The size of the array is assumed from the actual argument associated with the
assumed-size dummy array as follows:

• If the actual argument is an array of type other than default character, the
size of the dummy array is the size of the actual array.

• If the actual argument is an array element of type other than default
character, the size of the dummy array is �� �� �, where s is the subscript
order value and a is the size of the actual array.

• If the actual argument is a default character array, array element, or array
element substring, and it begins at character storage unit b of an array
with n character storage units, the size of the dummy array is as follows:

������� ��	� ��
	��	�
	

The y is the length of an element of the dummy array.

An assumed-size array can only be used as a whole array reference in the
following cases:

• When it is an actual argument in a procedure reference that does not
require the shape

• In the intrinsic function LBOUND

Because the actual size of an assumed-size array is unknown, an assumed-size
array cannot be used as any of the following in an I/O statement:

• An array name in the I/O list

• A unit identifier for an internal file

• A run-time format specifier

Specification Statements 5–17

The following is an example of an assumed-size specification:

SUBROUTINE SUB(A, N)
REAL A, N
DIMENSION A(1:N, *)
...

For More Information:
On array element order, see Section 3.5.2.2.

5.1.4.4 Deferred-Shape Specifications
A deferred-shape array is an array pointer or an allocatable array.

The array specification contains a colon (:) for each dimension of the array. No
bounds are specified. The bounds (and shape) of allocatable arrays and array
pointers are determined when space is allocated for the array during program
execution.

An array pointer is an array declared with the POINTER attribute. Its
bounds and shape are determined when it is associated with a target by pointer
assignment, or when the pointer is allocated by execution of an ALLOCATE
statement.

In pointer assignment, the lower bound of each dimension of the array pointer
is the result of the LBOUND intrinsic function applied to the corresponding
dimension of the target. The upper bound of each dimension is the result of
the UBOUND intrinsic function applied to the corresponding dimension of the
target.

A pointer dummy argument can be associated only with a pointer actual
argument. An actual argument that is a pointer can be associated with a
nonpointer dummy argument.

A function result can be declared to have the pointer attribute.

An allocatable array is declared with the ALLOCATABLE attribute. Its
bounds and shape are determined when the array is allocated by execution of
an ALLOCATE statement.

The following are examples of deferred-shape specifications:

REAL, ALLOCATABLE :: A(:,:) ! Allocatable array
REAL, POINTER :: C(:), D (:,:,:) ! Array pointers

5–18 Specification Statements

For More Information:

• On the POINTER attribute, see Section 5.15.

• On the ALLOCATABLE attribute, see Section 5.2.

• On the ALLOCATE statement, see Section 6.2.

• On pointer assignment, see Section 4.2.3.

• On the LBOUND intrinsic function, see Section 9.4.80.

• On the UBOUND intrinsic function, see Section 9.4.162.

5.2 ALLOCATABLE Attribute and Statement
The ALLOCATABLE attribute specifies that an array is an allocatable array
with a deferred shape. The shape of an allocatable array is determined when
an ALLOCATE statement is executed, dynamically allocating space for the
array.

The ALLOCATABLE attribute can be specified in a type declaration statement
or an ALLOCATABLE statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] ALLOCATABLE [,att-ls] :: a[(d-spec)] [,a[(d-spec)]]...

Statement:

ALLOCATABLE [::] a[(d-spec)] [,a[(d-spec)]]...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

a
Is the name of the allocatable array; it must not be a dummy argument or
function result.

d-spec
Is a deferred-shape specification (: [,:]...). Each colon represents a dimension of
the array.

Specification Statements 5–19

Rules and Behavior
If the array is given the DIMENSION attribute elsewhere in the program, it
must be declared as a deferred-shape array.

When the allocatable array is no longer needed, it can be deallocated by
execution of a DEALLOCATE statement.

An allocatable array cannot be specified in a COMMON, EQUIVALENCE,
DATA, or NAMELIST statement.

Allocatable arrays are not saved by default. If you want to retain the values
of an allocatable array across procedure calls, you must specify the SAVE
attribute for the array.

Examples
The following example shows a type declaration statement specifying the
ALLOCATABLE attribute:

REAL, ALLOCATABLE :: Z(:, :, :)

The following is an example of the ALLOCATABLE statement:

REAL A, B(:)
ALLOCATABLE :: A(:,:), B

For More Information:

• On type declaration statements, see Section 5.1.

• On the ALLOCATE statement, see Section 6.2.

• On the DEALLOCATE statement, see Section 6.3.

• On allocation status, see Section 6.2.1.

• On compatible attributes, see Table 5–1.

5.3 AUTOMATIC and STATIC Attributes and Statements
The AUTOMATIC and STATIC attributes control the storage allocation of
variables in subprograms.

The AUTOMATIC and STATIC attributes can be specified in a type declaration
statement or an AUTOMATIC or STATIC statement, and take one of the
following forms:

Type Declaration Statement:

type, [att-ls,] AUTOMATIC [,att-ls] :: v [,v]...
type, [att-ls,] STATIC [,att-ls] :: v [,v]...

5–20 Specification Statements

Statement:

AUTOMATIC v [,v]...
STATIC v [,v]...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

v
Is the name of a variable or an array specification. It can be of any type.

Rules and Behavior
AUTOMATIC and STATIC declarations only affect how data is allocated in
storage, as follows:

• A variable declared as AUTOMATIC and allocated in memory resides in
the stack storage area.

• A variable declared as STATIC and allocated in memory resides in the
static storage area.

If you want to retain definitions of variables upon reentry to subprograms, you
must use the SAVE attribute.

Automatic variables can reduce memory use because only the variables
currently being used are allocated to memory.

Automatic variables allow possible recursion. With recursion, a subprogram
can call itself (directly or indirectly), and resulting values are available
upon a subsequent call or return to the subprogram. For recursion to occur,
RECURSIVE must be specified as one of the following:

• A keyword in a FUNCTION or SUBROUTINE statement

• A compiler option

• An option in an OPTIONS statement

By default, the compiler allocates local variables of non-recursive subprograms,
except for allocatable arrays, in the static storage area. The compiler may
choose to allocate a variable in temporary (stack or register) storage if it
notices that the variable is always defined before use. Appropriate use of the
SAVE attribute can prevent compiler warnings if a variable is used before it is
defined.

Specification Statements 5–21

To change the default for variables, specify them as AUTOMATIC or specify
RECURSIVE (in one of the ways mentioned above).

To override any compiler option that may affect variables, explicitly specify the
variables as AUTOMATIC or STATIC.

Note

Variables that are data-initialized, and variables in COMMON and
SAVE statements are always static. This is regardless of whether a
compiler option specifies recursion.

A variable cannot be specified as AUTOMATIC or STATIC more than once in
the same scoping unit.

If the variable is a pointer, AUTOMATIC or STATIC apply only to the pointer
itself, not to any associated target.

Some variables cannot be specified as AUTOMATIC or STATIC. The following
table shows these restrictions:

Variable AUTOMATIC STATIC

Dummy argument No No

Automatic object No No

Common block item No Yes

Use-associated item No No

Function result No No

Component of a derived type No No

A variable can be specified with both the STATIC and SAVE attributes.

If a variable is in a module’s outer scope, it can be specified as STATIC, but not
as AUTOMATIC.

Examples
The following examples show type declaration statements specifying the
AUTOMATIC and STATIC attributes:

REAL, AUTOMATIC :: A, B, C
INTEGER, STATIC :: ARRAY_A

5–22 Specification Statements

The following example shows an AUTOMATIC AND STATIC statement:

...
CONTAINS
INTEGER FUNCTION REDO_FUNC
INTEGER I, J(10), K
REAL C, D, E(30)
AUTOMATIC I, J, K(20)
STATIC C, D, E
...

END FUNCTION
...

For More Information:

• On type declaration statements, see Section 5.1.

• On subprograms, see Section 8.5.

• On specifying recursive subprograms, see Section 8.5.1.1.

• On the OPTIONS statement, see Section 13.3.

• On compiler options, see the HP Fortran for OpenVMS User Manual.

• On compatible attributes, see Table 5–1.

• On the SAVE attribute, see Section 5.17.

• On pointers, see Section 5.15.

• On modules, see Section 8.3.

5.4 COMMON Statement
A COMMON statement defines one or more contiguous areas, or blocks, of
physical storage (called common blocks) that can be accessed by any of the
scoping units in an executable program. COMMON statements also define the
order in which variables and arrays are stored in each common block, which
can prevent misaligned data items.

Common blocks can be named or unnamed (a blank common).

The COMMON statement takes the following form:

COMMON [/[cname]/] var-list [[,] /[cname]/ var-list]...

Specification Statements 5–23

cname
Is the name of the common block. The name can be omitted for blank common
(//).

var-list
Is a list of variable names, separated by commas.

The variable must not be a dummy argument, allocatable array, automatic
object, function, function result, or entry to a procedure. It must not have the
PARAMETER attribute. If an object of derived type is specified, it must be a
sequence type.

Rules and Behavior
A common block is a global entity, and must not have the same name as any
other global entity in the program, such as a subroutine or function.

Any common block name (or blank common) can appear more than once in
one or more COMMON statements in a program unit. The list following
each successive appearance of the same common block name is treated as a
continuation of the list for the block associated with that name.

A variable can appear in only one common block within a scoping unit.

If an array is specified, it can be followed by an explicit-shape array
specification. The array must not have the POINTER attribute and each
bound in the specification must be a constant specification expression.

A pointer can only be associated with pointers of the same type and kind
parameters, and rank.

An object with the TARGET attribute can only be associated with another
object with the TARGET attribute and the same type and kind parameters.

A nonpointer can only be associated with another nonpointer, but association
depends on their types, as follows:

5–24 Specification Statements

Type of Variable Type of Associated Variable

Intrinsic numeric1 or numeric sequence2 Can be of any of these types

Default character or character sequence2 Can be of either of these types

Any other intrinsic type Must have the same type and kind
parameters

Any other sequence type Must have the same type

1Default integer, default real, double precision real, default complex, double complex, or default
logical.
2If an object of numeric sequence or character sequence type appears in a common block, it is as if
the individual components were enumerated directly in the common list.

So, variables can be associated if they are of different numeric type. For
example, the following is valid:

INTEGER A(20)
REAL Y(20)
COMMON /QUANTA/ A, Y

When common blocks from different program units have the same name, they
share the same storage area when the units are combined into an executable
program.

Entities are assigned storage in common blocks on a one-for-one basis. So,
the data type of entities assigned by a COMMON statement in one program
unit should agree with the data type of entities placed in a common block by
another program unit. For example:

Program Unit A Program Unit B

COMMON CENTS INTEGER(2) MONEY

. . . COMMON MONEY

. . .

When these program units are combined into an executable program, incorrect
results can occur if the 2-byte integer variable MONEY is made to correspond
to the lower-addressed two bytes of the real variable CENTS.

Named common blocks must be declared to have the same size in each program
unit. Blank common can have different lengths in different program units.

A variable or COMMON block must be declared VOLATILE if it can be read or
written in a way that is not visible to the compiler.

Specification Statements 5–25

Examples
In the following example, the COMMON statement in the main program puts
HEAT and X in blank common, and KILO and Q in a named common block,
BLK1:

Main Program Subprogram

COMMON HEAT,X /BLK1/KILO,Q SUBROUTINE FIGURE

. . . COMMON /BLK1/LIMA,R / /ALFA,BET

. . .

CALL FIGURE

. . . RETURN

END

The COMMON statement in the subroutine makes ALFA and BET share the
same storage location as HEAT and X in blank common. It makes LIMA and R
share the same storage location as KILO and Q in BLK1.

The following example shows how a COMMON statement can be used to
declare arrays:

COMMON / MIXED / SPOTTED(100), STRIPED(50,50)

For More Information:

• On specification expressions, see Section 4.1.7.2.

• On storage association, see Section 15.5.3.

• On derived types, see Section 3.3.

• On the EQUIVALENCE statement, see Section 5.7.

• On the interaction between COMMON and EQUIVALENCE statements,
see Section 5.7.3.

• On alignment of data items in common blocks, see the HP Fortran for
OpenVMS User Manual.

• On the VOLATILE attribute and statement, see Section 5.19.

5–26 Specification Statements

5.5 DATA Statement
The DATA statement assigns initial values to variables before program
execution. It takes the following form:

DATA var-list /c-list/[[,] var-list /c-list/]...

var-list
Is a list of variables or implied-do lists, separated by commas.

Subscript expressions and expressions in substring references must be
initialization expressions.

An implied-do list in a DATA statement takes the following form:

(do-list, var = expr1, expr2 [,expr3])

do-list
Is a list of one or more array elements, substrings, scalar structure
components, or implied-do lists, separated by commas. Any array elements or
scalar structure components must not have a constant parent.

var
Is the name of a scalar integer variable (the implied-do variable).

expr
Are scalar integer expressions. The expressions can contain variables of other
implied-do lists that have this implied-do list within their ranges.

c-list
Is a list of constants (or names of constants), or for pointer objects, NULL();
constants must be separated by commas. If the constant is a structure
constructor, each component must be an initialization expression. If the
constant is in binary, octal, or hexadecimal form, the corresponding object must
be of type integer.

A constant can be specified in the form r*constant, where r is a repeat
specification. It is a nonnegative scalar integer constant (with no kind
parameter). If it is a named constant, it must have been declared previously
in the scoping unit or made accessible through use or host association. If r is
omitted, it is assumed to be 1.

Specification Statements 5–27

Rules and Behavior
A variable can be initialized only once in an executable program. A variable
that appears in a DATA statement and is typed implicitly can appear in a
subsequent type declaration only if that declaration confirms the implicit
typing.

The number of constants in c-list must equal the number of variables in var-
list. The constants are assigned to the variables in the order in which they
appear (from left to right).

The following objects cannot be initialized in a DATA statement:

• Dummy argument

• Function

• Function result

• Automatic object

• Allocatable array

• Variable that is accessible by use or host association

• Variable in a named common block (unless the DATA statement is in a
block data program unit)

• Variable in blank common

Except for variables in named common blocks, a named variable has the
SAVE attribute if any part of it is initialized in a DATA statement. You can
confirm this property by specifying the variable in a SAVE statement or a type
declaration statement containing the SAVE attribute.

When an unsubscripted array name appears in a DATA statement, values are
assigned to every element of that array in the order of subscript progression.
The associated constant list must contain enough values to fill the array.

Array element values can be initialized in three ways: by name, by element, or
by an implied-do list (interpreted in the same way as a DO construct).

The following conversion rules and restrictions apply to variable and constant
list items:

• If the constant and the variable are both of numeric type, the following
conversion occurs:

The constant value is converted to the data type of the variable being
initialized, if necessary.

5–28 Specification Statements

When a binary, octal, or hexadecimal constant is assigned to a variable
or array element, the number of digits that can be assigned depends
on the data type of the data item. If the constant contains fewer digits
than the capacity of the variable or array element, the constant is
extended on the left with zeros. If the constant contains more digits
than can be stored, the constant is truncated on the left.

• If the constant and the variable are both of character type, the following
conversion occurs:

If the length of the constant is less than the length of the variable, the
rightmost character positions of the variable are initialized with blank
characters.

If the length of the constant is greater than the length of the variable,
the character constant is truncated on the right.

• If the constant is of numeric type and the variable is of character type, the
following restrictions apply:

The character variable must have a length of one character.

The constant must be an integer, binary, octal, or hexadecimal constant,
and must have a value in the range 0 through 255.

When the constant and variable conform to these restrictions, the variable
is initialized with the character that has the ASCII code specified by the
constant. (This lets you initialize a character object to any 8-bit ASCII
code.)

• If the constant is a Hollerith or character constant, and the variable is a
numeric variable or numeric array element, the number of characters that
can be assigned depends on the data type of the data item.

If the Hollerith or character constant contains fewer characters than the
capacity of the variable or array element, the constant is extended on the
right with blank characters. If the constant contains more characters than
can be stored, the constant is truncated on the right.

Examples
The following example shows the three ways that DATA statements can
initialize array element values:

DIMENSION A(10,10)

DATA A/100*1.0/ ! initialization by name

DATA A(1,1), A(10,1), A(3,3) /2*2.5, 2.0/ ! initialization by element

DATA ((A(I,J), I=1,5,2), J=1,5) /15*1.0/ ! initialization by implied-do list

Specification Statements 5–29

The following example shows DATA statements containing structure
components:

TYPE EMPLOYEE
INTEGER ID
CHARACTER(LEN=40) NAME

END TYPE EMPLOYEE
TYPE(EMPLOYEE) MAN_NAME, CON_NAME
DATA MAN_NAME / EMPLOYEE(417, ’Henry Adams’) /
DATA CON_NAME%ID, CON_NAME%NAME /891, "David James"/

In the following example, the first DATA statement assigns zero to all 10
elements of array A, and four asterisks followed by two blanks to the character
variable STARS:

INTEGER A(10), B(10)
CHARACTER BELL, TAB, LF, FF, STARS*6
DATA A,STARS /10*0,’****’/
DATA BELL,TAB,LF,FF /7,9,10,12/
DATA (B(I), I=1,10,2) /5*1/

In this case, the second DATA statement assigns ASCII control character codes
to the character variables BELL, TAB, LF, and FF. The last DATA statement
uses an implied-do list to assign the value 1 to the odd-numbered elements in
the array B.

As a Fortran 95 feature, a pointer can be initialized as disassociated by using a
DATA statement. For example:

INTEGER, POINTER :: P
DATA P/NULL()/
END

For More Information:

• On implied-do lists, see Section 10.2.2.

• On initialization and specification expressions, see Section 4.1.7.

• On type declaration statements, see Section 5.1.

5.6 DIMENSION Attribute and Statement
The DIMENSION attribute specifies that an object is an array, and defines the
shape of the array.

The DIMENSION attribute can be specified in a type declaration statement or
a DIMENSION statement, and takes one of the following forms:

5–30 Specification Statements

Type Declaration Statement:

type, [att-ls,] DIMENSION (a-spec) [,att-ls] :: a[(a-spec)] [,a[(a-spec)]]...

Statement:

DIMENSION [::] a(a-spec) [,a(a-spec)]...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

a-spec
Is an array specification.

In a type declaration statement, any array specification following an array
overrides any array specification following DIMENSION.

a
Is the name of the array being declared.

Rules and Behavior
The DIMENSION attribute allocates a number of storage elements to each
array named, one storage element to each array element in each dimension.
The size of each storage element is determined by the data type of the array.

The total number of storage elements assigned to an array is equal to the
number produced by multiplying together the number of elements in each
dimension in the array specification. For example, the following statement
defines ARRAY as having 16 real elements of 4 bytes each and defines MATRIX
as having 125 integer elements of 4 bytes each:

DIMENSION ARRAY(4,4), MATRIX(5,5,5)

An array can also be declared in the following statements: ALLOCATABLE,
POINTER, TARGET, and COMMON.

Examples
The following examples show type declaration statements specifying the
DIMENSION attribute:

REAL, DIMENSION(10, 10) :: A, B, C(10, 15) ! Specification following C
! overrides the one following
! DIMENSION

REAL, ALLOCATABLE, DIMENSION(:) :: E

Specification Statements 5–31

The following are examples of the DIMENSION statement:

DIMENSION BOTTOM(12,24,10)
DIMENSION X(5,5,5), Y(4,85), Z(100)
DIMENSION MARK(4,4,4,4)

SUBROUTINE APROC(A1,A2,N1,N2,N3)
DIMENSION A1(N1:N2), A2(N3:*)

CHARACTER(LEN = 20) D
DIMENSION A(15), B(15, 40), C(-5:8, 7), D(15)

For More Information:

• On type declaration statements, see Section 5.1.

• On arrays, see Section 3.5.2.

• On array specifications, see Section 5.1.4.

• On compatible attributes, see Table 5–1.

• On the ALLOCATABLE statement, see Section 5.2.

• On the COMMON statement, see Section 5.4.

• On the POINTER statement, see Section 5.15.

• On the TARGET statement, see Section 5.18.

5.7 EQUIVALENCE Statement
The EQUIVALENCE statement specifies that a storage area is shared by
two or more objects in a program unit. This causes total or partial storage
association of the objects that share the storage area.

The EQUIVALENCE statement takes the following form:

EQUIVALENCE (equiv-list) [,(equiv-list)]...

equiv-list
Is a list of two or more variables, array elements, or substrings, separated
by commas (also called an equivalence set). If an object of derived type is
specified, it must be a sequence type. Objects cannot have the TARGET
attribute.

Each expression in a subscript or a substring reference must be an integer
initialization expression. A substring must not have a length of zero.

5–32 Specification Statements

Rules and Behavior
The following objects cannot be specified in EQUIVALENCE statements:

• Dummy argument

• Allocatable array

• Pointer

• Object of nonsequence derived type

• Object of sequence derived type containing a pointer in the structure

• Function, entry, or result name

• Named constant

• Structure component

• Subobject of any of the above objects

The EQUIVALENCE statement causes all of the entities in one parenthesized
list to be allocated storage beginning at the same storage location.

Association of objects depends on their types, as follows:

Type of Object Type of Associated Object

Intrinsic numeric1 or numeric sequence Can be of any of these types

Default character or character sequence Can be of either of these types2

Any other intrinsic type Must have the same type and kind
parameters

Any other sequence type Must have the same type

1Default integer, default real, double precision real, default complex, double complex, or default
logical.
2The lengths do not have to be equal.

So, objects can be associated if they are of different numeric type. For example,
the following is valid:

INTEGER A(20)
REAL Y(20)
EQUIVALENCE(A, Y)

Specification Statements 5–33

Objects of default character do not need to have the same length. The following
example associates character variable D with the last 4 (of the 6) characters of
character array F:

CHARACTER(LEN=4) D
CHARACTER(LEN=3) F(2)
EQUIVALENCE(D, F(1)(3:))

Entities having different data types can be associated because multiple
components of one data type can share storage with a single component of
a higher-ranked data type. For example, if you make an integer variable
equivalent to a complex variable, the integer variable shares storage with the
real part of the complex variable.

The same storage unit cannot occur more than once in a storage sequence, and
consecutive storage units cannot be specified in a way that would make them
nonconsecutive.

Examples
The following EQUIVALENCE statement is invalid because it specifies the
same storage unit for X(1) and X(2):

REAL, DIMENSION(2), :: X
REAL :: Y
EQUIVALENCE(X(1), Y), (X(2), Y)

The following EQUIVALENCE statement is invalid because because A(1) and
A(2) will not be consecutive:

REAL A(2)
DOUBLE PRECISION D(2)
EQUIVALENCE(A(1), D(1)), (A(2), D(2))

In the following example, the EQUIVALENCE statement causes the four
elements of the integer array IARR to share the same storage as that of the
double-precision variable DVAR.

DOUBLE PRECISION DVAR
INTEGER(KIND=2) IARR(4)
EQUIVALENCE(DVAR, IARR(1))

In the following example, the EQUIVALENCE statement causes the first
character of the character variables KEY and STAR to share the same
storage location. The character variable STAR is equivalent to the substring
KEY(1:10).

CHARACTER KEY*16, STAR*10
EQUIVALENCE(KEY, STAR)

5–34 Specification Statements

For More Information:

• On initialization expressions, see Section 4.1.7.1.

• On derived data types, see Section 3.3.

• On storage units, sequence, and association, see Section 15.5.3.

5.7.1 Making Arrays Equivalent
When you make an element of one array equivalent to an element of another
array, the EQUIVALENCE statement also sets equivalences between the other
elements of the two arrays. Thus, if the first elements of two equal-sized
arrays are made equivalent, both arrays share the same storage. If the third
element of a 7-element array is made equivalent to the first element of another
array, the last five elements of the first array overlap the first five elements of
the second array.

Two or more elements of the same array should not be associated with each
other in one or more EQUIVALENCE statements. For example, you cannot use
an EQUIVALENCE statement to associate the first element of one array with
the first element of another array, and then attempt to associate the fourth
element of the first array with the seventh element of the other array.

Consider the following valid example:

DIMENSION TABLE (2,2), TRIPLE (2,2,2)
EQUIVALENCE(TABLE(2,2), TRIPLE(1,2,2))

These statements cause the entire array TABLE to share part of the storage
allocated to TRIPLE. Table 5–3 shows how these statements align the arrays.

Specification Statements 5–35

Table 5–3 Equivalence of Array Storage

Array TRIPLE Array TABLE

Array
Element

Element
Number

Array
Element

Element
Number

TRIPLE(1,1,1) 1

TRIPLE(2,1,1) 2

TRIPLE(1,2,1) 3

TRIPLE(2,2,1) 4 TABLE(1,1) 1

TRIPLE(1,1,2) 5 TABLE(2,1) 2

TRIPLE(2,1,2) 6 TABLE(1,2) 3

TRIPLE(1,2,2) 7 TABLE(2,2) 4

TRIPLE(2,2,2) 8

Each of the following statements also aligns the two arrays as shown in
Table 5–3:

EQUIVALENCE(TABLE, TRIPLE(2,2,1))
EQUIVALENCE(TRIPLE(1,1,2), TABLE(2,1))

You can also make arrays equivalent with nonunity lower bounds. For
example, an array defined as A(2:3,4) is a sequence of eight values. A reference
to A(2,2) refers to the third element in the sequence. To make array A(2:3,4)
share storage with array B(2:4,4), you can use the following statement:

EQUIVALENCE(A(3,4), B(2,4))

The entire array A shares part of the storage allocated to array B. Table 5–4
shows how these statements align the arrays. The arrays can also be aligned
by the following statements:

5–36 Specification Statements

EQUIVALENCE(A, B(4,1))
EQUIVALENCE(B(3,2), A(2,2))

Table 5–4 Equivalence of Arrays with Nonunity Lower Bounds

Array B Array A

Array
Element

Element
Number

Array
Element

Element
Number

B(2,1) 1

B(3,1) 2

B(4,1) 3 A(2,1) 1

B(2,2) 4 A(3,1) 2

B(3,2) 5 A(2,2) 3

B(4,2) 6 A(3,2) 4

B(2,3) 7 A(2,3) 5

B(3,3) 8 A(3,3) 6

B(4,3) 9 A(2,4) 7

B(2,4) 10 A(3,4) 8

B(3,4) 11

B(4,4) 12

Only in the EQUIVALENCE statement can you identify an array element with
a single subscript (the linear element number), even though the array was
defined as multidimensional. For example, the following statements align the
two arrays as shown in Table 5–4:

DIMENSION B(2:4,1:4), A(2:3,1:4)
EQUIVALENCE(B(6), A(4))

5.7.2 Making Substrings Equivalent
When you make one character substring equivalent to another character
substring, the EQUIVALENCE statement also sets associations between the
other corresponding characters in the character entities; for example:

CHARACTER NAME*16, ID*9
EQUIVALENCE(NAME(10:13), ID(2:5))

Specification Statements 5–37

These statements cause character variables NAME and ID to share space (see
Figure 5–1). The arrays can also be aligned by the following statement:

EQUIVALENCE(NAME(9:9), ID(1:1))

Figure 5–1 Equivalence of Substrings

ID

NAME

Character
Position

Character
Position

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

9

8

7

6

5

4

3

2

1

ZK−0618−GE

If the character substring references are array elements, the EQUIVALENCE
statement sets associations between the other corresponding characters in the
complete arrays.

5–38 Specification Statements

Character elements of arrays can overlap at any character position. For
example, the following statements cause character arrays FIELDS and STAR
to share storage (see Figure 5–2).

CHARACTER FIELDS(100)*4, STAR(5)*5
EQUIVALENCE(FIELDS(1)(2:4), STAR(2)(3:5))

The EQUIVALENCE statement cannot assign the same storage location to
two or more substrings that start at different character positions in the same
character variable or character array. The EQUIVALENCE statement also
cannot assign memory locations in a way that is inconsistent with the normal
linear storage of character variables and arrays.

5.7.3 EQUIVALENCE and COMMON Interaction
A common block can extend beyond its original boundaries if variables or
arrays are associated with entities stored in the common block. However, a
common block can only extend beyond its last element; the extended portion
cannot precede the first element in the block.

Examples
Figure 5–3 and Figure 5–4 demonstrate valid and invalid extensions of the
common block, respectively.

Specification Statements 5–39

Figure 5–2 Equivalence of Character Arrays

Character
Position

1

2

3

4

5Character
Position 1

2

3

4

5

5

4

3

2

1

5

4

3

2

1

1

2

3

4

5

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

3

4

1

2

1

2

Subscript

1

2

3

4

5

1

2

3

4

5

6

7

FIELDS

STAR

Subscript

1

2

3

4

100

ZK−0619−GE

5–40 Specification Statements

Figure 5–3 A Valid Extension of a Common Block

A (1) A (2) A (3) A (4)

B (1) B (2) B (3) B (4) B (5) B (6)EQUIVALENCE (A (2), B (1))
COMMON A
DIMENSION A (4), B (6)

Valid

Extended
Portion

ZK−1944−GE

Existing
Common

Figure 5–4 An Invalid Extension of a Common Block

A (1) A (2) A (3) A (4)

B (1) B (2) B (3) B (4) B (5) B (6)EQUIVALENCE (A (2), B (3))
COMMON A
DIMENSION A (4), B (6)

Invalid

ZK−1945−GE

Common
Existing Extended

Portion
Extended
Portion

The second example is invalid because the extended portion, B(1), precedes the
first element of the common block.

The following example shows a valid EQUIVALENCE statement and an invalid
EQUIVALENCE statement in the context of a common block.

COMMON A, B, C
DIMENSION D(3)
EQUIVALENCE(B, D(1)) ! Valid, because common block is extended

! from the end.

COMMON A, B, C
DIMENSION D(3)
EQUIVALENCE(B, D(3)) ! Invalid, because D(1) would extend common

! block to precede A’s location.

Specification Statements 5–41

5.8 EXTERNAL Attribute and Statement
The EXTERNAL attribute allows an external or dummy procedure to be used
as an actual argument. (To specify intrinsic procedures as actual arguments,
use the INTRINSIC attribute.)

The EXTERNAL attribute can be specified in a type declaration statement or
an EXTERNAL statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] EXTERNAL [,att-ls] :: ex-pro [,ex-pro]...

Statement:

EXTERNAL ex-pro [,ex-pro]...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

ex-pro
Is the name of an external (user-supplied) procedure or dummy procedure.

Rules and Behavior
In a type declaration statement, only functions can be declared EXTERNAL.
However, you can use the EXTERNAL statement to declare subroutines and
block data program units, as well as functions, to be external.

The name declared EXTERNAL is assumed to be the name of an external
procedure, even if the name is the same as that of an intrinsic procedure. For
example, if SIN is declared with the EXTERNAL attribute, all subsequent
references to SIN are to a user-supplied function named SIN, not to the
intrinsic function of the same name.

You can include the name of a block data program unit in the EXTERNAL
statement to force a search of the object module libraries for the block data
program unit at link time. However, the name of the block data program unit
must not be used in a type declaration statement.

5–42 Specification Statements

Examples
The following example shows type declaration statements specifying the
EXTERNAL attribute:

PROGRAM TEST
...
INTEGER, EXTERNAL :: BETA
LOGICAL, EXTERNAL :: COS
...
CALL SUB(BETA) ! External function BETA is an actual argument

You can use a name specified in an EXTERNAL statement as an actual argu-
ment to a subprogram, and the subprogram can then use the corresponding
dummy argument in a function reference or a CALL statement; for example:

EXTERNAL FACET
CALL BAR(FACET)

SUBROUTINE BAR(F)
EXTERNAL F
CALL F(2)

Used as an argument, a complete function reference represents a value, not
a subprogram; for example, FUNC(B) represents a value in the following
statement:

CALL SUBR(A, FUNC(B), C)

For More Information:

• On type declaration statements, see Section 5.1.

• On intrinsic procedures, see Chapter 9.

• On the INTRINSIC attribute, see Section 5.11.

• On compatible attributes, see Table 5–1.

• On a compiler option that changes the interpretation of the EXTERNAL
statement, see Section B.4.

5.9 IMPLICIT Statement
The IMPLICIT statement overrides the default implicit typing rules for names.
(The default data type is INTEGER for names beginning with the letters I
through N, and REAL for names beginning with any other letter.)

Specification Statements 5–43

The IMPLICIT statement takes one of the following forms:

IMPLICIT type (a[,a]...)[, type (a[,a]...)]...
IMPLICIT NONE

type
Is a data type specifier (CHARACTER*(*) is not allowed).

a
Is a single letter, a dollar sign ($), or a range of letters in alphabetical order.
The form for a range of letters is a1-a2, where the second letter follows the first
alphabetically (for example, A-C).

The dollar sign can be used at the end of a range of letters, since IMPLICIT
interprets the dollar sign to alphabetically follow the letter Z. For example, a
range of X-$ would apply to identifiers beginning with the letters X, Y, Z, or $.

Rules and Behavior
The IMPLICIT statement assigns the specified data type (and kind parameter)
to all names that have no explicit data type and begin with the specified letter
or range of letters. It has no effect on the default types of intrinsic procedures.

When the data type is CHARACTER*len, len is the length for character type.
The len is an unsigned integer constant or an integer initialization expression
enclosed in parentheses. The range for len is 1 to 65535.

Names beginning with a dollar sign ($) are implicitly INTEGER.

The IMPLICIT NONE statement disables all implicit typing defaults. When
IMPLICIT NONE is used, all names in a program unit must be explicitly
declared. An IMPLICIT NONE statement must precede any PARAMETER
statements, and there must be no other IMPLICIT statements in the scoping
unit.

Note

To receive diagnostic messages when variables are used but not
declared, you can specify a compiler option instead of using IMPLICIT
NONE.

The following IMPLICIT statement represents the default typing for names
when they are not explicitly typed:

IMPLICIT INTEGER (I-N), REAL (A-H, O-Z)

5–44 Specification Statements

Examples
The following are examples of the IMPLICIT statement:

IMPLICIT DOUBLE PRECISION (D)
IMPLICIT COMPLEX (S,Y), LOGICAL(1) (L,A-C)
IMPLICIT CHARACTER*32 (T-V)
IMPLICIT CHARACTER*2 (W)
IMPLICIT TYPE(COLORS) (E-F), INTEGER (G-H)

For More Information:
On compiler options, see the HP Fortran for OpenVMS User Manual.

5.10 INTENT Attribute and Statement
The INTENT attribute specifies the intended use of one or more dummy
arguments.

The INTENT attribute can be specified in a type declaration statement or an
INTENT statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] INTENT (intent-spec) [,att-ls] :: d-arg [, d-arg]...

Statement:

INTENT (intent-spec) [::] d-arg [, d-arg]...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

intent-spec
Is one of the following specifiers:

• IN

Specifies that the dummy argument will be used only to provide data to
the procedure. The dummy argument must not be redefined (or become
undefined) during execution of the procedure.

Any associated actual argument must be an expression.

Specification Statements 5–45

• OUT

Specifies that the dummy argument will be used to pass data from the
procedure back to the calling program. The dummy argument is undefined
on entry and must be defined before it is referenced in the procedure.

Any associated actual argument must be definable.

• INOUT

Specifies that the dummy argument can both provide data to the procedure
and return data to the calling program.

Any associated actual argument must be definable.

d-arg
Is the name of a dummy argument. It cannot be a dummy procedure or dummy
pointer.

Rules and Behavior
The INTENT statement can only appear in the specification part of a
subprogram or interface body.

If no INTENT attribute is specified for a dummy argument, its use is subject to
the limitations of the associated actual argument.

If a function specifies a defined operator, the dummy arguments must have
intent IN.

If a subroutine specifies defined assignment, the first argument must have
intent OUT or INOUT, and the second argument must have intent IN.

A dummy argument with intent IN (or a subobject of such a dummy argument)
must not appear as any of the following:

• A DO variable or implied-DO variable

• The variable of an assignment statement

• The pointer-object of a pointer assignment statement

• An object or STAT= variable in an ALLOCATE or DEALLOCATE statement

• An input item in a READ statement

• A variable name in a NAMELIST statement if the namelist group name
appears in a NML= specifier in a READ statement

• An internal file unit in a WRITE statement

• A definable variable in an INQUIRE statement

• An IOSTAT= or SIZE= specifier in an I/O statement

5–46 Specification Statements

• An actual argument in a reference to a procedure with an explicit interface
if the associated dummy argument has intent OUT or INOUT

If an actual argument is an array section with a vector subscript, it cannot be
associated with a dummy array that is defined or redefined (has intent OUT or
INOUT).

Examples
The following example shows type declaration statements specifying the
INTENT attribute:

SUBROUTINE TEST(I, J)
INTEGER, INTENT(IN) :: I
INTEGER, INTENT(OUT), DIMENSION(I) :: J

The following are examples of the INTENT statement:

SUBROUTINE TEST(A, B, X)
INTENT(INOUT) :: A, B
...

SUBROUTINE CHANGE(FROM, TO)
USE EMPLOYEE_MODULE
TYPE(EMPLOYEE) FROM, TO
INTENT(IN) FROM
INTENT(OUT) TO
...

For More Information:

• On type declaration statements, see Section 5.1.

• On argument association, see Section 8.8.

• On compatible attributes, see Table 5–1.

5.11 INTRINSIC Attribute and Statement
The INTRINSIC attribute allows the specific name of an intrinsic procedure to
be used as an actual argument. (Not all specific names can be used as actual
arguments. For more information, see Table 9–1.)

The INTRINSIC attribute can be specified in a type declaration statement or
an INTRINSIC statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] INTRINSIC [,att-ls] :: in-pro [,in-pro]...

Specification Statements 5–47

Statement:

INTRINSIC in-pro [,in-pro]...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

in-pro
Is the name of an intrinsic procedure.

Rules and Behavior
In a type declaration statement, only functions can be declared INTRINSIC.
However, you can use the INTRINSIC statement to declare subroutines, as well
as functions, to be intrinsic.

The name declared INTRINSIC is assumed to be the name of an intrinsic
procedure. If a generic intrinsic function name is given the INTRINSIC
attribute, the name retains its generic properties.

Examples
The following example shows a type declaration statement specifying the
INTRINSIC attribute:

PROGRAM EXAMPLE
...
REAL(8), INTRINSIC :: DACOS
...
CALL TEST(X, DACOS) ! Intrinsic function DACOS is an actual argument

The following example shows an INTRINSIC statement:

5–48 Specification Statements

Main Program Subprogram

EXTERNAL CTN SUBROUTINE TRIG(X,F,Y)

INTRINSIC SIN, COS Y = F(X)

. . . RETURN

END

CALL TRIG(ANGLE,SIN,SINE)

. . . FUNCTION CTN(X)

CTN = COS(X)/SIN(X)

CALL TRIG(ANGLE,COS,COSINE) RETURN

. . . END

CALL TRIG(ANGLE,CTN,COTANGENT)

Note that when TRIG is called with a second argument of SIN or COS, the
function reference F(X) references the Fortran 95/90 library functions SIN and
COS; but when TRIG is called with a second argument of CTN, F(X) references
the user function CTN.

For More Information:

• On type declaration statements, see Section 5.1.

• On specific intrinsic procedures, see Chapter 9.

• On referencing generic intrinsic functions, see Section 8.8.8.1.

• On referencing elemental intrinsic procedures, see Section 8.8.8.2.

• On compatible attributes, see Table 5–1.

5.12 NAMELIST Statement
The NAMELIST statement associates a name with a list of variables. This
group name can be referenced in some input/output operations.

A NAMELIST statement takes the following form:

NAMELIST /group/var-list [[,] /group/var-list]...

Specification Statements 5–49

group
Is the name of the group.

var-list
Is a list of variables (separated by commas) that are to be associated with the
preceding group name. The variables can be of any data type.

Rules and Behavior
The namelist group name is used by namelist I/O statements instead of an I/O
list. The unique group name identifies a list whose entities can be modified or
transferred.

A variable can appear in more than one namelist group.

Each variable in var-list must be accessed by use or host association, or it
must have its type, type parameters, and shape explicitly or implicitly specified
in the same scoping unit. If the variable is implicitly typed, it can appear in
a subsequent type declaration only if that declaration confirms the implicit
typing.

The following variables cannot be specified in a namelist group:

• Array dummy argument with nonconstant bounds

• Variable with assumed character length

• Allocatable array

• Automatic object

• Pointer

• Variable of a type that has a pointer as an ultimate component

• Subobject of any of the above objects

Only the variables specified in the namelist can be read or written in namelist
I/O. It is not necessary for the input records in a namelist input statement to
define every variable in the associated namelist.

The order of variables in the namelist controls the order in which the values
appear on namelist output. Input of namelist values can be in any order.

If the group name has the PUBLIC attribute, no item in the variable list can
have the PRIVATE attribute.

The group name can be specified in more than one NAMELIST statement in
a scoping unit. The variable list following each successive appearance of the
group name is treated as a continuation of the list for that group name.

5–50 Specification Statements

Examples
In the following example, D and E are added to the variables A, B, and C for
group name LIST:

NAMELIST /LIST/ A, B, C

NAMELIST /LIST/ D, E

In the following example, two group names are defined:

CHARACTER*30 NAME(25)
NAMELIST /INPUT/ NAME, GRADE, DATE /OUTPUT/ TOTAL, NAME

Group name INPUT contains variables NAME, GRADE, and DATE. Group
name OUTPUT contains variables TOTAL and NAME.

For More Information:
On namelist input, see Section 10.3.1.3; output, see Section 10.5.1.3.

5.13 OPTIONAL Attribute and Statement
The OPTIONAL attribute permits dummy arguments to be omitted in a
procedure reference.

The OPTIONAL attribute can be specified in a type declaration statement or
an OPTIONAL statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] OPTIONAL [,att-ls] :: d-arg [,d-arg]...

Statement:

OPTIONAL [::] d-arg [,d-arg]...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

d-arg
Is the name of a dummy argument.

Specification Statements 5–51

Rules and Behavior
The OPTIONAL attribute can only appear in the scoping unit of a subprogram
or an interface body, and can only be specified for dummy arguments.

A dummy argument is ‘‘present’’ if it associated with an actual argument.
A dummy argument that is not optional must be present. You can use
the PRESENT intrinsic function to determine whether an optional dummy
argument is associated with an actual argument.

To call a procedure that has an optional argument, you must use an explicit
interface.

Examples
The following example shows a type declaration statement specifying the
OPTIONAL attribute:

SUBROUTINE TEST(A)
REAL, OPTIONAL, DIMENSION(-10:2) :: A

END SUBROUTINE

The following is an example of the OPTIONAL statement:

SUBROUTINE TEST(A, B, L, X)
OPTIONAL :: B
INTEGER A, B, L, X

IF (PRESENT(B)) THEN ! Printing of B is conditional
PRINT *, A, B, L, X ! on its presence

ELSE
PRINT *, A, L, X

ENDIF
END SUBROUTINE

INTERFACE
SUBROUTINE TEST(ONE, TWO, THREE, FOUR)
INTEGER ONE, TWO, THREE, FOUR
OPTIONAL :: TWO

END SUBROUTINE
END INTERFACE

INTEGER I, J, K, L

I = 1
J = 2
K = 3
L = 4

CALL TEST(I, J, K, L) ! Prints: 1 2 3 4
CALL TEST(I, THREE=K, FOUR=L) ! Prints: 1 3 4
END

5–52 Specification Statements

Note that in the second call to subroutine TEST, the second positional
(optional) argument is omitted. In this case, all following arguments must
be keyword arguments.

For More Information:

• On type declaration statements, see Section 5.1.

• On the PRESENT intrinsic function, see Section 9.4.118.

• On optional arguments, see Section 8.8.1.

• On compatible attributes, see Table 5–1.

5.14 PARAMETER Attribute and Statement
The PARAMETER attribute defines a named constant.

The PARAMETER attribute can be specified in a type declaration statement or
a PARAMETER statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] PARAMETER [,att-ls] :: c = expr [, c = expr]...

Statement:

PARAMETER [(] c = expr [, c = expr]...[)]

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

c
Is the name of the constant.

expr
Is an initialization expression. It can be of any data type.

Rules and Behavior
The type, type parameters, and shape of the named constant are determined in
one of the following ways:

• By an explicit type declaration statement in the same scoping unit.

Specification Statements 5–53

• By the implicit typing rules in effect for the scoping unit. If the named
constant is implicitly typed, it can appear in a subsequent type declaration
only if that declaration confirms the implicit typing.

For example, consider the following statement:

PARAMETER (MU=1.23)

According to implicit typing, MU is of integer type, so MU=1. For MU to
equal 1.23, it should previously be declared REAL in a type declaration or be
declared in an IMPLICIT statement.

A named constant must not appear in a format specification or as the character
count for Hollerith constants. For compilation purposes, writing the name is
the same as writing the value.

If the named constant is used as the length specifier in a CHARACTER
declaration, it must be enclosed in parentheses.

The name of a constant cannot appear as part of another constant, although it
can appear as either the real or imaginary part of a complex constant.

You can only use the named constant within the scoping unit containing the
defining PARAMETER statement.

Any named constant that appears in the initialization expression must have
been defined previously in the same type declaration statement (or in a
previous type declaration statement or PARAMETER statement), or made
accessible by use or host association.

Examples
The following example shows a type declaration statement specifying the
PARAMETER attribute:

REAL, PARAMETER :: C = 2.9979251, Y = (4.1 / 3.0)

The following is an example of the PARAMETER statement:

REAL(4) PI, PIOV2
REAL(8) DPI, DPIOV2
LOGICAL FLAG
CHARACTER*(*) LONGNAME

PARAMETER (PI=3.1415927, DPI=3.141592653589793238D0)
PARAMETER (PIOV2=PI/2, DPIOV2=DPI/2)
PARAMETER (FLAG=.TRUE., LONGNAME=’A STRING OF 25 CHARACTERS’)

5–54 Specification Statements

For More Information:

• On type declaration statements, see Section 5.1.

• On initialization expressions, see Section 4.1.7.1.

• On the IMPLICIT statement, see Section 5.9.

• On compatible attributes, see Table 5–1.

• On an alternative syntax for the PARAMETER statement, see Section B.5.

5.15 POINTER Attribute and Statement
The POINTER attribute specifies that an object is a pointer (a dynamic
variable). A pointer does not contain data, but points to a scalar or array
variable where data is stored. A pointer has no initial storage set aside for it;
memory storage is created for the pointer as a program runs.

The POINTER attribute can be specified in a type declaration statement or a
POINTER statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] POINTER [,att-ls] :: ptr [(d-spec)] [,ptr [(d-spec)]]...

Statement:

POINTER [::] ptr [(d-spec)] [,ptr [(d-spec)]]...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

ptr
Is the name of the pointer. The pointer cannot be declared with the INTENT
or PARAMETER attributes.

d-spec
Is a deferred-shape specification (: [,:]...). Each colon represents a dimension of
the array.

Specification Statements 5–55

Rules and Behavior
No storage space is created for a pointer until it is allocated with an
ALLOCATE statement or until it is assigned to a allocated target. A pointer
must not be referenced or defined until memory is associated with it.

Each pointer has an association status, which tells whether the pointer is
currently associated with a target object. When a pointer is initially declared,
its status is undefined. You can use the ASSOCIATED intrinsic function to find
the association status of a pointer.

If the pointer is an array, and it is given the DIMENSION attribute elsewhere
in the program, it must be declared as a deferred-shape array.

A pointer cannot be specified in a DATA, EQUIVALENCE, or NAMELIST
statement.

Examples
The following example shows type declaration statements specifying the
POINTER attribute:

TYPE(SYSTEM), POINTER :: CURRENT, LAST
REAL, DIMENSION(:,:), POINTER :: I, J, REVERSE

The following is an example of the POINTER statement:

TYPE(SYSTEM) :: TODAYS
POINTER :: TODAYS, A(:,:)

For More Information:

• On type declaration statements, see Section 5.1.

• On deferred-shape arrays, see Section 5.1.4.4.

• On compatible attributes, see Table 5–1.

• On pointer assignment, see Section 4.2.3.

• On the ALLOCATE statement, see Section 6.2.

• On pointer association, see Section 15.5.2.

• On pointer arguments, see Section 8.8.3.

• On the ASSOCIATED intrinsic function, see Section 9.4.16.

• On a different kind of POINTER statement, see Section B.11.

• On the NULL intrinsic function, which can be used to disassociate a
pointer, see Section 9.4.111.

5–56 Specification Statements

5.16 PRIVATE and PUBLIC Attributes and Statements
The PRIVATE and PUBLIC attributes specify the accessibility of entities in a
module. (These attributes are also called accessibility attributes.)

The PRIVATE and PUBLIC attributes can be specified in a type declaration
statement or a PRIVATE or PUBLIC statement, and take one of the following
forms:

Type Declaration Statement:

type, [att-ls,] PRIVATE [,att-ls] :: entity [,entity]...
type, [att-ls,] PUBLIC [,att-ls] :: entity [,entity]...

Statement:

PRIVATE [[::] entity [,entity]...]
PUBLIC [[::] entity [,entity]...]

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

entity
Is one of the following:

• Variable name

• Procedure name

• Derived type name

• Named constant

• Namelist group name

In statement form, an entity can also be a generic identifier (a generic name,
defined operator, or defined assignment).

Rules and Behavior
The PRIVATE and PUBLIC attributes can only appear in the scoping unit of a
module.

Only one PRIVATE or PUBLIC statement without an entity list is permitted in
the scoping unit of a module; it sets the default accessibility of all entities in
the module.

Specification Statements 5–57

If no PUBLIC or PRIVATE statements are specified in a module, the default is
PUBLIC accessibility. Entities with PUBLIC accessibility can be accessed from
outside the module by means of a USE statement.

If a derived type is declared PRIVATE in a module, its components are
also PRIVATE. The derived type and its components are accessible to any
subprograms within the defining module through host association, but the type
is not accessible from outside the module and in most cases the components
are not accessible, either.

However, if a public entity is declared to be of a type declared PRIVATE,
the components of that type are accessible as components of the entity. For
example:

module m2
type hidden

integer f1,f2
end type hidden
end

module m3
use m2
private
type(hidden),public :: x
end

subroutine import
use m3
x%f1 = 1
end subroutine

In this example, the F1 component of X is accessible, even though the type
HIDDEN is PRIVATE.

If the derived type is declared PUBLIC in a module, but its components
are declared PRIVATE, any scoping unit accessing the module though use
association (or host association) can access the derived-type definition, but not
its components.

If a module procedure has a dummy argument or a function result of a type
that has PRIVATE accessibility, the module procedure must have PRIVATE
accessibility. If the module has a generic identifier, it must also be declared
PRIVATE.

If a procedure has a generic identifier, the accessibility of the procedure’s
specific name is independent of the accessibility of its generic identifier. One
can be declared PRIVATE and the other PUBLIC.

5–58 Specification Statements

Examples
The following examples show type declaration statements specifying the
PUBLIC and PRIVATE attributes:

REAL, PRIVATE :: A, B, C
INTEGER, PUBLIC :: LOCAL_SUMS

The following is an example of the PUBLIC and PRIVATE statements:

MODULE SOME_DATA
REAL ALL_B
PUBLIC ALL_B
TYPE RESTRICTED_DATA
REAL LOCAL_C
DIMENSION LOCAL_C(50)

END TYPE RESTRICTED_DATA
PRIVATE RESTRICTED_DATA

END MODULE

The following derived-type declaration statement indicates that the type is
restricted to the module:

TYPE, PRIVATE :: DATA
...

END TYPE DATA

The following example shows a PUBLIC type with PRIVATE components:

MODULE MATTER
TYPE ELEMENTS
PRIVATE
INTEGER C, D

END TYPE
...
END MODULE MATTER

In this case, components C and D are private to type ELEMENTS, but type
ELEMENTS is not private to MODULE MATTER. Any program unit that uses
the module MATTER, can declare variables of type ELEMENTS, and pass as
arguments values of type ELEMENTS.

For More Information:

• On type declaration statements, see Section 5.1.

• On derived types, see Section 3.3.

• On compatible attributes, see Table 5–1.

• On generic identifiers, see Section 8.9.3.

• On modules, see Section 8.3.

Specification Statements 5–59

• On the USE statement, see Section 8.3.2.

• On use and host association, see Section 15.5.1.2.

5.17 SAVE Attribute and Statement
The SAVE attribute causes the values and definition of objects to be retained
after execution of a RETURN or END statement in a subprogram.

The SAVE attribute can be specified in a type declaration statement or a SAVE
statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] SAVE [,att-ls] :: [object [,object]...]

Statement:

SAVE [object [,object]...]

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

object
Is the name of an object, or the name of a common block enclosed in slashes
(/common-block-name/).

Rules and Behavior
In HP Fortran, certain variables are given the SAVE attribute, or not, by
default:

• The following variables are saved by default:

COMMON variables

Local variables of recursive subprograms

Data initialized by DATA statements

• The following variables are not saved by default:

Variables that are declared AUTOMATIC

Local variables that are allocatable arrays

Derived-type variables that are data initialized by default initialization
of any of their components

5–60 Specification Statements

RECORD variables that are data initialized by default initialization
specified in its STRUCTURE declaration

• Local variables that are not described in the preceding two lists are saved
by default.

To enhance portability and avoid possible compiler warning messages, HP
recommends that you use the SAVE statement to name variables whose values
you want to preserve between subprogram invocations.

When a SAVE statement does not explicitly contain a list, all allowable items
in the scoping unit are saved.

A SAVE statement cannot specify the following (their values cannot be saved):

• Blank common

• Object in a common block

• Procedure

• Dummy argument

• Function result

• Automatic object

• PARAMETER (named) constant

Even though a common block can be included in a SAVE statement, individual
variables within the common block can become undefined (or redefined) in
another scoping unit.

If a common block is saved in any scoping unit of a program (other than the
main program), it must be saved in every scoping unit in which the common
block appears.

A SAVE statement has no effect in a main program.

Examples
The following example shows a type declaration statement specifying the SAVE
attribute:

SUBROUTINE TEST()
REAL, SAVE :: X, Y

The following is an example of the SAVE statement:

SAVE A, /BLOCK_B/, C, /BLOCK_D/, E

Specification Statements 5–61

For More Information:

• On type declaration statements, see Section 5.1.

• On common blocks, see Section 5.4.

• On the DATA statement, see Section 5.5.

• On recursive program units, see Section 8.5.1.1.

• On compatible attributes, see Table 5–1.

• On modules, see Section 8.3.

5.18 TARGET Attribute and Statement
The TARGET attribute specifies that an object can become the target of a
pointer (it can be pointed to).

The TARGET attribute can be specified in a type declaration statement or a
TARGET statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] TARGET [,att-ls] :: object [(a-spec)] [,object [(a-spec)]]...

Statement:

TARGET [::] object [(a-spec)] [,object [(a-spec)]]...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

object
Is the name of the object. The object must not be declared with the
PARAMETER attribute.

a-spec
Is an array specification.

Rules and Behavior
A pointer is associated with a target by pointer assignment or by an
ALLOCATE statement.

If an object does not have the TARGET attribute or has not been allocated
(using an ALLOCATE statement), no part of it can be accessed by a pointer.

5–62 Specification Statements

Examples
The following example shows type declaration statements specifying the
TARGET attribute:

TYPE(SYSTEM), TARGET :: FIRST
REAL, DIMENSION(20, 20), TARGET :: C, D

The following is an example of a TARGET statement:

TARGET :: C(50, 50), D

For More Information:

• On type declaration statements, see Section 5.1.

• On the ALLOCATE statement, see Section 6.2.

• On compatible attributes, see Table 5–1.

• On pointer assignment, see Section 4.2.3.

• On pointer association, see Section 15.5.2.

5.19 VOLATILE Attribute and Statement
The VOLATILE attribute specifies that the value of an object is entirely
unpredictable, based on information local to the current program unit. It
prevents objects from being optimized during compilation.

The VOLATILE attribute can be specified in a type declaration statement or a
VOLATILE statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] VOLATILE [,att-ls] :: object [,object]...

Statement:

VOLATILE object [,object]...

type
Is a data type specifier.

att-ls
Is an optional list of attribute specifiers.

object
Is the name of an object, or the name of a common block enclosed in slashes.

Specification Statements 5–63

Rules and Behavior
A variable or COMMON block must be declared VOLATILE if it can be read or
written in a way that is not visible to the compiler. For example:

• If an operating system feature is used to place a variable in shared memory
(so that it can be accessed by other programs), the variable must be
declared VOLATILE.

• If a variable is accessed or modified by a routine called by the operating
system when an asynchronous event occurs, the variable must be declared
VOLATILE.

If an array is declared VOLATILE, each element in the array becomes volatile.
If a common block is declared VOLATILE, each variable in the common block
becomes volatile.

If an object of derived type is declared VOLATILE, its components become
volatile.

If a pointer is declared VOLATILE, the pointer itself becomes volatile.

A VOLATILE statement cannot specify the following:

• Procedure

• Function result

• Namelist group

Example
The following example shows a type declaration statement specifying the
VOLATILE attribute:

INTEGER, VOLATILE :: D, E

The following example shows a VOLATILE statement:

PROGRAM TEST
LOGICAL(1) IPI(4)
INTEGER(4) A, B, C, D, E, ILOOK
INTEGER(4) P1, P2, P3, P4
COMMON /BLK1/A, B, C

VOLATILE /BLK1/, D, E
EQUIVALENCE(ILOOK, IPI)
EQUIVALENCE(A, P1)
EQUIVALENCE(P1, P4)

The named common block, BLK1, and the variables D and E are volatile.
Variables P1 and P4 become volatile because of the direct equivalence of P1
and the indirect equivalence of P4.

5–64 Specification Statements

For More Information:

• On type declaration statements, see Section 5.1.

• On compatible attributes, see Table 5–1.

• On optimizations performed by the compiler, see the HP Fortran for
OpenVMS User Manual.

Specification Statements 5–65

6
Dynamic Allocation

This chapter describes:

• Section 6.1, Overview

• Section 6.2, ALLOCATE Statement

• Section 6.3, DEALLOCATE Statement

• Section 6.4, NULLIFY Statement

6.1 Overview
Data objects can be static or dynamic. If a data object is static, a fixed amount
of memory storage is created for it at compile time and is not freed until the
program exits. If a data object is dynamic, memory storage for the object can
be created (allocated), altered, or freed (deallocated) as a program executes.

In Fortran 95/90, pointers, allocatable arrays, and automatic arrays are
dynamic data objects.

No storage space is created for a pointer until it is allocated with an
ALLOCATE statement or until it is assigned to a allocated target. A pointer
can be dynamically disassociated from a target by using a NULLIFY statement.

An ALLOCATE statement can also be used to create storage for an allocatable
array. A DEALLOCATE statement is used to free the storage space reserved
in a previous ALLOCATE statement.

Automatic arrays differ from allocatable arrays in that they are automatically
allocated and deallocated whenever you enter or leave a procedure,
respectively.

Dynamic Allocation 6–1

For More Information:

• On pointer assignment, see Section 4.2.3.

• On automatic arrays, see Section 5.1.4.1.

• On the NULL intrinsic function, which can also be used to disassociate a
pointer, see Section 9.4.111.

6.2 ALLOCATE Statement
The ALLOCATE statement dynamically creates storage for allocatable arrays
and pointer targets. The storage space allocated is uninitialized.

The ALLOCATE statement takes the following form:

ALLOCATE (object [(s-spec[,s-spec...])] [,object[(s-spec[,s-spec...])]]...[,STAT=sv])

object
Is the object to be allocated. It is a variable name or structure component, and
must be a pointer or allocatable array. The object can be of type character with
zero length.

s-spec
Is a shape specification in the form [lower-bound:]upper-bound. Each bound
must be a scalar integer expression. The number of shape specifications must
be the same as the rank of the object.

sv
Is a scalar integer variable in which the status of the allocation is stored.

Rules and Behavior
A bound in s-spec must not be an expression containing an array inquiry
function whose argument is any allocatable object in the same ALLOCATE
statement; for example, the following is not permitted:

INTEGER ERR
INTEGER, ALLOCATABLE :: A(:), B(:)
...
ALLOCATE(A(10:25), B(SIZE(A)), STAT=ERR) ! A is invalid as an argument

! to function SIZE

If a STAT variable is specified, it must not be allocated in the ALLOCATE
statement in which it appears. If the allocation is successful, the variable is set
to zero. If the allocation is not successful, an error condition occurs, and the
variable is set to a positive integer value (representing the run-time error). If
no STAT variable is specified and an error condition occurs, program execution
terminates.

6–2 Dynamic Allocation

Examples
The following is an example of the ALLOCATE statement:

INTEGER J, N, ALLOC_ERR
REAL, ALLOCATABLE :: A(:), B(:,:)
...
ALLOCATE(A(0:80), B(-3:J+1, N), STAT = ALLOC_ERR)

For More Information:

• On allocatable arrays, see Section 5.2.

• On pointers, see Section 5.15.

• On run-time error messages, see the HP Fortran for OpenVMS User
Manual or online documentation.

6.2.1 Allocation of Allocatable Arrays
The bounds (and shape) of an allocatable array are determined when it is
allocated. Subsequent redefinition or undefinition of any entities in the bound
expressions does not affect the array specification.

If the lower bound is greater than the upper bound, that dimension has an
extent of zero, and the array has a size of zero. If the lower bound is omitted,
it is assumed to be 1.

When an array is allocated, it is definable. If you try to allocate a currently
allocated allocatable array, an error occurs.

The intrinsic function ALLOCATED can be used to determine whether an
allocatable array is currently allocated; for example:

REAL, ALLOCATABLE :: E(:,:)
...
IF (.NOT. ALLOCATED(E)) ALLOCATE(E(2:4,7))

Allocation Status
During program execution, the allocation status of an allocatable array is one
of the following:

• Not currently allocated

The array was never allocated or the last operation on it was a deallocation.
Such an array must not be referenced or defined.

• Currently allocated

The array was allocated by an ALLOCATE statement. Such an array can
be referenced, defined, or deallocated.

Dynamic Allocation 6–3

If an allocatable array has the SAVE attribute, it has an initial status of
‘‘not currently allocated.’’ If the array is then allocated, its status changes to
‘‘currently allocated.’’ It keeps that status until the array is deallocated.

If an allocatable array does not have the SAVE attribute, it has the status of
‘‘not currently allocated’’ at the beginning of each invocation of the procedure.
If the array’s status changes to ‘‘currently allocated’’, it is deallocated if the
procedure is terminated by execution of a RETURN or END statement.

Examples
Example 6–1 shows a program that performs virtual memory allocation. This
program uses Fortran 95/90 standard-conforming statements instead of calling
an operating system memory allocation routine.

Example 6–1 Allocating Virtual Memory

! Program accepts an integer and displays square root values

INTEGER(4) :: N
READ (5,*) N ! Reads an integer value
CALL MAT(N)
END

! Subroutine MAT uses the typed integer value to display the square
! root values of numbers from 1 to N (the number read)

SUBROUTINE MAT(N)
REAL(4), ALLOCATABLE :: SQR(:) ! Declares SQR as a one-dimensional

! allocatable array
ALLOCATE (SQR(N)) ! Allocates array SQR

DO J=1,N
SQR(J) = SQRT(FLOATJ(J)) ! FLOATJ converts integer to REAL

ENDDO

WRITE (6,*) SQR ! Displays calculated values
DEALLOCATE (SQR) ! Deallocates array SQR
END SUBROUTINE MAT

For More Information:
On the ALLOCATED intrinsic function, see Section 9.4.10.

6–4 Dynamic Allocation

6.2.2 Allocation of Pointer Targets
When a pointer is allocated, the pointer is associated with a target and can be
used to reference or define the target. (The target can be an array or a scalar,
depending on how the pointer was declared.)

Other pointers can become associated with the pointer target (or part of the
pointer target) by pointer assignment.

In contrast to allocatable arrays, a pointer can be allocated a new target even
if it is currently associated with a target. The previous association is broken
and the pointer is then associated with the new target.

If the previous target was created by allocation, it becomes inaccessible unless
it can still be referred to by other pointers that are currently associated with
it.

The intrinsic function ASSOCIATED can be used to determine whether a
pointer is currently associated with a target. (The association status of the
pointer must be defined.) For example:

REAL, TARGET :: TAR(0:50)
REAL, POINTER :: PTR(:)
PTR => TAR
...
IF (ASSOCIATED(PTR,TAR))...

For More Information:

• On pointers, see Section 5.15.

• On pointer assignment, see Section 4.2.3.

• On the ASSOCIATED intrinsic function, see Section 9.4.16.

6.3 DEALLOCATE Statement
The DEALLOCATE statement frees the storage allocated for allocatable arrays
and pointer targets (and causes the pointers to become disassociated). It takes
the following form:

DEALLOCATE (object [,object]...[,STAT=sv])

Dynamic Allocation 6–5

object
Is a structure component or the name of a variable, and must be a pointer or
allocatable array.

sv
Is a scalar integer variable in which the status of the deallocation is stored.

Rules and Behavior
If a STAT variable is specified, it must not be deallocated in the DEALLOCATE
statement in which it appears. If the deallocation is successful, the variable
is set to zero. If the deallocation is not successful, an error condition occurs,
and the variable is set to a positive integer value (representing the run-time
error). If no STAT variable is specified and an error condition occurs, program
execution terminates.

It is recommended that all explicitly allocated storage be explicitly deallocated
when it is no longer needed.

Examples
The following example shows deallocation of an allocatable array:

INTEGER ALLOC_ERR
REAL, ALLOCATABLE :: A(:), B(:,:)
...
ALLOCATE (A(10), B(-2:8,1:5))
...
DEALLOCATE(A, B, STAT = ALLOC_ERR)

For More Information:
On run-time error messages, see the HP Fortran for OpenVMS User Manual or
online documentation.

6.3.1 Deallocation of Allocatable Arrays
If the DEALLOCATE statement specifies an array that is not currently
allocated, an error occurs.

If an allocatable array with the TARGET attribute is deallocated, the
association status of any pointer associated with it becomes undefined.

If a RETURN or END statement terminates a procedure, an allocatable array
has one of the following allocation statuses:

• It keeps its previous allocation and association status if the following is
true:

It has the SAVE attribute.

6–6 Dynamic Allocation

It is in the scoping unit of a module that is accessed by another scoping
unit which is currently executing.

It is accessible by host association.

• It remains allocated if it is accessed by use association.

• Otherwise, its allocation status is deallocated.

The intrinsic function ALLOCATED can be used to determine whether an
allocatable array is currently allocated; for example:

SUBROUTINE TEST
REAL, ALLOCATABLE, SAVE :: F(:,:)
REAL, ALLOCATABLE :: E(:,:,:)
...
IF (.NOT. ALLOCATED(E)) ALLOCATE(E(2:4,7,14))

END SUBROUTINE TEST

Note that when subroutine TEST is exited, the allocation status of F is
maintained because F has the SAVE attribute. Since E does not have the
SAVE attribute, it is deallocated. On the next invocation of TEST, E will have
the status of ‘‘not currently allocated.’’

For More Information:

• On host association, see Section 15.5.1.2.

• On the TARGET attribute, see Section 5.18.

• On the RETURN statement, see Section 7.10.

• On the END statement, see Section 7.7.

• On the SAVE attribute, see Section 5.17.

6.3.2 Deallocation of Pointer Targets
A pointer must not be deallocated unless it has a defined association status. If
the DEALLOCATE statement specifies a pointer that has undefined association
status, or a pointer whose target was not created by allocation, an error occurs.

A pointer must not be deallocated if it is associated with an allocatable array,
or it is associated with a portion of an object (such as an array element or an
array section).

If a pointer is deallocated, the association status of any other pointer associated
with the target (or portion of the target) becomes undefined.

Dynamic Allocation 6–7

Execution of a RETURN or END statement in a subprogram causes the pointer
association status of any pointer declared (or accessed) in the procedure to
become undefined, unless any of the following applies to the pointer:

• It has the SAVE attribute.

• It is in the scoping unit of a module that is accessed by another scoping
unit which is currently executing.

• It is accessible by host association.

• It is in blank common.

• It is in a named common block that appears in another scoping unit that is
currently executing.

• It is the return value of a function declared with the POINTER attribute.

If the association status of a pointer becomes undefined, it cannot subsequently
be referenced or defined.

Examples
The following example shows deallocation of a pointer:

INTEGER ERR
REAL, POINTER :: PTR_A(:)
...
ALLOCATE (PTR_A(10), STAT=ERR)
...
DEALLOCATE(PTR_A)

For More Information:

• On pointers, see Section 5.15.

• On host association, see Section 15.5.1.2.

• On the RETURN statement, see Section 7.10.

• On the END statement, see Section 7.7.

• On the SAVE attribute, see Section 5.17.

• On common blocks, see Section 5.4.

• On the NULL intrinsic function, which can be used to disassociate a
pointer, see Section 9.4.111.

6–8 Dynamic Allocation

6.4 NULLIFY Statement
The NULLIFY statement disassociates a pointer from its target. It takes the
following form:

NULLIFY (pointer-object [,pointer-object]...)

pointer-object
Is a structure component or the name of a variable; it must be a pointer (have
the POINTER attribute).

Rules and Behavior
The initial association status of a pointer is undefined. You can use NULLIFY
to initialize an undefined pointer, giving it disassociated status. Then the
pointer can be tested using the intrinsic function ASSOCIATED.

Examples
The following is an example of the NULLIFY statement:

REAL, TARGET :: TAR(0:50)
REAL, POINTER :: PTR_A(:), PTR_B(:)
PTR_A => TAR
PTR_B => TAR
...
NULLIFY(PTR_A)

After these statements are executed, PTR_A will have disassociated status,
while PTR_B will continue to be associated with variable TAR.

For More Information:

• On the POINTER attribute, see Section 5.15.

• On pointer assignment, see Section 4.2.3.

• On the ASSOCIATED intrinsic function, see Section 9.4.16.

• On the NULL intrinsic function, which can also be used to disassociate a
pointer, see Section 9.4.111.

Dynamic Allocation 6–9

7
Execution Control

This chapter describes:

• Section 7.1, Overview

• Section 7.2, Branch Statements

• Section 7.3, CALL Statement

• Section 7.4, CASE Construct

• Section 7.5, CONTINUE Statement

• Section 7.6, DO Constructs

• Section 7.7, END Statement

• Section 7.8, IF Construct and Statement

• Section 7.9, PAUSE Statement

• Section 7.10, RETURN Statement

• Section 7.11, STOP Statement

7.1 Overview
A program normally executes statements in the order in which they are
written. Executable control constructs and statements modify this normal
execution by transferring control to another statement in the program, or
by selecting blocks (groups) of constructs and statements for execution or
repetition.

In Fortran 95/90, control constructs (CASE, DO, and IF) can be named. The
name must be a unique identifier in the scoping unit, and must appear on the
initial line and terminal line of the construct. On the initial line, the name is
separated from the statement keyword by a colon (:).

Execution Control 7–1

A block can contain any executable Fortran statement except an END
statement. You can transfer control out of a block, but you cannot transfer
control into another block.

DO loops cannot partially overlap blocks. The DO statement and its terminal
statement must appear together in a statement block.

7.2 Branch Statements
Branching affects the normal execution sequence by transferring control to a
labeled statement in the same scoping unit. The transfer statement is called
the branch statement, while the statement to which the transfer is made is
called the branch target statement.

Any executable statement can be a branch target statement, except for the
following:

• CASE statement

• ELSE statement

• ELSE IF statement

Certain restrictions apply to the following statements:

Statement Restriction

DO terminal statement The branch must be taken from within its nonblock DO
construct.1

END DO The branch must be taken from within its block DO
construct.

END IF The branch should be taken from within its IF construct.2

END SELECT The branch must be taken from within its CASE construct.

1If the terminal statement is shared by more than one nonblock DO construct, the branch can only
be taken from within the innermost DO construct.
2You can branch to an END IF statement from outside the IF construct; this is a deleted feature in
Fortran 95. HP Fortran fully supports features deleted in Fortran 95.

The following branch statements are described in this section:

• Unconditional GO TO

• Computed GO TO

• Assigned GO TO (the ASSIGN statement is also described here)

• Arithmetic IF

7–2 Execution Control

For More Information:

• On IF constructs, see Section 7.8.

• On CASE constructs, see Section 7.4.

• On DO constructs, see Section 7.6.

7.2.1 Unconditional GO TO Statement
The unconditional GO TO statement transfers control to the same branch
target statement every time it executes. It takes the following form:

GO TO label

label
Is the label of a valid branch target statement in the same scoping unit as the
GO TO statement.

The unconditional GO TO statement transfers control to the branch target
statement identified by the specified label.

The following are examples of GO TO statements:

GO TO 7734
GO TO 99999

7.2.2 Computed GO TO Statement
The computed GO TO statement transfers control to one of a set of labeled
branch target statements based on the value of an expression. It is an
obsolescent feature in Fortran 95.

The computed GO TO statement takes the following form:

GO TO (label-list)[,] expr

label-list
Is a list of labels (separated by commas) of valid branch target statements in
the same scoping unit as the computed GO TO statement. (Also called the
transfer list.) The same label can appear more than once in this list.

expr
Is a scalar numeric expression in the range 1 to n, where n is the number of
statement labels in label-list. If necessary, it is converted to integer data type.

Execution Control 7–3

Rules and Behavior
When the computed GO TO statement is executed, the expression is evaluated
first. The value of the expression represents the ordinal position of a label in
the associated list of labels. Control is transferred to the statement identified
by the label. For example, if the list contains (30,20,30,40) and the value of the
expression is 2, control is transferred to the statement identified with label 20.

If the value of the expression is less than 1 or greater than the number of
labels in the list, control is transferred to the next executable statement or
construct following the computed GO TO statement.

Examples
The following example shows valid computed GO TO statements:

GO TO (12,24,36), INDEX
GO TO (320,330,340,350,360), SITU(J,K) + 1

7.2.3 ASSIGN and Assigned GO TO Statements
The ASSIGN statement assigns a label to an integer variable. Subsequently,
this variable can be used as a branch target statement by an assigned GO TO
statement or as a format specifier in a formatted input/output statement.

The ASSIGN and assigned GO TO statements have been deleted in Fortran
95; they were obsolescent features in Fortran 90. HP Fortran fully supports
features deleted in Fortran 95.

For More Information:
On obsolescent features in Fortran 95 and Fortran 90, as well as features
deleted in Fortran 95, see Appendix A.

7.2.3.1 ASSIGN Statement
The ASSIGN statement assigns a statement label value to an integer variable.
It takes the following form:

ASSIGN label TO var

label
Is the label of a branch target or FORMAT statement in the same scoping unit
as the ASSIGN statement.

var
Is a scalar integer variable.

7–4 Execution Control

Rules and Behavior
When an ASSIGN statement is executed, the statement label is assigned to the
integer variable. The variable is then undefined as an integer variable and can
only be used as a label (unless it is later redefined with an integer value).

The ASSIGN statement must be executed before the statements in which the
assigned variable is used.

Examples
The following example shows ASSIGN statements:

INTEGER ERROR
...
ASSIGN 10 TO NSTART
ASSIGN 99999 TO KSTOP
ASSIGN 250 TO ERROR

Note that NSTART and KSTOP are integer variables implicitly, but ERROR
must be previously declared as an integer variable.

The following statement associates the variable NUMBER with the statement
label 100:

ASSIGN 100 TO NUMBER

If an arithmetic operation is subsequently performed on variable NUMBER
(such as follows), the run-time behavior is unpredictable:

NUMBER = NUMBER + 1

To return NUMBER to the status of an integer variable, you can use the
following statement:

NUMBER = 10

This statement dissociates NUMBER from statement 100 and assigns it an
integer value of 10. Once NUMBER is returned to its integer variable status,
it can no longer be used in an assigned GO TO statement.

7.2.3.2 Assigned GO TO Statement
The assigned GO TO statement transfers control to the statement whose label
was most recently assigned to a variable. The assigned GO TO statement
takes the following form:

GO TO var [[,] (label-list)]

Execution Control 7–5

var
Is a scalar integer variable.

label-list
Is a list of labels (separated by commas) of valid branch target statements in
the same scoping unit as the assigned GO TO statement. The same label can
appear more than once in this list.

Rules and Behavior
The variable must have a statement label value assigned to it by an ASSIGN
statement (not an arithmetic assignment statement) before the GO TO
statement is executed.

If a list of labels appears, the statement label assigned to the variable must be
one of the labels in the list.

Both the assigned GO TO statement and its associated ASSIGN statement
must be in the same scoping unit.

Examples
The following example is equivalent to GO TO 200:

ASSIGN 200 TO IGO
GO TO IGO

The following example is equivalent to GO TO 450:

ASSIGN 450 TO IBEG
GO TO IBEG, (300,450,1000,25)

The following example shows an invalid use of an assigned variable:

ASSIGN 10 TO I
J = I
GO TO J

In this case, variable J is not the variable assigned to, so it cannot be used in
the assigned GO TO statement.

7.2.4 Arithmetic IF Statement
The arithmetic IF statement conditionally transfers control to one of three
statements, based on the value of an arithmetic expression. It is an obsolescent
feature in Fortran 95 and Fortran 90.

The arithmetic IF statement takes the following form:

IF (expr) label1, label2, label3

7–6 Execution Control

expr
Is a scalar numeric expression of type integer or real (enclosed in parentheses).

label1, label2, label3
Are the labels of valid branch target statements that are in the same scoping
unit as the arithmetic IF statement.

Rules and Behavior
All three labels are required, but they do not need to refer to three different
statements. The same label can appear more than once in the same arithmetic
IF statement.

During execution, the expression is evaluated first. Depending on the value of
the expression, control is then transferred as follows:

If the Value of expr is: Control Transfers To:

Less than 0 Statement label1

Equal to 0 Statement label2

Greater than 0 Statement label3

Examples
The following example transfers control to statement 50 if the real variable
THETA is less than or equal to the real variable CHI. Control passes to
statement 100 only if THETA is greater than CHI.

IF (THETA-CHI) 50,50,100

The following example transfers control to statement 40 if the value of the
integer variable NUMBER is even. It transfers control to statement 20 if the
value is odd.

IF (NUMBER / 2*2 - NUMBER) 20,40,20

For More Information:
On obsolescent features in Fortran 95 and Fortran 90, see Appendix A.

7.3 CALL Statement
The CALL statement transfers control to a subroutine subprogram. It takes
the following form:

CALL sub [([a-arg [,a-arg]...])]

Execution Control 7–7

sub
Is the name of the subroutine subprogram or other external procedure, or a
dummy argument associated with a subroutine subprogram or other external
procedure.

a-arg
Is an actual argument optionally preceded by [keyword=], where keyword is
the name of a dummy argument in the explicit interface for the subroutine.
The keyword is assigned a value when the procedure is invoked.

Each actual argument must be a variable, an expression, the name of a
procedure, or an alternate return specifier. (It must not be the name of an
internal procedure, statement function, or the generic name of a procedure.)

An alternate return specifier is an asterisk (*), or ampersand (&) followed by
the label of an executable branch target statement in the same scoping unit as
the CALL statement. (An alternate return is an obsolescent feature in Fortran
95 and Fortran 90.)

Rules and Behavior
When the CALL statement is executed, any expressions in the actual argument
list are evaluated, then control is passed to the first executable statement or
construct in the subroutine. When the subroutine finishes executing, control
returns to the next executable statement following the CALL statement, or to
a statement identified by an alternate return label (if any).

If an argument list appears, each actual argument is associated with the
corresponding dummy argument by its position in the argument list or by the
name of its keyword. The arguments must agree in type and kind parameters.

If positional arguments and argument keywords are specified, the argument
keywords must appear last in the actual argument list.

If a dummy argument is optional, the actual argument can be omitted.

An actual argument associated with a dummy procedure must be the specific
name of a procedure, or be another dummy procedure. Certain specific intrinsic
function names must not be used as actual arguments (see Table 9–1).

You can use a CALL statement to invoke a function as long as the function is
not one of the following types:

• REAL(8)

• REAL(16)

• COMPLEX(8)

7–8 Execution Control

• COMPLEX(16)

• CHARACTER

Examples
The following example shows valid CALL statements:

CALL CURVE(BASE,3.14159+X,Y,LIMIT,R(LT+2))

CALL PNTOUT(A,N,’ABCD’)

CALL EXIT

CALL MULT(A,B,*10,*20,C) ! The asterisks and ampersands denote
CALL SUBA(X,&30,&50,Y) ! alternate returns

The following example shows a subroutine with argument keywords:

PROGRAM KEYWORD_EXAMPLE
INTERFACE
SUBROUTINE TEST_C(I, L, J, KYWD2, D, F, KYWD1)
INTEGER I, L(20), J, KYWD1
REAL, OPTIONAL :: D, F
COMPLEX KYWD2
...

END SUBROUTINE TEST_C
END INTERFACE
INTEGER I, J, K
INTEGER L(20)
COMPLEX Z1
CALL TEST_C(I, L, J, KYWD1 = K, KYWD2 = Z1)
...

The first three actual arguments are associated with their corresponding
dummy arguments by position. The argument keywords are associated by
keyword name, so they can appear in any order.

Note that the interface to subroutine TEST has two optional arguments that
have been omitted in the CALL statement.

The following is another example of a subroutine call with argument keywords:

CALL TEST(X, Y, N, EQUALITIES = Q, XSTART = X0)

The first three arguments are associated by position.

Execution Control 7–9

For More Information:

• On procedure arguments, see Section 8.8.

• On subroutines, see Section 8.5.3.

• On optional arguments, see Section 5.13.

• On dummy arguments, see Section 8.8.7.

• On obsolescent features in Fortran 95 and Fortran 90, see Appendix A.

7.4 CASE Construct
The CASE construct conditionally executes one block of constructs or
statements depending on the value of a scalar expression in a SELECT
CASE statement.

The CASE construct takes the following form:

[name:] SELECT CASE (expr)
[CASE (case-value [,case-value]...) [name]

block]...
[CASE DEFAULT [name]

block]
END SELECT [name]

name
Is the name of the CASE construct.

expr
Is a scalar expression of type integer, logical, or character (enclosed in
parentheses). Evaluation of this expression results in a value called the case
index.

case-value
Is one or more scalar integer, logical, or character initialization expressions
enclosed in parentheses. Each case-value must be of the same type and kind
parameter as expr. If the type is character, case-value and expr can be of
different lengths, but their kind parameter must be the same.

Integer and character expressions can be expressed as a range of case values,
taking one of the following forms:

low:high
low:
:high

7–10 Execution Control

Case values must not overlap.

block
Is a sequence of zero or more statements or constructs.

Rules and Behavior
If a construct name is specified in a SELECT CASE statement, the same
name must appear in the corresponding END SELECT statement. The same
construct name can optionally appear in any CASE statement in the construct.
The same construct name must not be used for different named constructs in
the same scoping unit.

The case expression (expr) is evaluated first. The resulting case index is
compared to the case values to find a matching value (there can only be one).
When a match occurs, the block following the matching case value is executed
and the construct terminates.

The following rules determine whether a match occurs:

• When the case value is a single value (no colon appears), a match occurs as
follows:

Data Type A Match Occurs If:

Logical case-index .EQV. case-value

Integer or Character case-index = = case-value

• When the case value is a range of values (a colon appears), a match
depends on the range specified, as follows:

Range A Match Occurs If:

low: case-index >= low

:high case-index <= high

low:high low <= case-index <= high

The following are all valid case values:

CASE (1, 4, 7, 11:14, 22) ! Individual values as specified:
! 1, 4, 7, 11, 12, 13, 14, 22

CASE (:-1) ! All values less than zero
CASE (0) ! Only zero
CASE (1:) ! All values above zero

If no match occurs but a CASE DEFAULT statement is present, the block
following that statement is executed and the construct terminates.

Execution Control 7–11

If no match occurs and no CASE DEFAULT statement is present, no block is
executed, the construct terminates, and control passes to the next executable
statement or construct following the END SELECT statement.

Figure 7–1 shows the flow of control in a CASE construct.

7–12 Execution Control

Figure 7–1 Flow of Control in CASE Constructs

Construct Flow of Control

SELECT CASE (TEST 1)

END SELECT

CASE (1)

CASE (2)

block 1

block 2

ZK−6515A−GE

Yes

No

Execute
block 1

Execute
block 2

Execute
block 3

Execute
block 4

Evaluate Test 1

Matches
CASE (1)

Matches
CASE (1)

Matches
CASE (2)

Matches
CASE (3)

Matches
CASE (2)

Execute
block 2

Execute
block 1

Yes

No

Yes

Yes

Yes

No

No

No

SELECT CASE (TEST 2)

CASE (1)

CASE (2)

CASE (3)

CASE DEFAULT

END SELECT

block 1

block 2

block 3

block 4

Execution Control 7–13

You cannot use branching statements to transfer control to a CASE statement.
However, branching to a SELECT CASE statement is allowed. Branching to
the END SELECT statement is allowed only from within the CASE construct.

Examples
The following are examples of CASE constructs:

INTEGER FUNCTION STATUS_CODE (I)
INTEGER I
CHECK_STATUS: SELECT CASE (I)
CASE (:-1)
STATUS_CODE = -1

CASE (0)
STATUS_CODE = 0

CASE (1:)
STATUS_CODE = 1

END SELECT CHECK_STATUS
END FUNCTION STATUS_CODE

SELECT CASE (J)
CASE (1, 3:7, 9) ! Values: 1, 3, 4, 5, 6, 7, 9
CALL SUB_A

CASE DEFAULT
CALL SUB_B

END SELECT

The following three examples are equivalent:

1. SELECT CASE (ITEST .EQ. 1)
CASE (.TRUE.)
CALL SUB1 ()

CASE (.FALSE.)
CALL SUB2 ()

END SELECT

2. SELECT CASE (ITEST)
CASE DEFAULT
CALL SUB2 ()

CASE (1)
CALL SUB1 ()

END SELECT

3. IF (ITEST .EQ. 1) THEN
CALL SUB1 ()

ELSE
CALL SUB2 ()

END IF

7–14 Execution Control

7.5 CONTINUE Statement
The CONTINUE statement is primarily used to terminate a labeled DO
construct when the construct would otherwise end improperly with either a GO
TO, arithmetic IF, or other prohibited control statement.

The CONTINUE statement takes the following form:

CONTINUE

The statement by itself does nothing and has no effect on program results or
execution sequence.

The following example shows a CONTINUE statement:

DO 150 I = 1,40
40 Y = Y + 1

Z = COS(Y)
PRINT *, Z
IF (Y .LT. 30) GO TO 150
GO TO 40

150 CONTINUE

7.6 DO Constructs
The DO construct controls the repeated execution of a block of statements or
constructs. (This repeated execution is called a loop.)

The number of iterations of a loop can be specified in the initial DO statement
in the construct, or the number of iterations can be left indefinite by a simple
DO (‘‘DO forever’’) construct or DO WHILE statement.

The EXIT and CYCLE statements modify the execution of a loop. An EXIT
statement terminates execution of a loop, while a CYCLE statement terminates
execution of the current iteration of a loop. For example:

DO
READ (EUNIT, IOSTAT=IOS) Y
IF (IOS /= 0) EXIT
IF (Y < 0) CYCLE
CALL SUB_A(Y)

END DO

If an error or end-of-file occurs, the DO construct terminates. If a negative
value for Y is read, the program skips to the next READ statement.

Execution Control 7–15

For More Information:

• On the CYCLE statement, see Section 7.6.4.

• On the EXIT statement, see Section 7.6.5.

• On DO loops in FORALL constructs, see Section 4.2.5.

7.6.1 Forms for DO Constructs
A DO construct takes one of the following forms:

Block Form

[name:] DO [label][,] [loop-control]
block

[label] term-stmt

Nonblock Form

DO label[,] [loop-control]

name
Is the name of the DO construct.

label
Is a statement label identifying the terminal statement.

loop-control
Is a DO iteration (see Section 7.6.2.1) or a (DO) WHILE statement (see
Section 7.6.3).

block
Is a sequence of zero or more statements or constructs.

term-stmt
Is the terminal statement for the construct.

Rules and Behavior
A block DO construct is terminated by an END DO or CONTINUE statement.
If the block DO statement contains a label, the terminal statement must be
identified with the same label. If no label appears, the terminal statement
must be an END DO statement.

If a construct name is specified in a block DO statement, the same name must
appear in the terminal END DO statement. If no construct name is specified
in the block DO statement, no name can appear in the terminal END DO
statement.

7–16 Execution Control

A nonblock DO construct is terminated by an executable statement (or
construct) that is identified by the label specified in the nonblock DO
statement. A nonblock DO construct can share a terminal statement with
another nonblock DO construct. A block DO construct cannot share a terminal
statement.

The following cannot be terminal statements for nonblock DO constructs:

• CONTINUE (allowed if it is a shared terminal statement)

• CYCLE

• END (for a program or subprogram)

• EXIT

• GO TO (unconditional or assigned)

• Arithmetic IF

• RETURN

• STOP

The nonblock DO construct is an obsolescent feature in Fortran 95 and Fortran
90.

Examples
The following example shows equivalent block DO and nonblock DO constructs:

DO I = 1, N ! Block DO
TOTAL = TOTAL + B(I)

END DO

DO 20 I = 1, N ! Nonblock DO
20 TOTAL = TOTAL + B(I)

The following example shows a simple block DO construct (contains no
iteration count or DO WHILE statement):

DO
READ *, N
IF (N == 0) STOP
CALL SUBN

END DO

The DO block executes repeatedly until the value of zero is read. Then the DO
construct terminates.

Execution Control 7–17

The following example shows a named block DO construct:

LOOP_1: DO I = 1, N
A(I) = C * B(I)

END DO LOOP_1

The following example shows a nonblock DO construct with a shared terminal
statement:

DO 20 I = 1, N
DO 20 J = 1 + I, N

20 RESULT(I,J) = 1.0 / REAL(I + J)

For More Information:
On obsolescent features in Fortran 95 and Fortran 90, see Appendix A.

7.6.2 Execution of DO Constructs
The range of a DO construct includes all the statements and constructs that
follow the DO statement, up to and including the terminal statement. If the
DO construct contains another construct, the inner (nested) construct must be
entirely contained within the DO construct.

Execution of a DO construct differs depending on how the loop is controlled, as
follows:

• For simple DO constructs, there is no loop control. Statements in the DO
range are repeated until the DO statement is terminated explicitly by a
statement within the range.

• For iterative DO statements, loop control is specified as do-var = expr1,
expr2 [,expr3]. An iteration count specifies the number of times the DO
range is executed. (For more information on iteration loop control, see
Section 7.6.2.1.)

• For DO WHILE statements, loop control is specified as a DO range. The
DO range is repeated as long as a specified condition remains true. Once
the condition is evaluated as false, the DO construct terminates. (For more
information on the DO WHILE statement, see Section 7.6.3.)

7.6.2.1 Iteration Loop Control
DO iteration loop control takes the following form:

do-var = expr1, expr2 [,expr3]

7–18 Execution Control

do-var
Is the name of a scalar variable of type integer or real. It cannot be the name
of an array element or structure component.

expr
Is a scalar numeric expression of type integer or real. If it is not the same type
as do-var, it is converted to that type.

Rules and Behavior
A DO variable or expression of type real is a deleted feature in Fortran 95; it
was obsolescent in Fortran 90. HP Fortran fully supports features deleted in
Fortran 95.

The following steps are performed in iteration loop control:

1. The expressions expr1, expr2, and expr3 are evaluated to respectively
determine the initial, terminal, and increment parameters.

The increment parameter (expr3) is optional and must not be zero. If an
increment parameter is not specified, it is assumed to be of type default
integer with a value of 1.

2. The DO variable (do-var) becomes defined with the value of the initial
parameter (expr1).

3. The iteration count is determined as follows:

������� ��
�����
���� �
����	�
����	�
	

The iteration count is zero if either of the following is true:

expr1 > expr2 and expr3 > 0
expr1 < expr2 and expr3 < 0

4. The iteration count is tested. If the iteration count is zero, the loop
terminates and the DO construct becomes inactive. (A compiler option
can affect this; see the HP Fortran for OpenVMS User Manual for more
information.) If the iteration count is nonzero, the range of the loop is
executed.

5. The iteration count is decremented by one, and the DO variable is
incremented by the value of the increment parameter, if any.

After termination, the DO variable retains its last value (the one it had when
the iteration count was tested and found to be zero).

The DO variable must not be redefined or become undefined during execution
of the DO range.

Execution Control 7–19

If you change variables in the initial, terminal, or increment expressions
during execution of the DO construct, it does not affect the iteration count.
The iteration count is fixed each time the DO construct is entered.

Examples
The following example specifies 25 iterations:

DO 100 K=1,50,2

K=49 during the final iteration, K=51 after the loop.

The following example specifies 27 iterations:

DO 350 J=50,-2,-2

J=–2 during the final iteration, J=–4 after the loop.

The following example specifies 9 iterations:

DO NUMBER=5,40,4

NUMBER=37 during the final iteration, NUMBER=41 after the loop. The
terminating statement of this DO loop must be END DO.

For More Information:
On obsolescent features in Fortran 95 and Fortran 90, as well as features
deleted in Fortran 95, see Appendix A.

7.6.2.2 Nested DO Constructs
A DO construct can contain one or more complete DO constructs (loops). The
range of an inner nested DO construct must lie completely within the range
of the next outer DO construct. Nested nonblock DO constructs can share a
labeled terminal statement.

Figure 7–2 shows correctly and incorrectly nested DO constructs.

7–20 Execution Control

Figure 7–2 Nested DO Constructs

CONTINUE

.

.

DO 45 M=1,20

.

.

CONTINUE

DO 15 K=1,10
.
.

DO 25 L=1,20

DO 30 M=1,15

35

45

.

.

CONTINUE25

.

.

CONTINUE

.

.

15

.

.

CONTINUE30

DO 45 K=1,10
.
.

DO 35 L=2,50,2

.

.

.

.

DO 10 I=1,20

.

.

CONTINUE10

DO J=1,5

.

.

DO K=1,10

.

.

END DO

.

.

END DO

DO 10 I=1,5

.

.

DO J=1,10

.

.

CONTINUE

.

.

END DO

.

.
.
.

10

ZK−7969−GE

Correctly Nested
DO Loops

Incorrectly Nested
DO loops

Execution Control 7–21

In a nested DO construct, you can transfer control from an inner construct
to an outer construct. However, you cannot transfer control from an outer
construct to an inner construct.

If two or more nested DO constructs share the same terminal statement,
you can transfer control to that statement only from within the range of
the innermost construct. Any other transfer to that statement constitutes a
transfer from an outer construct to an inner construct, because the shared
statement is part of the range of the innermost construct.

7.6.2.3 Extended Range
A DO construct has an extended range if both of the following are true:

• The DO construct contains a control statement that transfers control out of
the construct.

• Another control statement returns control back into the construct after
execution of one or more statements.

The range of the construct is extended to include all executable statements
between the destination statement of the first transfer and the statement that
returns control to the construct.

The following rules apply to a DO construct with extended range:

• A transfer into the range of a DO statement is permitted only if the
transfer is made from the extended range of that DO statement.

• The extended range of a DO statement must not change the control
variable of the DO statement.

Figure 7–3 illustrates valid and invalid extended range control transfers.

7–22 Execution Control

Figure 7–3 Control Transfers and Extended Range

15

35

50

30

20

GO TO 20

DO 35 K=1,10

DO 35 M=1,15

DO 15 L=2,20

A = B + C

X = A * D

CONTINUE

CONTINUE

D = E/F

GO TO 50

GO TO 30

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

40

45

50

GO TO 40

CONTINUE

X = A * D

DO 45 M=1,15

GO TO 30

CONTINUE

CONTINUE

DO 50 K=1,10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

GO TO 20

20 A = B + C

D = E/F

.

.

DO 35 L=2,20

.

.

ZK−4761−GE

DO
Loop

Extended
Range

Valid
Control Transfers

Invalid
Control Transfers

35

30

Execution Control 7–23

7.6.3 DO WHILE Statement
The DO WHILE statement executes the range of a DO construct while a
specified condition remains true. The statement takes the following form:

DO [label][,] WHILE (expr)

label
Is a label specifying an executable statement in the same program unit.

expr
Is a scalar logical expression enclosed in parentheses.

Rules and Behavior
Before each execution of the DO range, the logical expression is evaluated. If
it is true, the statements in the body of the loop are executed. If it is false, the
DO construct terminates and control transfers to the statement following the
loop.

If no label appears in a DO WHILE statement, the DO WHILE loop must be
terminated with an END DO statement.

You can transfer control out of a DO WHILE loop but not into a loop from
elsewhere in the program.

Examples
The following example shows a DO WHILE statement:

CHARACTER*132 LINE
...
I = 1
DO WHILE (LINE(I:I) .EQ. ’ ’)
I = I + 1

END DO

The following examples show required and optional END DO statements:

Required Optional

DO WHILE (I .GT. J) DO 10 WHILE (I .GT. J)

ARRAY(I,J) = 1.0 ARRAY(I,J) = 1.0

I = I - 1 I = I - 1

END DO 10 END DO

7–24 Execution Control

7.6.4 CYCLE Statement
The CYCLE statement interrupts the current execution cycle of the innermost
(or named) DO construct.

The CYCLE statement takes the following form:

CYCLE [name]

name
Is the name of the DO construct.

Rules and Behavior
When a CYCLE statement is executed, the following occurs:

1. The current execution cycle of the named (or innermost) DO construct is
terminated.

If a DO construct name is specified, the CYCLE statement must be within
the range of that construct.

2. The iteration count (if any) is decremented by 1.

3. The DO variable (if any) is incremented by the value of the increment
parameter (if any).

4. A new iteration cycle of the DO construct begins.

Any executable statements following the CYCLE statement (including a labeled
terminal statement) are not executed.

A CYCLE statement can be labeled, but it cannot be used to terminate a DO
construct.

Examples
The following example shows a CYCLE statement:

DO I =1, 10
A(I) = C + D(I)
IF (D(I) < 0) CYCLE ! If true, the next statement is omitted
A(I) = 0 ! from the loop and the loop is tested again.

END DO

7.6.5 EXIT Statement
The EXIT statement terminates execution of a DO construct. It takes the
following form:

EXIT [name]

Execution Control 7–25

name
Is the name of the DO construct.

Rules and Behavior
The EXIT statement causes execution of the named (or innermost) DO
construct to be terminated.

If a DO construct name is specified, the EXIT statement must be within the
range of that construct.

Any DO variable present retains its last defined value.

An EXIT statement can be labeled, but it cannot be used to terminate a DO
construct.

Examples
The following example shows an EXIT statement:

LOOP_A : DO I = 1, 15
N = N + 1
IF (N > I) EXIT LOOP_A

END DO LOOP_A

7.7 END Statement
The END statement marks the end of a program unit. It takes one of the
following forms:

END [PROGRAM [program-name]]
END [FUNCTION [function-name]]
END [SUBROUTINE [subroutine-name]]
END [MODULE [module-name]]
END [BLOCK DATA [block-data-name]]

For internal procedures and module procedures, you must specify the
FUNCTION and SUBROUTINE keywords in the END statement; otherwise,
the keywords are optional.

In main programs, function subprograms, and subroutine subprograms, END
statements are executable and can be branch target statements. If control
reaches the END statement in these program units, the following occurs:

• In a main program, execution of the program terminates.

• In a function or subroutine subprogram, a RETURN statement is implicitly
executed.

7–26 Execution Control

The END statement cannot be continued in a program unit, and no other
statement in the program unit can have an initial line that appears to be the
program unit END statement.

The END statements in a module or block data program unit are
nonexecutable.

For More Information:

• On program units and procedures, see Chapter 8.

• On branch target statements, see Section 7.2.

7.8 IF Construct and Statement
The IF construct conditionally executes one block of statements or constructs.

The IF statement conditionally executes one statement.

The decision to transfer control or to execute the statement or block is based
on the evaluation of a logical expression within the IF statement or construct.

For More Information:
On the arithmetic IF statement, see Section 7.2.4.

7.8.1 IF Construct
The IF construct conditionally executes one block of constructs or statements
depending on the evaluation of a logical expression. (This construct was called
a block IF statement in FORTRAN 77.)

The IF construct takes the following form:

[name:] IF (expr) THEN
block

[ELSE IF (expr) THEN [name]
block]...

[ELSE [name]
block]

END IF [name]

name
Is the name of the IF construct.

expr
Is a scalar logical expression enclosed in parentheses.

Execution Control 7–27

block
Is a sequence of zero or more statements or constructs.

Rules and Behavior
If a construct name is specified at the beginning of an IF THEN statement, the
same name must appear in the corresponding END IF statement. The same
construct name must not be used for different named constructs in the same
scoping unit.

Depending on the evaluation of the logical expression, one block or no block
is executed. The logical expressions are evaluated in the order in which
they appear, until a true value is found or an ELSE or END IF statement is
encountered.

Once a true value is found or an ELSE statement is encountered, the block
immediately following it is executed and the construct execution terminates.

If none of the logical expressions evaluate to true and no ELSE statement
appears in the construct, no block in the construct is executed and the
construct execution terminates.

Note

No additional statement can be placed after the IF THEN statement in
a block IF construct. For example, the following statement is invalid in
the block IF construct:

IF (e) THEN I = J

This statement is translated as the following logical IF statement:

IF (e) THENI = J

You cannot use branching statements to transfer control to an ELSE IF
statement or ELSE statement. However, you can branch to an END IF
statement from within the IF construct.

Figure 7–4 shows the flow of control in IF constructs.

7–28 Execution Control

Figure 7–4 Flow of Control in IF Constructs

1 2

3

4

e
Test

e
Test

block
Execute

False

block
Execute

e
Test

e
Test

e
Test

e
Test

e
Test

block
Execute

block
Execute

block
Execute

block
Execute

block
Execute

block
Execute

block
Execute

False

False

False False False

3

2

2

1

1

False

True

True

True True

True True True

Flow of Control

ZK−0617−GE

2

2

1

1

Construct

IF (e) THEN

block

END IF

IF (e) THEN

block 1
ELSE

block 2

END IF

IF (e) THEN1
block 1

ELSE IF (e) THEN2
block 2

END IF

1IF (e) THEN

block 1
ELSE IF (e) THEN2

block 2
ELSE IF (e) THEN3

block3
ELSE

block 4
END IF

You can include an IF construct in the statement block of another IF construct,
if the nested IF construct is completely contained within a statement block. It
cannot overlap statement blocks.

Execution Control 7–29

Examples
The following example shows the simplest form of an IF construct:

Form Example

IF (expr) THEN IF (ABS(ADJU) .GE. 1.0E-6) THEN

block TOTERR = TOTERR + ABS(ADJU)

QUEST = ADJU/FNDVAL

END IF END IF

This construct conditionally executes the block of statements between the IF
THEN and the END IF statements.

The following example shows an IF construct containing an ELSE statement:

Form Example

IF (expr) THEN IF (NAME .LT. ’N’) THEN

block1 IFRONT = IFRONT + 1

FRLET(IFRONT) = NAME(1:2)

ELSE ELSE

block2 IBACK = IBACK + 1

END IF END IF

Block1 consists of all the statements between the IF THEN and ELSE
statements. Block2 consists of all the statements between the ELSE and
the END IF statements.

If the value of the character variable NAME is less than ’N’, block1 is
executed. If the value of NAME is greater than or equal to ’N’, block2 is
executed.

The following example shows an IF construct containing an ELSE IF THEN
statement:

7–30 Execution Control

Form Example

IF (expr) THEN IF (A .GT. B) THEN

block1 D = B

F = A - B

ELSE IF (expr) THEN ELSE IF (A .GT. B/2.) THEN

block2 D = B/2.

F = A - B/2.

END IF END IF

If A is greater than B, block1 is executed. If A is not greater than B, but A
is greater than B/2, block2 is executed. If A is not greater than B and A is
not greater than B/2, neither block1 nor block2 is executed. Control transfers
directly to the next executable statement after the END IF statement.

The following example shows an IF construct containing several ELSE IF
THEN statements and an ELSE statement:

Form Example

IF (expr) THEN IF (A .GT. B) THEN

block1 D = B

F = A - B

ELSE IF (expr) THEN ELSE IF (A .GT. C) THEN

block2 D = C

F = A - C

ELSE IF (expr) THEN ELSE IF (A .GT. Z) THEN

block3 D = Z

F = A - Z

ELSE ELSE

block4 D = 0.0

F = A

END IF END IF

If A is greater than B, block1 is executed. If A is not greater than B but is
greater than C, block2 is executed. If A is not greater than B or C but is
greater than Z, block3 is executed. If A is not greater than B, C, or Z, block4 is
executed.

Execution Control 7–31

The following example shows a nested IF construct:

Form Example

IF (expr1) THEN IF (A .LT. 100) THEN

block1 INRAN = INRAN + 1

IF (expr2) THEN IF (ABS(A-AVG) .LE. 5.) THEN

block1a INAVG = INAVG + 1

ELSE ELSE

block1b OUTAVG = OUTAVG + 1

END IF END IF

ELSE ELSE

block2 OUTRAN = OUTRAN + 1

END IF END IF

If A is less than 100, the code immediately following the IF is executed. This
code contains a nested IF construct. If the absolute value of A minus AVG is
less than or equal to 5, block1a is executed. If the absolute value of A minus
AVG is greater than 5, block1b is executed.

If A is greater than or equal to 100, block2 is executed, and the nested IF
construct (in block1) is not executed.

The following example shows a named IF construct:

BLOCK_A: IF (D > 0.0) THEN ! Initial statement for named construct

RADIANS = ACOS(D) ! These two statements
DEGREES = ACOSD(D) ! form a block

END IF BLOCK_A ! Terminal statement for named construct

7.8.2 IF Statement
The IF statement conditionally executes one statement based on the value
of a logical expression. (This statement was called a logical IF statement in
FORTRAN 77.)

The IF statement takes the following form:

IF (expr) stmt

7–32 Execution Control

expr
Is a scalar logical expression enclosed in parentheses.

stmt
Is any complete, unlabeled, executable Fortran statement, except for the
following:

• A CASE, DO, IF, FORALL, or WHERE construct

• Another IF statement

• The END statement for a program, function, or subroutine

When an IF statement is executed, the logical expression is evaluated first. If
the value is true, the statement is executed. If the value is false, the statement
is not executed and control transfers to the next statement in the program.

Examples
The following examples show valid IF statements:

IF (J.GT.4 .OR. J.LT.1) GO TO 250

IF (REF(J,K) .NE. HOLD) REF(J,K) = REF(J,K) * (-1.5D0)

IF (ENDRUN) CALL EXIT

7.9 PAUSE Statement
The PAUSE statement temporarily suspends program execution until the
user or system resumes execution. The PAUSE statement is a deleted feature
in Fortran 95; it was obsolescent in Fortran 90. HP Fortran fully supports
features deleted in Fortran 95.

The PAUSE statement takes the following form:

PAUSE [pause-code]

pause-code
Is an optional message. It can be either of the following:

• A scalar character constant of type default character.

• A string of up to six digits; leading zeros are ignored. (Fortran 90 and
FORTRAN 77 limit digits to five.)

Execution Control 7–33

Rules and Behavior
If you specify pause-code, the PAUSE statement displays the specified message
and then displays the default prompt.

If you do not specify pause-code, the system displays the following default
message:

FORTRAN PAUSE

The system prompt is then displayed.

Effect on OpenVMS Systems
The effect of PAUSE differs depending on whether the program is an
interactive or batch process, as follows:

• If a program is an interactive process, the program is suspended until you
enter one of the following commands:

CONTINUE resumes execution at the next executable statement.

DEBUG resumes execution under control of the OpenVMS Debugger.

EXIT terminates execution.

In general, most other commands also terminate execution.

• If a program is a batch process, the program is not suspended. If you
specify a value for pause-code, this value is written to SYS$OUTPUT.

Examples
The following examples show valid PAUSE statements:

PAUSE 701
PAUSE ’ERRONEOUS RESULT DETECTED’

For More Information:

• On obsolescent features in Fortran 95 and Fortran 90, as well as features
deleted in Fortran 95, see Appendix A.

7.10 RETURN Statement
The RETURN statement transfers control from a subprogram to the calling
program unit.

The RETURN statement takes the following form:

RETURN [expr]

7–34 Execution Control

expr
Is a scalar expression that is converted to an integer value if necessary.

The expr is only allowed in subroutines; it indicates an alternate return. (An
alternate return is an obsolescent feature in Fortran 95 and Fortran 90.)

Rules and Behavior
When a RETURN statement is executed in a function subprogram, control is
transferred to the referencing statement in the calling program unit.

When a RETURN statement is executed in a subroutine subprogram, control
is transferred to the first executable statement following the CALL statement
that invoked the subroutine, or to the alternate return (if one is specified).

Examples
The following shows how alternate returns can be used in a subroutine:

CALL CHECK(A, B, *10, *20, C)
...

10 ...
20 ...

SUBROUTINE CHECK(X, Y, *, *, C)
...

50 IF (X) 60, 70, 80
60 RETURN
70 RETURN 1
80 RETURN 2

END

The value of X determines the return, as follows:

• If X < 0, a normal return occurs and control is transferred to the first
executable statement following CALL CHECK in the calling program.

• If X = = 0, the first alternate return (RETURN 1) occurs and control is
transferred to the statement identified with label 10.

• If X > 0, the second alternate return (RETURN 2) occurs and control is
transferred to the statement identified with label 20.

Note that an asterisk (*) specifies the alternate return. An ampersand
(&) can also specify an alternate return in a CALL statement, but not in a
subroutine’s dummy argument list.

For More Information:

• On the CALL statement, see Section 7.3.

• On obsolescent features in Fortran 95 and Fortran 90, see Appendix A.

Execution Control 7–35

7.11 STOP Statement
The STOP statement terminates program execution before the end of the
program unit. It takes the following form:

STOP [stop-code]

stop-code
Is an optional message. It can be either of the following:

• A scalar character constant of type default character.

• A string of up to six digits; leading zeros are ignored. (Fortran 95/90 and
FORTRAN 77 limit digits to five.)

Effect on OpenVMS Systems
If you specify stop-code, the STOP statement displays the specified message
at your terminal, terminates program execution, and returns control to the
operating system.

If you do not specify stop-code, no message is displayed.

Examples
The following examples show valid STOP statements:

STOP 98
STOP ’END OF RUN’

DO
READ *, X, Y
IF (X > Y) STOP 5555

END DO

7–36 Execution Control

8
Program Units and Procedures

This chapter describes:

• Section 8.1, Overview

• Section 8.2, Main Program

• Section 8.3, Modules and Module Procedures

• Section 8.4, Block Data Program Units

• Section 8.5, Functions, Subroutines, and Statement Functions

• Section 8.6, External Procedures

• Section 8.7, Internal Procedures

• Section 8.8, Argument Association

• Section 8.9, Procedure Interfaces

• Section 8.10, CONTAINS Statement

• Section 8.11, ENTRY Statement

8.1 Overview
A Fortran 95/90 program consists of one or more program units. There are
four types of program units:

• Main program

The program unit that denotes the beginning of execution. It may or may
not have a PROGRAM statement as its first statement.

• External procedures

Program units that are either user-written functions or subroutines.

• Modules

Program units that contain declarations, type definitions, procedures, or
interfaces that can be shared by other program units.

Program Units and Procedures 8–1

• Block data program units

Program units that provide initial values for variables in named common
blocks.

A program unit does not have to contain executable statements; for example, it
can be a module containing interface blocks for subroutines.

A procedure can be invoked during program execution to perform a specific
task. There are several kinds of procedures, as follows:

Kind of Procedure Description

External Procedure A procedure that is not part of any other program unit.

Module Procedure A procedure defined within a module

Internal Procedure1 A procedure (other than a statement function) contained
within a main program, function, or subroutine

Intrinsic Procedure A procedure defined by the Fortran language

Dummy Procedure A dummy argument specified as a procedure or appearing in
a procedure reference

Statement function A computing procedure defined by a single statement

1The program unit that contains an internal procedure is called its host.

A function is invoked in an expression using the name of the function or a
defined operator. It returns a single value (function result) that is used to
evaluate the expression.

A subroutine is invoked in a CALL statement or by a defined assignment
statement. It does not directly return a value, but values can be passed back to
the calling program unit through arguments (or variables) known to the calling
program.

Recursion (direct or indirect) is permitted for functions and subroutines.

A procedure interface refers to the properties of a procedure that interact with
or are of concern to the calling program. A procedure interface can be explicitly
defined in interface blocks. All program units, except block data program units,
can contain interface blocks.

8–2 Program Units and Procedures

For More Information:

• On an overview of program structure, see Section 2.1.

• On intrinsic procedures, see Chapter 9.

• On the scope of program entities, see Section 15.2.

• On recursion, see Section 8.5.1.1.

8.2 Main Program
A Fortran program must include one main program. It takes the following
form:

[PROGRAM name]
[specification-part]
[execution-part]

[CONTAINS
internal-subprogram-part]

END [PROGRAM [name]]

name
Is the name of the program.

specification-part
Is one or more specification statements, except for the following:

• INTENT (or its equivalent attribute)

• OPTIONAL (or its equivalent attribute)

• PUBLIC and PRIVATE (or their equivalent attributes)

An automatic object must not appear in a specification statement. If a SAVE
statement is specified, it has no effect.

execution-part
Is one or more executable constructs or statements, except for ENTRY or
RETURN statements.

internal-subprogram-part
Is one or more internal subprograms (defining internal procedures). The
internal-subprogram-part is preceded by a CONTAINS statement.

Program Units and Procedures 8–3

Rules and Behavior
The PROGRAM statement is optional. Within a program unit, a PROGRAM
statement can be preceded only by comment lines or an OPTIONS statement.

The END statement is the only required part of a program. If a name
follows the END statement, it must be the same as the name specified in
the PROGRAM statement.

The program name is considered global and must be unique. It cannot be the
same as any local name in the main program or the name of any other program
unit, external procedure, or common block in the executable program.

A main program must not reference itself (either directly or indirectly).

Examples
The following is an example of a main program:

PROGRAM TEST
INTEGER C, D, E(20,20) ! Specification part
CALL SUB_1 ! Executable part

...
CONTAINS
SUBROUTINE SUB_1 ! Internal subprogram
...
END SUBROUTINE SUB_1

END PROGRAM TEST

For More Information:
On the default name for a main program, see the HP Fortran for OpenVMS
User Manual.

8.3 Modules and Module Procedures
A module contains specifications and definitions that can be used by one or more
program units. For the module to be accessible, the other program units must reference
its name in a USE statement, and the module entities must be public.

A module takes the following form:

MODULE name
[specification-part]

[CONTAINS
module-subprogram
[module-subprogram]...]

END [MODULE [name]]

8–4 Program Units and Procedures

name
Is the name of the module.

specification-part
Is one or more specification statements, except for the following:

• ENTRY

• FORMAT

• AUTOMATIC (or its equivalent attribute)

• INTENT (or its equivalent attribute)

• OPTIONAL (or its equivalent attribute)

• Statement functions

An automatic object must not appear in a specification statement.

module-subprogram
Is a function or subroutine subprogram that defines the module procedure.
A function must end with END FUNCTION and a subroutine must end with
END SUBROUTINE.

A module subprogram can contain internal procedures.

Rules and Behavior
If a name follows the END statement, it must be the same as the name
specified in the MODULE statement.

The module name is considered global and must be unique. It cannot be the
same as any local name in the main program or the name of any other program
unit, external procedure, or common block in the executable program.

A module is host to any module procedures it contains, and entities in the
module are accessible to the module procedures through host association.

A module must not reference itself (either directly or indirectly).

You can use the PRIVATE attribute to restrict access to procedures or variables
within a module.

Although ENTRY statements, FORMAT statements, and statement functions
are not allowed in the specification part of a module, they are allowed in the
specification part of a module subprogram.

Any executable statements in a module can only be specified in a module
subprogram.

Program Units and Procedures 8–5

A module can contain one or more procedure interface blocks, which let you
specify an explicit interface for an external subprogram or dummy subprogram.

When creating a MODULE that contains datatype declarations, it is
recommended that such declarations explicitly specify the kind of the datatype.
If an explicit kind is omitted, the MODULE’s declarations will be interpreted
according to the command-line options in effect when the MODULE is
imported, which may result in unintended behavior.

Every module subprogram of any HPF module must be of the same extrinsic
kind as its host, and any module subprogram whose extrinsic kind is not given
explicitly is assumed to be of that extrinsic kind.

Examples
The following example shows a simple module that can be used to provide
global data:

MODULE MOD_A
INTEGER :: B, C
REAL E(25,5)

END MODULE MOD_A
...
SUBROUTINE SUB_Z
USE MOD_A ! Makes scalar variables B and C, and array
... ! E available to this subroutine

END SUBROUTINE SUB_Z

The following example shows a module procedure:

MODULE RESULTS
...
CONTAINS
FUNCTION MOD_RESULTS(X,Y) ! A module procedure
...
END FUNCTION MOD_RESULTS

END MODULE RESULTS

The following example shows a module containing a derived type:

MODULE EMPLOYEE_DATA
TYPE EMPLOYEE
INTEGER ID
CHARACTER(LEN=40) NAME

END TYPE EMPLOYEE
END MODULE

8–6 Program Units and Procedures

The following example shows a module containing an interface block:

MODULE ARRAY_CALCULATOR
INTERFACE
FUNCTION CALC_AVERAGE(D)
REAL :: CALC_AVERAGE
REAL, INTENT(IN) :: D(:)

END FUNCTION
END INTERFACE

END MODULE ARRAY_CALCULATOR

The following example shows a derived-type definition that is public with
components that are private:

MODULE MATTER
TYPE ELEMENTS
PRIVATE
INTEGER C, D

END TYPE
...
END MODULE MATTER

In this case, components C and D are private to type ELEMENTS, but type
ELEMENTS is not private to MODULE MATTER. Any program unit that uses
the module MATTER can declare variables of type ELEMENTS, and pass as
arguments values of type ELEMENTS.

This design allows you to change components of a type without affecting other
program units that use the module.

If a derived type is needed in more than one program unit, the definition
should be placed in a module and accessed by a USE statement whenever it is
needed, as follows:

MODULE STUDENTS
TYPE STUDENT_RECORD
...
END TYPE

CONTAINS
SUBROUTINE COURSE_GRADE(...)
TYPE(STUDENT_RECORD) NAME
...
END SUBROUTINE

END MODULE STUDENTS
...

PROGRAM SENIOR_CLASS
USE STUDENTS
TYPE(STUDENT_RECORD) ID
...

END PROGRAM

Program Units and Procedures 8–7

Program SENIOR_CLASS has access to type STUDENT_RECORD, because it
uses module STUDENTS. Module procedure COURSE_GRADE also has access
to type STUDENT_RECORD, because the derived-type definition appears in its
host.

For More Information:

• On procedure interfaces, see Section 8.9.

• On the PRIVATE and PUBLIC attributes, see Section 5.16.

8.3.1 Module References
A program unit references a module in a USE statement. This module
reference lets the program unit access the public definitions, specifications, and
procedures in the module.

Entities in a module are public by default, unless the USE statement specifies
otherwise or the PRIVATE attribute is specified for the module entities.

A module reference causes use association between the using program unit and
the entities in the module.

For More Information:

• On the USE statement, see Section 8.3.2.

• On the PRIVATE and PUBLIC attributes, see Section 5.16.

• On use association, see Section 15.5.1.2.

8.3.2 USE Statement
The USE statement gives a program unit accessibility to public entities in a
module. It takes one of the following forms:

USE name [, rename-list]
USE name, ONLY : [only-list]

name
Is the name of the module.

rename-list
Is one or more items having the following form:

local-name => mod-name

local-name
Is the name of the entity in the program unit using the module.

8–8 Program Units and Procedures

mod-name
Is the name of a public entity in the module.

only-list
Is the name of a public entity in the module or a generic identifier (a generic
name, defined operator, or defined assignment).

An entity in the only-list can also take the form:

[local-name =>] mod-name

Rules and Behavior
If the USE statement is specified without the ONLY option, the program unit
has access to all public entities in the named module.

If the USE statement is specified with the ONLY option, the program unit has
access to only those entities following the option.

If more than one USE statement for a given module appears in a scoping unit,
the following rules apply:

• If one USE statement does not have the ONLY option, all public entities
in the module are accessible, and any rename-lists and only-lists are
interpreted as a single, concatenated rename-list.

• If all the USE statements have ONLY options, all the only-lists are
interpreted as a single, concatenated only-list. Only those entities named
in one or more of the only-lists are accessible.

If two or more generic interfaces that are accessible in a scoping unit have the
same name, the same operator, or are both assignments, they are interpreted
as a single generic interface. Otherwise, multiple accessible entities can have
the same name only if no reference to the name is made in the scoping unit.

The local names of entities made accessible by a USE statement must not
be respecified with any attribute other than PUBLIC or PRIVATE. The
local names can appear in namelist group lists, but not in a COMMON or
EQUIVALENCE statement.

Examples
The following shows examples of the USE statement:

Program Units and Procedures 8–9

MODULE MOD_A
INTEGER :: B, C
REAL E(25,5), D(100)

END MODULE MOD_A
...
SUBROUTINE SUB_Y
USE MOD_A, DX => D, EX => E ! Array D has been renamed DX and array E
... ! has been renamed EX. Scalar variables B

END SUBROUTINE SUB_Y ! and C are also available to this subrou-
... ! tine (using their module names).
SUBROUTINE SUB_Z
USE MOD_A, ONLY: B, C ! Only scalar variables B and C are
... ! available to this subroutine

END SUBROUTINE SUB_Z
...

The following example shows a module containing common blocks:

MODULE COLORS
COMMON /BLOCKA/ C, D(15)
COMMON /BLOCKB/ E, F
...

END MODULE COLORS
...
FUNCTION HUE(A, B)
USE COLORS
...

END FUNCTION HUE

The USE statement makes all of the variables in the common blocks in module
COLORS available to the function HUE.

To provide data abstraction, a user-defined data type and operations to be
performed on values of this type can be packaged together in a module. The
following example shows such a module:

MODULE CALCULATION
TYPE ITEM
REAL :: X, Y

END TYPE ITEM

INTERFACE OPERATOR (+)
MODULE PROCEDURE ITEM_CALC

END INTERFACE

CONTAINS
FUNCTION ITEM_CALC (A1, A2)
TYPE(ITEM) A1, A2, ITEM_CALC
...

END FUNCTION ITEM_CALC
...

END MODULE CALCULATION

8–10 Program Units and Procedures

PROGRAM TOTALS
USE CALCULATION
TYPE(ITEM) X, Y, Z
...
X = Y + Z
...

END

The USE statement allows program TOTALS access to both the type ITEM and
the extended intrinsic operator + to perform calculations.

8.4 Block Data Program Units
A block data program unit provides initial values for nonpointer variables in
named common blocks. It takes the following form:

BLOCK DATA [name]
[specification-part]

END [BLOCK DATA [name]]

name
Is the name of the block data program unit.

specification-part
Is one or more of the following statements:

COMMON INTRINSIC STATIC

DATA PARAMETER TARGET

Derived-type definition POINTER Type declaration2

DIMENSION RECORD1 USE3

EQUIVALENCE Record structure declaration1

IMPLICIT SAVE

1For more information on the RECORD statement and record structure declarations, see
Section B.12.
2Can only contain attributes: DIMENSION, INTRINSIC, PARAMETER, POINTER, SAVE,
STATIC, or TARGET.
3Allows access to only named constants.

Rules and Behavior
A block data program unit need not be named, but there can only be one
unnamed block data program unit in an executable program.

If a name follows the END statement, it must be the same as the name
specified in the BLOCK DATA statement.

An interface block must not appear in a block data program unit and a block
data program unit must not contain any executable statements.

Program Units and Procedures 8–11

If a DATA statement initializes any variable in a named common block, the
block data program unit must have a complete set of specification statements
establishing the common block. However, all of the variables in the block do
not have to be initialized.

A block data program unit can establish and define initial values for more than
one common block, but a given common block can appear in only one block
data program unit in an executable program.

The name of a block data program unit can appear in the EXTERNAL
statement of a different program unit to force a search of object libraries
for the block data program unit at link time.

Examples
The following is an example of a block data program unit:

BLOCK DATA BLKDAT
INTEGER S,X
LOGICAL T,W
DOUBLE PRECISION U
DIMENSION R(3)
COMMON /AREA1/R,S,U,T /AREA2/W,X,Y
DATA R/1.0,2*2.0/, T/.FALSE./, U/0.214537D-7/, W/.TRUE./, Y/3.5/

END

For More Information:

• On common blocks, see Section 5.4.

• On the DATA statement, see Section 5.5.

• On the EXTERNAL statement, see Section 5.8.

8.5 Functions, Subroutines, and Statement Functions
Functions, subroutines, and statement functions are user-written subprograms
that perform computing procedures. The computing procedure can be either
a series of arithmetic operations or a series of Fortran statements. A single
subprogram can perform a computing procedure in several places in a program,
to avoid duplicating a series of operations or statements in each place.

The following table shows the statements that define these subprograms, and
how control is transferred to the subprogram:

8–12 Program Units and Procedures

Subprogram Defining Statements Control Transfer Method

Function FUNCTION or ENTRY Function reference1

Subroutine SUBROUTINE or ENTRY CALL statement2

Statement function Statement function definition Function reference

1A function can also be invoked by a defined operation (see Section 8.9.4).
2A subroutine can also be invoked by a defined assignment (see Section 8.9.5).

A function reference is used in an expression to invoke a function; it
consists of the function name and its actual arguments. The function
reference returns a value to the calling expression that is used to evaluate the
expression.

The following topics are described in this section:

• General rules for function and subroutine subprograms (Section 8.5.1)

• Functions (Section 8.5.2)

• Subroutines (Section 8.5.3)

• Statement functions (Section 8.5.4)

For More Information:

• On the ENTRY statement, see Section 8.11.

• On the CALL statement, see Section 7.3.

8.5.1 General Rules for Function and Subroutine Subprograms
A subprogram can be an external, module, or internal subprogram. The END
statement for an internal or module subprogram must be END SUBROUTINE
[name] for a subroutine, or END FUNCTION [name] for a function. In an
external subprogram, the SUBROUTINE and FUNCTION keywords are
optional.

If a subprogram name appears after the END statement, it must be the same
as the name specified in the SUBROUTINE or FUNCTION statement.

Function and subroutine subprograms can change the values of their
arguments, and the calling program can use the changed values.

A SUBROUTINE or FUNCTION statement can be optionally preceded by an
OPTIONS statement.

Dummy arguments (except for dummy pointers or dummy procedures) can be
specified with an intent and can be made optional.

Program Units and Procedures 8–13

The following sections describe recursion, pure procedures, and user-defined
elemental procedures.

For More Information:

• On module procedures, see Section 8.3.

• On internal procedures, see Section 8.7.

• On external procedures, see Section 8.6.

• On argument intent, see Section 5.10.

• On optional arguments, see Section 8.8.1.

8.5.1.1 Recursive Procedures
A recursive procedure can reference itself directly or indirectly. Recursion
is permitted if the keyword RECURSIVE is specified in a FUNCTION or
SUBROUTINE statement, or if RECURSIVE is specified as a compiler option
or in an OPTIONS statement.

If a function is directly recursive and array valued, the keywords RECURSIVE
and RESULT must both be specified in the FUNCTION statement.

The procedure interface is explicit within the subprogram in the following
cases:

• When RECURSIVE is specified for a subroutine

• When RECURSIVE and RESULT are specified for a function

The keyword RECURSIVE must be specified if any of the following applies
(directly or indirectly):

• The subprogram invokes itself.

• The subprogram invokes a subprogram defined by an ENTRY statement in
the same subprogram.

• An ENTRY procedure in the same subprogram invokes one of the
following:

Itself

Another ENTRY procedure in the same subprogram

The subprogram defined by the FUNCTION or SUBROUTINE
statement

8–14 Program Units and Procedures

For More Information:

• On the FUNCTION statement, see Section 8.5.2.

• On the SUBROUTINE statement, see Section 8.5.3.

• On compiler options, see the HP Fortran for OpenVMS User Manual.

• On the OPTIONS statement, see Section 13.3.

8.5.1.2 Pure Procedures
A pure procedure is a user-defined procedure that is specified by using the
prefix PURE (or ELEMENTAL) in a FUNCTION or SUBROUTINE statement.
Pure procedures are a feature of Fortran 95.

A pure procedure has no side effects. It has no effect on the state of the
program, except for the following:

• For functions: It returns a value.

• For subroutines: It modifies INTENT(OUT) and INTENT(INOUT)
parameters.

The following intrinsic and library procedures are implicitly pure:

• All intrinsic functions

• The elemental intrinsic subroutine MVBITS

• The library routines in the HPF_LIBRARY

A statement function is pure only if all functions that it references are pure.

Rules and Behavior
Except for procedure arguments and pointer arguments, the following intent
must be specified for all dummy arguments in the specification part of the
procedure:

• For functions: INTENT(IN)

• For subroutines: any INTENT (IN, OUT, or INOUT)

A local variable declared in a pure procedure (including variables declared in
any internal procedure) must not:

• Specify the SAVE attribute

• Be initialized in a type declaration statement or a DATA statement

The following variables have restricted use in pure procedures (and any
internal procedures):

• Global variables

Program Units and Procedures 8–15

• Dummy arguments with INTENT(IN) (or no declared intent)

• Objects that are storage associated with any part of a global variable

They must not be used in any context that does either of the following:

• Causes their value to change. For example, they must not be used as:

The left side of an assignment statement or pointer assignment
statement

An actual argument associated with a dummy argument with
INTENT(OUT), INTENT(INOUT), or the POINTER attribute

An index variable in a DO or FORALL statement, or an implied-do
clause

The variable in an ASSIGN statement

An input item in a READ statement

An internal file unit in a WRITE statement

An object in an ALLOCATE, DEALLOCATE, or NULLIFY statement

An IOSTAT or SIZE specifier in an I/O statement, or the STAT specifier
in a ALLOCATE or DEALLOCATE statement

• Creates a pointer to that variable. For example, they must not be used as:

The target in a pointer assignment statement

The right side of an assignment to a derived-type variable (including a
pointer to a derived type) if the derived type has a pointer component
at any level

A pure procedure must not contain the following:

• Any external I/O statement (including a READ or WRITE statement whose
I/O unit is an external file unit number or *)

• A PAUSE statement

• A STOP statement

A pure procedure can be used in contexts where other procedures are
restricted; for example:

• It can be called directly in a FORALL statement or be used in the mask
expression of a FORALL statement.

• It can be called from a pure procedure. Pure procedures can only call other
pure procedures.

8–16 Program Units and Procedures

• It can be passed as an actual argument to a pure procedure.

If a procedure is used in any of these contexts, its interface must be explicit
and it must be declared pure in that interface.

Examples
The following shows a pure function:

PURE INTEGER FUNCTION MANDELBROT(X)
COMPLEX, INTENT(IN) :: X
COMPLEX :: XTMP
INTEGER :: K
! Assume SHARED_DEFS includes the declaration
! INTEGER ITOL
USE SHARED_DEFS

K = 0
XTMP = -X
DO WHILE (ABS(XTMP)<2.0 .AND. K<ITOL)
XTMP = XTMP**2 - X
K = K + 1

END DO
ITER = K

END FUNCTION

The following shows the preceding function used in an interface block:

INTERFACE
PURE INTEGER FUNCTION MANDELBROT(X)
COMPLEX, INTENT(IN) :: X

END FUNCTION MANDELBROT
END INTERFACE

The following shows a FORALL construct calling the MANDELBROT function
to update all the elements of an array:

FORALL (I = 1:N, J = 1:M)
A(I,J) = MANDELBROT(COMPLX((I-1)*1.0/(N-1), (J-1)*1.0/(M-1)))

END FORALL

For More Information:

• On the FUNCTION statement, see Section 8.5.2.

• On the SUBROUTINE statement, see Section 8.5.3.

• On pure procedures in FORALLs, see Section 4.2.5.

• On pure procedures in interface blocks, see Section 8.9.2.

• On how to use pure procedures, see the HP Fortran for OpenVMS User
Manual.

Program Units and Procedures 8–17

8.5.1.3 Elemental Procedures
An elemental procedure is a user-defined procedure that is a restricted form of
pure procedure. An elemental procedure can be passed an array, which is acted
upon one element at a time. Elemental procedures are a feature of Fortran 95.

To specify an elemental procedure, use the prefix ELEMENTAL in a
FUNCTION or SUBROUTINE statement.

An explicit interface must be visible to the caller of an ELEMENTAL
procedure.

For functions, the result must be scalar; it cannot have the POINTER
attribute.

Dummy arguments have the following restrictions:

• They must be scalar.

• They cannot have the POINTER attribute.

• They (or their subobjects) cannot appear in a specification expression,
except as an argument to one of the intrinsic functions BIT_SIZE, LEN,
KIND, or the numeric inquiry functions.

• They cannot be *.

• They cannot be dummy procedures.

If the actual arguments are all scalar, the result is scalar. If the actual
arguments are array-valued, the values of the elements (if any) of the result
are the same as if the function or subroutine had been applied separately, in
any order, to corresponding elements of each array actual argument.

Elemental procedures are pure procedures and all rules that apply to pure
procedures also apply to elemental procedures.

Examples
Consider the following:

MIN (A, 0, B) ! A and B are arrays of shape (S, T)

In this case, the elemental reference to the MIN intrinsic function is an array
expression whose elements have the following values:

MIN (A(I,J), 0, B(I,J)), I = 1, 2, ..., S, J = 1, 2, ..., T

8–18 Program Units and Procedures

For More Information:

• On the FUNCTION statement, see Section 8.5.2.

• On the SUBROUTINE statement, see Section 8.5.3.

• On determining when procedures require explicit interfaces, see
Section 8.9.1.

• On pure procedures and the prefix PURE, see Section 8.5.1.2.

• On optional arguments, see Section 8.8.1.

8.5.2 Functions
A function subprogram is invoked in an expression and returns a single value
(a function result) that is used to evaluate the expression.

The FUNCTION statement is the initial statement of a function subprogram.
It takes the following form:

[prefix] FUNCTION name ([d-arg-list]) [RESULT (r-name)]

prefix
Is one of the following:

type [keyword]
keyword [type]

type
Is a data type specifier.

keyword
Is one of the following:

Keyword Meaning

RECURSIVE Permits direct recursion to occur. If a function is directly
recursive and array valued, RESULT must also be specified (see
Section 8.5.1.1).

PURE Asserts that the procedure has no side effects (see Section 8.5.1.2).

ELEMENTAL Restricted form of pure procedure that acts on one array element
at a time (see Section 8.5.1.3).

Program Units and Procedures 8–19

name
Is the name of the function. If RESULT is specified, the function name must
not appear in any specification statement in the scoping unit of the function
subprogram.

The function name can be followed by the length of the data type. The length
is specified by an asterisk (*) followed by any unsigned, nonzero integer that
is a valid length for the function’s type. For example, REAL FUNCTION
LGFUNC*8 (Y, Z) specifies the function result as REAL(8) (or REAL*8).

This optional length specification is not permitted if the length has already
been specified following the keyword CHARACTER.

d-arg-list
Is a list of one or more dummy arguments.

r-name
Is the name of the function result. This name must not be the same as the
function name.

Rules and Behavior
The type and kind parameters (if any) of the function’s result can be defined
in the FUNCTION statement or in a type declaration statement within
the function subprogram, but not both. If no type is specified, the type is
determined by implicit typing rules in effect for the function subprogram.

Execution begins with the first executable construct or statement following the
FUNCTION statement. Control returns to the calling program unit once the
END statement (or a RETURN statement) is executed.

If you specify CHARACTER*(*), the function assumes the length declared for
it in the program unit that invokes it. This type of character function can
have different lengths when it is invoked by different program units; it is an
obsolescent feature in Fortran 95.

If the length is specified as an integer constant, the value must agree with the
length of the function specified in the program unit that invokes the function.
If no length is specified, a length of 1 is assumed.

If the function is array-valued or a pointer, the declarations within the function
must state these attributes for the function result name. The specification
of the function result attributes, dummy argument attributes, and the
information in the procedure heading collectively define the interface of the
function.

8–20 Program Units and Procedures

The value of the result variable is returned by the function when it completes
execution. Certain rules apply depending on whether the result is a pointer, as
follows:

• If the result is a pointer, its allocation status must be determined before
the function completes execution. (The function must associate a target
with the pointer, or cause the pointer to be explicitly disassociated from a
target.)

The shape of the value returned by the function is determined by the shape
of the result variable when the function completes execution.

• If the result is not a pointer, its value must be defined before the function
completes execution. If the result is an array, all the elements must be
defined; if the result is a derived-type structure, all the components must
be defined.

A function subprogram cannot contain a SUBROUTINE statement, a BLOCK
DATA statement, a PROGRAM statement, or another FUNCTION statement.
ENTRY statements can be included to provide multiple entry points to the
subprogram.

You can use a CALL statement to invoke a function as long as write the
function is not one of the following types:

• REAL(8)

• REAL(16)

• COMPLEX(8)

• COMPLEX(16)

• CHARACTER

Section 8.5.2.1 describes the RESULT keyword and Section 8.5.2.2 describes
function references.

Examples
The following example uses the Newton-Raphson iteration method
(� ��	 � ������	 � �����	�� �
) to get the root of the function:

Program Units and Procedures 8–21

FUNCTION ROOT(A)
X = 1.0
DO
EX = EXP(X)
EMINX = 1./EX
ROOT = X - ((EX+EMINX)*.5+COS(X)-A)/((EX-EMINX)*.5-SIN(X))
IF (ABS((X-ROOT)/ROOT) .LT. 1E-6) RETURN
X = ROOT

END DO
END

In the preceding example, the following formula is calculated repeatedly until
the difference between Xi and Xi+1 is less than 1.0E–6:

��+1 � �� �
�������	 � ������	��

��	����	� ��	���	

The following example shows an assumed-length character function:

CHARACTER*(*) FUNCTION REDO(CARG)
CHARACTER*1 CARG
DO I=1,LEN(REDO)
REDO(I:I) = CARG

END DO
RETURN

END FUNCTION

This function returns the value of its argument, repeated to fill the length of
the function.

Within any given program unit, all references to an assumed-length character
function must have the same length. In the following example, the REDO
function has a length of 1000:

CHARACTER*1000 REDO, MANYAS, MANYZS
MANYAS = REDO(’A’)
MANYZS = REDO(’Z’)

Another program unit within the executable program can specify a different
length. For example, the following REDO function has a length of 2:

CHARACTER HOLD*6, REDO*2
HOLD = REDO(’A’)//REDO(’B’)//REDO(’C’)

The following example shows a dynamic array-valued function:

FUNCTION SUB (N)
REAL, DIMENSION(N) :: SUB
...

END FUNCTION

8–22 Program Units and Procedures

For More Information:

• On general rules that apply to function subprograms, see Section 8.5.1.

• On argument keywords in function references, see Section 8.5.2.2.

• On the ENTRY statement, see Section 8.11.

• On the RETURN statement, see Section 7.10.

• On obsolescent features in Fortran 95, see Appendix A.

8.5.2.1 RESULT Keyword
Normally, a function result is returned in the function’s name, and all
references to the function name are references to the function result.

However, if you use the RESULT keyword in a FUNCTION statement, you can
specify a local variable name for the function result. In this case, all references
to the function name are recursive calls, and the function name must not
appear in specification statements.

The RESULT name must be different from the name of the function.

The following shows an example of a recursive function specifying a RESULT
variable:

RECURSIVE FUNCTION FACTORIAL(P) RESULT(L)
INTEGER, INTENT(IN) :: P
INTEGER L
IF (P == 1) THEN
L = 1

ELSE
L = P * FACTORIAL(P - 1)

END IF
END FUNCTION

8.5.2.2 Function References
Functions are invoked by a function reference in an expression or by a defined
operation.

A function reference takes the following form:

fun ([a-arg [,a-arg]...])

Program Units and Procedures 8–23

fun
Is the name of the function subprogram.

a-arg
Is an actual argument optionally preceded by [keyword=], where keyword is
the name of a dummy argument in the explicit interface for the function. The
keyword is assigned a value when the procedure is invoked.

Each actual argument must be a variable, an expression, or the name of a
procedure. (It must not be the name of an internal procedure, statement
function, or the generic name of a procedure.)

Rules and Behavior
When a function is referenced, each actual argument is associated with the
corresponding dummy argument by its position in the argument list or by the
name of its keyword. The arguments must agree in type and kind parameters.

Execution of the function produces a result that is assigned to the function
name or to the result name, depending on whether the RESULT keyword was
specified.

The program unit uses the result value to complete the evaluation of the
expression containing the function reference.

If positional arguments and argument keywords are specified, the argument
keywords must appear last in the actual argument list.

If a dummy argument is optional, the actual argument can be omitted.

If a dummy argument is specified with the INTENT attribute, its use may
be limited. A dummy argument whose intent is not specified is subject to the
limitations of its associated actual argument.

An actual argument associated with a dummy procedure must be the specific
name of a procedure, or be another dummy procedure. Certain specific intrinsic
function names must not be used as actual arguments (see Table 9–1).

Examples
Consider the following example:

X = 2.0
NEW_COS = COS(X) ! A function reference

Intrinsic function COS calculates the cosine of 2.0. The value –0.4161468 is
returned (in place of COS(X)) and assigned to NEW_COS.

8–24 Program Units and Procedures

For More Information:

• On the INTENT attribute, see Section 5.10.

• On defined operations, see Section 8.9.4.

• On procedure arguments, see Section 8.8.

• On dummy arguments, see Section 8.8.7.

• On intrinsic functions, see Chapter 9.

• On optional arguments, see Section 8.8.1.

• On the RESULT keyword in FUNCTION statements, see Section 8.5.2.1.

• On the FUNCTION statement, see Section 8.5.2.

8.5.3 Subroutines
A subroutine subprogram is invoked in a CALL statement or by a defined
assignment statement, and does not return a particular value.

The SUBROUTINE statement is the initial statement of a subroutine
subprogram. It takes the following form:

[prefix] SUBROUTINE name [([d-arg-list])]

prefix
Is one of the following:

Keyword Meaning

RECURSIVE Permits direct recursion to occur (see Section 8.5.1.1).

PURE Asserts that the procedure has no side effects (see Section 8.5.1.2).

ELEMENTAL Restricted form of pure procedure that acts on one array element
at a time (see Section 8.5.1.3).

name
Is the name of the subroutine.

d-arg-list
Is a list of one or more dummy arguments or alternate return specifiers (*).

Program Units and Procedures 8–25

Rules and Behavior
A subroutine is invoked by a CALL statement or defined assignment. When a
subroutine is invoked, dummy arguments (if present) become associated with
the corresponding actual arguments specified in the call.

Execution begins with the first executable construct or statement following the
SUBROUTINE statement. Control returns to the calling program unit once
the END statement (or a RETURN statement) is executed.

A subroutine subprogram cannot contain a FUNCTION statement, a BLOCK
DATA statement, a PROGRAM statement, or another SUBROUTINE
statement. ENTRY statements can be included to provide multiple entry
points to the subprogram.

Examples
The following example shows a subroutine:

Main Program Subroutine

CALL HELLO_WORLD SUBROUTINE HELLO_WORLD

... PRINT *, "Hello World"

END END SUBROUTINE

The following example uses alternate return specifiers to determine where
control transfers on completion of the subroutine:

Main Program Subroutine

CALL CHECK(A,B,*10,*20,C) SUBROUTINE CHECK(X,Y,*,*,Q)

TYPE *, ’VALUE LESS THAN ZERO’ ...

GO TO 30 50 IF (Z) 60,70,80

10 TYPE*, ’VALUE EQUALS ZERO’ 60 RETURN

GO TO 30 70 RETURN 1

20 TYPE*, ’VALUE MORE THAN ZERO’ 80 RETURN 2

30 CONTINUE END

...

The SUBROUTINE statement argument list contains two dummy alternate
return arguments corresponding to the actual arguments *10 and *20 in the
CALL statement argument list.

8–26 Program Units and Procedures

The value of Z determines the return, as follows:

• If Z < zero, a normal return occurs and control is transferred to the first
executable statement following CALL CHECK in the main program.

• If Z = = zero, the return is to statement label 10 in the main program.

• If Z > zero, the return is to statement label 20 in the main program.

(An alternate return is an obsolescent feature in Fortran 95 and Fortran 90.)

For More Information:

• On general rules that apply to subroutine subprograms, see Section 8.5.1.

• On the CALL statement, see Section 7.3.

• On argument keywords in subroutine references, see Section 7.3.

• On defined assignment, see Section 8.9.5.

• On the RETURN statement, see Section 7.10.

• On procedure arguments, see Section 8.8.

• On intrinsic subroutines, see Chapter 9.

• On the ENTRY statement, see Section 8.11.

• On obsolescent features in Fortran 95 and Fortran 90, see Appendix A.

8.5.4 Statement Functions
A statement function is a procedure defined by a single statement in the same
program unit in which the procedure is referenced. It takes the following form:

fun ([d-arg [,d-arg]...]) = expr

fun
Is the name of the statement function.

d-arg
Is a dummy argument. A dummy argument can appear only once in any list of
dummy arguments, and its scope is local to the statement function.

expr
Is a scalar expression defining the computation to be performed.

Named constants and variables used in the expression must have been declared
previously in the specification part of the scoping unit or made accessible by
use or host association.

Program Units and Procedures 8–27

If the expression contains a function reference, the function must have been
defined previously in the same program unit.

A statement function reference takes the following form:

fun ([a-arg [,a-arg]...])

fun
Is the name of the statement function.

a-arg
Is an actual argument.

Rules and Behavior
When a statement function reference appears in an expression, the values
of the actual arguments are associated with the dummy arguments in
the statement function definition. The expression in the definition is then
evaluated. The resulting value is used to complete the evaluation of the
expression containing the function reference.

The data type of a statement function can be explicitly defined in a type
declaration statement. If no type is specified, the type is determined by implicit
typing rules in effect for the program unit.

Actual arguments must agree in number, order, and data type with their
corresponding dummy arguments.

Except for the data type, declarative information associated with an entity is
not associated with dummy arguments in the statement function; for example,
declaring an entity to be an array or to be in a common block does not affect a
dummy argument with the same name.

The name of the statement function cannot be the same as the name of any
other entity within the same program unit.

Any reference to a statement function must appear in the same program unit
as the definition of that function.

A statement function reference must appear as (or be part of) an expression.
The reference cannot appear on the left side of an assignment statement.

A statement function must not be provided as a procedure argument.

8–28 Program Units and Procedures

Examples
The following are examples of statement functions:

REAL VOLUME, RADIUS
VOLUME(RADIUS) = 4.189*RADIUS**3

CHARACTER*10 CSF,A,B
CSF(A,B) = A(6:10)//B(1:5)

The following example shows a statement function and some references to it:

AVG(A,B,C) = (A+B+C)/3.
...
GRADE = AVG(TEST1,TEST2,XLAB)
IF (AVG(P,D,Q) .LT. AVG(X,Y,Z)) STOP
FINAL = AVG(TEST3,TEST4,LAB2) ! Invalid reference; implicit
... ! type of third argument does not
... ! match implicit type of dummy argument

Implicit typing problems can be avoided if all arguments are explicitly typed.

The following statement function definition is invalid because it contains a
constant, which cannot be used as a dummy argument:

REAL COMP, C, D, E
COMP(C,D,E,3.) = (C + D - E)/3.

For More Information:

• On procedure arguments, see Section 8.8.

• On use and host association, see Section 15.5.1.2.

8.6 External Procedures
External procedures are user-written functions or subroutines. They are
located outside of the main program and can’t be part of any other program
unit.

External procedures can be invoked by the main program or any procedure of
an executable program.

In Fortran 95/90, external procedures can include internal procedures, as long
as the internal procedures appear between a CONTAINS statement and the
end of the procedure.

An external procedure can reference itself (directly or indirectly).

The interface of an external procedure is implicit unless an interface block is
supplied for the procedure.

Program Units and Procedures 8–29

For More Information:

• On function and subroutine subprograms, see Section 8.5.

• On procedure interfaces, see Section 8.9.

• On passing arguments, see the HP Fortran for OpenVMS User Manual.

8.7 Internal Procedures
Internal procedures are functions or subroutines that follow a CONTAINS
statement in a program unit. The program unit in which the internal
procedure appears is called its host.

Internal procedures can appear in the main program, in an external
subprogram, or in a module subprogram.

An internal procedure takes the following form:

CONTAINS
internal-subprogram
[internal-subprogram]...

internal-subprogram
Is a function or subroutine subprogram that defines the procedure. An internal
subprogram must not contain any other internal subprograms.

Rules and Behavior
Internal procedures are the same as external procedures, except for the
following:

• Only the host program unit can use an internal procedure.

• An internal procedure has access to host entities by host association; that
is, names declared in the host program unit are useable within the internal
procedure.

• In Fortran 95/90, the name of an internal procedure must not be passed
as an argument to another procedure. However, HP Fortran allows an
internal procedure name to be passed as an actual argument to another
procedure.

• An internal procedure must not contain an ENTRY statement.

An internal procedure can reference itself (directly or indirectly); it can be
referenced in the execution part of its host and in the execution part of any
internal procedure contained in the same host (including itself).

The interface of an internal procedure is always explicit.

8–30 Program Units and Procedures

Every HPF internal subprogram must be of the same extrinsic kind as its host,
and any internal subprogram whose extrinsic kind is not given explicitly is
assumed to be of that extrinsic kind.

Examples
The following example shows an internal procedure:

PROGRAM COLOR_GUIDE
...
CONTAINS
FUNCTION HUE(BLUE) ! An internal procedure
...
END FUNCTION HUE

END PROGRAM

For More Information:

• On function and subroutine subprograms, see Section 8.5.

• On host association, see Section 15.5.1.2.

• On procedure interfaces, see Section 8.9.

8.8 Argument Association
Procedure arguments provide a way for different program units to access the
same data.

When a procedure is referenced in an executable program, the program unit
invoking the procedure can use one or more actual arguments to pass values to
the procedure’s dummy arguments. The dummy arguments are associated with
their corresponding actual arguments when control passes to the subprogram.

In general, when control is returned to the calling program unit, the last
value assigned to a dummy argument is assigned to the corresponding actual
argument.

An actual argument can be a variable, expression, or procedure name. The
type and kind parameters, and rank of the actual argument must match those
of its associated dummy argument.

A dummy argument is either a dummy data object, a dummy procedure, or an
alternate return specifier (*). Except for alternate return specifiers, dummy
arguments can be optional.

If argument keywords are not used, argument association is positional. The
first dummy argument becomes associated with the first actual argument,
and so on. If argument keywords are used, arguments are associated by the

Program Units and Procedures 8–31

keyword name, so actual arguments can be in a different order than dummy
arguments.

A keyword is required for an argument only if a preceding optional argument
is omitted or if the argument sequence is changed.

A scalar dummy argument can be associated with only a scalar actual
argument.

If a dummy argument is an array, it must be no larger than the array that
is the actual argument. You can use adjustable arrays to process arrays of
different sizes in a single subprogram.

A dummy argument referenced as a subprogram must be associated with an
actual argument that has been declared EXTERNAL or INTRINSIC in the
calling routine.

If a scalar dummy argument is of type character, its length must not be greater
than the length of its associated actual argument.

If the character dummy argument’s length is specified as *(*) (assumed
length), it uses the length of the associated actual argument.

Once an actual argument has been associated with a dummy argument,
no action can be taken that affects the value or availability of the actual
argument, except indirectly through the dummy argument. For example, if the
following statement is specified:

CALL SUB_A (B(2:6), B(4:10))

B(4:6) must not be defined, redefined, or become undefined through either
dummy argument, since it is associated with both arguments. However, B(2:3)
is definable through the first argument, and B(7:10) is definable through the
second argument.

Similarly, if any part of the actual argument is defined through a dummy
argument, the actual argument can only be referenced through that dummy
argument during execution of the procedure. For example, if the following
statements are specified:

MODULE MOD_A
REAL :: A, B, C, D

END MODULE MOD_A

PROGRAM TEST
USE MOD_A
CALL SUB_1 (B)
...

END PROGRAM TEST

8–32 Program Units and Procedures

SUBROUTINE SUB_1 (F)
USE MOD_A
...
WRITE (*,*) F

END SUBROUTINE SUB_1

Variable B must not be directly referenced during the execution of SUB_1
because it is being defined through dummy argument F. However, B can be
indirectly referenced through F (and directly referenced when SUB_1 completes
execution).

The following sections provide more details on arguments:

• Optional arguments (Section 8.8.1)

• The different kinds of arguments

Array arguments (Section 8.8.2)

Pointer arguments (Section 8.8.3)

Assumed-length character arguments (Section 8.8.4)

Character constant and Hollerith arguments (Section 8.8.5)

Alternate return arguments (Section 8.8.6)

Dummy procedure arguments (Section 8.8.7)

• References to generic procedures (Section 8.8.8)

• References to non-Fortran procedures (Section 8.8.9)

For More Information:

• On argument keywords in subroutine references, see Section 7.3.

• On argument keywords in function references, see Section 8.5.2.2.

• On built-in functions to pass actual arguments, see Section 8.8.9.1.

8.8.1 Optional Arguments
Dummy arguments can be made optional if they are declared with the
OPTIONAL attribute. In this case, an actual argument does not have to
be supplied for it in a procedure reference.

Positional arguments (if any) must appear first in an actual argument list,
followed by keyword arguments (if any). If an optional argument is the last
positional argument, it can simply be omitted if desired.

However, if the optional argument is to be omitted but it is not the last
positional argument, keyword arguments must be used for any subsequent
arguments in the list.

Program Units and Procedures 8–33

The following example shows optional arguments:

PROGRAM RESULT
TEST_RESULT = LGFUNC(A, B=D)
...
CONTAINS
FUNCTION LGFUNC(G, H, B)
OPTIONAL H, B
...

END FUNCTION
END

In the function reference, A is a positional argument associated with required
dummy argument G. The second actual argument D is associated with optional
dummy argument B by its keyword name (B). No actual argument is associated
with optional argument H.

There are two intrinsics you can use to determine arguments:

• PRESENT (see Section 8.8.1.1)

• IARGCOUNT (see Section 8.8.1.2)

8.8.1.1 Using the PRESENT Intrinsic Function
You can use the PRESENT intrinsic function to determine if an actual
argument is associated with an optional dummy argument in a particular
reference.

Optional arguments must be defined in explicit procedure interfaces so that
appropriate argument associations can be made for the PRESENT to work.

See Example 8–1.

The implementation of PRESENT depends on the caller passing a null
reference value for any omitted actual argument. This is true even for trailing
omitted actual arguments. In this regard, the PRESENT intrinsic does not
take advantage of the shortened argument list convention allowed in the
OpenVMS Calling Standard. On the calling side, it is the explicit declaration
of the full interface that tells the caller how many actual arguments must be
provided in any call, even when fewer arguments are written in the source.

8–34 Program Units and Procedures

Example 8–1 Use of the PRESENT Intrinsic With a Defined Interface

! Compile /NOOPT to avoid inlining
!

SUBROUTINE CHECK (X, Y)
REAL X, Z
REAL, OPTIONAL :: Y

IF (PRESENT (Y)) THEN
WRITE(6,10)

10 FORMAT(1X, "Y is present")
Z = Y

ELSE
WRITE(6,20)

20 FORMAT(1X, "Y is NOT present")
Z = X * 2

END IF
TYPE *,Z

END

PROGRAM MAIN
!
! Define CHECK’s interface here inside the caller, so MAIN knows how to call it
!

INTERFACE
SUBROUTINE CHECK(U,V)
REAL U
REAL, OPTIONAL :: V
END SUBROUTINE

END INTERFACE

WRITE (6,100)
100 FORMAT(1X, "Call with a Y")

CALL CHECK (15.0, 12.0) ! Causes B to be set to 12.0
WRITE (6,200)

200 FORMAT(1X, "Call without a Y")
CALL CHECK (15.0) ! Causes B to be set to 30.0
END

$ f90/noop example
$ lin example
$ r example
Call with a Y
Y is present
12.00000

Call without a Y
Y is NOT present
30.00000

$

Program Units and Procedures 8–35

8.8.1.2 Using the IARGCOUNT Intrinsic Function
You can use the IARGCOUNT intrinsic function to return the count of actual
arguments passed to the routine. With IARGCOUNT, there is no requirement
for the caller to see an explicit interface.

See Example 8–2.

8–36 Program Units and Procedures

Example 8–2 Use of the IARGCOUNT Intrinsic

! Compile /NOOPT to prevent inlining !
!

SUBROUTINE CHECK (X, Y)
REAL X, Z
REAL, OPTIONAL :: Y

IF (IARGCOUNT() .GT. 1) THEN
WRITE(6,10)

10 FORMAT(1X, "Y is present")
Z = Y

ELSE
WRITE(6,20)

20 FORMAT(1X, "Y is NOT present")
Z = X * 2

END IF
TYPE *,Z

END

PROGRAM MAIN
INTEGER I
CHARACTER C(4)
REAL R
EQUIVALENCE(I,C,R)

WRITE (6,100)
100 FORMAT(1X, "Call with a Y")

CALL CHECK (15.0, 12.0) ! Causes B to be set to 12.0
WRITE (6,200)

200 FORMAT(1X,"Call without a Y")
CALL CHECK (15.0) ! Causes B to be set to 30.0
END

$ f90/noop example2
$ lin example2
$ r example2
Call with a Y
Y is present
12.00000

Call without a Y
Y is NOT present
30.00000

$

For More Information:

• On general rules for procedure argument association, see Section 8.8.

• On the OPTIONAL attribute, see Section 5.13.

• On argument keywords in subroutine references, see Section 7.3.

• On argument keywords in function references, see Section 8.5.2.2.

Program Units and Procedures 8–37

• On the PRESENT intrinsic function, see Section 9.4.118.

• On the IARGCOUNT intrinsic function, see Section 9.4.59.

8.8.2 Array Arguments
Arrays are sequences of elements. Each element of an actual array is
associated with the element of the dummy array that has the same position in
array element order.

If the dummy argument is an explicit-shape or assumed-size array, the size of
the dummy argument array must not exceed the size of the actual argument
array.

The type and kind parameters of an explicit-shape or assumed-size dummy
argument must match the type and kind parameters of the actual argument,
but their ranks need not match.

If the dummy argument is an assumed-shape array, the size of the dummy
argument array is equal to the size of the actual argument array. The
associated actual argument must not be an assumed-size array or a scalar
(including a designator for an array element or an array element substring).

If the actual argument is an array section with a vector subscript, the
associated dummy argument must not be defined.

The declaration of an array used as a dummy argument can specify the lower
bound of the array.

Although most types of arrays can be used as dummy arguments, allocatable
arrays cannot be dummy arguments. Allocatable arrays can be used as actual
arguments.

Dummy argument arrays declared as assumed-shape, deferred-shape, or
pointer arrays require an explicit interface visible to the caller.

For More Information:

• On general rules for procedure argument association, see Section 8.8.

• On arrays, see Section 3.5.2.

• On assumed-shape arrays, see Section 5.1.4.2.

• On array element order, see Section 3.5.2.2.

• On array association, see Section 15.5.3.2.

• On explicit-shape arrays, see Section 5.1.4.1.

• On assumed-size arrays, see Section 5.1.4.3.

8–38 Program Units and Procedures

8.8.3 Pointer Arguments
An argument is a pointer if it is declared with the POINTER attribute.

When a procedure is invoked, the dummy argument pointer receives the
pointer association status of the actual argument. If the actual argument is
currently associated, the dummy argument becomes associated with the same
target.

If both the dummy and actual arguments are pointers, an explicit interface is
required.

A dummy argument that is a pointer can be associated only with an actual
argument that is a pointer. However, an actual argument that is a pointer can
be associated with a nonpointer dummy argument. In this case, the actual
argument is associated with a target and the dummy argument, through
argument association, also becomes associated with that target.

If the dummy argument does not have the TARGET or POINTER attribute,
any pointers associated with the actual argument do not become associated
with the corresponding dummy argument when the procedure is invoked.

If the dummy argument has the TARGET attribute, and is either a scalar or
assumed-shape array, and the corresponding actual argument has the TARGET
attribute but is not an array section with a vector subscript, the following
occurs:

• Any pointer associated with the actual argument becomes associated with
the corresponding dummy argument when the procedure is invoked.

• Any pointers associated with the dummy argument remain associated with
the actual argument when execution of the procedure completes.

If the dummy argument has the TARGET attribute, and is an explicit-shape or
assumed-size array, and the corresponding actual argument has the TARGET
attribute but is not an array section with a vector subscript, association of
actual and corresponding dummy arguments when the procedure is invoked or
when execution is completed is processor dependent.

If the dummy argument has the TARGET attribute and the corresponding
actual argument does not have that attribute or is an array section with a
vector subscript, any pointer associated with the dummy argument becomes
undefined when execution of the procedure completes.

Program Units and Procedures 8–39

For More Information:

• On general rules for procedure argument association, see Section 8.8.

• On pointers, see Section 5.15.

• On pointer assignment, see Section 4.2.3.

• On the TARGET attribute, see Section 5.18.

• On passing pointers as arguments, see the HP Fortran for OpenVMS User
Manual.

8.8.4 Assumed-Length Character Arguments
An assumed-length character argument is a dummy argument that assumes
the length attribute of its corresponding actual argument. An asterisk (*)
specifies the length of the dummy character argument.

A character array dummy argument can also have an assumed length. The
length of each element in the dummy argument is the length of the elements
in the actual argument. The assumed length and the array declarator together
determine the size of the assumed-length character array.

The following example shows an assumed-length character argument:

INTEGER FUNCTION ICMAX(CVAR)
CHARACTER*(*) CVAR
ICMAX = 1
DO I=2,LEN(CVAR)
IF (CVAR(I:I) .GT. CVAR(ICMAX:ICMAX)) ICMAX=I

END DO
RETURN

END

The function ICMAX finds the position of the character with the highest ASCII
code value. It uses the length of the assumed-length character argument to
control the iteration. Intrinsic function LEN determines the length of the
argument.

The length of the dummy argument is determined each time control transfers
to the function. The length of the actual argument can be the length of a
character variable, array element, substring, or expression. Each of the
following function references specifies a different length for the dummy
argument:

8–40 Program Units and Procedures

CHARACTER VAR*10, CARRAY(3,5)*20
...
I1 = ICMAX(VAR)
I2 = ICMAX(CARRAY(2,2))
I3 = ICMAX(VAR(3:8))
I4 = ICMAX(CARRAY(1,3)(5:15))
I5 = ICMAX(VAR(3:4)//CARRAY(3,5))

For More Information:

• On the LEN intrinsic function, see Section 9.4.82.

• On general rules for procedure argument association, see Section 8.8.

8.8.5 Character Constant and Hollerith Arguments
If an actual argument is a character constant (for example, ’ABCD’), the
corresponding dummy argument must be of type character. If an actual
argument is a Hollerith constant (for example, 4HABCD), the corresponding
dummy argument must have a numeric data type.

The following example shows character and Hollerith constants being used as
actual arguments:

SUBROUTINE S(CHARSUB, HOLLSUB, A, B)
EXTERNAL CHARSUB, HOLLSUB
...
CALL CHARSUB(A, ’STRING’)
CALL HOLLSUB(B, 6HSTRING)

The subroutines CHARSUB and HOLLSUB are themselves dummy arguments
of the subroutine S. Therefore, the actual argument ’STRING’ in the call to
CHARSUB must correspond to a character dummy argument, and the actual
argument 6HSTRING in the call to HOLLSUB must correspond to a numeric
dummy argument.

For More Information:
On general rules for procedure argument association, see Section 8.8.

8.8.6 Alternate Return Arguments
Alternate return (dummy) arguments can appear in a subroutine argument
list. They cause execution to transfer to a labeled statement rather than to the
statement immediately following the statement that called the routine. The
alternate return is indicated by an asterisk (*). (An alternate return is an
obsolescent feature in Fortran 95 and Fortran 90.)

There can be any number of alternate returns in a subroutine argument list,
and they can be in any position in the list.

Program Units and Procedures 8–41

An actual argument associated with an alternate return dummy argument
is called an alternate return specifier; it is indicated by an asterisk (*), or
ampersand (&) followed by the label of an executable branch target statement
in the same scoping unit as the CALL statement.

Alternate returns cannot be declared optional.

In Fortran 95/90, you can also use the RETURN statement to specify alternate
returns.

The following example shows alternate return actual and dummy arguments:

CALL MINN(X, Y, *300, *250, Z)
....
SUBROUTINE MINN(A, B, *, *, C)

For More Information:

• On general rules for procedure argument association, see Section 8.8.

• On subroutine subprograms, see Section 8.5.3.

• On the CALL statement, see Section 7.3.

• On the RETURN statement, see Section 7.10.

• On obsolescent features in Fortran 95 and Fortran 90, see Appendix A.

8.8.7 Dummy Procedure Arguments
If an actual argument is a procedure, its corresponding dummy argument is a
dummy procedure. Dummy procedures can appear in function or subroutine
subprograms.

The actual argument must be the specific name of an external, module,
intrinsic, or another dummy procedure. If the specific name is also a generic
name, only the specific name is associated with the dummy argument. Not
all specific intrinsic procedures can appear as actual arguments. (For more
information, see Table 9–1.)

The actual argument and corresponding dummy procedure must both be
subroutines or both be functions.

If the interface of the dummy procedure is explicit, the type and kind
parameters, and rank of the associated actual procedure must be the same
as that of the dummy procedure.

If the interface of the dummy procedure is implicit and the procedure is
referenced as a subroutine, the actual argument must be a subroutine or a
dummy procedure.

8–42 Program Units and Procedures

If the interface of the dummy procedure is implicit and the procedure is
referenced as a function or is explicitly typed, the actual argument must be a
function or a dummy procedure.

Dummy procedures can be declared optional, but they must not be declared
with an intent.

The following is an example of a procedure used as an argument:

REAL FUNCTION LGFUNC(BAR)
INTERFACE
REAL FUNCTION BAR(Y)
REAL, INTENT(IN) :: Y

END
END INTERFACE
...
LGFUNC = BAR(2.0)
...

END FUNCTION LGFUNC

For More Information:
On general rules for procedure argument association, see Section 8.8.

8.8.8 References to Generic Procedures
Generic procedures are procedures with different specific names that can
be accessed under one generic (common) name. In FORTRAN 77, generic
procedures were limited to intrinsic procedures. In Fortran 95/90, you can
use generic interface blocks to specify generic properties for intrinsic and
user-defined procedures.

If you refer to a procedure by using its generic name, the selection of the
specific routine is based on the number of arguments and the type and kind
parameters, and rank of each argument.

All procedures given the same generic name must be subroutines, or all
must be functions. Any two must differ enough so that any invocation of the
procedure is unambiguous.

The following sections describe references to generic intrinsic functions and
show an example of using intrinsic function names.

For More Information:

• On user-defined generic procedures, see Section 8.9.3.

• On the rules for unambiguous procedure references, see Section 15.3.

• On the rules for resolving ambiguous procedure references, see Section 15.4.

• On intrinsic procedures, see Chapter 9.

Program Units and Procedures 8–43

8.8.8.1 References to Generic Intrinsic Functions
The generic intrinsic function name COS lists six specific intrinsic functions
that calculate cosines: COS, DCOS, QCOS, CCOS, CDCOS, and CQCOS. These
functions return different values: REAL(4), REAL(8), REAL(16), COMPLEX(4),
COMPLEX(8), and COMPLEX(16), respectively.

If you invoke the cosine function by using the generic name COS, the compiler
selects the appropriate routine based on the arguments that you specify. For
example, if the argument is REAL(4), COS is selected; if it is REAL(8), DCOS
is selected; and if it is COMPLEX(4), CCOS is selected.

You can also explicitly refer to a particular routine. For example, you can
invoke the double-precision cosine function by specifying DCOS.

Procedure selection occurs independently for each generic reference, so you can
use a generic reference repeatedly in the same program unit to access different
intrinsic procedures.

You cannot use generic function names to select intrinsic procedures if you use
them as follows:

• The name of a statement function

• A dummy argument name, a common block name, or a variable or array
name

When an intrinsic function is passed as an actual argument to a procedure, its
specific name must be used, and when called, its arguments must be scalar.
Not all specific intrinsic functions can appear as actual arguments. (For more
information, see Table 9–1.)

Generic procedure names are local to the program unit that refers to them, so
they can be used for other purposes in other program units.

Normally, an intrinsic procedure name refers to the Fortran 95/90 library
procedure with that name. However, the name can refer to a user-defined
procedure when the name appears in an EXTERNAL statement.

Note

If you call an intrinsic procedure by using the wrong number of
arguments or an incorrect argument type, the compiler assumes
you are referring to an external procedure. For example, intrinsic
procedure SIN requires one argument; if you specify two arguments,
such as SIN(10,4), the compiler assumes SIN is external and not
intrinsic.

8–44 Program Units and Procedures

Except when used in an EXTERNAL statement, intrinsic procedure names are
local to the program unit that refers to them, so they can be used for other
purposes in other program units. The data type of an intrinsic procedure does
not change if you use an IMPLICIT statement to change the implied data type
rules.

Intrinsic and user-defined procedures cannot have the same name if they
appear in the same program unit.

Examples
Example 8–3 shows the local and global properties of an intrinsic function
name. It uses intrinsic function SIN as the:

• Name of a statement function

• Generic name of an intrinsic function

• Specific name of an intrinsic function

• Name of a user-defined function

Example 8–3 Using and Redefining an Intrinsic Function Name

! Compare ways of computing sine

PROGRAM SINES
DOUBLE PRECISION X, PI
PARAMETER (PI=3.141592653589793238D0)
COMMON V(3)

! ! Define SIN as a statement function

SIN(X) = COS(PI/2-X)
DO X = -PI, PI, 2*PI/100

" ! Reference the statement function SIN

WRITE (6,100) X, V, SIN(X)
END DO
CALL COMPUT(X)

100 FORMAT (5F10.7)
END

SUBROUTINE COMPUT(Y)
DOUBLE PRECISION Y

! Use intrinsic function SIN as an actual argument

INTRINSIC SIN
COMMON V(3)

(continued on next page)

Program Units and Procedures 8–45

Example 8–3 (Cont.) Using and Redefining an Intrinsic Function Name

$! Define generic reference to double-precision sine

V(1) = SIN(Y)

% ! Use intrinsic function SIN as an actual argument

CALL SUB(REAL(Y),SIN)
END

SUBROUTINE SUB(A,S)

& ! Declare SIN as name of a user function

EXTERNAL SIN

’ ! Declare SIN as type DOUBLE PRECISION

DOUBLE PRECISION SIN
COMMON V(3)

(! Evaluate intrinsic function SIN

V(2) = S(A)

) ! Evaluate user-defined SIN function

V(3) = SIN(A)
END

+> ! Define the user SIN function

DOUBLE PRECISION FUNCTION SIN(X)
INTEGER FACTOR
SIN = X - X**3/FACTOR(3) + X**5/FACTOR(5) &

- X**7/FACTOR(7)
END

INTEGER FUNCTION FACTOR(N)
FACTOR = 1
DO I=N,1,-1
FACTOR = FACTOR * I

END DO
END

! The statement function named SIN is defined in terms of the generic
function name COS. Because the argument of COS is double precision, the
double-precision cosine function is evaluated. The statement function SIN
is itself single precision.

" The statement function SIN is called.

8–46 Program Units and Procedures

The name SIN is declared intrinsic so that the single-precision intrinsic
sine function can be passed as an actual argument at %.

$ The generic function name SIN is used to refer to the double-precision sine
function.

% The single-precision intrinsic sine function is used as an actual argument.

& The name SIN is declared a user-defined function name.

’ The type of SIN is declared double precision.

(The single-precision sine function passed at % is evaluated.

) The user-defined SIN function is evaluated.

+> The user-defined SIN function is defined as a simple Taylor series using a
user-defined function FACTOR to compute the factorial function.

For More Information:

• On the EXTERNAL attribute, see Section 5.8.

• On the scope of names, see Section 2.1.2.

• On the INTRINSIC attribute, see Section 5.11.

• On generic and specific intrinsic functions, see Chapter 9.

8.8.8.2 References to Elemental Intrinsic Procedures
An elemental intrinsic procedure has scalar dummy arguments that can be
called with scalar or array actual arguments. If actual arguments are array-
valued, they must have the same shape. There are many elemental intrinsic
functions, but only one elemental intrinsic subroutine (MVBITS).

If the actual arguments are scalar, the result is scalar. If the actual arguments
are array-valued, the scalar-valued procedure is applied element-by-element
to the actual argument, resulting in an array that has the same shape as the
actual argument.

The values of the elements of the resulting array are the same as if the scalar-
valued procedure had been applied separately to the corresponding elements of
each argument.

For example, if A and B are arrays of shape (5,6), MAX(A, 0.0, B) is an array
expression of shape (5,6) whose elements have the value MAX(A (i, j), 0.0, B (i,
j)), where i = 1, 2,..., 5, and j = 1, 2,..., 6.

A reference to an elemental intrinsic procedure is an elemental reference if one
or more actual arguments are arrays and all array arguments have the same
shape.

Program Units and Procedures 8–47

For More Information:

• On elemental procedures, see Chapter 9.

• On arrays, see Section 3.5.2.

8.8.9 References to Non-Fortran Procedures
To facilitate references to non-Fortran procedures, HP Fortran provides built-in
functions %DESCR, %REF, and %VAL to pass actual arguments; and %LOC,
which computes the internal address of a storage item.

8.8.9.1 %DESCR, %REF, and %VAL Argument List Functions
When a procedure is called, Fortran (by default) passes the address of the
actual argument, and its length if it is of type character. To call non-Fortran
procedures, you may need to pass the actual arguments in a form different
from that used by Fortran.

The built-in functions %DESCR, %REF, and %VAL let you change the form of
an actual argument. You must specify these functions in the actual argument
list of a CALL statement or function reference. You cannot use them in any
other context.

These functions specify how to pass an actual argument (for example, a) to a
non-Fortran procedure, as follows:

Function Effect

%VAL (a) Passes argument a as an n-bit1 immediate value. If a is integer (or
logical) and shorter than n bits, it is sign-extended to an n-bit value.
For complex data types, %VAL passes two n-bit arguments.

%REF (a) Passes argument a by reference.

%DESCR (a) Passes argument a by descriptor.

1n is 64.

Table 8–1 lists the HP Fortran defaults for argument passing, and the allowed
uses of %DESCR, %REF, and %VAL.

8–48 Program Units and Procedures

Table 8–1 Defaults for Argument List Functions

Allowed Functions

Actual Argument
Data Type Default %VAL %REF %DESCR

Expressions:

Logical REF Yes Yes Yes

Integer REF Yes Yes Yes

REAL(4) REF Yes Yes Yes

REAL(8) REF Yes Yes Yes

REAL(16) REF No Yes Yes

COMPLEX(4) REF Yes Yes Yes

COMPLEX(8) REF Yes Yes Yes

COMPLEX(16) REF No Yes Yes

Character DESCR No Yes Yes

Hollerith REF No No No

Aggregate1 REF No Yes No

Derived REF No Yes No

Array Name:

Numeric REF No Yes Yes

Character DESCR No Yes Yes

Aggregate1 REF No Yes No

Derived REF No Yes No

Procedure Name:

Numeric REF No Yes Yes

Character DESCR No Yes Yes

1In HP Fortran record structures.

The %VAL, %REF, and %DESCR functions override related cDEC$
ATTRIBUTE settings.

For More Information:
On how to use the %VAL, %REF, and %DESCR functions, see the HP Fortran
for OpenVMS User Manual.

Program Units and Procedures 8–49

8.8.9.2 %LOC Function
The built-in function %LOC computes the internal address of a storage item.
It takes the following form:

%LOC (arg)

arg
Is the name of an actual argument. It must be a variable, an expression, or
the name of a procedure. (It must not be the name of an internal procedure or
statement function.)

The %LOC function produces an integer value that represents the location of
the given argument. The value is INTEGER(8). You can use this integer value
as an item in an arithmetic expression.

The LOC intrinsic function serves the same purpose as the %LOC built-in
function.

For More Information:

• On how to use the %LOC function, see the HP Fortran for OpenVMS User
Manual.

• On the LOC intrinsic function, see Section 9.4.88.

8.9 Procedure Interfaces
Every procedure has an interface, which consists of the name and
characteristics of a procedure, the name and characteristics of each dummy
argument, and the generic identifier (if any) by which the procedure can be
referenced. The characteristics of a procedure are fixed, but the remainder of
the interface can change in different scoping units.

If these properties are all known within the scope of the calling program,
the procedure interface is explicit; otherwise it is implicit (deduced from its
reference and declaration). The following table shows which procedures have
implicit or explicit interfaces:

Kind of Procedure Interface

External procedure Implicit1

Module Procedure Explicit

Internal Procedure Explicit

1Unless an interface block is supplied for the procedure.

8–50 Program Units and Procedures

Kind of Procedure Interface

Intrinsic Procedure Explicit

Dummy Procedure Implicit1

Statement function Implicit

1Unless an interface block is supplied for the procedure.

The interface of a recursive subroutine or function is explicit within the
subprogram that defines it.

An explicit interface can appear in a procedure’s definition, in an interface
block, or both. (Internal procedures must not appear in an interface block.)

The following sections describe when explicit interfaces are required, how to
define explicit interfaces, and how to define generic names, operators, and
assignment.

8.9.1 Determining When Procedures Require Explicit Interfaces
A procedure must have an explicit interface in the following cases:

• If the procedure has any of the following:

An optional dummy argument

A dummy argument that is an assumed-shape array, a pointer, or a
target

A result that is array-valued or a pointer (functions only)

A result whose length is neither assumed nor a constant (character
functions only)

• If a reference to the procedure appears as follows:

With an argument keyword

As a reference by its generic name

As a defined assignment (subroutines only)

In an expression as a defined operator (functions only)

In a context that requires it to be pure

• If the procedure is elemental

Program Units and Procedures 8–51

For More Information:

• On optional arguments, see Section 8.8.1.

• On argument keywords in subroutine references, see Section 7.3.

• On argument keywords in function references, see Section 8.5.2.2.

• On user-defined generic procedures, see Section 8.9.3.

• On defined operators, see Section 8.9.4.

• On defined assignment, see Section 8.9.5.

• On array arguments, see Section 8.8.2.

• On pointer arguments, see Section 8.8.3.

• On pure procedures, see Section 8.5.1.2.

• On elemental procedures, see Section 8.5.1.3.

• On explicit interfaces when calling other languages, see the HP Fortran for
OpenVMS User Manual.

8.9.2 Defining Explicit Interfaces
Interface blocks define explicit interfaces for external or dummy procedures.
They can also be used to define a generic name for procedures, a new operator
for functions, and a new form of assignment for subroutines.

An interface block takes the following form:

INTERFACE [generic-spec]
[interface-body]...
[MODULE PROCEDURE name-list]...

END INTERFACE [generic-spec]

generic-spec
Is one of the following:

• A generic name

• OPERATOR (op)

Defines a generic operator (op). It can be a defined unary, defined binary,
or extended intrinsic operator.

• ASSIGNMENT (=)

Defines generic assignment.

8–52 Program Units and Procedures

interface-body
Is one or more function or subroutine subprograms. A function must end with
END FUNCTION and a subroutine must end with END SUBROUTINE.

The subprogram must not contain a statement function or a DATA, ENTRY, or
FORMAT statement; an entry name can be used as a procedure name.

The subprogram can contain a USE statement.

name-list
Is the name of one or more module procedures that are accessible in the host.
The MODULE PROCEDURE statement is only allowed if the interface block
specifies a generic-spec and has a host that is a module (or accesses a module
by use association).

The characteristics of module procedures are not given in interface blocks, but
are assumed from the module subprogram definitions.

Rules and Behavior
Interface blocks can appear in the specification part of the program unit that
invokes the external or dummy procedure.

A generic-spec can only appear in the END INTERFACE statement (a Fortran
95 feature) if one appears in the INTERFACE statement; they must be
identical.

The characteristics specified for the external or dummy procedure must be
consistent with those specified in the procedure’s definition.

An interface block must not appear in a block data program unit.

An interface block comprises its own scoping unit, and does not inherit
anything from its host through host association.

A procedure must not have more than one explicit interface in a given scoping
unit.

A interface block containing generic-spec specifies a generic interface for the
following procedures:

• The procedures within the interface block

Any generic name, defined operator, or equals symbol that appears is a
generic identifier for all the procedures in the interface block. For the rules
on how any two procedures with the same generic identifier must differ, see
Section 15.3.

• The module procedures listed in the MODULE PROCEDURE statement

The module procedures must be accessible by a USE statement.

Program Units and Procedures 8–53

To make an interface block available to multiple program units (through a USE
statement), place the interface block in a module.

The following rules apply to interface blocks containing pure procedures:

• The interface specification of a pure procedure must declare the INTENT of
all dummy arguments except pointer and procedure arguments.

• A procedure that is declared pure in its definition can also be declared pure
in an interface block. However, if it is not declared pure in its definition, it
must not be declared pure in an interface block.

Examples
The following example shows a simple procedure interface block with no
generic specification:

SUBROUTINE SUB_B (B, FB)
REAL B
...
INTERFACE
FUNCTION FB (GN)
REAL FB, GN

END FUNCTION
END INTERFACE

For More Information:

• On functions, see Section 8.5.2.

• On subroutines, see Section 8.5.3.

• On use and host association, see Section 15.5.1.2.

• On when an explicit interface is required, see Section 8.9.1.

• On when you should not use interface blocks, see the HP Fortran for
OpenVMS User Manual.

• On defining generic names, see Section 8.9.3.

• On defining generic operators, see Section 8.9.4.

• On defining generic assignment, see Section 8.9.5.

• On modules, see Section 8.3.

• On pure procedures, see Section 8.5.1.2.

8–54 Program Units and Procedures

8.9.3 Defining Generic Names for Procedures
An interface block can be used to specify a generic name to reference all of the
procedures within the interface block.

The initial line for such an interface block takes the following form:

INTERFACE generic-name

generic-name
Is the generic name. It can be the same as any of the procedure names in the
interface block, or the same as any accessible generic name (including a generic
intrinsic name).

This kind of interface block can be used to extend or redefine a generic intrinsic
procedure.

The procedures that are given the generic name must be the same kind of
subprogram: all must be functions, or all must be subroutines.

Any procedure reference involving a generic procedure name must be resolvable
to one specific procedure; it must be unambiguous. For more information, see
Section 15.3.

The following is an example of a procedure interface block defining a generic
name:

INTERFACE GROUP_SUBS
SUBROUTINE INTEGER_SUB (A, B)
INTEGER, INTENT(INOUT) :: A, B

END SUBROUTINE INTEGER_SUB

SUBROUTINE REAL_SUB (A, B)
REAL, INTENT(INOUT) :: A, B

END SUBROUTINE REAL_SUB

SUBROUTINE COMPLEX_SUB (A, B)
COMPLEX, INTENT(INOUT) :: A, B

END SUBROUTINE COMPLEX_SUB
END INTERFACE

The three subroutines can be referenced by their individual specific names or
by the group name GROUP_SUBS.

The following example shows a reference to INTEGER_SUB:

INTEGER V1, V2
CALL GROUP_SUBS (V1, V2)

For More Information:
On interface blocks, see Section 8.9.2.

Program Units and Procedures 8–55

8.9.4 Defining Generic Operators
An interface block can be used to define a generic operator. The only
procedures allowed in the interface block are functions that can be referenced
as defined operations.

The initial line for such an interface block takes the following form:

INTERFACE OPERATOR (op)

op
Is one of the following:

• A defined unary operator (one argument)

• A defined binary operator (two arguments)

• An extended intrinsic operator (number of arguments must be consistent
with the intrinsic uses of that operator)

The functions within the interface block must have one or two nonoptional
arguments with intent IN, and the function result must not be of type
character with assumed length. A defined operation is treated as a reference to
the function.

The following shows the form (and an example) of a defined unary and defined
binary operation:

Operation Form Example

Defined Unary .defined-operator. operand1 .MINUS. C

Defined Binary operand2 .defined-operator. operand3 B .MINUS. C

1The operand corresponds to the function’s dummy argument.
2The left operand corresponds to the first dummy argument of the function.
3The right operand corresponds to the second argument.

For intrinsic operator symbols, the generic properties include the intrinsic
operations they represent. Both forms of each relational operator have the
same interpretation, so extending one form (such as >=) defines both forms (>=
and .GE.).

The following is an example of a procedure interface block defining a new
operator:

8–56 Program Units and Procedures

INTERFACE OPERATOR(.BAR.)
FUNCTION BAR(A_1)
INTEGER, INTENT(IN) :: A_1
INTEGER :: BAR

END FUNCTION BAR
END INTERFACE

The following example shows a way to reference function BAR by using the
new operator:

INTEGER B
I = 4 + (.BAR. B)

The following is an example of a procedure interface block with a defined
operator extending an existing operator:

INTERFACE OPERATOR(+)
FUNCTION LGFUNC (A, B)
LOGICAL, INTENT(IN) :: A(:), B(SIZE(A))
LOGICAL :: LGFUNC(SIZE(A))

END FUNCTION LGFUNC
END INTERFACE

The following example shows two equivalent ways to reference function
LGFUNC:

LOGICAL, DIMENSION(1:10) :: C, D, E
N = 10
E = LGFUNC(C(1:N), D(1:N))
E = C(1:N) + D(1:N)

For More Information:

• On interface blocks, see Section 8.9.2.

• On intrinsic operators, see Section 4.1.

• On defined operators and operations, see Section 4.1.5.

• On intent, see Section 5.10.

8.9.5 Defining Generic Assignment
An interface block can be used to define generic assignment. The only
procedures allowed in the interface block are subroutines that can be
referenced as defined assignments.

The initial line for such an interface block takes the following form:

INTERFACE ASSIGNMENT (=)

Program Units and Procedures 8–57

The subroutines within the interface block must have two nonoptional
arguments, the first with intent OUT or INOUT, and the second with intent
IN.

A defined assignment is treated as a reference to a subroutine. The left side
of the assignment corresponds to the first dummy argument of the subroutine;
the right side of the assignment corresponds to the second argument.

The ASSIGNMENT keyword extends or redefines an assignment operation if
both sides of the equal sign are of the same derived type.

Defined elemental assignment is indicated by specifying ELEMENTAL in the
SUBROUTINE statement.

Any procedure reference involving generic assignment must be resolvable to
one specific procedure; it must be unambiguous. For more information, see
Section 15.3.

The following is an example of a procedure interface block defining assignment:

INTERFACE ASSIGNMENT (=)
SUBROUTINE BIT_TO_NUMERIC (NUM, BIT)
INTEGER, INTENT(OUT) :: NUM
LOGICAL, INTENT(IN) :: BIT(:)

END SUBROUTINE BIT_TO_NUMERIC

SUBROUTINE CHAR_TO_STRING (STR, CHAR)
USE STRING_MODULE ! Contains definition of type STRING
TYPE(STRING), INTENT(OUT) :: STR ! A variable-length string
CHARACTER(*), INTENT(IN) :: CHAR

END SUBROUTINE CHAR_TO_STRING
END INTERFACE

The following example shows two equivalent ways to reference subroutine
BIT_TO_NUMERIC:

CALL BIT_TO_NUMERIC(X, (NUM(I:J)))
X = NUM(I:J)

The following example shows two equivalent ways to reference subroutine
CHAR_TO_STRING:

CALL CHAR_TO_STRING(CH, ’432C’)
CH = ’432C’

For More Information:

• On interface blocks, see Section 8.9.2.

• On defined assignment, see Section 4.2.2.

• On intent, see Section 5.10.

8–58 Program Units and Procedures

8.10 CONTAINS Statement
A CONTAINS statement separates the body of a main program, module, or
external subprogram from any internal or module procedures it may contain.
It is not executable.

The CONTAINS statement takes the following form:

CONTAINS

Any number of internal procedures can follow a CONTAINS statement, but a
CONTAINS statement cannot appear in the internal procedures themselves.

For More Information:

• On module procedures, see Section 8.3.

• On internal procedures, see Section 8.7.

8.11 ENTRY Statement
The ENTRY statement provides one or more entry points within a subprogram.
It is not executable and must precede any CONTAINS statement (if any)
within the subprogram.

The ENTRY statement takes the following form:

ENTRY name [([d-arg [,d-arg]...]) [RESULT (r-name)]]

name
Is the name of an entry point. If RESULT is specified, this entry name must
not appear in any specification statement in the scoping unit of the function
subprogram.

d-arg
Is a dummy argument. The dummy argument can be an alternate return
indicator (*) if the ENTRY statement is within a subroutine subprogram.

r-name
Is the name of a function result. This name must not be the same as the name
of the entry point, or the name of any other function or function result. This
parameter can only be specified for function subprograms.

Program Units and Procedures 8–59

Rules and Behavior
ENTRY statements can only appear in external procedures or module
procedures.

An ENTRY statement must not appear in a CASE, DO, IF, FORALL, or
WHERE construct, or a nonblock DO loop.

When the ENTRY statement appears in a subroutine subprogram, it is
referenced by a CALL statement. When the ENTRY statement appears in
a function subprogram, it is referenced by a function reference.

An entry name within a function subprogram can appear in a type declaration
statement.

Within the subprogram containing the ENTRY statement, the entry name
must not appear as a dummy argument in the FUNCTION or SUBROUTINE
statement, and it must not appear in an EXTERNAL or INTRINSIC statement.
For example, neither of the following are valid:

(1) SUBROUTINE SUB(E)
ENTRY E
...

(2) SUBROUTINE SUB
EXTERNAL E
ENTRY E
...

An ENTRY statement can reference itself if the function or subroutine
subprogram was defined as RECURSIVE.

Dummy arguments can be used in ENTRY statements even if they differ
in order, number, type and kind parameters, and name from the dummy
arguments used in the FUNCTION, SUBROUTINE, and other ENTRY
statements in the same subprogram. However, each reference to a function,
subroutine, or entry must use an actual argument list that agrees in order,
number, and type with the dummy argument list in the corresponding
FUNCTION, SUBROUTINE, or ENTRY statement.

Dummy arguments can be referred to only in executable statements that
follow the first SUBROUTINE, FUNCTION, or ENTRY statement in which
the dummy argument is specified. If a dummy argument is not currently
associated with an actual argument, the dummy argument is undefined and
cannot be referenced. Arguments do not retain their association from one
reference of a subprogram to another.

For specific information on ENTRY statements in function subprograms
and subroutine subprograms (including examples), see Section 8.11.1 and
Section 8.11.2, respectively.

8–60 Program Units and Procedures

For More Information:

• On functions, see Section 8.5.2.

• On subroutines, see Section 8.5.3.

• On function references, see Section 8.5.2.2.

• On the CALL statement, see Section 7.3.

• On procedure arguments, see Section 8.8.

8.11.1 ENTRY Statements in Function Subprograms
If the ENTRY statement is contained in a function subprogram, it defines an
additional function. The name of the function is the name specified in the
ENTRY statement, and its result variable is the entry name or the name
specified by RESULT (if any).

If the entry result variable has the same characteristics as the FUNCTION
statement’s result variable, their result variables identify the same variable,
even if they have different names. Otherwise, the result variables are storage
associated and must all be nonpointer scalars of intrinsic type, in one of the
following groups:

Group 1 Type default integer, default real, double precision real, default complex,
double complex, or default logical

Group 2 Type REAL(16) and COMPLEX(16)

Group 3 Type default character (with identical lengths)

All entry names within a function subprogram are associated with the name of
the function subprogram. Therefore, defining any entry name or the name of
the function subprogram defines all the associated names with the same data
type. All associated names with different data types become undefined.

If RESULT is specified in the ENTRY statement and RECURSIVE is specified
in the FUNCTION statement, the interface of the function defined by the
ENTRY statement is explicit within the function subprogram.

Examples
The following example shows a function subprogram that computes the
hyperbolic functions SINH, COSH, and TANH:

REAL FUNCTION TANH(X)
TSINH(Y) = EXP(Y) - EXP(-Y)
TCOSH(Y) = EXP(Y) + EXP(-Y)

TANH = TSINH(X)/TCOSH(X)
RETURN

Program Units and Procedures 8–61

ENTRY SINH(X)
SINH = TSINH(X)/2.0
RETURN

ENTRY COSH(X)
COSH = TCOSH(X)/2.0
RETURN

END

For More Information:
On the RESULT keyword, see Section 8.5.2.1.

8.11.2 ENTRY Statements in Subroutine Subprograms
If the ENTRY statement is contained in a subroutine subprogram, it defines an
additional subroutine. The name of the subroutine is the name specified in the
ENTRY statement.

If RECURSIVE is specified on the SUBROUTINE statement, the interface
of the subroutine defined by the ENTRY statement is explicit within the
subroutine subprogram.

Examples
The following example shows a main program calling a subroutine containing
an ENTRY statement:

PROGRAM TEST
...
CALL SUBA(A, B, C) ! A, B, and C are actual arguments
... ! passed to entry point SUBA

END
SUBROUTINE SUB(X, Y, Z)
...
ENTRY SUBA(Q, R, S) ! Q, R, and S are dummy arguments
... ! Execution starts with this statement

END SUBROUTINE

The following example shows an ENTRY statement specifying alternate
returns:

CALL SUBC(M, N, *100, *200, P)
...
SUBROUTINE SUB(K, *, *)
...
ENTRY SUBC(J, K, *, *, X)
...
RETURN 1
RETURN 2

END

8–62 Program Units and Procedures

Note that the CALL statement for entry point SUBC includes actual alternate
return arguments. The RETURN 1 statement transfers control to statement
label 100 and the RETURN 2 statement transfers control to statement label
200 in the calling program.

For More Information:
On implementation of argument association in ENTRY statements, see the HP
Fortran for OpenVMS User Manual.

Program Units and Procedures 8–63

9
Intrinsic Procedures

This chapter describes:

• Section 9.1, Overview of Intrinsic Procedures

• Section 9.2, Argument Keywords in Intrinsic Procedures

• Section 9.3, Categories of Intrinsic Procedures

• Section 9.4, Descriptions of Intrinsic Procedures

9.1 Overview of Intrinsic Procedures
Intrinsic procedures are functions and subroutines that are included in the
Fortran 95/90 library. There are four classes of intrinsic procedures:

• Elemental procedures

These procedures have scalar dummy arguments that can be called with
scalar or array actual arguments. There are many elemental intrinsic
functions and one elemental intrinsic subroutine (MVBITS).

If the arguments are all scalar, the result is scalar. If an actual argument
is array-valued, the intrinsic procedure is applied to each element of the
actual argument, resulting in an array that has the same shape as the
actual argument.

If there is more than one array-valued argument, they must all have the
same shape.

• Inquiry functions

These functions have results that depend on the properties of their
principal argument, not the value of the argument (the argument value can
be undefined).

• Transformational functions

Intrinsic Procedures 9–1

These functions have one or more array-valued dummy or actual
arguments, an array result, or both. The intrinsic function is not applied
elementally to an array-valued actual argument; instead it changes
(transforms) the argument array into another array.

• Nonelemental procedures

These procedures must be called with only scalar arguments; they return
scalar results. All subroutines (except MVBITS) are nonelemental.

Intrinsic procedures are invoked the same way as other procedures, and follow
the same rules of argument association.

The intrinsic procedures have generic (or common) names, and many of the
intrinsic functions have specific names. (Some intrinsic functions are both
generic and specific.)

In general, generic functions accept arguments of more than one data type;
the data type of the result is the same as that of the arguments in the
function reference. For elemental functions with more than one argument, all
arguments must be of the same type (except for the function MERGE).

When an intrinsic function is passed as an actual argument to a procedure, its
specific name must be used, and when called, its arguments must be scalar.
Some specific intrinsic functions are not allowed as actual arguments in all
circumstances. Table 9–1 lists specific functions that cannot be passed as
actual arguments.

9–2 Intrinsic Procedures

Table 9–1 Functions Not Allowed as Actual Arguments

AIMAX0 EOF JIDINT MAX0

AIMIN0 FLOAT JIFIX MAX1

AJMAX0 FLOATI JINT MIN0

AJMIN0 FLOATJ JMAX0 MIN1

AKMAX0 FLOATK JMAX1 MULT_HIGH

AKMIN0 ICHAR JMIN0 MY_PROCESSOR

AMAX0 IDINT JMIN1 NUMBER_OF_PROCESSORS

AMAX1 IFIX KIDINT NWORKERS

AMIN0 IIDINT KIFIX PROCESSORS_SHAPE

AMIN1 IIFIX KINT QCMPLX

CHAR IINT KIQINT QEXT

CMPLX IMAX0 KIQNNT QEXTD

DBLE IMAX1 KMAX0 QMAX1

DBLEQ IMIN0 KMAX1 QMIN1

DCMPLX IMIN1 KMIN0 QREAL

DFLOTI INT KMIN1 RAN

DFLOTJ INT_PTR_
KIND

LGE REAL

DFLOTK INT1 LGT SECNDS

DMAX1 INT2 LLE SIZEOF

DMIN1 INT4 LLT SNGL

DPROD INT8 LOC SNGLQ

DREAL JFIX MALLOC ZEXT

For More Information:

• On the rules of argument association, see Section 8.8.

• On the MERGE intrinsic function, see Section 9.4.98.

• On optional arguments, see Section 8.8.1.

• On HP Fortran numeric data format, see the HP Fortran for OpenVMS
User Manual.

• On data representation models, see Appendix D.

Intrinsic Procedures 9–3

• On generic intrinsic procedures, see Section 8.8.8.1.

• On elemental references to intrinsic procedures, see Section 8.8.8.2.

9.2 Argument Keywords in Intrinsic Procedures
For all intrinsic procedures, the arguments shown are the names you must use
as keywords when using the keyword form for actual arguments. For example,
a reference to function CMPLX (X, Y, KIND) can be written as follows:

Using positional arguments: CMPLX (F, G, L)

Using argument keywords: CMPLX (KIND=L, Y=G, X=F)1

1Note that argument keywords can be written in any order.

Some argument keywords are optional (denoted by square brackets). The
following describes some of the most commonly used optional arguments:

BACK Specifies that a string scan is to be in reverse order (right to left).

DIM Specifies a selected dimension of an array argument.

KIND Specifies the kind type parameter of the function result.

MASK Specifies that a mask can be applied to the elements of the argument
array to exclude the elements that are not to be involved in an
operation.

Examples

The syntax for the DATE_AND_TIME intrinsic subroutine shows four optional
positional arguments: DATE, TIME, ZONE, and VALUES (see Section 9.4.36).

The following shows some valid ways to specify these arguments:

! Keyword example
CALL DATE_AND_TIME (ZONE=Z)

! The following two positional examples are equivalent
CALL DATE_AND_TIME (DATE, TIME, ZONE)
CALL DATE_AND_TIME (, , ZONE)

For More Information:

• On argument keywords in subroutine references, see Section 7.3.

• On argument keywords in function references, see Section 8.5.2.2.

• On argument association, see Section 8.8.

9–4 Intrinsic Procedures

9.3 Categories of Intrinsic Procedures
This section describes the categories of generic intrinsic functions (including
a summarizing table), lists the intrinsic subroutines, and provides general
information on bit functions.

Intrinsic procedures are fully described (in alphabetical order) in Section 9.4.

9.3.1 Categories of Intrinsic Functions
Generic intrinsic functions can be divided into categories, as shown in
Table 9–2.

Table 9–2 Categories of Intrinsic Functions

Category Subcategory Description

Numeric Computation Perform type conversions or simple numeric operations:
ABS, AIMAG, AINT, AMAX0, AMIN0, ANINT, CEILING,
CMPLX, CONJG, DBLE, DCMPLX, DFLOAT, DIM,
DPROD, DREAL, FLOAT, FLOOR, IFIX, IMAG, INT,
MAX, MAX1, MIN, MIN1, MOD, MODULO, NINT,
QCMPLX, QEXT, QFLOAT, QREAL, RAN, REAL, SIGN,
SNGL, ZEXT

Manipulation1 Return values related to the components of the model
values associated with the actual value of the argument:
EXPONENT, FRACTION, NEAREST, RRSPACING,
SCALE, SET_EXPONENT, SPACING

Inquiry1 Return scalar values from the models associated with
the type and kind parameters of their arguments2:
DIGITS, EPSILON, HUGE, ILEN, MAXEXPONENT,
MINEXPONENT, PRECISION, RADIX, RANGE,
SIZEOF, TINY

Transformational Perform vector and matrix multiplication:
DOT_PRODUCT, MATMUL

System Return information about a process or processor:
PROCESSORS_SHAPE, NWORKERS,
MY_PROCESSOR, NUMBER_OF_PROCESSORS,
SECNDS

Kind type Return kind type parameters: SELECTED_INT_KIND,
SELECTED_REAL_KIND, KIND

1All of the numeric manipulation, and many of the numeric inquiry functions are defined by the model sets
for integers (Section D.1) and reals (Section D.2).
2The value of the argument does not have to be defined.

(continued on next page)

Intrinsic Procedures 9–5

Table 9–2 (Cont.) Categories of Intrinsic Functions

Category Subcategory Description

Mathematical Perform mathematical operations: ACOS, ACOSD, ASIN,
ASIND, ATAN, ATAND, ATAN2, ATAN2D, COS, COSD,
COSH, COTAN, COTAND, EXP, LOG, LOG10, SIN,
SIND, SINH, SQRT, TAN, TAND, TANH

Bit Manipulation Perform single-bit processing, and logical and shift
operations; and allow bit subfields to be referenced: AND,
BTEST, IAND, IBCHNG, IBCLR, IBITS, IBSET, IEOR,
IOR, ISHA, ISHC, ISHFT, ISHFTC, ISHL, LSHIFT,
NOT, OR, RSHIFT, XOR

Inquiry Lets you determine parameter s (the bit size) in the bit
model3: BIT_SIZE

Representation Return information on bit representation of integers:
LEADZ, POPCNT, POPPAR, TRAILZ

Character Comparison Lexically compare character-string arguments and return
a default logical result: LGE, LGT, LLE, LLT

Conversion Convert character arguments to integer, ASCII, or
character values4: ACHAR, CHAR, IACHAR, ICHAR

String handling Perform operations on character strings, return lengths
of arguments, and search for certain arguments:
ADJUSTL, ADJUSTR, INDEX, LEN_TRIM, REPEAT,
SCAN, TRIM, VERIFY

Inquiry Returns length of argument: LEN

Array Construction Construct new arrays from the elements of existing
array: MERGE, PACK, SPREAD, UNPACK

Inquiry Let you determine if an array argument is allocated,
and return the size or shape of an array, and the lower
and upper bounds of subscripts along each dimension:
ALLOCATED, LBOUND, SHAPE, SIZE, UBOUND

Location Returns the geometric locations of the maximum and
minimum values of an array: MAXLOC, MINLOC

Manipulation Let you shift an array, transpose an array, or change
the shape of an array: CSHIFT, EOSHIFT, RESHAPE,
TRANSPOSE

3For more information on bit functions, see Section 9.3.3.
4The HP Fortran processor character set is ASCII, so ACHAR = CHAR and IACHAR = ICHAR.

(continued on next page)

9–6 Intrinsic Procedures

Table 9–2 (Cont.) Categories of Intrinsic Functions

Category Subcategory Description

Reduction Perform operations on arrays. The functions ‘‘reduce’’
elements of a whole array to produce a scalar result, or
they can be applied to a specific dimension of an array to
produce a result array with a rank reduced by one: ALL,
ANY, COUNT, MAXVAL, MINVAL, PRODUCT

Miscellaneous Do the following:

• Let you use assembler instructions in an executable
program (ASM) (Alpha only)

• Check for pointer association (ASSOCIATED)

• Check for end-of-file (EOF)

• Return the class of a floating-point argument
(FP_CLASS)

• Count actual arguments passed to a routine
(IARGCOUNT)

• Return a pointer to an actual argument list for a
routine (IARGPTR)

• Return the INTEGER KIND that will hold an
address (INT_PTR_KIND)

• Test for Not-a-Number values (ISNAN)

• Return the internal address of a storage item (LOC)

• Return a logical value of an argument (LOGICAL)

• Allocate memory (MALLOC)

• Return the upper 64 bits of a 128-bit unsigned result
(MULT_HIGH)

• Return a disassociated pointer (NULL)

• Check for argument presence (PRESENT)

• Convert a bit pattern (TRANSFER)

Table 9–3 summarizes the generic intrinsic functions and indicates whether
they are elemental, inquiry, or transformational functions, if applicable.
Optional arguments are shown within square brackets.

Intrinsic Procedures 9–7

Table 9–3 Summary of Generic Intrinsic Functions

Generic Function Class Value Returned

ABS (A) E The absolute value of an argument

ACHAR (I) E The character in the specified position of the
ASCII character set

ACOS (X) E The arc cosine (in radians) of the argument

ACOSD (X) E The arc cosine (in degrees) of the argument

ADJUSTL (STRING) E The specified string with leading blanks
removed and placed at the end of the string

ADJUSTR (STRING) E The specified string with trailing blanks
removed and placed at the beginning of the
string

AIMAG (Z) E The imaginary part of a complex argument

AINT (A [,KIND]) E A real value truncated to a whole number

ALL (MASK [,DIM]) T .TRUE. if all elements of the masked array
are true

ALLOCATED (ARRAY) I The allocation status of the argument array

AMAX0 (A1, A2 [, A3,...]) E The maximum value in a list of integers
(returned as a real value)

AMIN0 (A1, A2 [, A3,...]) E The minimum value in a list of integers
(returned as a real value)

AND (I, J) E See IAND

ANINT (A [,KIND]) E A real value rounded to a whole number

ANY (MASK [,DIM]) T .TRUE. if any elements of the masked array
are true

ASIN (X) E The arc sine (in radians) of the argument

ASIND (X) E The arc sine (in degrees) of the argument

ASM (STRING [,A,...]) N A value stored in the appropriate register by
the user.

Key to Classes

E–Elemental
I–Inquiry
T–Transformational
N–Nonelemental

(continued on next page)

9–8 Intrinsic Procedures

Table 9–3 (Cont.) Summary of Generic Intrinsic Functions

Generic Function Class Value Returned

ASSOCIATED (POINTER
[,TARGET])

I .TRUE. if the pointer argument is associated
or the pointer is associated with the specified
target

ATAN (X) E The arc tangent (in radians) of the argument

ATAND (X) E The arc tangent (in degrees) of the argument

ATAN2 (Y, X) E The inverse arc tangent (in radians) of the
arguments

ATAN2D (Y, X) E The inverse arc tangent (in degrees) of the
arguments

BIT_SIZE (I) I Returns the number of bits (s) in the bit
model

BTEST (I, POS) E .TRUE. if the specified position of argument I
is one

CEILING (A [,KIND]) E The smallest integer greater than or equal to
the argument value

CHAR (I [,KIND]) E The character in the specified position of the
processor character set

CMPLX (X [,Y] [,KIND]) E The corresponding complex value of the
argument

CONJG (Z) E The conjugate of a complex number

COS (X) E The cosine of the argument, which is in
radians

COSD (X) E The cosine of the argument which is in
degrees

COSH (X) E The hyperbolic cosine of the argument

COTAN (X) E The cotangent of the argument, which is in
radians

COTAND (X) E The cotangent of the argument, which is in
degrees

Key to Classes

E–Elemental
I–Inquiry
T–Transformational
N–Nonelemental

(continued on next page)

Intrinsic Procedures 9–9

Table 9–3 (Cont.) Summary of Generic Intrinsic Functions

Generic Function Class Value Returned

COUNT (MASK [,DIM] [,KIND]) T The number of .TRUE. elements in the
argument array

CSHIFT (ARRAY, SHIFT [,DIM]) T An array that has the elements of the
argument array circularly shifted

DBLE (A) E The corresponding double precision value of
the argument

DCMPLX (X, Y) E The corresponding double complex value of
the argument

DFLOAT (A) E The corresponding double precision value of
the integer argument

DIGITS (X) I The number of significant binary digits in the
model for the argument

DIM (X, Y) E The positive difference between the two
arguments

DOT_PRODUCT (VECTOR_A,
VECTOR_B)

T The dot product of two rank-one arrays (also
called a vector multiply function)

EOSHIFT (ARRAY, SHIFT
[,BOUNDARY] [,DIM])

T An array that has the elements of the
argument array end-off shifted

EPSILON (X) I The difference between 1.0 and the next
larger model number.

EXP (X) E The exponential value for the argument

EXPONENT (X) E The value of the exponent part of a real
argument

FLOAT (X) E The corresponding real value of the integer
argument

FLOOR (A [,KIND]) E The largest integer less than or equal to the
argument value

FP_CLASS (X) E The class of the IEEE floating-point argument

FRACTION (X) E The fractional part of a real argument

Key to Classes

E–Elemental
I–Inquiry
T–Transformational
N–Nonelemental

(continued on next page)

9–10 Intrinsic Procedures

Table 9–3 (Cont.) Summary of Generic Intrinsic Functions

Generic Function Class Value Returned

HUGE (X) I The largest number in the model for the
argument

IACHAR (C) E The position of the specified character in the
ASCII character set

IAND (I, J) E The logical AND of the two arguments

IBCHNG (I, POS) E The reversed value of a specified bit

IBCLR (I, POS) E The specified position of argument I cleared
(set to zero)

IBITS (I, POS, LEN) E The specified substring of bits of argument I

IBSET (I, POS) E The specified bit in argument I set to one

ICHAR (C) E The position of the specified character in the
processor character set

IEOR (I, J) E The logical exclusive OR of the corresponding
bit arguments

IFIX (X) E The corresponding integer value of the real
argument rounded as if it were an implied
conversion in an assignment

ILEN (I) I The length (in bits) in the two’s complement
representation of an integer

IMAG (Z) E See AIMAG

INDEX (STRING, SUBSTRING
[,BACK] [,KIND])

E The position of the specified substring in a
character expression

INT (A [,KIND]) E The corresponding integer value (truncated)
of the argument

IOR (I, J) E The logical inclusive OR of the corresponding
bit arguments

ISHA (I, SHIFT) E Argument I shifted left or right by a specified
number of bits

ISHC (I, SHIFT) E Argument I rotated left or right by a specified
number of bits

Key to Classes

E–Elemental
I–Inquiry
T–Transformational
N–Nonelemental

(continued on next page)

Intrinsic Procedures 9–11

Table 9–3 (Cont.) Summary of Generic Intrinsic Functions

Generic Function Class Value Returned

ISHFT (I, SHIFT) E The logical end-off shift of the bits in
argument I

ISHFTC (I, SHIFT [,SIZE]) E The logical circular shift of the bits in
argument I

ISHL (I, SHIFT) E Argument I logically shifted left or right by a
specified number of bits

ISNAN (X) E Tests for Not-a-Number (NaN) values

KIND (X) I The kind type parameter of the argument

LBOUND (ARRAY [,DIM] [,KIND]) I The lower bounds of an array (or one of its
dimensions)

LEADZ (I) E The number of leading zero bits in an integer.

LEN (STRING [,KIND]) I The length (number of characters) of the
argument character string

LEN_TRIM (STRING [,KIND]) E The length of the specified string without
trailing blanks

LGE (STRING_A, STRING_B) E A logical value determined by a > or =
comparison of the arguments

LGT (STRING_A, STRING_B) E A logical value determined by a > comparison
of the arguments

LLE (STRING_A, STRING_B) E A logical value determined by a < or =
comparison of the arguments

LLT (STRING_A, STRING_B) E A logical value determined by a < comparison
of the arguments

LOC (A) I The internal address of the argument.

LOG (X) E The natural logarithm of the argument

LOG10 (X) E The common logarithm (base 10) of the
argument

LOGICAL (L [,KIND]) E The logical value of the argument converted
to a logical of type KIND

Key to Classes

E–Elemental
I–Inquiry
T–Transformational
N–Nonelemental

(continued on next page)

9–12 Intrinsic Procedures

Table 9–3 (Cont.) Summary of Generic Intrinsic Functions

Generic Function Class Value Returned

LSHIFT (I, POSITIVE_SHIFT) E See ISHFT

MATMUL (MATRIX_A,
MATRIX_B)

T The result of matrix multiplication (also
called a matrix multiply function)

MAX (A1, A2 [, A3,...]) E The maximum value in the set of arguments

MAX1 (A1, A2 [, A3,...]) E The maximum value in the set of real
arguments (returned as an integer)

MAXEXPONENT (X) I The maximum exponent in the model for the
argument

MAXLOC (ARRAY [,DIM]
[,MASK][,KIND])

T The rank-one array that has the location of
the maximum element in the argument array

MAXVAL (ARRAY [,DIM] [,MASK]) T The maximum value of the elements in the
argument array

MERGE (TSOURCE, FSOURCE,
MASK)

E An array that is the combination of two
conformable arrays (under a mask)

MIN (A1, A2 [, A3,...]) E The minimum value in the set of arguments

MIN1 (A1, A2 [, A3,...]) E The minimum value in the set of real
arguments (returned as an integer)

MINEXPONENT (X) I The minimum exponent in the model for the
argument

MINLOC (ARRAY [,DIM]
[,MASK][,KIND])

T The rank-one array that has the location of
the minimum element in the argument array

MINVAL (ARRAY [,DIM] [,MASK]) T The minimum value of the elements in the
argument array

MOD (A, P) E The remainder of the arguments (has the sign
of the first argument)

MODULO (A, P) E The modulo of the arguments (has the sign of
the second argument)

NEAREST (X, S) E The nearest different machine-representable
number in a given direction

NINT (A [,KIND]) E A real value rounded to the nearest integer

Key to Classes

E–Elemental
I–Inquiry
T–Transformational
N–Nonelemental

(continued on next page)

Intrinsic Procedures 9–13

Table 9–3 (Cont.) Summary of Generic Intrinsic Functions

Generic Function Class Value Returned

NOT (I) E The logical complement of the argument

NULL ([MOLD]) T A disassociated pointer

OR (I, J) E See IOR

PACK (ARRAY, MASK [,VECTOR]) T A packed array of rank one (under a mask)

POPCNT (I) E The number of 1 bits in an integer.

POPPAR (I) E The parity of an integer.

PRECISION (X) I The decimal precision (real or complex) of the
argument

PRESENT (A) I .TRUE. if an actual argument has been
provided for an optional dummy argument

PRODUCT (ARRAY [,DIM]
[,MASK])

T The product of the elements of the argument
array

QCMPLX (X, Y) E The corresponding COMPLEX(16) value of
the argument

QEXT (A) E The corresponding REAL(16) precision value
of the argument.

QFLOAT (A) E The corresponding REAL(16) precision value
of the integer argument.

RADIX (X) I The base of the model for the argument

RANGE (X) I The decimal exponent range of the model for
the argument

REAL (A [,KIND]) E The corresponding real value of the argument

REPEAT (STRING, NCOPIES) T The concatenation of zero or more copies of
the specified string

RESHAPE (SOURCE, SHAPE
[,PAD] [,ORDER])

T An array that has a different shape than the
argument array, but the same elements

RRSPACING (X) E The reciprocal of the relative spacing near the
argument

RSHIFT (I, NEGATIVE_SHIFT) E See ISHFT

Key to Classes

E–Elemental
I–Inquiry
T–Transformational
N–Nonelemental

(continued on next page)

9–14 Intrinsic Procedures

Table 9–3 (Cont.) Summary of Generic Intrinsic Functions

Generic Function Class Value Returned

SCALE (X, I) E The value of the exponent part (of the model
for the argument) changed by a specified
value

SCAN (STRING, SET [,BACK][,KIND]) E The position of the specified character (or set
of characters) within a string

SELECTED_INT_KIND (R) T The integer kind parameter of the argument

SELECTED_REAL_KIND ([P] [,R]) T The real kind parameter of the argument; one
of the optional arguments must be specified

SET_EXPONENT (X, I) E The value the first argument would have
if its exponent part were set to the second
argument

SHAPE (SOURCE [,KIND]) I The shape (rank and extents) of an array or
scalar

SIGN (A, B) E A value with the sign transferred from its
second argument

SIN (X) E The sine of the argument, which is in radians

SIND (X) E The sine of the argument, which is in degrees

SINH (X) E The hyperbolic sine of the argument

SIZE (ARRAY [,DIM] [,KIND]) I The size (total number of elements) of the
argument array (or one of its dimensions)

SNGL (X) E The corresponding real value of the argument

SPACING (X) E The value of the absolute spacing of model
numbers near the argument

SPREAD (SOURCE, DIM,
NCOPIES)

T A replicated array that has an added
dimension

SQRT (X) E The square root of the argument

SUM (ARRAY [,DIM] [,MASK]) T The sum of the elements of the argument
array

TAN (X) E The tangent of the argument, which is in
radians

Key to Classes

E–Elemental
I–Inquiry
T–Transformational
N–Nonelemental

(continued on next page)

Intrinsic Procedures 9–15

Table 9–3 (Cont.) Summary of Generic Intrinsic Functions

Generic Function Class Value Returned

TAND (X) E The tangent of the argument, which is in
degrees

TANH (X) E The hyperbolic tangent of the argument

TINY (X) I The smallest positive number in the model
for the argument

TRAILZ (I) E The number of trailing zero bits in an integer.

TRANSFER (SOURCE, MOLD
[,SIZE])

T The bit pattern of SOURCE converted to the
type and kind parameters of MOLD

TRANSPOSE (MATRIX) T The matrix transpose for the rank-two
argument array

TRIM (STRING) T The argument with trailing blanks removed

UBOUND (ARRAY [,DIM] [,KIND]) I The upper bounds of an array (or one of its
dimensions)

UNPACK (VECTOR, MASK,
FIELD)

T An array (under a mask) unpacked from a
rank-one array

VERIFY (STRING, SET
[,BACK][,KIND])

E The position of the first character in a string
that does not appear in the given set of
characters

XOR (I, J) E See IEOR

ZEXT (X [,KIND]) E A zero-extended value of the argument

Key to Classes

E–Elemental
I–Inquiry
T–Transformational
N–Nonelemental

Table 9–4 lists the specific functions that have no generic function associated
with them.

9–16 Intrinsic Procedures

Table 9–4 Specific Functions with No Generic Association

Specific Function Class Value Returned

DPROD (X, Y) E The higher precision product of two real
arguments

DREAL (A) E The corresponding double-precision value of
the real part of a double-complex argument

EOF (A) I .TRUE. or .FALSE. depending on whether a
file is beyond the end-of-file record

MALLOC (I) E The starting address for the block of memory
allocated

MULT_HIGH (I, J) E The upper (leftmost) 64 bits of the 128-bit
unsigned result.

NUMBER_OF_PROCESSORS
([DIM])

I The total number of processors (peers)
available to the program

MY_PROCESSOR
()

I The identifying number of the calling process

NWORKERS ()1 I The number of executing processes

PROCESSORS_SHAPE () I The shape of an implementation-dependent
hardware processor array

QREAL (A) E The corresponding REAL(16) value of the real
part of a COMPLEX(16) argument

RAN (I) N The next number from a sequence of pseu-
dorandom numbers (uniformly distributed in
the range 0 to 1)

SECNDS (X) E The system time of day (or elapsed time) as a
floating-point value in seconds

SIZEOF (X) I The bytes of storage used by the argument

1Included for compatibility with older versions of Compaq Fortran 77.
Key to Classes

E–Elemental
I–Inquiry
N–Nonelemental

9.3.2 Intrinsic Subroutines
Table 9–5 lists the intrinsic subroutines. All these subroutines are
nonelemental except for MVBITS.

Intrinsic Procedures 9–17

Table 9–5 Intrinsic Subroutines

Subroutine Value Returned or Result

CPU_TIME (TIME) The processor time in seconds

DATE (BUF) The ASCII representation of the current date (in
dd-mmm-yy form)

DATE_AND_TIME ([DATE] [,TIME]
[,ZONE] [,VALUES])

Date and time information from the real-time clock

ERRSNS ([IO_ERR] [,SYS_ERR] [,STAT]
[,UNIT] [,COND])

Information about the most recently detected error
condition

EXIT ([STATUS]) Optionally returns image exit status; terminates
the program, closes all files, and returns control to
the operating system

FREE (A) Frees memory that is currently allocated

IDATE (I, J, K) Three integer values representing the current
month, day, and year

MVBITS (FROM, FROMPOS, LEN,
TO, TOPOS)1

Copies a sequence of bits (bit field) from one location
to another

RANDOM_NUMBER (HARVEST) A pseudorandom number taken from a sequence
of pseudorandom numbers uniformly distributed
within the range 0 <= x < 1

RANDOM_SEED ([SIZE] [,PUT] [,GET]) Initializes or retrieves the pseudorandom number
generator seed value

RANDU (I1, I2, X) A pseudorandom number as a single-precision value
(within the range 0.0 to 1.0)

SYSTEM_CLOCK ([COUNT]
[,COUNT_RATE] [,COUNT_MAX])

Data from the processors real-time clock

TIME (BUF) The ASCII representation of the current time (in
hh:mm:ss form)

1An elemental subroutine.

9.3.3 Bit Functions
Integer data types are represented internally in binary twos complement
notation. Bit positions in the binary representation are numbered from right
(least significant bit) to left (most significant bit); the rightmost bit position is
numbered 0.

9–18 Intrinsic Procedures

The intrinsic functions IAND, IOR, IEOR, and NOT operate on all of the bits
of their argument (or arguments). Bit 0 of the result comes from applying the
specified logical operation to bit 0 of the argument. Bit 1 of the result comes
from applying the specified logical operation to bit 1 of the argument, and so
on for all of the bits of the result.

The functions ISHFT and ISHFTC shift binary patterns.

The functions IBSET, IBCLR, BTEST, and IBITS and the subroutine MVBITS
operate on bit fields.

A bit field is a contiguous group of bits within a binary pattern. Bit fields are
specified by a starting bit position and a length. A bit field must be entirely
contained in its source operand.

For example, the integer 47 is represented by the following:

Binary pattern: 0...0101111

Bit position: n...6543210

Where n is the number of bit positions
in the numeric storage unit.

You can refer to the bit field contained in bits 3 through 6 by specifying a
starting position of 3 and a length of 4.

Negative integers are represented in twos complement notation. For example,
the integer –47 is represented by the following:

Binary pattern: 1...1010001

Bit position: n...6543210

Where n is the number of bit positions
in the numeric storage unit.

The value of bit position n is as follows:

1 for a negative number
0 for a non-negative number

All the high-order bits in the pattern from the last significant bit of the value
up to bit n are the same as bit n.

IBITS and MVBITS operate on general bit fields. Both the starting position of
a bit field and its length are arguments to these intrinsics. IBSET, IBCLR, and
BTEST operate on 1-bit fields. They do not require a length argument.

For IBSET, IBCLR, and BTEST, the bit position range is as follows:

• 0 to 63 for INTEGER(8) and LOGICAL(8)

• 0 to 31 for INTEGER(4) and LOGICAL(4)

Intrinsic Procedures 9–19

• 0 to 15 for INTEGER(2) and LOGICAL(2)

• 0 to 7 for BYTE, INTEGER(1), and LOGICAL(1)

For IBITS, the bit position can be any number. The length range is 0 to 63.

The following example demonstrates IBSET, IBCLR, and BTEST:

I = 4
J = IBSET (I,5)
PRINT *, ’J = ’,J
K = IBCLR (J,2)
PRINT *, ’K = ’,K
PRINT *, ’Bit 2 of K is ’,BTEST(K,2)
END

The results are: J = 36, K = 32, and Bit 2 of K is F.

For optimum selection of performance and memory requirements, HP Fortran
provides the following integer data types:

Data Type Storage Required (in bytes)

INTEGER(1) 1

INTEGER(2) 2

INTEGER(4) 4

INTEGER(8) 8

The bit manipulation functions each have a generic form that operates on all of
these integer types and a specific form for each type.

When you specify the intrinsic functions that refer to bit positions or that shift
binary patterns within a storage unit, be careful that you do not create a value
that is outside the range of integers representable by the data type. If you shift
by an amount greater than or equal to the size of the object you’re shifting, the
result is 0.

Consider the following:

INTEGER(2) I,J
I = 1
J = 17
I = ISHFT(I,J)

The variables I and J have INTEGER(2) type. Therefore, the generic function
ISHFT maps to the specific function IISHFT, which returns an INTEGER(2)
result. INTEGER(2) results must be in the range –32768 to 32767, but the

9–20 Intrinsic Procedures

value 1, shifted left 17 positions, yields the binary pattern 1 followed by 17
zeros, which represents the integer 131072. In this case, the result in I is 0.

The previous example would be valid if I was INTEGER(4), because ISHFT
would then map to the specific function JISHFT, which returns an INTEGER(4)
value.

If ISHFT is called with a constant first argument, the result will either be
the default integer size or the smallest integer size that can contain the first
argument, whichever is larger.

9.4 Descriptions of Intrinsic Procedures
This section contains detailed information on all the generic and specific
intrinsic procedures. These procedures are described in alphabetical order by
generic name (if there is one). In headings, square brackets denote optional
arguments; in text, these optional arguments are labeled ‘‘(opt)’’.

Intrinsic Procedures 9–21

9.4.1 ABS (A)

Description: Computes an absolute value.

Class: Elemental function; Generic

Arguments: A must be of type integer, real, or complex.

Results: If A is an integer or real value, the value of the result is | A | ; if A
is a complex value (X, Y), the result is the real value SQRT (X**2 �
Y**2).

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IIABS INTEGER(2) INTEGER(2)

IABS1 INTEGER(4) INTEGER(4)

KIABS INTEGER(8) INTEGER(8)

ABS REAL(4) REAL(4)

DABS REAL(8) REAL(8)

QABS REAL(16) REAL(16)

CABS2 COMPLEX(4) REAL(4)

CDABS3 COMPLEX(8) REAL(8)

CQABS COMPLEX(16) REAL(16)

1Or JIABS. For compatibility with older versions of Fortran, IABS can also be specified as a
generic function.
2The setting of compiler options specifying real size can affect CABS.
3This function can also be specified as ZABS.

Examples

ABS (–7.4) has the value 7.4.

ABS ((6.0, 8.0)) has the value 10.0.

9.4.2 ACHAR (I)

Description: Returns the character in a specified position of the ASCII character
set, even if the processor’s default character set is different. It is
the inverse of the IACHAR function. In HP Fortran, ACHAR is
equivalent to the CHAR function.

Class: Elemental function; Generic

9–22 Intrinsic Procedures

Arguments: I must be of type integer.

Results: The result is of type character with length 1; it has the kind
parameter value of KIND (’A’).

If I has a value within the range 0 to 127, the result is the character
in position I of the ASCII character set. ACHAR (IACHAR(C)) has
the value C for any character C capable of representation in the
processor.

Examples

ACHAR (71) has the value ’G’.

ACHAR (63) has the value ’?’.

9.4.3 ACOS (X)

Description: Produces the arccosine of X.

Class: Elemental function; Generic

Arguments: X must be of type real. The | X | must be less than or equal to 1.

Results: The result type is the same as X and is expressed in radians. The
value lies in the range 0 to �.

Specific Name Argument Type Result Type

ACOS REAL(4) REAL(4)

DACOS REAL(8) REAL(8)

QACOS REAL(16) REAL(16)

Examples

ACOS (0.68032123) has the value .8225955.

9.4.4 ACOSD (X)

Description: Produces the arccosine of X.

Class: Elemental function; Generic

Arguments: X must be of type real and must be greater than or equal to zero.
The | X | must be less than or equal to 1.

Intrinsic Procedures 9–23

Results: The result type is the same as X and is expressed in degrees.

Specific Name Argument Type Result Type

ACOSD REAL(4) REAL(4)

DACOSD REAL(8) REAL(8)

QACOSD REAL(16) REAL(16)

Examples

ACOSD (0.886579) has the value 27.55354.

9.4.5 ADJUSTL (STRING)

Description: Adjusts a character string to the left, removing leading blanks and
inserting trailing blanks.

Class: Elemental function; Generic

Arguments: STRING must be of type character.

Results: The result is of type character with the same length and kind
parameter as STRING.

The value of the result is the same as STRING, except that any
leading blanks have been removed and inserted as trailing blanks.

Examples

ADJUSTL (’∆∆∆∆SUMMERTIME’) has the value ’SUMMERTIME∆∆∆∆’.

9.4.6 ADJUSTR (STRING)

Description: Adjusts a character string to the right, removing trailing blanks and
inserting leading blanks.

Class: Elemental function; Generic

Arguments: STRING must be of type character.

Results: The result is of type character with the same length and kind
parameter as STRING.

The value of the result is the same as STRING, except that any
trailing blanks have been removed and inserted as leading blanks.

Examples

ADJUSTR (’SUMMERTIME∆∆∆∆’) has the value ’∆∆∆∆SUMMERTIME’.

9–24 Intrinsic Procedures

9.4.7 AIMAG (Z)

Description: Returns the imaginary part of a complex number.1

Class: Elemental function; Generic

Arguments: Z must be of type complex.

Results: The result is of type real with the same kind parameter as Z. If Z
has the value (x, y), the result has the value y.

1This function can also be specified as IMAG.

Specific Name Argument Type Result Type

AIMAG1 COMPLEX(4) REAL(4)

DIMAG COMPLEX(8) REAL(8)

QIMAG COMPLEX(16) REAL(16)

1The setting of compiler options specifying real size can affect AIMAG.

Examples

AIMAG ((4.0, 5.0)) has the value 5.0.

9.4.8 AINT (A [,KIND])

Description: Truncates a value to a whole number.

Class: Elemental function; Generic

Arguments: A Must be of type real.

KIND (opt) Must be a scalar integer initialization expression.

Results: The result is of type real. If KIND is present, the kind parameter of
the result is that specified by KIND; otherwise, the kind parameter
is that of A.

The result is defined as the largest integer whose magnitude does
not exceed the magnitude of A and whose sign is the same as that of
A. If | A | is less than 1, AINT (A) has the value zero.

Specific Name Argument Type Result Type

AINT REAL(4) REAL(4)

DINT REAL(8) REAL(8)

QINT REAL(16) REAL(16)

Intrinsic Procedures 9–25

Examples

AINT (3.678) has the value 3.0.

AINT (–1.375) has the value –1.0.

9.4.9 ALL (MASK [,DIM])

Description: Determines if all values are true in an entire array or in a specified
dimension of an array.

Class: Transformational function; Generic

Arguments: MASK Must be a logical array.

DIM (opt) Must be a scalar integer with a value in the range
1 to n, where n is the rank of MASK.

Results: The result is an array or a scalar of type logical.

The result is a scalar if DIM is omitted or MASK has rank one. A
scalar result is true only if all elements of MASK are true, or MASK
has size zero. The result has the value false if any element of MASK
is false.

An array result has the same type and kind parameters as MASK,
and a rank that is one less than MASK. Its shape is (d1, d2, ...,
dDIM�1, dDIM+1, ..., dn), where (d1, d2,..., dn) is the shape of MASK.

Each element in an array result is true only if all elements in the
one dimensional array defined by MASK (s1, s2, ..., sDIM�1, :, sDIM+1,
..., sn) are true.

Examples

ALL ((/.TRUE., .FALSE., .TRUE./)) has the value false because some elements
of MASK are not true.

ALL ((/.TRUE., .TRUE., .TRUE./)) has the value true because all elements of
MASK are true.

A is the array
�
� � �
� � �

�
and B is the array

�

 � �
� �

�
.

ALL (A .EQ. B, DIM=1) tests to see if all elements in each column of A are
equal to the elements in the corresponding column of B. The result has the
value (false, true, false) because only the second column has elements that are
all equal.

ALL (A .EQ. B, DIM=2) tests to see if all elements in each row of A are equal
to the elements in the corresponding row of B. The result has the value (false,
false) because each row has some elements that are not equal.

9–26 Intrinsic Procedures

9.4.10 ALLOCATED (ARRAY)

Description: Indicates whether an allocatable array is currently allocated.

Class: Inquiry function; Generic

Arguments: ARRAY must be an allocatable array.

Results: The result is a scalar of type default logical.

The result has the value true if ARRAY is currently allocated, false
if ARRAY is not currently allocated, or undefined if its allocation
status is undefined.

Examples

Consider the following:

REAL, ALLOCATABLE, DIMENSION (:,:,:) :: E
PRINT *, ALLOCATED (E) ! Returns the value false
ALLOCATE (E (12, 15, 20))
PRINT *, ALLOCATED (E) ! Returns the value true

9.4.11 ANINT (A [,KIND])

Description: Calculates the nearest whole number.

Class: Elemental function; Generic

Arguments: A Must be of type real.

KIND (opt) Must be a scalar integer initialization expression.

Results: The result is of type real. If KIND is present, the kind parameter is
that specified by KIND; otherwise, the kind parameter is that of A.
If A is greater than zero, ANINT (A) has the value AINT (A � 0.5);
if A is less than or equal to zero, ANINT (A) has the value AINT (A
� 0.5).

Specific Name Argument Type Result Type

ANINT REAL(4) REAL(4)

DNINT REAL(8) REAL(8)

QNINT REAL(16) REAL(16)

Examples

ANINT (3.456) has the value 3.0.

ANINT (–2.798) has the value –3.0.

Intrinsic Procedures 9–27

9.4.12 ANY (MASK [,DIM])

Description: Determines if any value is true in an entire array or in a specified
dimension of an array.

Class: Transformational function; Generic

Arguments: MASK Must be a logical array.

DIM (opt) Must be a scalar integer expression with a value
in the range 1 to n, where n is the rank of MASK.

Results: The result is an array or a scalar of type logical.

The result is a scalar if DIM is omitted or MASK has rank one. A
scalar result is true if any elements of MASK are true. The result
has the value false if no element of MASK is true, or MASK has size
zero.

An array result has the same type and kind parameters as MASK,
and a rank that is one less than MASK. Its shape is (d1, d2, ...,
dDIM�1, dDIM+1, ..., dn), where (d1, d2,..., dn) is the shape of MASK.

Each element in an array result is true if any elements in the one
dimensional array defined by MASK (s1, s2, ..., sDIM�1, :, sDIM+1, ...,
sn) are true.

Examples

ANY ((/.FALSE., .FALSE., .TRUE./)) has the value true because one element is
true.

A is the array
�
� � �
� � �

�
and B is the array

�

 � �
� �

�
.

ANY (A .EQ. B, DIM=1) tests to see if any elements in each column of A are
equal to the elements in the corresponding column of B. The result has the
value (false, true, true) because the second and third columns have at least one
element that is equal.

ANY (A .EQ. B, DIM=2) tests to see if any elements in each row of A are equal
to the elements in the corresponding row of B. The result has the value (true,
true) because each row has at least one element that is equal.

9–28 Intrinsic Procedures

9.4.13 ASIN (X)

Description: Produces the arcsine of X.

Class: Elemental function; Generic

Arguments: X must be of type real. The | X | must be less than or equal to 1.

Results: The result type is the same as X and is expressed in radians. The
value lies in the range –�/2 to �/2.

Specific Name Argument Type Result Type

ASIN REAL(4) REAL(4)

DASIN REAL(8) REAL(8)

QASIN REAL(16) REAL(16)

Examples

ASIN (0.79345021) has the value 0.9164571.

9.4.14 ASIND (X)

Description: Produces the arcsine of X.

Class: Elemental function; Generic

Arguments: X must be of type real and must be greater than or equal to zero.
The | X | must be less than or equal to 1.

Results: The result type is the same as X and is expressed in degrees.

Specific Name Argument Type Result Type

ASIND REAL(4) REAL(4)

DASIND REAL(8) REAL(8)

QASIND REAL(16) REAL(16)

Examples

ASIND (0.2467590) has the value 14.28581.

Intrinsic Procedures 9–29

9.4.15 ASM (STRING [,A,...]) (Alpha only)

Description: Lets you use assembler instructions in an executable program.

Class: Nonelemental function; Generic

Arguments: STRING Must be of type character. It is a character
constant or a concatenation of character constants
containing the assembler instructions.

A (opt) Can be of any type. This can be a source or
destination argument for the instruction, for
example.

Results: The result is a scalar of type INTEGER(8), REAL(4), or REAL(8).

Arguments are passed by value. If you want to pass an argument
by reference (for example, a whole array, a character string, or a
record structure), you can use the %REF built-in function. (See
Section 8.8.9.1.)

Labels are allowed, but all references must be from within the
same ASM (Alpha only) function. This lets you set up looping
constructs, for example. Cross-jumping between ASM functions is
not permitted.

In general, an ASM function can appear anywhere that an intrinsic
function can be used. Since the supplied assembly code, assembly
directives, or assembly data is integrated into the code stream,
the compiler may choose to use different registers, better code
sequences, and so on, just as if the code were written in Fortran.

You do not have absolute control over instruction sequences and
registers, and the compiler may intersperse other code together with
the ASM code for better performance. Better code sequences may be
substituted by the optimizer if it chooses to do so.

Only register names beginning with a dollar sign ($) or percent
sign (%) are permitted. For more information on register name
conventions, see your operating system documentation set.

Specific Name Argument Type1 Result Type

ASM2 CHARACTER INTEGER(8)

FASM3 CHARACTER REAL(4)

DASM3 CHARACTER REAL(8)

1For the first argument.
2The value must be stored in register $0 by the user code.
3The value must be stored in register $F0 by the user code.

9–30 Intrinsic Procedures

Examples

Consider the following:

! Concatenation is recommended for clarity.
! Notice that ";" separates instructions.
!
nine=9

type *, asm(’addq %0, $17, $0;’// ! Adds the first two arguments
1 ’ldq $22, %6;’// ! and puts the answer in
1 ’ldq $23, %7;’// ! register $0
1 ’ldq $24, %8;’// !
1 ’mov $0, %fp;’// ! Comments are not allowed in the
1 ’addq $18, %fp, $0;’// ! constant, but are allowed here
1 ’addq $19, $0, $0;’//
1 ’addq $20, $0, $0;’//
1 ’addq $21, $0, $0;’//
1 ’addq $22, $0, $0;’//
1 ’addq $23, $0, $0;’//
1 ’addq $24, $0, $0;’,
1 1,2,3,4,5,6,7,8,nine) ! The actual arguments to the

! ASM (usually by value)
end

This example shows an integer ASM function that adds up 9 values and
returns the sum as its result. Note that the user stores the function result in
register $0.

All arguments are passed by value. The arguments not passed in registers
can be named %6, %7, and %8, which correspond to the actual arguments 7, 8,
and 9 (since %0 is the first argument). Notice that you can reference reserved
registers like %fp.

The compiler creates the appropriate argument list. So, in this example,
the first argument value (1) will be available in register $16, and the eighth
argument value (8) will be available in %7, which is actually 8($30).

9.4.16 ASSOCIATED (POINTER [,TARGET])

Description: Returns the association status of its pointer argument or indicates
whether the pointer is associated with the target.

Class: Inquiry function; Generic

Arguments: POINTER Must be a pointer (of any data type).

TARGET (opt) Must be a pointer or target.

The pointer (in POINTER or TARGET) must not have an association
status that is undefined.

Intrinsic Procedures 9–31

Results: The result is a scalar of type default logical.

If only POINTER appears, the result is true if it is currently
associated with a target; otherwise, the result is false.

If TARGET also appears and is a target, the result is true if
POINTER is currently associated with TARGET; otherwise, the
result is false.

If TARGET is a pointer, the result is true if both POINTER and
TARGET are currently associated with the same target; otherwise,
the result is false. (If either POINTER or TARGET is disassociated,
the result is false.)

The setting of compiler options specifying integer size can affect this
function.

Examples

Consider the following:

REAL, TARGET, DIMENSION (0:50) :: TAR
REAL, POINTER, DIMENSION (:) :: PTR
PTR => TAR
PRINT *, ASSOCIATED (PTR, TAR) ! Returns the value true

The subscript range for PTR is 0:50. Consider the following pointer assignment
statements:

(1) PTR => TAR (:)
(2) PTR => TAR (0:50)
(3) PTR => TAR (0:49)

For statements 1 and 2, ASSOCIATED (PTR, TAR) is true because TAR has
not changed (the subscript range for PTR in both cases is 1:51, following the
rules for deferred-shape arrays). For statement 3, ASSOCIATED (PTR, TAR)
is false because the upper bound of PTR has changed.

Consider the following:

REAL, POINTER, DIMENSION (:) :: PTR2, PTR3
ALLOCATE (PTR2 (0:15))
PTR3 => PTR2
PRINT *, ASSOCIATED (PTR2, PTR3) ! Returns the value true
...
NULLIFY (PTR2)
NULLIFY (PTR3)
PRINT *, ASSOCIATED (PTR2, PTR3) ! Returns the value false

9–32 Intrinsic Procedures

9.4.17 ATAN (X)

Description: Produces the arctangent of X.

Class: Elemental function; Generic

Arguments: X must be of type real.

Results: The result type is the same as X and is expressed in radians. The
value lies in the range –�/2 to �/2.

Specific Name Argument Type Result Type

ATAN REAL(4) REAL(4)

DATAN REAL(8) REAL(8)

QATAN REAL(16) REAL(16)

Examples

ATAN (1.5874993) has the value 1.008666.

9.4.18 ATAND (X)

Description: Produces the arctangent of X.

Class: Elemental function; Generic

Arguments: X must be of type real and must be greater than or equal to zero.

Results: The result type is the same as X and is expressed in radians.

Specific Name Argument Type Result Type

ATAND REAL(4) REAL(4)

DATAND REAL(8) REAL(8)

QATAND REAL(16) REAL(16)

Examples

ATAND (0.0874679) has the value 4.998819.

Intrinsic Procedures 9–33

9.4.19 ATAN2 (Y, X)

Description: Produces an arctangent. The result is the principal value of the
argument of the nonzero complex number (X, Y).

Class: Elemental function; Generic

Arguments: Y Must be of type real.

X Must have the same type and kind parameters as
Y. If Y has the value zero, X cannot have the value
zero.

Results: The result type is the same as X and is expressed in radians. The
value lies in the range
–� < ATAN2 (Y,X) <= �. If X /= zero, the result is approximately
equal to the value of arctan (Y/X).

If Y > zero, the result is positive.

If Y < zero, the result is negative.

If Y = zero, the result is zero (if X > zero) or � (if X < zero).

If X = zero, the absolute value of the result is �/2.

Specific Name Argument Type Result Type

ATAN2 REAL(4) REAL(4)

DATAN2 REAL(8) REAL(8)

QATAN2 REAL(16) REAL(16)

Examples

ATAN2 (2.679676, 1.0) has the value 1.213623.

If Y has the value
�

� �
�� ��

�
and X has the value

�
�� �
�� �

�
, then ATAN2 (Y, X)

is
� 3�

4
�

4
�3�

4
��
4

�
.

9–34 Intrinsic Procedures

9.4.20 ATAN2D (Y, X)

Description: Produces an arctangent. The result is the principal value of the
argument of the nonzero complex number (X, Y).

Class: Elemental function; Generic

Arguments:1 Y Must be of type real.

X Must have the same type and kind parameters as
Y.

Results: The result type is the same as X and is expressed in degrees. The
value lies in the range –180 degrees to 180 degrees. If X /= zero, the
result is approximately equal to the value of arctan (Y/X).

If Y > zero, the result is positive.

If Y < zero, the result is negative.

If Y = zero, the result is zero (if X > zero) or 180 degrees (if X <
zero).

If X = zero, the absolute value of the result is 90 degrees.

1Both arguments must not have the value zero.

Specific Name Argument Type Result Type

ATAN2D REAL(4) REAL(4)

DATAN2D REAL(8) REAL(8)

QATAN2D REAL(16) REAL(16)

Examples

ATAN2D (2.679676, 1.0) has the value 69.53546.

9.4.21 BIT_SIZE (I)

Description: Returns the number of bits in an integer type.

Class: Inquiry function; Generic

Arguments: I must be of type integer.

Results: The result is a scalar integer with the same kind parameter as I.
The result value is the number of bits (s) defined by the bit model for
integers with the kind parameter of the argument. For information
on the bit model, see Section D.3.

Examples

BIT_SIZE (1_2) has the value 16 because the KIND=2 integer type contains 16
bits.

Intrinsic Procedures 9–35

9.4.22 BTEST (I, POS)

Description: Tests a bit of an integer argument.

Class: Elemental function; Generic

Arguments: I Must be of type integer.

POS Must be of type integer. It must not be negative
and it must be less than BIT_SIZE (I).

The rightmost (least significant) bit of I is in
position 0.

Results: The result is of type default logical.

The result is true if bit POS of I has the value 1. The result is false
if POS has the value zero. For more information on bit functions,
see Section 9.3.3.

For information on the model for the interpretation of an integer
value as a sequence of bits, see Section D.3.

The setting of compiler options specifying integer size can affect this
function.

Specific Name Argument Type Result Type

INTEGER(1) LOGICAL(1)

BITEST INTEGER(2) LOGICAL(2)

BTEST1 INTEGER(4) LOGICAL(4)

BKTEST INTEGER(8) LOGICAL(8)

1Or BJTEST

Examples

BTEST (9, 3) has the value true.

If A has the value
�
� �
� �

�
, the value of BTEST (A, 2) is

�
����
 ����

����
 ���

�
and the

value of BTEST (2, A) is
�
���
 ����

����
 ����

�
.

9–36 Intrinsic Procedures

9.4.23 CEILING (A [,KIND])

Description: Returns the smallest integer greater than or equal to its argument.

Class: Elemental function; Generic

Arguments: A Must be of type real.

KIND (opt) Must be a scalar integer initialization expression.
This argument is a Fortran 95 feature.

Results: The result is of type integer. If KIND is present, the kind parameter
of the result is that specified by KIND; otherwise, the kind
parameter of the result is that of default integer. If the processor
cannot represent the result value in the kind of the result, the result
is undefined.

The value of the result is equal to the smallest integer greater than
or equal to A.

Examples

CEILING (4.8) has the value 5.

CEILING (–2.55) has the value –2.0.

9.4.24 CHAR (I [,KIND])

Description: Returns the character in the specified position of the processor’s
character set. It is the inverse of the function ICHAR.

Class: Elemental function; Generic

Arguments: I Must be of type integer with a value in the range
0 to n � 1, where n is the number of characters in
the processor’s character set.

KIND (opt) Must be a scalar integer initialization expression.

Intrinsic Procedures 9–37

Specific Name Argument Type Result Type

Results: The result is of type character with length 1. The kind parameter is
that of default character type.

The result is the character in position I of the processor’s character
set. ICHAR(CHAR (I, KIND(C))) has the value I for 0 to n � 1 and
CHAR(ICHAR(C), KIND(C)) has the value C for any character C
capable of representation in the processor.

Specific Name Argument Type Result Type

INTEGER(1) CHARACTER

INTEGER(2) CHARACTER

CHAR1 INTEGER(4) CHARACTER

INTEGER(8) CHARACTER

1This specific function cannot be passed as an actual argument.

Examples

CHAR (76) has the value ’L’.

CHAR (94) has the value ’^’.

9.4.25 CMPLX (X [,Y] [,KIND])

Description: Converts an argument to complex type. This function must not be
passed as an actual argument.

Class: Elemental function; Generic

Arguments: X Must be of type integer, real, or complex.

Y (opt) Must be of type integer or real. It must not be
present if X is of type complex.

KIND (opt) Must be a scalar integer initialization expression.

9–38 Intrinsic Procedures

Results: The result is of type complex (COMPLEX(4) or COMPLEX*8). If
KIND is present, the kind parameter is that specified by KIND;
otherwise, the kind parameter is that of default real type.

If only one noncomplex argument appears, it is converted into the
real part of the result value and zero is assigned to the imaginary
part. If Y is not specified and X is complex, the result value is
CMPLX (REAL(X), AIMAG(X)).

If two noncomplex arguments appear, the complex value is produced
by converting the first argument into the real part of the value, and
converting the second argument into the imaginary part.

CMPLX(X, Y, KIND) has the complex value whose real part is
REAL(X, KIND) and whose imaginary part is REAL(Y, KIND).

The setting of compiler options specifying real size can affect this
function.

Examples

CMPLX (–3) has the value (–3.0, 0.0).

CMPLX (4.1, 2.3) has the value (4.1, 2.3).

9.4.26 CONJG (Z)

Description: Calculates the conjugate of a complex number.

Class: Elemental function; Generic

Arguments: Z must be of type complex.

Results: The result type is the same as Z. If Z has the value (x, y), the result
has the value (x, –y).

Specific Name Argument Type Result Type

CONJG COMPLEX(4) COMPLEX(4)

DCONJG COMPLEX(8) COMPLEX(8)

QCONJG COMPLEX(16) COMPLEX(16)

Examples

CONJG ((2.0, 3.0)) has the value (2.0, –3.0).

CONJG ((1.0, –4.2)) has the value (1.0, 4.2).

Intrinsic Procedures 9–39

9.4.27 COS (X)

Description: Produces the cosine of X.

Class: Elemental function; Generic

Arguments: X must be of type real or complex. It must be in radians and is
treated as modulo 2*�. (If X is of type complex, its real part is
regarded as a value in radians.)

Results: The result type is the same as X.

Specific Name Argument Type Result Type

COS REAL(4) REAL(4)

DCOS REAL(8) REAL(8)

QCOS REAL(16) REAL(16)

CCOS1 COMPLEX(4) COMPLEX(4)

CDCOS2 COMPLEX(8) COMPLEX(8)

CQCOS COMPLEX(16) COMPLEX(16)

1The setting of compiler options specifying real size can affect CCOS.
2This function can also be specified as ZCOS.

Examples

COS (2.0) has the value –0.4161468.

COS (0.567745) has the value 0.8431157.

9.4.28 COSD (X)

Description: Produces the cosine of X.

Class: Elemental function; Generic

Arguments: X must be of type real. It must be in degrees and is treated as
modulo 360.

Results: The result type is the same as X.

Specific Name Argument Type Result Type

COSD REAL(4) REAL(4)

DCOSD REAL(8) REAL(8)

QCOSD REAL(16) REAL(16)

9–40 Intrinsic Procedures

Examples

COSD (2.0) has the value 0.9993908.

COSD (30.4) has the value 0.8625137.

9.4.29 COSH (X)

Description: Produces a hyperbolic cosine.

Class: Elemental function; Generic

Arguments: X must be of type real.

Results: The result type is the same as X.

Specific Name Argument Type Result Type

COSH REAL(4) REAL(4)

DCOSH REAL(8) REAL(8)

QCOSH REAL(16) REAL(16)

Examples

COSH (2.0) has the value 3.762196.

COSH (0.65893) has the value 1.225064.

9.4.30 COTAN (X)

Description: Produces the cotangent of X.

Class: Elemental function; Generic

Arguments: X must be of type real; it cannot be zero. It must be in radians and
is treated as modulo 2*�.

Results: The result type is the same as X.

Specific Name Argument Type Result Type

COTAN REAL(4) REAL(4)

DCOTAN REAL(8) REAL(8)

QCOTAN REAL(16) REAL(16)

Examples

COTAN (2.0) has the value –4.576575E–01.

COTAN (0.6) has the value 1.461696.

Intrinsic Procedures 9–41

9.4.31 COTAND (X)

Description: Produces the cotangent of X.

Class: Elemental function; Generic

Arguments: X must be of type real. It must be in degrees and is treated as
modulo 360.

Results: The result type is the same as X.

Specific Name Argument Type Result Type

COTAND REAL(4) REAL(4)

DCOTAND REAL(8) REAL(8)

QCOTAND REAL(16) REAL(16)

Examples

COTAND (2.0) has the value 0.2863625E+02.

COTAND (0.6) has the value 0.9548947E+02.

9.4.32 COUNT (MASK [,DIM] [,KIND])

Description: Counts the number of true elements in an entire array or in a
specified dimension of an array.

Class: Transformational function; Generic

Arguments: MASK Must be a logical array.

DIM (opt) Must be a scalar integer expression with a value
in the range 1 to n, where n is the rank of MASK.

KIND (opt) Must be a scalar integer initialization expression.

9–42 Intrinsic Procedures

Results: The result is an array or a scalar of type integer. If KIND is
present, the kind parameter of the result is that specified by KIND;
otherwise, the kind parameter of the result is that of default integer.
If the processor cannot represent the result value in the kind of the
result, the result is undefined.

The result is a scalar if DIM is omitted or MASK has rank one. A
scalar result has a value equal to the number of true elements of
MASK. If MASK has size zero, the result is zero.

An array result has a rank that is one less than MASK, and shape
(d1, d2, ..., dDIM�1, dDIM+1, ..., dn), where (d1, d2,..., dn) is the shape of
MASK.

Each element in an array result equals the number of elements that
are true in the one dimensional array defined by MASK (s1, s2, ...,
sDIM�1, :, sDIM+1, ..., sn).

Examples

COUNT ((/.TRUE., .FALSE., .TRUE./)) has the value 2 because two elements
are true.

COUNT ((/.TRUE., .TRUE., .TRUE./)) has the value 3 because three elements
are true.

A is the array
�
� � �
� � �

�
and B is the array

�

 � �
� �

�
.

COUNT (A .NE. B, DIM=1) tests to see how many elements in each column of
A are not equal to the elements in the corresponding column of B. The result
has the value (2, 0, 1) because:

• The first column of A and B have 2 elements that are not equal.

• The second column of A and B have 0 elements that are not equal.

• The third column of A and B have 1 element that is not equal.

COUNT (A .NE. B, DIM=2) tests to see how many elements in each row of A
are not equal to the elements in the corresponding row of B. The result has the
value (1, 2) because:

• The first row of A and B have 1 element that is not equal.

• The second row of A and B have 2 elements that are not equal.

Intrinsic Procedures 9–43

9.4.33 CPU_TIME (TIME)

Description: Returns a processor-dependent approximation of the processor time
in seconds. This is a new intrinsic procedure in Fortran 95.

Class: Subroutine

Arguments: TIME must be scalar and of type real. It is an INTENT(OUT)
argument.

If a meaningful time cannot be returned, a processor-dependent
negative value is returned.

Examples

Consider the following:

REAL time_begin, time_end
...
CALL CPU_TIME(time_begin)
...
CALL CPU_TIME(time_end)

PRINT (*,*) ’Time of operation was ’, time_end - time_begin, ’ seconds’

9.4.34 CSHIFT (ARRAY, SHIFT [,DIM])

Description: Performs a circular shift on a rank-one array, or performs circular
shifts on all the complete rank-one sections (vectors) along a given
dimension of an array of rank two or greater.

Elements shifted off one end are inserted at the other end. Different
sections can be shifted by different amounts and in different
directions.

Class: Transformational function; Generic

Arguments: ARRAY Must be an array; it can be of any data type.

SHIFT Must be a scalar integer or an array with a rank
that is one less than ARRAY, and shape (d1, d2, ...,
dDIM�1, dDIM+1, ..., dn), where (d1, d2,..., dn) is the
shape of ARRAY.

DIM (opt) Must be a scalar integer with a value in the range
1 to n, where n is the rank of ARRAY. If DIM is
omitted, it is assumed to be 1.

9–44 Intrinsic Procedures

Results: The result is an array with the same type and kind parameters, and
shape as ARRAY.

If ARRAY has rank one, element i of the result is ARRAY (1 �
MODULO (i � SHIFT � 1, SIZE (ARRAY))). (The same shift is
applied to each element.)

If ARRAY has rank greater than one, each section (s1, s2, ..., sDIM�1,
:, sDIM+1, ..., sn) of the result is shifted as follows:

• By the value of SHIFT, if SHIFT is scalar

• According to the corresponding value in SHIFT(s1, s2,..., sDIM�1,
sDIM+1,..., sn), if SHIFT is an array

The value of SHIFT determines the amount and direction of the
circular shift. A positive SHIFT value causes a shift to the left (in
rows) or up (in columns). A negative SHIFT value causes a shift to
the right (in rows) or down (in columns). A zero SHIFT value causes
no shift.

Examples

V is the array (1, 2, 3, 4, 5, 6).

CSHIFT (V, SHIFT=2) shifts the elements in V circularly to the left by two
positions, producing the value (3, 4, 5, 6, 1, 2). 1 and 2 are shifted off the
beginning and inserted at the end.

CSHIFT (V, SHIFT= –2) shifts the elements in V circularly to the right by two
positions, producing the value (5, 6, 1, 2, 3, 4). 5 and 6 are shifted off the end
and inserted at the beginning.

M is the array

�
� � � �
� � �
� �

�
�.

CSHIFT (M, SHIFT = 1, DIM = 2) produces the result

�
� � � �
� � �
�
 �

�
�.

Each element in rows 1, 2, and 3 is shifted to the left by two positions. The
elements shifted off the beginning are inserted at the end.

CSHIFT (M, SHIFT = –1, DIM = 1) produces the result

�
� � �

� � �
� � �

�
�.

Each element in columns 1, 2, and 3 is shifted down by one position. The
elements shifted off the end are inserted at the beginning.

Intrinsic Procedures 9–45

CSHIFT (M, SHIFT = (/1, –1, 0/), DIM = 2) produces the result

�
� � � �
� � �
� �

�
�.

Each element in row 1 is shifted to the left by one position; each element in
row 2 is shifted to the right by one position; no element in row 3 is shifted at
all.

9.4.35 DATE (BUF)

Description: Returns the current date as set within the system.

Class: Subroutine

Arguments: BUF is a 9-byte variable, array, array element, or character
substring.

The date is returned as a 9-byte ASCII character string taking the
form dd-mmm-yy, where:

dd is the 2-digit date
mmm is the 3-letter month
yy is the last two digits of the year

If BUF is of numeric type and smaller than 9 bytes, data corruption
can occur.

If BUF is of character type, its associated length is passed to the
subroutine. If BUF is smaller than 9 bytes, the subroutine truncates
the date to fit in the specified length. If an array of type character
is passed, the subroutine stores the date in the first array element,
using the element length, not the length of the entire array.

Warning: The two-digit year return value may cause problems with
the year 2000. Use DATE_AND_TIME instead (see Section 9.4.36).

Examples

Consider the following:

CHARACTER*1 DAY(9)
...
CALL DATE (DAY)

The length of the first array element in CHARACTER array DAY is passed to
the DATE subroutine. The subroutine then truncates the date to fit into the
one-character element, producing an incorrect result.

9–46 Intrinsic Procedures

9.4.36 DATE_AND_TIME ([DATE] [,TIME] [,ZONE] [,VALUES])

Description: Returns character data on the real-time clock and date in a form
compatible with the representations defined in Standard ISO
8601:1988.

Class: Subroutine

Arguments: There are four optional arguments1:

DATE (opt) Must be scalar and of type default character; its length must be at
least 8 to contain the complete value. Its leftmost 8 characters are
set to a value of the form CCYYMMDD, where:

CC is the century
YY is the year within the century
MM is the month within the year
DD is the day within the month

TIME (opt) Must be scalar and of type default character; its length must be at
least 10 to contain the complete value. Its leftmost 10 characters
are set to a value of the form hhmmss.sss, where:

hh is the hour of the day
mm is the minutes of the hour
ss.sss is the seconds and milliseconds of the minute

ZONE (opt) Must be scalar and of type default character; its length must be at
least 5 to contain the complete value. Its leftmost 5 characters are
set to a value of the form � hhmm, where hh and mm are the time
difference with respect to Coordinated Universal Time (UTC)2 in
hours and parts of an hour expressed in minutes, respectively.

VALUES
(opt)

Must be of type default integer and of rank one. Its size must be at
least 8. The values returned in VALUES are as follows:

VALUES (1) is the 4-digit year.
VALUES (2) is the month of the year.
VALUES (3) is the day of the month.
VALUES (4) is the time difference with respect to

Coordinated Universal Time (UTC) in minutes.
VALUES (5) is the hour of the day (range 0 to 23).3

VALUES (6) is the minutes of the hour (range 0 to 59).3

VALUES (7) is the seconds of the minute (range 0 to 59).3

VALUES (8) is the milliseconds of the second (range 0 to 999).3

1All are INTENT(OUT) arguments. (See Section 5.10.)
2UTC (also known as Greenwich Mean Time) is defined by CCIR Recommendation 460–2.
3In local time.

Intrinsic Procedures 9–47

Note: If time zone information is not available on the system, a blank is
returned for the ZONE argument and –1 is returned for the differential
element of the VALUES argument.

Examples

Consider the following example executed on 2000 March 28 at 11:04:14.5:

INTEGER DATE_TIME (8)
CHARACTER (LEN = 12) REAL_CLOCK (3)
CALL DATE_AND_TIME (REAL_CLOCK (1), REAL_CLOCK (2), &

REAL_CLOCK (3), DATE_TIME)

This assigns the value ‘‘20000328’’ to REAL_CLOCK (1), the value ‘‘110414.500’’
to REAL_CLOCK (2), and the value ‘‘–0500’’ to REAL_CLOCK (3). The
following values are assigned to DATE_TIME: 2000, 3, 28, -300, 11, 4, 14, and
500.

9.4.37 DBLE (A)

Description: Converts a number to double-precision real type.

Class: Elemental function; Generic

Arguments: A must be of type integer, real, or complex.

Results: The result is of type double precision real (REAL(8) or REAL*8).
Functions that cause conversion of one data type to another type
have the same effect as the implied conversion in assignment
statements.

If A is of type double precision, the result is the value of the A with
no conversion (DBLE(A) = A).

If A is of type integer or real, the result has as much precision of the
significant part of A as a double precision value can contain.

If A is of type complex, the result has as much precision of the
significant part of the real part of A as a double precision value can
contain.

9–48 Intrinsic Procedures

Specific Name1 Argument Type Result Type

INTEGER(1) REAL(8)

INTEGER(2) REAL(8)

INTEGER(4) REAL(8)

INTEGER(8) REAL(8)

DBLE2 REAL(4) REAL(8)

REAL(8) REAL(8)

DBLEQ REAL(16) REAL(8)

COMPLEX(4) REAL(8)

COMPLEX(8) REAL(8)

COMPLEX(16) REAL(8)

1These specific functions cannot be passed as actual arguments.
2For compatibility with older versions of Fortran, DBLE can also be specified as a specific function.

Examples

DBLE (4) has the value 4.0.

DBLE ((3.4, 2.0)) has the value 3.4.

Intrinsic Procedures 9–49

9.4.38 DCMPLX (X [,Y])

Description: Converts the argument to double complex type. This function must
not be passed as an actual argument.

Class: Elemental function; Generic

Arguments: X Must be of type integer, real, or complex.

Y (opt) Must be of type integer or real. It must not be
present if X is of type complex.

Results: The result is of type double complex (COMPLEX(8) or COMPLEX*16).

If only one noncomplex argument appears, it is converted into the
real part of the result value and zero is assigned to the imaginary
part. If Y is not specified and X is complex, the result value is
CMPLX (REAL(X), AIMAG(X)).

If two noncomplex arguments appear, the complex value is produced
by converting the first argument into the real part of the value, and
converting the second argument into the imaginary part.

DCMPLX(X, Y) has the complex value whose real part is REAL(X,
KIND=8) and whose imaginary part is REAL(Y, KIND=8).

Examples

DCMPLX (–3) has the value (–3.0, 0.0).

DCMPLX (4.1, 2.3) has the value (4.1, 2.3).

9.4.39 DFLOAT (A)

Description: Converts an integer to double-precision type.

Class: Elemental function; Generic

Arguments: A must be of type integer.

Results: The result is of type double-precision real (REAL(8) or REAL*8).

Functions that cause conversion of one data type to another type
have the same affect as the implied conversion in assignment
statements.

Specific Name1 Argument Type Result Type

INTEGER(1) REAL(8)

DFLOTI INTEGER(2) REAL(8)

DFLOTJ INTEGER(4) REAL(8)

DFLOTK INTEGER(8) REAL(8)

1These specific functions cannot be passed as actual arguments.

9–50 Intrinsic Procedures

Examples

DFLOAT (–4) has the value –4.0.

9.4.40 DIGITS (X)

Description: Returns the number of significant binary digits for numbers of the
same type and kind parameters as the argument.

Class: Inquiry function; Generic

Arguments: X must be of type integer or real; it can be scalar or array valued.

Results: The result is a scalar of type default integer.

The result has the value q if X is of type integer; it has the value p
if X is of type real. Integer parameter q is defined in Section D.1;
real parameter p is defined in Section D.2.

Examples

If X is of type REAL(4), DIGITS (X) has the value 24.

9.4.41 DIM (X, Y)

Description: Returns the difference between two numbers (if the difference is
positive).

Class: Elemental function; Generic

Arguments: X Must be of type integer or real.

Y Must have the same type and kind parameters as
X.

Results: The result type is the same as X. The value of the result is X � Y if
X is greater than Y; otherwise, the value of the result is zero.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IIDIM INTEGER(2) INTEGER(2)

IDIM1 INTEGER(4) INTEGER(4)

KIDIM INTEGER(8) INTEGER(8)

DIM REAL(4) REAL(4)

DDIM REAL(8) REAL(8)

QDIM REAL(16) REAL(16)

1Or JIDIM.

Intrinsic Procedures 9–51

Examples

DIM (6, 2) has the value 4.

DIM (–4.0, 3.0) has the value 0.0.

9.4.42 DOT_PRODUCT (VECTOR_A, VECTOR_B)

Description: Performs dot-product multiplication of numeric or logical vectors
(rank-one arrays).

Class: Transformational function; Generic

Arguments: VECTOR_A Must be a rank-one array of numeric (integer, real,
or complex) or logical type.

VECTOR_B Must be a rank-one array of numeric type if
VECTOR_A is of numeric type, or of logical type if
VECTOR_A is of logical type. It must be the same
size as VECTOR_A.

Results: The result is a scalar whose type depends on the types of
VECTOR_A and VECTOR_B.

If VECTOR_A is of type integer or real, the result value is SUM
(VECTOR_A*VECTOR_B).

If VECTOR_A is of type complex, the result value is SUM (CONJG
(VECTOR_A)*VECTOR_B).

If VECTOR_A is of type logical, the result has the value ANY
(VECTOR_A .AND. VECTOR_B).

If either rank-one array has size zero, the result is zero if the array
is of numeric type, and false if the array is of logical type. (For more
information on expressions, see Section 4.1.)

Examples

DOT_PRODUCT ((/1, 2, 3/), (/3, 4, 5/)) has the value 26 (calculated as follows:
���� �	 � ��� �	 � ��� �		 � ��).

DOT_PRODUCT ((/ (1.0, 2.0), (2.0, 3.0) /), (/ (1.0, 1.0), (1.0, 4.0) /)) has the value
(17.0, 4.0).

DOT_PRODUCT ((/ .TRUE., .FALSE. /), (/ .FALSE., .TRUE. /)) has the value
false.

9–52 Intrinsic Procedures

9.4.43 DPROD (X, Y)

Description: Produces a higher precision product. This is a specific function that
has no generic function associated with it. It must not be passed as
an actual argument.

Class: Elemental function; Specific

Arguments: X Must be of type REAL(4) or REAL(8).

Y Must be the same type and kind parameter as X.

Results: If X and Y are of type REAL(4), the result is of type double-precision
real. If X and Y are of type REAL(8), the result is of type REAL(16).
The result value is equal to X*Y.

Examples

DPROD (2.0, –4.0) has the value –8.00D0.

DPROD (5.0D0, 3.0D0) has the value 15.00Q0.

The following shows another example:

REAL(4) e
REAL(8) d
e = 123456.7
d = 123456.7D0
! DPROD (e,e) returns 15241557546.4944
! DPROD (d,d) returns 15241556774.8899992813874268904328

9.4.44 DREAL (A)

Description: Converts the real part of a double-complex argument to double-
precision type. This is a specific function that has no generic
function associated with it. It must not be passed as an actual
argument.

Class: Elemental function; Specific

Arguments: A must be of type double complex (COMPLEX(8) or COMPLEX*16).

Results: The result is of type double-precision real (REAL(8) or REAL*8).

Examples

DREAL ((2.0d0, 3.0d0)) has the value 2.0d0.

Intrinsic Procedures 9–53

9.4.45 EOF (A)

Description: Checks whether a file is at or beyond the end-of-file record. This is
a specific function that has no generic function associated with it. It
must not be passed as an actual argument.

Class: Inquiry function; Specific

Arguments: A must be of type integer. It represents a unit specifier correspond-
ing to an open file. It cannot be zero unless you have reconnected
unit zero to a unit other than the screen or keyboard.

Results: The result is of type logical. The value of the result is .TRUE. if the
file connected to A is at or beyond the end-of-file record; otherwise,
.FALSE..

Examples

Consider the following:

! Creates a file of random numbers, reads them back
REAL x, total
INTEGER count
OPEN (1, FILE = ’TEST.DAT’)
DO I = 1, 20
CALL RANDOM_NUMBER(x)
WRITE (1, ’(F6.3)’) x * 100.0

END DO
CLOSE(1)
OPEN (1, FILE = ’TEST.DAT’)
DO WHILE (.NOT. EOF(1))
count = count + 1
READ (1, *) value
total = total + value

END DO
100 IF (count .GT. 0) THEN

WRITE (*,*) ’Average is: ’, total / count
ELSE

WRITE (*,*) ’Input file is empty ’
END IF

STOP
END

9–54 Intrinsic Procedures

9.4.46 EOSHIFT (ARRAY, SHIFT [,BOUNDARY] [,DIM])

Description: Performs an end-off shift on a rank-one array, or performs end-off
shifts on all the complete rank-one sections along a given dimension
of an array of rank two or greater.

Elements are shifted off at one end of a section and copies of a
boundary value are filled in at the other end. Different sections
can have different boundary values and can be shifted by different
amounts and in different directions.

Class: Transformational function; Generic

Arguments: ARRAY Must be an array (of any data type).

SHIFT Must be a scalar integer or an array with a rank
that is one less than ARRAY, and shape (d1, d2, ...,
dDIM�1, dDIM+1, ..., dn), where (d1, d2,..., dn) is the
shape of ARRAY.

BOUNDARY
(opt)

Must have the same type and kind parameters
as ARRAY. It must be a scalar or an array with a
rank that is one less than ARRAY, and shape (d1,
d2, ..., dDIM�1, dDIM+1, ..., dn). If BOUNDARY is
not specified, it is assumed to have the following
default values (depending on the data type of
ARRAY):

ARRAY Type BOUNDARY Value

Integer 0

Real 0.0

Complex (0.0, 0.0)

Logical false

Character (len) len blanks

DIM (opt) Must be a scalar integer with a value in the range
1 to n, where n is the rank of ARRAY. If DIM is
omitted, it is assumed to be 1.

Intrinsic Procedures 9–55

Results: The result is an array with the same type and kind parameters, and
shape as ARRAY.

If ARRAY has rank one, the same shift is applied to each element.
If an element is shifted off one end of the array, the BOUNDARY
value is placed at the other end the array.

If ARRAY has rank greater than one, each section (s1, s2, ..., sDIM�1,
:, sDIM+1, ..., sn) of the result is shifted as follows:

• By the value of SHIFT, if SHIFT is scalar

• According to the corresponding value in SHIFT(s1, s2,..., sDIM�1,
sDIM+1,..., sn), if SHIFT is an array

If an element is shifted off one end of a section, the BOUNDARY
value is placed at the other end of the section.

The value of SHIFT determines the amount and direction of the
end-off shift. A positive SHIFT value causes a shift to the left (in
rows) or up (in columns). A negative SHIFT value causes a shift to
the right (in rows) or down (in columns).

Examples

V is the array (1, 2, 3, 4, 5, 6).

EOSHIFT (V, SHIFT=2) shifts the elements in V to the left by two positions,
producing the value (3, 4, 5, 6, 0, 0). 1 and 2 are shifted off the beginning and
two elements with the default BOUNDARY value are placed at the end.

EOSHIFT (V, SHIFT= –3, BOUNDARY= 99) shifts the elements in V to the
right by 3 positions, producing the value (99, 99, 99, 1, 2, 3). 4, 5, and 6 are
shifted off the end and three elements with BOUNDARY value 99 are placed
at the beginning.

M is the array

�
� � � �
� � �
� �

�
�.

EOSHIFT (M, SHIFT = 1, BOUNDARY = ’*’, DIM = 2) produces the result�
� � � �

� � �

�
 �

�
�.

Each element in rows 1, 2, and 3 is shifted to the left by one position. This
causes the first element in each row to be shifted off the beginning, and the
BOUNDARY value to be placed at the end.

EOSHIFT (M, SHIFT = –1, DIM = 1) produces the result

�
�

� � �
� � �

�
�.

9–56 Intrinsic Procedures

Each element in columns 1, 2, and 3 is shifted down by 1 position. This causes
the last element in each column to be shifted off the end and the BOUNDARY
value to be placed at the beginning.

EOSHIFT (M, SHIFT = (/1, –1, 0/), BOUNDARY = (/ ’*’, ’?’, ’/’ /), DIM = 2)

produces the result

�
� � � �

� � �
� �

�
�.

Each element in row 1 is shifted to the left by one position, causing the first
element to be shifted off the beginning and the BOUNDARY value * to be
placed at the end. Each element in row 2 is shifted to the right by 1 position,
causing the last element to be shifted off the end and the BOUNDARY value
? to be placed at the beginning. No element in row 3 is shifted at all, so the
specified BOUNDARY value is not used.

9.4.47 EPSILON (X)

Description: Returns the difference (for scalars of the same type and kind
parameters) between 1.0 and the next larger model number.
EPSILON is a guide to the precision with which values near unity
can be represented.

EPSILON(1.0) is about 1.19E-7, EPSILON(1.0_8) is about 2.22E-16,
and EPSILON(1.0_16) is about 1.93E-34.

Class: Inquiry function; Generic

Arguments: X must be of type real; it can be scalar or array valued.

Results: The result is a scalar of the same type and kind parameters as X.
The result has the value b1�p. Parameters b and p are defined in
Section D.2.

Examples

If X is of type REAL(4), EPSILON (X) has the value ��23.

9.4.48 ERRSNS ([IO_ERR] [,SYS_ERR] [,STAT] [,UNIT] [,COND])

Description: Returns information about the most recently detected I/O system
error condition.

Class: Subroutine

Arguments: There are five optional arguments:

Intrinsic Procedures 9–57

IO_ERR (opt) Is an integer variable or array element that stores the most recent
HP Fortran RTL error number that occurred during program
execution. (For a listing of error numbers, see the HP Fortran
for OpenVMS User Manual.)

A zero indicates no error has occurred since the last call to ERRSNS
or since the start of program execution.

SYS_ERR
(opt)

Is an integer variable or array element that stores the most recent
system error number associated with IO_ERR. This code is an RMS
STS value.

STAT (opt) Is an integer variable or array element that stores a status value
that occurred during program execution. This value is an RMS STV
value.

UNIT (opt) Is an integer variable or array element that stores the logical unit
number, if the last error was an I/O error.

COND (opt) Is an integer variable or array element that stores the actual
processor value. This value is always zero.

If you specify INTEGER(2) arguments, only the low-order 16 bits
of information are returned or adjacent data can be overwritten.
Because of this, it is best to use INTEGER(4) arguments.

The saved error information is set to zero after each call to ERRSNS.

Examples

Any of the arguments can be omitted. For example, the following is valid:

CALL ERRSNS (SYS_ERR, STAT, , UNIT)

9.4.49 EXIT ([STATUS])

Description: Terminates program execution, closes all files, and returns control to
the operating system.

Class: Subroutine

Arguments: STATUS is an optional integer argument you can use to specify the
image exit-status value.

Examples

CALL EXIT (100)

9–58 Intrinsic Procedures

9.4.50 EXP (X)

Description: Computes an exponential value.

Class: Elemental function; Generic

Arguments: X must be of type real or complex.

Results: The result type is the same as X. The value of the result is ex. If
X is of type complex, its imaginary part is regarded as a value in
radians.

Specific Name Argument Type Result Type

EXP REAL(4) REAL(4)

DEXP REAL(8) REAL(8)

QEXP REAL(16) REAL(16)

CEXP1 COMPLEX(4) COMPLEX(4)

CDEXP2 COMPLEX(8) COMPLEX(8)

CQEXP COMPLEX(16) COMPLEX(16)

1The setting of compiler options specifying real size can affect CEXP.
2This function can also be specified as ZEXP.

Examples

EXP (2.0) has the value 7.389056.

EXP (1.3) has the value 3.669297.

9.4.51 EXPONENT (X)

Description: Returns the exponent part of the argument when represented as a
model number.

Class: Elemental function; Generic

Arguments: X must be of type real.

Results: The result is of type default integer. If X is not equal to zero, the
result value is the exponent part of X. The exponent must be within
default integer range; otherwise, the result is undefined.

If X is zero, the exponent of X is zero. For more information on the
exponent part (e) in the real model, see Section D.2.

Examples

EXPONENT (2.0) has the value 2.

If 4.1 is a REAL(4) value, EXPONENT (4.1) has the value 3.

Intrinsic Procedures 9–59

9.4.52 FLOOR (A [,KIND])

Description: Returns the greatest integer less than or equal to its argument.

Class: Elemental function; Generic

Arguments: A Must be of type real.

KIND (opt) Must be a scalar integer initialization expression.
This argument is a Fortran 95 feature.

Results: The result is of type integer. If KIND is present, the kind parameter
of the result is that specified by KIND; otherwise, the kind
parameter of the result is that of default integer. If the processor
cannot represent the result value in the kind of the result, the result
is undefined.

The value of the result is equal to the greatest integer less than or
equal to A.

Examples

FLOOR (4.8) has the value 4.

FLOOR (–5.6) has the value –6.

9.4.53 FP_CLASS (X)

Description: Returns the class of an IEEE real (S_floating, T_floating, or
X_floating) argument. The compiler option specifying IEEE floating
format must be set.

Class: Elemental function; Generic

Arguments: X must be of type real.

9–60 Intrinsic Procedures

Results: The result is of type default integer. The return value is one of the
following:

Class of Argument Return Value

Signaling NaN FOR_K_FP_SNAN
Quiet NaN FOR_K_FP_QNAN
Positive Infinity FOR_K_FP_POS_INF
Negative Infinity FOR_K_FP_NEG_INF
Positive Normalized Number FOR_K_FP_POS_NORM
Negative Normalized Number FOR_K_FP_NEG_NORM
Positive Denormalized Number FOR_K_FP_POS_DENORM
Negative Denormalized Number FOR_K_FP_NEG_DENORM
Positive Zero FOR_K_FP_POS_ZERO
Negative Zero FOR_K_FP_NEG_ZERO

The preceding return values are defined in module FORSYSDEF.
For information on the location of this file, see the HP Fortran for
OpenVMS User Manual.

Examples

FP_CLASS (4.0_8) has the value 4 (FOR_K_FP_POS_NORM, a normal positive
number).

9.4.54 FRACTION (X)

Description: Returns the fractional part of the model representation of the
argument value.

Class: Elemental function; Generic

Arguments: X must be of type real.

Results: The result type is the same as X. The result has the value � � ���.
Parameters b and e are defined in Section D.2. If X has the value
zero, the result has the value zero.

Examples

If 3.0 is a REAL(4) value, FRACTION (3.0) has the value 0.75.

9.4.55 FREE (A)

Description: Frees a block of memory that is currently allocated.

Class: Subroutine

Intrinsic Procedures 9–61

Arguments: A must be of type INTEGER(8). This value is the starting address
of the memory to be freed, previously allocated by MALLOC (see
Section 9.4.92).

If the freed address was not previously allocated by MALLOC, or if
an address is freed more than once, results are unpredictable.

Examples

Consider the following:

INTEGER(4) ADDR, SIZE
SIZE = 1024 ! Size in bytes
ADDR = MALLOC(SIZE) ! Allocate the memory
CALL FREE(ADDR) ! Free it
END

9.4.56 HUGE (X)

Description: Returns the largest number in the model representing the same type
and kind parameters as the argument.

Class: Inquiry function; Generic

Arguments: X must be of type integer or real; it can be scalar or array valued.

Results: The result is a scalar of the same type and kind parameters as X. If
X is of type integer, the result has the value �� � �. If X is of type
real, the result has the value ��� ��������� .

Integer parameters r and q are defined in Section D.1; real
parameters b, p, and emax are defined in Section D.2.

Examples

If X is of type REAL(4), HUGE (X) has the value ��� ��24	� �128.

9.4.57 IACHAR (C)

Description: Returns the position of a character in the ASCII character set, even
if the processor’s default character set is different. In HP Fortran,
IACHAR is equivalent to the ICHAR function.

Class: Elemental function; Generic

Arguments: C must be of type character of length 1.

9–62 Intrinsic Procedures

Results: The result is of type default integer. If C is in the ASCII collating
sequence, the result is the position of C in that sequence and
satisfies the inequality (0 <= IACHAR(C) <= 127).

The results must be consistent with the LGE, LGT, LLE, and LLT
lexical comparison functions. For example, if LLE(C, D) is true,
IACHAR(C) .LE. IACHAR(D) is also true.

Examples

IACHAR (’Y’) has the value 89.

IACHAR (’%’) has the value 37.

9.4.58 IAND (I, J)

Description: Performs a logical AND on corresponding bits.1

Class: Elemental function; Generic

Arguments: I Must be of type integer.

J Must be of type integer with the same kind
parameter as I.

Results: The result type is the same as I. The result value is derived by
combining I and J bit-by-bit according to the following truth table:

I J IAND (I, J)

1 1 1
1 0 0
0 1 0
0 0 0

The model for the interpretation of an integer value as a sequence of
bits is shown in Section D.3.

1This function can also be specified as AND.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IIAND INTEGER(2) INTEGER(2)

JIAND INTEGER(4) INTEGER(4)

KIAND INTEGER(8) INTEGER(8)

Examples

IAND (2, 3) has the value 2.

IAND (4, 6) has the value 4.

Intrinsic Procedures 9–63

9.4.59 IARGCOUNT ()

Description: Returns the count of actual arguments passed to the current routine.

Class: Inquiry function; Specific

Arguments: None.

Results: The result is of type default integer. Functions with a type of
CHARACTER, COMPLEX(8), REAL(16), and COMPLEX(16) have
an extra argument added that is used to return the function value.

Formal (dummy) arguments that can be omitted must be declared
VOLATILE. For more information, see Section 5.19.

Formal arguments of type CHARACTER cannot be omitted. Formal
arguments that are adjustable arrays (see Section 5.1.4.1) cannot be
omitted.

The standard way to pass and detect omitted arguments is to
use the Fortran 95 features of OPTIONAL arguments and the
PRESENT intrinsic function. Note that a declaration must be
visible within the calling routine.

Examples

Consider the following:

CALL SUB (A,B)
...
SUBROUTINE SUB (X,Y,Z)
VOLATILE Z
TYPE *, IARGCOUNT() ! Displays the value 2

For more information, including an example, see Section 8.8.1.2.

9.4.60 IARGPTR ()

Description: Returns a pointer to the actual argument list for the current routine.

Class: Inquiry function; Specific

Arguments: None.

Results: The result is of type INTEGER(8). The actual argument list is an
array of values of the same type.

The first element in the array contains the argument count;
subsequent elements contain the INTEGER(8) address of the actual
arguments.

Formal (dummy) arguments that can be omitted must be declared
VOLATILE. For more information, see Section 5.19.

9–64 Intrinsic Procedures

Examples

Consider the following:

WRITE (*,’(" Address of argument list is ",Z16.8)’) IARGPTR()

9.4.61 IBCHNG (I, POS)

Description: Reverses the value of a specified bit in an integer.

Class: Elemental function; Generic

Arguments: I Must be of type integer. This argument contains
the bit to be reversed.

POS Must be of type integer. This argument is the
position of the bit to be changed.

The rightmost (least significant) bit of I is in
position 0.

Results: The result type is the same as I. The result is equal to I with the bit
in position POS reversed.

For more information on bit functions, see Section 9.3.3.

Examples

Consider the following:

INTEGER J, K
J = IBCHNG(10, 2) ! returns 14 = 1110
K = IBCHNG(10, 1) ! returns 8 = 1000

9.4.62 IBCLR (I, POS)

Description: Clears one bit to zero.

Class: Elemental function; Generic

Arguments: I Must be of type integer.

POS Must be of type integer. It must not be negative
and it must be less than BIT_SIZE (I).

The rightmost (least significant) bit of I is in
position 0.

Intrinsic Procedures 9–65

Results: The result type is the same as I. The result has the value of the
sequence of bits of I, except that bit POS of I is set to zero. The
model for the interpretation of an integer value as a sequence of bits
is shown in Section D.3.

For more information on bit functions, see Section 9.3.3.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IIBCLR INTEGER(2) INTEGER(2)

JIBCLR INTEGER(4) INTEGER(4)

KIBCLR INTEGER(8) INTEGER(8)

Examples

IBCLR (18, 1) has the value 16.

If V has the value (1, 2, 3, 4), the value of IBCLR (POS = V, I = 15) is (13, 11,
7, 15).

9.4.63 IBITS (I, POS, LEN)

Description: Extracts a sequence of bits (a bit field).

Class: Elemental function; Generic

Arguments: I Must be of type integer.

POS Must be of type integer. It must not be negative
and POS + LEN must be less than or equal to
BIT_SIZE (I).

The rightmost (least significant) bit of I is in
position 0.

LEN Must be of type integer. It must not be negative.

9–66 Intrinsic Procedures

Results: The result type is the same as I. The result has the value of the
sequence of LEN bits in I, beginning at POS right-adjusted and with
all other bits zero. The model for the interpretation of an integer
value as a sequence of bits is shown in Section D.3.

For more information on bit functions, see Section 9.3.3.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IIBITS INTEGER(2) INTEGER(2)

JIBITS INTEGER(4) INTEGER(4)

KIBITS INTEGER(8) INTEGER(8)

Examples

IBITS (12, 1, 4) has the value 6.

IBITS (10, 1, 7) has the value 5.

9.4.64 IBSET (I, POS)

Description: Sets one bit to 1.

Class: Elemental function; Generic

Arguments: I Must be of type integer.

POS Must be of type integer. It must not be negative
and it must be less than BIT_SIZE (I).

The rightmost (least significant) bit of I is in
position 0.

Results: The result type is the same as I. The result has the value of the
sequence of bits of I, except that bit POS of I is set to 1. The model
for the interpretation of an integer value as a sequence of bits is
shown in Section D.3.

For more information on bit functions, see Section 9.3.3.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IIBSET INTEGER(2) INTEGER(2)

JIBSET INTEGER(4) INTEGER(4)

KIBSET INTEGER(8) INTEGER(8)

Intrinsic Procedures 9–67

Examples

IBSET (8, 1) has the value 10.

If V has the value (1, 2, 3, 4), the value of IBSET (POS = V, I = 2) is (2, 6, 10,
18).

9.4.65 ICHAR (C)

Description: Returns the position of a character in the processor’s character set.

Class: Elemental function; Generic

Arguments: C must be of type character of length 1.

Results: The result is of type default integer. The result value is the position
of C in the processor’s character set. C is in the range zero to n� 1,
where n is the number of characters in the character set.

For any characters C and D (capable of representation in the
processor), C .LE. D is true only if ICHAR(C) .LE. ICHAR(D) is
true, and C .EQ. D is true only if ICHAR(C) .EQ. ICHAR(D) is true.

Specific Name Argument Type Result Type

CHARACTER INTEGER(2)

ICHAR1 CHARACTER INTEGER(4)

CHARACTER INTEGER(8)

1This specific function cannot be passed as an actual argument.

Examples

ICHAR (’W’) has the value 87.

ICHAR (’#’) has the value 35.

9.4.66 IDATE (I, J, K)

Description: Returns three integer values representing the current month, day,
and year.

Class: Subroutine

Arguments: I is the current month.

J is the current day.

9–68 Intrinsic Procedures

K is the current year.

Warning: The two-digit year return value may cause problems with
the year 2000. Use DATE_AND_TIME instead (see Section 9.4.36).

Note: If time-zone information is not available on the system, a blank is
returned for the ZONE argument and –1 is returned for the differential
element of the VALUES argument.

Examples

If the current date is September 16, 1996, the values of the integer variables
upon return are: I = 9, J = 16, and K = 96.

9.4.67 IEOR (I, J)

Description: Performs an exclusive OR on corresponding bits.1

Class: Elemental function; Generic

Arguments: I Must be of type integer.

J Must be of type integer with the same kind
parameter as I.

Results: The result type is the same as I. The result value is derived by
combining I and J bit-by-bit according to the following truth table:

I J IEOR (I, J)
1 1 0
1 0 1
0 1 1
0 0 0

The model for the interpretation of an integer value as a sequence of
bits is shown in Section D.3.

1This function can also be specified as XOR.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IIEOR INTEGER(2) INTEGER(2)

JIEOR INTEGER(4) INTEGER(4)

KIEOR INTEGER(8) INTEGER(8)

Examples

IEOR (1, 4) has the value 5.

IEOR (3, 10) has the value 9.

Intrinsic Procedures 9–69

9.4.68 ILEN (I)

Description: Returns the length (in bits) of the two’s complement representation
of an integer.

Class: Elemental function; Generic

Arguments: I must be of type integer.

Results: The result type is the same as I. The result value is (LOG2(� � �)) if
I is not negative; otherwise, the result value is (LOG2(��)).

Examples

ILEN (4) has the value 3.

ILEN (–4) has the value 2.

9.4.69 INDEX (STRING, SUBSTRING [,BACK] [,KIND])

Description: Returns the starting position of a substring within a string.

Class: Elemental function; Generic

Arguments: STRING Must be of type character.

SUBSTRING Must be of type character.

BACK (opt) Must be of type logical.

KIND (opt) Must be a scalar integer initialization expression.

Results: The result is of type integer. If KIND is present, the kind parameter
of the result is that specified by KIND; otherwise, the kind
parameter of the result is that of default integer. If the processor
cannot represent the result value in the kind of the result, the result
is undefined.

If BACK is absent or false, the value returned is the minimum
value of I such that STRING (I : I � LEN (SUBSTRING) � 1) =
SUBSTRING (or zero if there is no such value). If LEN (STRING) <
LEN (SUBSTRING), zero is returned. If LEN (SUBSTRING) = zero,
1 is returned.

If BACK is true, the value returned is the maximum value of I such
that STRING (I : I � LEN (SUBSTRING) � 1) = SUBSTRING
(or zero if there is no such value). If LEN(STRING) < LEN
(SUBSTRING), zero is returned. If LEN (SUBSTRING) = zero,
LEN (STRING) � 1 is returned.

Specific Name Argument Type Result Type

INDEX CHARACTER INTEGER(4)

CHARACTER INTEGER(8)

9–70 Intrinsic Procedures

Examples

INDEX (’FORTRAN’, ’O’, BACK = .TRUE.) has the value 2.

INDEX (’XXXX’, "∆", BACK = .TRUE.) has the value 0.

INDEX (’XXXX’, " ", BACK = .TRUE.) has the value 5.

9.4.70 INT (A [,KIND])

Description: Converts a value to integer type.

Class: Elemental function; Generic

Arguments: A Must be of type integer, real, or complex.

KIND (opt) Must be a scalar integer initialization expression.

Results: The result is of type integer. If KIND is present, the kind parameter
of the result is that specified by KIND; otherwise, the kind
parameter of the result is that shown in the following table. If
the processor cannot represent the result value in the kind of the
result, the result is undefined.

Functions that cause conversion of one data type to another type
have the same effect as the implied conversion in assignment
statements.

The result value depends on the type and absolute value of A:

• If A is of type integer, INT (A) = A.

• If A is of type real and | A | < 1, INT (A) has the value zero.

If A is of type real and | A | >= 1, INT (A) is the integer
whose magnitude is the largest integer that does not exceed the
magnitude of A and whose sign is the same as the sign of A.

• If A is of type complex, INT (A) = A is the value obtained by
applying the preceding rules (for a real argument) to the real
part of A.

The setting of compiler options specifying integer size can affect INT,
IDINT, and IQINT.

The setting of compiler options specifying integer size or real size
can affect IFIX.

Intrinsic Procedures 9–71

Specific Name1 Argument Type Result Type

INTEGER(1), INTEGER(2), INTEGER(4) INTEGER(4)

INTEGER(1), INTEGER(2), INTEGER(4),
INTEGER(8)

INTEGER(8)

IIFIX2 REAL(4) INTEGER(2)

IINT REAL(4) INTEGER(2)

IFIX3 REAL(4) INTEGER(4)

JFIX INTEGER(1), INTEGER(2), INTEGER(4),
INTEGER(8), REAL(4), REAL(8), REAL(16),
COMPLEX(4), COMPLEX(8), COMPLEX(16)

INTEGER(4)

INT4 REAL(4) INTEGER(4)

KIFIX REAL(4) INTEGER(8)

KINT REAL(4) INTEGER(8)

IIDINT REAL(8) INTEGER(2)

IDINT5 REAL(8) INTEGER(4)

KIDINT REAL(8) INTEGER(8)

IIQINT REAL(16) INTEGER(2)

IQINT6 REAL(16) INTEGER(4)

KIQINT REAL(16) INTEGER(8)

COMPLEX(4), COMPLEX(8), COMPLEX(16) INTEGER(2)

COMPLEX(4), COMPLEX(8), COMPLEX(16) INTEGER(4)

COMPLEX(4), COMPLEX(8), COMPLEX(16) INTEGER(8)

INT1 INTEGER(1), INTEGER(2), INTEGER(4),
INTEGER(8), REAL(4), REAL(8), REAL(16),
COMPLEX(4), COMPLEX(8), COMPLEX(16)

INTEGER(1)

INT2 INTEGER(1), INTEGER(2), INTEGER(4),
INTEGER(8), REAL(4), REAL(8), REAL(16),
COMPLEX(4), COMPLEX(8), COMPLEX(16)

INTEGER(2)

1These specific functions cannot be passed as actual arguments.
2This function can also be specified as HFIX.
3For compatibility with older versions of Fortran, IFIX can also be specified as a generic function.
4Or JINT.
5Or JIDINT. For compatibility with older versions of Fortran, IDINT can also be specified as a
generic function.
6Or JIQINT. For compatibility with older versions of Fortran, IQINT can also be specified as a
generic function.

9–72 Intrinsic Procedures

Specific Name1 Argument Type Result Type

INT4 INTEGER(1), INTEGER(2), INTEGER(4),
INTEGER(8), REAL(4), REAL(8), REAL(16),
COMPLEX(4), COMPLEX(8), COMPLEX(16)

INTEGER(4)

INT8 INTEGER(1), INTEGER(2), INTEGER(4),
INTEGER(8), REAL(4), REAL(8), REAL(16),
COMPLEX(4), COMPLEX(8), COMPLEX(16)

INTEGER(8)

1These specific functions cannot be passed as actual arguments.

Examples

INT (–4.2) has the value –4.

INT (7.8) has the value 7.

9.4.71 INT_PTR_KIND()

Description: Returns the INTEGER KIND that will hold an address. This is a
specific function that has no generic function associated with it. It
must not be passed as an actual argument.

Class: Inquiry function; Specific

Arguments: None.

Results: The result is of type default integer. The result is a scalar with the
value equal to the value of the kind parameter of the integer data
type that can represent an address on the host platform.

The value is 8.

Examples

Consider the following:

REAL A(100)
POINTER (P, A)
INTEGER (KIND=INT_PTR_KIND()) SAVE_P
P = MALLOC (400)
SAVE_P = P

Intrinsic Procedures 9–73

9.4.72 IOR (I, J)

Description: Performs an inclusive OR on corresponding bits.1

Class: Elemental function; Generic

Arguments: I Must be of type integer.

J Must be of type integer with the same kind
parameter as I.

Results: The result type is the same as I. The result value is derived by
combining I and J bit-by-bit according to the following truth table:

I J IOR (I, J)

1 1 1
1 0 1
0 1 1
0 0 0

The model for the interpretation of an integer value as a sequence of
bits is shown in Section D.3.

1This function can also be specified as OR.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IIOR INTEGER(2) INTEGER(2)

JIOR INTEGER(4) INTEGER(4)

KIOR INTEGER(8) INTEGER(8)

Examples

IOR (1, 4) has the value 5.

IOR (1, 2) has the value 3.

9–74 Intrinsic Procedures

9.4.73 ISHA (I, SHIFT)

Description: Arithmetically shifts an integer left or right by a specified number of
bits.

Class: Elemental function; Generic

Arguments: I Must be of type integer. This argument is the
value to be shifted.

SHIFT Must be of type integer. This argument is the
direction and distance of shift.

Positive shifts are left (toward the most significant
bit); negative shifts are right (toward the least
significant bit).

Results: The result type is the same as I. The result is equal to I shifted
arithmetically by SHIFT bits.

If SHIFT is positive, the shift is to the left; if SHIFT is negative, the
shift is to the right. If SHIFT is zero, no shift is performed.

Bits shifted out from the left or from the right, as appropriate, are
lost. If the shift is to the left, zeros are shifted in on the right. If the
shift is to the right, copies of the sign bit (0 for non-negative I; 1 for
negative I) are shifted in on the left.

The kind of integer is important in arithmetic shifting because sign
varies among integer representations (see the following example). If
you want to shift a one-byte or two-byte argument, you must declare
it as INTEGER(1) or INTEGER(2).

Examples

Consider the following:

INTEGER(1) i, res1
INTEGER(2) j, res2
i = -128 ! equal to 10000000
j = -32768 ! equal to 10000000 00000000
res1 = ISHA (i, -4) ! returns 11111000 = -8
res2 = ISHA (j, -4) ! returns 11111000 00000000 = -2048

Intrinsic Procedures 9–75

9.4.74 ISHC (I, SHIFT)

Description: Rotates an integer left or right by specified number of bits. Bits
shifted out one end are shifted in the other end. No bits are lost.

Class: Elemental function; Generic

Arguments: I Must be of type integer. This argument is the
value to be rotated.

SHIFT Must be of type integer. This argument is the
direction and distance of rotation.

Positive rotations are left (toward the most
significant bit); negative rotations are right
(toward the least significant bit).

Results: The result type is the same as I. The result is equal to I circularly
rotated by SHIFT bits.

If SHIFT is positive, I is rotated left SHIFT bits. If SHIFT is
negative, I is rotated right SHIFT bits. Bits shifted out one end are
shifted in the other. No bits are lost.

The kind of integer is important in circular shifting. With an
INTEGER(4) argument, all 32 bits are shifted. If you want to
rotate a one-byte or two-byte argument, you must declare it as
INTEGER(1) or INTEGER(2).

Examples

Consider the following:

INTEGER(1) i, res1
INTEGER(2) j, res2
i = 10 ! equal to 00001010
j = 10 ! equal to 00000000 00001010
res1 = ISHC (i, -3) ! returns 01000001 = 65
res2 = ISHC (j, -3) ! returns 01000000 00000001 = 16385

9–76 Intrinsic Procedures

9.4.75 ISHFT (I, SHIFT)

Description: Performs a logical shift.

Class: Elemental function; Generic

Arguments: I Must be of type integer.

SHIFT Must be of type integer. The absolute value for
SHIFT must be less than or equal to BIT_SIZE (I).

Results: The result type is the same as I. The result has the value obtained
by shifting the bits of I by SHIFT positions. If SHIFT is positive1,
the shift is to the left; if SHIFT is negative2, the shift is to the right.
If SHIFT is zero, no shift is performed.

Bits shifted out from the left or from the right, as appropriate, are
lost. Zeros are shifted in from the opposite end.

The model for the interpretation of an integer value as a sequence of
bits is shown in Section D.3. For more information on bit functions,
see Section 9.3.3.

1ISHFT with a positive SHIFT can also be specified as LSHIFT.
2ISHFT with a negative SHIFT can also be specified as RSHIFT with | SHIFT | .

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IISHFT INTEGER(2) INTEGER(2)

JISHFT INTEGER(4) INTEGER(4)

KISHFT INTEGER(8) INTEGER(8)

Examples

ISHFT (2, 1) has the value 4.

ISHFT (2, –1) has the value 1.

9.4.76 ISHFTC (I, SHIFT [,SIZE])

Description: Performs a circular shift of the rightmost bits.

Class: Elemental function; Generic

Arguments: I Must be of type integer.

SHIFT Must be of type integer. The absolute value for
SHIFT must be less than or equal to SIZE.

Intrinsic Procedures 9–77

SIZE (opt) Must be of type integer. The value of SIZE must
be positive and must not exceed BIT_SIZE (I). If
SIZE is omitted, it is assumed to have the value of
BIT_SIZE (I).

Results: The result type is the same as I. The result value is obtained by
circular shifting the SIZE rightmost bits of I by SHIFT positions. If
SHIFT is positive, the shift is to the left; if SHIFT is negative, the
shift is to the right. If SHIFT is zero, no shift is performed.

No bits are lost. Bits in I beyond the value specified by SIZE are
unaffected.

The model for the interpretation of an integer value as a sequence of
bits is shown in Section D.3. For more information on bit functions,
see Section 9.3.3.

Specific Name Argument Type Result Type

IISHFTC INTEGER(2) INTEGER(2)

JISHFTC INTEGER(4) INTEGER(4)

KISHFTC INTEGER(8) INTEGER(8)

Examples

ISHFTC (4, 2, 4) has the value 1.

ISHFTC (3, 1, 3) has the value 6.

9.4.77 ISHL (I, SHIFT)

Description: Logically shifts an integer left or right by the specified bits. Zeros
are shifted in from the opposite end.

Class: Elemental function; Generic

Arguments: I Must be of type integer. This argument is the
value to be shifted.

SHIFT Must be of type integer. This argument is the
direction and distance of shift.

If positive, I is shifted left (toward the most
significant bit). If negative, I is shifted right
(toward the least significant bit).

9–78 Intrinsic Procedures

Results: The result type is the same as I. The result is equal to I logically
shifted by SHIFT bits. Zeros are shifted in from the opposite end.

Unlike circular or arithmetic shifts, which can shift ones into the
number being shifted, logical shifts shift in zeros only, regardless
of the direction or size of the shift. The integer kind, however, still
determines the end that bits are shifted out of, which can make a
difference in the result (see the following example).

Examples

Consider the following:

INTEGER(1) i, res1
INTEGER(2) j, res2
i = 10 ! equal to 00001010
j = 10 ! equal to 00000000 00001010
res1 = ISHL (i, 5) ! returns 01000000 = 64
res2 = ISHL (j, 5) ! returns 00000001 01000000 = 320

9.4.78 ISNAN (X)

Description: Tests whether IEEE real (S_floating and T_floating) numbers are
Not-a-Number (NaN) values. The compiler option /FLOAT=IEEE_
FLOAT must be set.

Class: Elemental function; Generic

Arguments: X must be of type real.

Results: The result is of type default logical. The result is .TRUE. if X is an
IEEE NaN; otherwise, the result is .FALSE..

Examples

Consider the following:

LOGICAL A
DOUBLE PRECISION B
...
A = ISNAN(B)

A is assigned the value .TRUE. if B is an IEEE NaN; otherwise, the value
assigned is .FALSE..

Intrinsic Procedures 9–79

9.4.79 KIND (X)

Description: Returns the value of the kind type parameter of the argument. For
more information on kind type parameters, see Section 3.2.

Class: Inquiry function; Generic

Arguments: X can be of any intrinsic type.

Results: The result is a scalar of type default integer. The result has a value
equal to the kind type parameter value of X.

Examples

KIND (0.0) has the kind value of default real type.

KIND (12) has the kind value of default integer type.

9.4.80 LBOUND (ARRAY [,DIM] [,KIND])

Description: Returns the lower bounds for all dimensions of an array, or the lower
bound for a specified dimension.

Class: Inquiry function; Generic

Arguments: ARRAY Must be an array (of any data type). It must not
be an allocatable array that is not allocated, or a
disassociated pointer.

DIM (opt) Must be a scalar integer with a value in the range
1 to n, where n is the rank of ARRAY.

KIND (opt) Must be a scalar integer initialization expression.

Results: The result is of type integer. If KIND is present, the kind parameter
of the result is that specified by KIND; otherwise, the kind
parameter of the result is that of default integer. If the processor
cannot represent the result value in the kind of the result, the result
is undefined.

If DIM is present, the result is a scalar. Otherwise, the result is
a rank-one array with one element for each dimension of ARRAY.
Each element in the result corresponds to a dimension of ARRAY.

If ARRAY is an array section or an array expression that is not
a whole array or array structure component, each element of the
result has the value 1.

If ARRAY is a whole array or array structure component, LBOUND
(ARRAY, DIM) has a value equal to the lower bound for subscript
DIM of ARRAY (if ARRAY(DIM) is nonzero). If ARRAY(DIM) has
size zero, the corresponding element of the result has the value 1.

The setting of compiler options that specify integer size can affect
the result of this function.

9–80 Intrinsic Procedures

Examples

Consider the following:

REAL ARRAY_A (1:3, 5:8)
REAL ARRAY_B (2:8, -3:20)

LBOUND (ARRAY_A) is (1, 5). LBOUND (ARRAY_A, DIM=2) is 5.

LBOUND (ARRAY_B) is (2, –3). LBOUND (ARRAY_B (5:8, :)) is (1,1) because
the arguments are array sections.

9.4.81 LEADZ (I)

Description: Returns the number of leading zero bits in an integer.

Class: Elemental function; Generic

Arguments: I must be of type integer.

Results: The result type is the same as I. The result value is the number of
leading zeros in the binary representation of the integer I.

The model for the interpretation of an integer value as a sequence of
bits is shown in Section D.3.

Examples

Consider the following:

INTEGER*8 J, TWO
PARAMETER (TWO=2)
DO J= -1, 40
TYPE *, LEADZ(TWO**J) ! Prints 64 down to 23 (leading zeros)

ENDDO
END

9.4.82 LEN (STRING [,KIND])

Description: Returns the length of a character expression.

Class: Inquiry function; Generic

Arguments: STRING Must be of type character; it can be scalar or array
valued.

KIND (opt) Must be a scalar integer initialization expression.

Intrinsic Procedures 9–81

Results: The result is a scalar of type integer. If KIND is present, the
kind parameter of the result is that specified by KIND; otherwise,
the kind parameter of the result is that of default integer. If the
processor cannot represent the result value in the kind of the result,
the result is undefined.

The result has a value equal to the number of characters in STRING
(if it is scalar) or in an element of STRING (if it is array valued).

The setting of compiler options that specify integer size can affect
the result of this function.

Specific Name Argument Type Result Type

LEN CHARACTER INTEGER(4)

CHARACTER INTEGER(8)

Examples

Consider the following example:

CHARACTER (15) C (50)
CHARACTER (25) D

LEN (C) has the value 15, and LEN (D) has the value 25.

9.4.83 LEN_TRIM (STRING [,KIND])

Description: Returns the length of the character argument without counting
trailing blank characters.

Class: Elemental function; Generic

Arguments: STRING Must be of type character.

KIND (opt) Must be a scalar integer initialization expression.

Results: The result is a scalar of type integer. If KIND is present, the
kind parameter of the result is that specified by KIND; otherwise,
the kind parameter of the result is that of default integer. If the
processor cannot represent the result value in the kind of the result,
the result is undefined.

The result has a value equal to the number of characters remaining
after any trailing blanks in STRING are removed. If the argument
contains only blank characters, the result is zero.

Examples

LEN_TRIM (’∆∆∆C∆∆D∆∆∆’) has the value 7.

LEN_TRIM (’∆∆∆∆∆’) has the value 0.

9–82 Intrinsic Procedures

9.4.84 LGE (STRING_A, STRING_B)

Description: Determines if a string is lexically greater than or equal to another
string, based on the ASCII collating sequence, even if the processor’s
default collating sequence is different. In HP Fortran, LGE is
equivalent to the >= operator.

Class: Elemental function; Generic

Arguments: STRING_A Must be of type character.

STRING_B Must be of type character.

Results: The result is of type default logical. If the strings are of unequal
length, the comparison is made as if the shorter string were
extended on the right with blanks, to the length of the longer
string.

The result is true if the strings are equal, both strings are of zero
length, or if STRING_A follows STRING_B in the ASCII collating
sequence; otherwise, the result is false.

Specific Name Argument Type Result Type

LGE1 CHARACTER LOGICAL(4)

1This specific function cannot be passed as an actual argument.

Examples

LGE (’ONE’, ’SIX’) has the value false.

LGE (’TWO’, ’THREE’) has the value true.

9.4.85 LGT (STRING_A, STRING_B)

Description: Determines whether a string is lexically greater than another
string, based on the ASCII collating sequence, even if the processor’s
default collating sequence is different. In HP Fortran, LGT is
equivalent to the > operator.

Class: Elemental function; Generic

Arguments: STRING_A Must be of type character.

STRING_B Must be of type character.

Intrinsic Procedures 9–83

Results: The result is of type default logical. If the strings are of unequal
length, the comparison is made as if the shorter string were
extended on the right with blanks, to the length of the longer
string.

The result is true if STRING_A follows STRING_B in the ASCII
collating sequence; otherwise, the result is false. If both strings are
of zero length, the result is also false.

Specific Name Argument Type Result Type

LGT1 CHARACTER LOGICAL(4)

1This specific function cannot be passed as an actual argument.

Examples

LGT (’TWO’, ’THREE’) has the value true.

LGT (’ONE’, ’FOUR’) has the value true.

9.4.86 LLE (STRING_A, STRING_B)

Description: Determines whether a string is lexically less than or equal to
another string, based on the ASCII collating sequence, even if the
processor’s default collating sequence is different. In HP Fortran,
LLE is equivalent to the <= operator.

Class: Elemental function; Generic

Arguments: STRING_A Must be of type character.

STRING_B Must be of type character.

Results: The result is of type default logical. If the strings are of unequal
length, the comparison is made as if the shorter string were
extended on the right with blanks, to the length of the longer
string.

The result is true if the strings are equal, both strings are of zero
length, or if STRING_A precedes STRING_B in the ASCII collating
sequence; otherwise, the result is false.

Specific Name Argument Type Result Type

LLE1 CHARACTER LOGICAL(4)

1This specific function cannot be passed as an actual argument.

9–84 Intrinsic Procedures

Examples

LLE (’TWO’, ’THREE’) has the value false.

LLE (’ONE’, ’FOUR’) has the value false.

9.4.87 LLT (STRING_A, STRING_B)

Description: Determines whether a string is lexically less than another string,
based on the ASCII collating sequence, even if the processor’s
default collating sequence is different. In HP Fortran, LLT is
equivalent to the < operator.

Class: Elemental function; Generic

Arguments: STRING_A Must be of type character.

STRING_B Must be of type character.

Results: The result is of type default logical. If the strings are of unequal
length, the comparison is made as if the shorter string were
extended on the right with blanks, to the length of the longer
string.

The result is true if STRING_A precedes STRING_B in the ASCII
collating sequence; otherwise, the result is false. If both strings are
of zero length, the result is also false.

Specific Name Argument Type Result Type

LLT1 CHARACTER LOGICAL(4)

1This specific function cannot be passed as an actual argument.

Examples

LLT (’ONE’, ’SIX’) has the value true.

LLT (’ONE’, ’FOUR’) has the value false.

9.4.88 LOC (X)

Description: Returns the internal address of a storage item.1

Class: Inquiry function; Generic

Arguments: X is a variable, an array or record field reference, a procedure, or a
constant; it can be of any data type. It must not be the name of an
internal procedure or statement function. If it is a pointer, it must
be defined and associated with a target.

1This specific function cannot be passed as an actual argument.

Intrinsic Procedures 9–85

Results: The result is of type INTEGER(8). The value of the result represents
the address of the data object or, in the case of pointers, the address
of its associated target. If the argument is not valid, the result is
undefined.

In the case of global symbolic constants, LOC returns the value of
the constant rather than an address.

This function serves the same purpose as the %LOC built-in
function.

9.4.89 LOG (X)

Description: Returns the natural logarithm of the argument.

Class: Elemental function; Generic

Arguments: X must be of type real or complex. If X is real, its value must be
greater than zero. If X is complex, its value must not be zero.

Results: The result type is the same as X. The result value is approximately
equal to logeX.

If the arguments are complex, the result is the principal value of
imaginary part � in the range –� < � <= �. The imaginary part of
the result is � if the real part of the argument is less than zero and
the imaginary part of the argument is zero.

Specific Name Argument Type Result Type

ALOG1 REAL(4) REAL(4)

DLOG REAL(8) REAL(8)

QLOG REAL(16) REAL(16)

CLOG1 COMPLEX(4) COMPLEX(4)

CDLOG2 COMPLEX(8) COMPLEX(8)

CQLOG COMPLEX(16) COMPLEX(16)

1The setting of compiler options specifying real size can affect ALOG and CLOG.
2This function can also be specified as ZLOG.

Examples

LOG (8.0) has the value 2.079442.

LOG (25.0) has the value 3.218876.

9–86 Intrinsic Procedures

9.4.90 LOG10 (X)

Description: Returns the common logarithm of the argument.

Class: Elemental function; Generic

Arguments: X must be of type real. The value of X must be greater than zero.

Results: The result type is the same as X. The result has a value equal to
log10X.

Specific Name Argument Type Result Type

ALOG101 REAL(4) REAL(4)

DLOG10 REAL(8) REAL(8)

QLOG10 REAL(16) REAL(16)

1The setting of compiler options specifying real size can affect ALOG10.

Examples

LOG10 (8.0) has the value 0.9030900.

LOG10 (15.0) has the value 1.176091.

9.4.91 LOGICAL (L [,KIND])

Description: Converts the logical value of the argument to a logical value with
different kind parameters.

Class: Elemental function; Generic

Arguments: L Must be of type logical.

KIND (opt) Must be a scalar integer initialization expression.

Results: The result is of type logical. If KIND is present, the kind parameter
is that specified by KIND; otherwise, the kind parameter is that of
default logical. The result value is that of L.

The setting of compiler options specifying integer size can affect this
function.

Examples

LOGICAL (L .OR. .NOT. L) has the value true and is of type default logical
regardless of the kind parameter of logical variable L.

LOGICAL (.FALSE., 2) has the value false, with the kind parameter of
INTEGER(KIND=2).

Intrinsic Procedures 9–87

9.4.92 MALLOC (I)

Description: Allocates a block of memory. This is a specific function that has
no generic function associated with it. It must not be passed as an
actual argument.

Class: Elemental function; Specific

Arguments: I must be of type integer. This value is the size (in bytes) of memory
to be allocated.

Results: The result is of type INTEGER(8).

If the argument is INTEGER(8), a 64-bit (P3) space is allocated.

The result is the starting address of the allocated memory. The
memory allocated can be freed by using the FREE intrinsic function
(see Section 9.4.55).

Examples

Consider the following:

INTEGER(4) ADDR, SIZE
SIZE = 1024 ! Size in bytes
ADDR = MALLOC(SIZE) ! Allocate the memory
CALL FREE(ADDR) ! Free it
END

9.4.93 MATMUL (MATRIX_A, MATRIX_B)

Description: Performs matrix multiplication of numeric or logical matrices.

Class: Transformational function; Generic

Arguments: MATRIX_A Must be an array of rank one or two. It must be of
numeric (integer, real, or complex) or logical type.

MATRIX_B Must be an array of rank one or two. It must be of
numeric type if MATRIX_A is of numeric type or
logical type if MATRIX_A is logical type.

At least one argument must be of rank two. The
size of the first (or only) dimension of MATRIX_B
must equal the size of the last (or only) dimension
of MATRIX_A.

9–88 Intrinsic Procedures

Results: The result is an array whose type depends on the data type of the
arguments, according to the rules shown in Table 4–2. The rank
and shape of the result depends on the rank and shapes of the
arguments, as follows:

• If MATRIX_A has shape (n, m) and MATRIX_B has shape (m,
k), the result is a rank-two array with shape (n, k).

• If MATRIX_A has shape (m) and MATRIX_B has shape (m, k),
the result is a rank-one array with shape (k).

• If MATRIX_A has shape (n, m) and MATRIX_B has shape (m),
the result is a rank-one array with shape (n).

If the arguments are of numeric type, element (i, j) of the result has
the value SUM ((row i of MATRIX_A) * (column j of MATRIX_B)). If
the arguments are of logical type, element (i, j) of the result has the
value ANY ((row i of MATRIX_A) .AND. (column j of MATRIX_B)).

Examples

A is matrix
�
� � �
� � �

�
, B is matrix

�
� � �
� �
� �

�
�, X is vector (1, 2), and Y is vector

(1, 2, 3).

The result of MATMUL (A, B) is the matrix-matrix product AB with the value�
�
 ��
�� �

�
.

The result of MATMUL (X, A) is the vector-matrix product XA with the value
(8, 11, 14).

The result of MATMUL (A, Y) is the matrix-vector product AY with the value
(20, 26).

9.4.94 MAX (A1, A2 [,A3,...])

Description: Returns the maximum value of the arguments.

Class: Elemental function; Generic

Arguments: A1, A2, and A3 (opt) must all have the same type (integer or real)
and kind parameters.

Intrinsic Procedures 9–89

Results: For MAX0, AMAX1, DMAX1, QMAX1, IMAX0, JMAX0, and
KMAX0, the result type is the same as the arguments. For MAX1,
IMAX1, JMAX1, and KMAX1, the result is of type integer. For
AMAX0, AIMAX0, AJMAX0, and AKMAX0, the result is of type
real. The value of the result is that of the largest argument.

Specific Name1 Argument Type Result Type

INTEGER(1) INTEGER(1)

INTEGER(1) REAL(4)

IMAX0 INTEGER(2) INTEGER(2)

AIMAX0 INTEGER(2) REAL(4)

MAX02 INTEGER(4) INTEGER(4)

AMAX03�4 INTEGER(4) REAL(4)

KMAX0 INTEGER(8) INTEGER(8)

AKMAX0 INTEGER(8) REAL(4)

IMAX1 REAL(4) INTEGER(2)

MAX1 4�5�6 REAL(4) INTEGER(4)

KMAX1 REAL(4) INTEGER(8)

AMAX17 REAL(4) REAL(4)

DMAX1 REAL(8) REAL(8)

QMAX1 REAL(16) REAL(16)

1These specific functions cannot be passed as actual arguments.
2Or JMAX0.
3Or AJMAX0. AMAX0 is the same as REAL (MAX).
4In Fortran 95/90, AMAX0 and MAX1 are specific functions with no generic name. For
compatibility with older versions of Fortran, these functions can also be specified as generic
functions.
5Or JMAX1. MAX1 is the same as INT (MAX).
6The setting of compiler options specifying integer size can affect MAX1.
7The setting of compiler options specifying real size can affect AMAX1.

Examples

MAX (2.0, –8.0, 6.0) has the value 6.0.

MAX (14, 32, –50) has the value 32.

9–90 Intrinsic Procedures

9.4.95 MAXEXPONENT (X)

Description: Returns the maximum exponent in the model representing the same
type and kind parameters as the argument.

Class: Inquiry function; Generic

Arguments: X must be of type real; it can be scalar or array valued.

Results: The result is a scalar of type default integer. The result has the
value emax, as defined in Section D.2.

Examples

If X is of type REAL(4), MAXEXPONENT (X) has the value 128.

9.4.96 MAXLOC (ARRAY [,DIM] [,MASK] [,KIND])

Description: Returns the location of the maximum value of all elements in an
array, a set of elements in an array, or elements in a specified
dimension of an array.

Class: Transformational function; Generic

Arguments: ARRAY Must be an array of type integer or real.

DIM (opt) Must be a scalar integer with a value in the
range 1 to n, where n is the rank of ARRAY. This
argument is a Fortran 95 feature.

MASK (opt) Must be a logical array that is conformable with
ARRAY.

KIND (opt) Must be a scalar integer initialization expression.

Intrinsic Procedures 9–91

Results: The result is an array of type integer. If KIND is present, the
kind parameter of the result is that specified by KIND; otherwise,
the kind parameter of the result is that of default integer. If the
processor cannot represent the result value in the kind of the result,
the result is undefined.

The following rules apply if DIM is omitted:

• The array result has rank one and a size equal to the rank of
ARRAY.

• If MAXLOC (ARRAY) is specified, the elements in the array
result form the subscript of the location of the element with
the maximum value in ARRAY. The ith subscript returned is in
the range 1 to ei, where ei is the extent of the ith dimension of
ARRAY.

• If MAXLOC (ARRAY, MASK=MASK) is specified, the elements
in the array result form the subscript of the location of the
element with the maximum value corresponding to the condition
specified by MASK.

The following rules apply if DIM is specified:

• The array result has a rank that is one less than ARRAY, and
shape (d1, d2,...,dDIM�1, dDIM+1,..., dn), where (d1, d2,..., dn) is the
shape of ARRAY.

• If ARRAY has rank one, MAXLOC (ARRAY, DIM [,MASK]) has
a value equal to that of MAXLOC (ARRAY [,MASK = MASK]).
Otherwise, the value of element (s1, s2,..., sDIM�1, sDIM+1,..., sn) of
MAXLOC (ARRAY, DIM [,MASK]) is equal to MAXLOC (ARRAY
(s1, s2,..., sDIM�1, :, sDIM+1,..., sn) [,MASK = MASK (s1, s2,...,
sDIM�1, :, sDIM+1,..., sn)]).

If more than one element has maximum value, the element whose
subscripts are returned is the first such element, taken in array
element order. If ARRAY has size zero, or every element of MASK
has the value .FALSE., the value of the result is undefined.

Examples

The value of MAXLOC ((/3, 7, 4, 7/)) is (2), which is the subscript of the location
of the first occurrence of the maximum value in the rank-one array.

A is the array

�
� �
 �� �

� � �� �
�� �� � ��

�
�.

MAXLOC (A, MASK=A .LT. 5) has the value (1, 1) because these are the
subscripts of the location of the maximum value (4) that is less than 5.

9–92 Intrinsic Procedures

MAXLOC (A, DIM=1) has the value (1, 2, 3, 2). 1 is the subscript of the
location of the maximum value (4) in column 1; 2 is the subscript of the
location of the maximum value (1) in column 2; and so forth.

MAXLOC (A, DIM=2) has the value (1, 4, 3). 1 is the subscript of the location
of the maximum value in row 1; 4 is the subscript of the location of the
maximum value in row 2; and so forth.

9.4.97 MAXVAL (ARRAY [,DIM] [,MASK])

Description: Returns the maximum value of all elements in an array, a set of
elements in an array, or elements in a specified dimension of an
array.

Class: Transformational function; Generic

Arguments: ARRAY Must be an array of type integer or real.

DIM (opt) Must be a scalar integer expression with a value
in the range 1 to n, where n is the rank of ARRAY.

MASK (opt) Must be a logical array that is conformable with
ARRAY.

Intrinsic Procedures 9–93

Results: The result is an array or a scalar of the same data type as ARRAY.

The result is a scalar if DIM is omitted or ARRAY has rank one.

The following rules apply if DIM is omitted:

• If MAXVAL (ARRAY) is specified, the result has a value equal
to the maximum value of all the elements in ARRAY.

• If MAXVAL (ARRAY, MASK=MASK) is specified, the result has
a value equal to the maximum value of the elements in ARRAY
corresponding to the condition specified by MASK.

The following rules apply if DIM is specified:

• An array result has a rank that is one less than ARRAY, and
shape (d1, d2,...,dDIM�1, dDIM+1,..., dn), where (d1, d2,..., dn) is the
shape of ARRAY.

• If ARRAY has rank one, MAXVAL (ARRAY, DIM [,MASK]) has
a value equal to that of MAXVAL (ARRAY [,MASK = MASK]).
Otherwise, the value of element (s1, s2,..., sDIM�1, sDIM+1,..., sn) of
MAXVAL (ARRAY, DIM, [,MASK]) is equal to MAXVAL (ARRAY
(s1, s2,..., sDIM�1, :, sDIM+1,..., sn) [,MASK = MASK (s1, s2,...,
sDIM�1, :, sDIM+1,..., sn)]).

If ARRAY has size zero or if there are no true elements in MASK,
the result (if DIM is omitted), or each element in the result array
(if DIM is specified), has the value of the negative number of the
largest magnitude supported by the processor for numbers of the
type and kind parameters of ARRAY.

Examples

The value of MAXVAL ((/2, 3, 4/)) is 4 because that is the maximum value in
the rank-one array.

MAXVAL (B, MASK=B .LT. 0.0) finds the maximum value of the negative
elements of B.

C is the array
�
� � �
� � �

�
.

MAXVAL (C, DIM=1) has the value (5, 6, 7). 5 is the maximum value in
column 1; 6 is the maximum value in column 2; and so forth.

MAXVAL (C, DIM=2) has the value (4, 7). 4 is the maximum value in row 1
and 7 is the maximum value in row 2.

9–94 Intrinsic Procedures

9.4.98 MERGE (TSOURCE, FSOURCE, MASK)

Description: Selects between two values or between corresponding elements in
two arrays, according to the condition specified by a logical mask.

Class: Elemental function; Generic

Arguments: TSOURCE Must be a scalar or array (of any data type).

FSOURCE Must be a scalar or array of the same type and
type parameters as TSOURCE.

MASK Must be a logical array.

Results: The result type is the same as TSOURCE. The value of MASK
determines whether the result value is taken from TSOURCE (if
MASK is true) or FSOURCE (if MASK is false).

Examples

For MERGE (1.0, 0.0, R < 0), if R is –3, the merge has the value 1.0, while if R
is 7, the merge has the value 0.0.

TSOURCE is the array
�
� � �
� � �

�
, FSOURCE is the array

�
�

� � �

�
, and

MASK is the array
�
� � �
� � �

�
.

MERGE (TSOURCE, FSOURCE, MASK) produces the result:
�
� � �
� � �

�
.

Intrinsic Procedures 9–95

9.4.99 MIN (A1, A2 [,A3,...])

Description: Returns the minimum value of the arguments.

Class: Elemental function; Generic

Arguments: A1, A2, and A3 (opt) must all have the same type (integer or real)
and kind parameters.

Results: For MIN0, AMIN1, DMIN1, QMIN1, IMIN0, JMIN0, and KMIN0,
the result type is the same as the arguments. For MIN1, IMIN1,
JMIN1, and KMIN1, the result is of type integer. For AMIN0,
AIMIN0, AJMIN0, and AKMIN0, the result is of type real. The
value of the result is that of the smallest argument.

Specific Name1 Argument Type Result Type

INTEGER(1) INTEGER(1)

INTEGER(1) REAL(4)

IMIN0 INTEGER(2) INTEGER(2)

AIMIN0 INTEGER(2) REAL(4)

MIN02 INTEGER(4) INTEGER(4)

AMIN03�4 INTEGER(4) REAL(4)

KMIN0 INTEGER(8) INTEGER(8)

AKMIN0 INTEGER(8) REAL(4)

IMIN1 REAL(4) INTEGER(2)

MIN1 4�5�6 REAL(4) INTEGER(4)

KMIN1 REAL(4) INTEGER(8)

AMIN17 REAL(4) REAL(4)

DMIN1 REAL(8) REAL(8)

QMIN1 REAL(16) REAL(16)

1These specific functions cannot be passed as actual arguments.
2Or JMIN0.
3Or AJMIN0. AMIN0 is the same as REAL (MIN).
4In Fortran 95/90, AMIN0 and MIN1 are specific functions with no generic name. For compatibility
with older versions of Fortran, these functions can also be specified as generic functions.
5Or JMIN1. MIN1 is the same as INT (MIN).
6The setting of compiler options specifying integer size can affect MIN1.
7The setting of compiler options specifying real size can affect AMIN1.

Examples

9–96 Intrinsic Procedures

MIN (2.0, –8.0, 6.0) has the value –8.0.

MIN (14, 32, –50) has the value –50.

9.4.100 MINEXPONENT (X)

Description: Returns the minimum exponent in the model representing the same
type and kind parameters as the argument.

Class: Inquiry function; Generic

Arguments: X must be of type real; it can be scalar or array valued.

Results: The result is a scalar of type default integer. The result has the
value emin, as defined in Section D.2.

Examples

If X is of type REAL(4), MINEXPONENT (X) has the value –125.

9.4.101 MINLOC (ARRAY [,DIM] [,MASK] [,KIND])

Description: Returns the location of the minimum value of all elements in an
array, a set of elements in an array, or elements in a specified
dimension of an array.

Class: Transformational function; Generic

Arguments: ARRAY Must be an array of type integer or real.

DIM (opt) Must be a scalar integer with a value in the
range 1 to n, where n is the rank of ARRAY. This
argument is a Fortran 95 feature.

MASK (opt) Must be a logical array that is conformable with
ARRAY.

KIND (opt) Must be a scalar integer initialization expression.

Intrinsic Procedures 9–97

Results: The result is an array of type integer. If KIND is present, the
kind parameter of the result is that specified by KIND; otherwise,
the kind parameter of the result is that of default integer. If the
processor cannot represent the result value in the kind of the result,
the result is undefined.

The following rules apply if DIM is omitted:

• The array result has rank one and a size equal to the rank of
ARRAY.

• If MINLOC (ARRAY) is specified, the elements in the array
result form the subscript of the location of the element with
the minimum value in ARRAY. The ith subscript returned is in
the range 1 to ei, where ei is the extent of the ith dimension of
ARRAY.

• If MINLOC (ARRAY, MASK=MASK) is specified, the elements
in the array result form the subscript of the location of the
element with the minimum value corresponding to the condition
specified by MASK.

The following rules apply if DIM is specified:

• The array result has a rank that is one less than ARRAY, and
shape (d1, d2,...,dDIM�1, dDIM+1,..., dn), where (d1, d2,..., dn) is the
shape of ARRAY.

• If ARRAY has rank one, MINLOC (ARRAY, DIM [,MASK]) has
a value equal to that of MINLOC (ARRAY [,MASK = MASK]).
Otherwise, the value of element (s1, s2,..., sDIM�1, sDIM+1,..., sn) of
MINLOC (ARRAY, DIM [,MASK]) is equal to MINLOC (ARRAY
(s1, s2,..., sDIM�1, :, sDIM+1,..., sn) [,MASK = MASK (s1, s2,...,
sDIM�1, :, sDIM+1,..., sn)]).

If more than one element has minimum value, the element whose
subscripts are returned is the first such element, taken in array
element order. If ARRAY has size zero, or every element of MASK
has the value .FALSE., the value of the result is undefined.

Examples

The value of MINLOC ((/3, 1, 4, 1/)) is (2), which is the subscript of the location
of the first occurrence of the minimum value in the rank-one array.

A is the array

�
� �
 �� �

� � �� �
�� �� � ��

�
�.

MINLOC (A, MASK=A .GT. –5) has the value (3, 2) because these are the
subscripts of the location of the minimum value (–4) that is greater than –5.

9–98 Intrinsic Procedures

MINLOC (A, DIM=1) has the value (3, 3, 1, 3). 3 is the subscript of the location
of the minimum value (–1) in column 1; 3 is the subscript of the location of the
minimum value (–4) in column 2; and so forth.

MINLOC (A, DIM=2) has the value (3, 3, 4). 3 is the subscript of the location
of the minimum value (–3) in row 1; 3 is the subscript of the location of the
minimum value (–2) in row 2; and so forth.

9.4.102 MINVAL (ARRAY [,DIM] [,MASK])

Description: Returns the minimum value of all elements in an array, a set of
elements in an array, or elements in a specified dimension of an
array.

Class: Transformational function; Generic

Arguments: ARRAY Must be an array of type integer or real.

DIM (opt) Must be a scalar integer with a value in the range
1 to n, where n is the rank of ARRAY.

MASK (opt) Must be a logical array that is conformable with
ARRAY.

Intrinsic Procedures 9–99

Results: The result is an array or a scalar of the same data type as ARRAY.

The result is a scalar if DIM is omitted or ARRAY has rank one.

The following rules apply if DIM is omitted:

• If MINVAL (ARRAY) is specified, the result has a value equal to
the minimum value of all the elements in ARRAY.

• If MINVAL (ARRAY, MASK=MASK) is specified, the result has
a value equal to the minimum value of the elements in ARRAY
corresponding to the condition specified by MASK.

The following rules apply if DIM is specified:

• An array result has a rank that is one less than ARRAY, and
shape (d1, d2,...,dDIM�1, dDIM+1,..., dn), where (d1, d2,..., dn) is the
shape of ARRAY.

• If ARRAY has rank one, MINVAL (ARRAY, DIM [,MASK]) has
a value equal to that of MINVAL (ARRAY [,MASK = MASK]).
Otherwise, the value of element (s1, s2,..., sDIM�1, sDIM+1,..., sn) of
MINVAL (ARRAY, DIM, [,MASK]) is equal to MINVAL (ARRAY
(s1, s2,..., sDIM�1, :, sDIM+1,..., sn) [,MASK = MASK (s1, s2,...,
sDIM�1, :, sDIM+1,..., sn)]).

If ARRAY has size zero or if there are no true elements in MASK,
the result (if DIM is omitted), or each element in the result array (if
DIM is specified), has the value of the positive number of the largest
magnitude supported by the processor for numbers of the type and
kind parameters of ARRAY.

Examples

The value of MINVAL ((/2, 3, 4/)) is 2 because that is the minimum value in
the rank-one array.

The value of MINVAL (B, MASK=B .GT. 0.0) finds the minimum value of the
positive elements of B.

C is the array
�
� � �
� � �

�
.

MINVAL (C, DIM=1) has the value (2, 3, 4). 2 is the minimum value in column
1; 3 is the minimum value in column 2; and so forth.

MINVAL (C, DIM=2) has the value (2, 5). 2 is the minimum value in row 1
and 5 is the minimum value in row 2.

9–100 Intrinsic Procedures

9.4.103 MOD (A, P)

Description: Returns the remainder when the first argument is divided by the
second argument.

Class: Elemental function; Generic

Arguments: A Must be of type integer or real.

P Must have the same type and kind parameters as
A.

Results: The result type is the same as A. If P is not equal to zero, the value
of the result is �� ��	 ��
� � � � . If P is equal to zero, the result is
undefined.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IMOD INTEGER(2) INTEGER(2)

MOD1 INTEGER(4) INTEGER(4)

KMOD INTEGER(8) INTEGER(8)

AMOD2 REAL(4) REAL(4)

DMOD REAL(8) REAL(8)

QMOD REAL(16) REAL(16)

1Or JMOD.
2The setting of compiler options specifying real size can affect AMOD.

Examples

MOD (7, 3) has the value 1.

MOD (9, –6) has the value 3.

MOD (–9, 6) has the value –3.

9.4.104 MODULO (A, P)

Description: Returns the modulo of the arguments.

Class: Elemental function; Generic

Arguments: A Must be of type integer or real.

P Must have the same type and kind parameters as
A.

Intrinsic Procedures 9–101

Results: The result type is the same as A. The result value depends on the
type of A, as follows:

• If A is of type integer and P is not equal to zero, the value of the
result is A � FLOOR(REAL(A)
REAL(P)) � P.

• If A is of type real and P is not equal to zero, the value of the
result is A � FLOOR(A
P) � P.

If P is equal to zero (regardless of the type of A), the result is
undefined.

Examples

MODULO (7, 3) has the value 1.

MODULO (9, –6) has the value –3.

MODULO (–9, 6) has the value 3.

9.4.105 MULT_HIGH (I, J)

Description: Multiplies two 64-bit unsigned integers. This is a specific function
that has no generic function associated with it. It must not be
passed as an actual argument.

Class: Elemental function

Arguments: I Must be of type INTEGER(8).

J Must be of type INTEGER(8).

Results: The result is of type INTEGER(8). The result value is the upper
(leftmost) 64 bits of the 128-bit unsigned result.

Examples

Consider the following:

INTEGER(8) I,J,K
I=2_8**53
J=2_8**51
K = MULT_HIGH (I,J)
PRINT *,I,J,K
WRITE (6,1000)I,J,K

1000 FORMAT (’ ’, 3(Z,1X))
END

This example prints the following:

9007199254740992 2251799813685248 1099511627776
20000000000000 8000000000000 10000000000

9–102 Intrinsic Procedures

9.4.106 MVBITS (FROM, FROMPOS, LEN, TO, TOPOS)

Description: Copies a sequence of bits (a bit field) from one location to another.

Class: Elemental subroutine

Arguments: There are five arguments1:

FROM Can be of any integer type. It represents the location from which a
bit field is transferred.

FROMPOS Can be of any integer type; it must not be negative. It identifies the
first bit position in the field transferred from FROM. FROMPOS +
LEN must be less than or equal to BIT_SIZE (FROM).2

LEN Can be of any integer type; it must not be negative. It identifies the
length of the field transferred from FROM.

TO Can be of any integer type, but must have the same kind parameter
as FROM. It represents the location to which a bit field is
transferred. TO is set by copying the sequence of bits of length
LEN, starting at position FROMPOS of FROM to position TOPOS of
TO. No other bits of TO are altered.

On return, the LEN bits of TO (starting at TOPOS) are equal to
the value that LEN bits of FROM (starting at FROMPOS) had on
entry.2

TOPOS Can be of any integer type; it must not be negative. It identifies the
starting position (within TO) for the bits being transferred. TOPOS
+ LEN must be less than or equal to BIT_SIZE (TO).

1FROM, FROMPOS, LEN, and TOPOS are INTENT(IN) arguments; TO is an INTENT(INOUT)
argument. For more information on INTENT, see Section 5.10.
2The model for the interpretation of an integer value as a sequence of bits is shown in Section D.3.
For more information on bit functions, see Section 9.3.3.

You can also use the following specific subroutines:

IMVBITS All arguments must be INTEGER(2).

JMVBITS Arguments can be INTEGER(2) or INTEGER(4); at least one
must be INTEGER(4).

KMVBITS Arguments can be INTEGER(2), INTEGER(4), or INTEGER(8);
at least one must be INTEGER(8).

Examples

If TO has the initial value of 6, its value after a call to MVBITS with
arguments (7, 2, 2, TO, 0) is 5.

Intrinsic Procedures 9–103

9.4.107 MY_PROCESSOR ()

Description: Returns the identifying number of the calling process. This is a
specific function that has no generic function associated with it. It
must not be passed as an actual argument.

Class: Inquiry function; Specific

Results: The result is a scalar of type default integer. The result value is the
identifying number of the physical processor from which the call is
made.

The value is in the range 0 to n-1, where n is the value returned by
NUMBER_OF_PROCESSORS.

This function can only be called from within an EXTRINSIC (HPF_
LOCAL) procedure.

9.4.108 NEAREST (X, S)

Description: Returns the nearest different number (representable on the
processor) in a given direction.

Class: Elemental function; Generic

Arguments: X Must be of type real.

S Must be of type real and nonzero.

Results: The result type is the same as X. A positive S returns the nearest
number in the direction of positive infinity. A negative S goes in the
direction of negative infinity.

Examples

If 3.0 and 2.0 are REAL(4) values, NEAREST (3.0, 2.0) has the value � � ��22,
which approximately equals 3.0000002, while NEAREST (3.0, -2.0) has the
value �� ��22, which approximately equals 2.9999998. (For more information
on the model for REAL(4), see Section D.2.)

9.4.109 NINT (A [,KIND])

Description: Returns the nearest integer to the argument.

Class: Elemental function; Generic

Arguments: A Must be of type real.

KIND (opt) Must be a scalar integer initialization expression.

9–104 Intrinsic Procedures

Results: The result is of type integer. If KIND is present, the kind parameter
of the result is that specified by KIND; otherwise, the kind
parameter of the result is that shown in the following table. If
the processor cannot represent the result value in the kind of the
result, the result is undefined.

If A is greater than zero, NINT (A) has the value INT (A � 0.5); if A
is less than or equal to zero, NINT (A) has the value INT (A� 0.5).

Specific Name Argument Type Result Type

ININT REAL(4) INTEGER(2)

NINT1�2 REAL(4) INTEGER(4)

KNINT REAL(4) INTEGER(8)

IIDNNT REAL(8) INTEGER(2)

IDNINT2�3 REAL(8) INTEGER(4)

KIDNNT REAL(8) INTEGER(8)

IIQNNT REAL(16) INTEGER(2)

IQNINT2�4 REAL(16) INTEGER(4)

KIQNNT5 REAL(16) INTEGER(8)

1Or JNINT.
2The setting of compiler options specifying integer size can affect NINT, IDNINT, and IQNINT.
3Or JIDNNT. For compatibility with older versions of Fortran, IDNINT can also be specified as a
generic function.
4Or JIQNNT. For compatibility with older versions of Fortran, IQNINT can also be specified as a
generic function.
5This specific function cannot be passed as an actual argument.

Examples

NINT (3.879) has the value 4.

NINT (–2.789) has the value –3.

9.4.110 NOT (I)

Description: Returns the logical complement of the argument.

Class: Elemental function; Generic

Arguments: I must be of type integer.

Intrinsic Procedures 9–105

Results: The result type is the same as I. The result value is obtained by
complementing I bit-by-bit according to the following truth table:

I NOT (I)

1 0
0 1

The model for the interpretation of an integer value as a sequence of
bits is shown in Section D.3.

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

INOT INTEGER(2) INTEGER(2)

JNOT INTEGER(4) INTEGER(4)

KNOT INTEGER(8) INTEGER(8)

Examples

If I has a value equal to 10101010 (base 2), NOT (I) has the value 01010101
(base 2).

9.4.111 NULL ([MOLD])

Description: Initializes a pointer as disassociated when it is declared. This is a
new intrinsic procedure in Fortran 95.

Class: Transformational function; Generic

Arguments: MOLD is optional. If used, it must be a pointer; it can be of any
type. Its pointer association status can be associated, disassociated,
or undefined. If its status is associated, the target does not have to
be defined with a value.

9–106 Intrinsic Procedures

Results: The result type is the same as MOLD (if present); otherwise, it is
determined as follows:

If NULL () Appears... Type is Determined From...

On the right side of
pointer assignment The pointer on the left side

As initialization for an
object in a declaration The object

As default initialization
for a component The component

In a structure constructor The corresponding component
As an actual argument The corresponding dummy argument

In a DATA statement The corresponding pointer object

The result is a pointer with disassociated association status.

Examples

Consider the following:

INTEGER, POINTER :: POINT1 => NULL()

This statement defines the initial association status of POINT1 to be
disassociated.

9.4.112 NUMBER_OF_PROCESSORS ([DIM])

Description: Returns the total number of processors (peers) available to the
program. This is a specific function that has no generic function
associated with it. It must not be passed as an actual argument.

Class: Inquiry function; Specific

Results: The result is a scalar of type default integer. The result value is the
total number of processors (peers) available to the program.

For a single-processor workstation, the result value is 1.

9.4.113 NWORKERS ()

Description: Returns the number of processes executing a routine.

This is a specific function that has no generic function associated
with it. It must not be passed as an actual argument. It is provided
for compatibility with Compaq Fortran 77 for OpenVMS VAX
systems.

Class: Inquiry function; Specific

Arguments: None.

Intrinsic Procedures 9–107

Results: The result is always 1.

9.4.114 PACK (ARRAY, MASK [,VECTOR])

Description: Takes elements from an array and packs them into a rank-one array
under the control of a mask.

Class: Transformational function; Generic

Arguments: ARRAY Must be an array (of any data type).

MASK Must be of type logical and conformable with
ARRAY. It determines which elements are taken
from ARRAY.

VECTOR (opt) Must be a rank-one array with the same type and
type parameters as ARRAY. Its size must be at
least t, where t is the number of true elements
in MASK. If MASK is a scalar with value true,
VECTOR must have at least as many elements as
there are in ARRAY.

Elements in VECTOR are used to fill out the
result array if there are not enough elements
selected by MASK.

Results: The result is a rank-one array with the same type and type
parameters as ARRAY. If VECTOR is present, the size of the result
is that of VECTOR. Otherwise, the size of the result is the number
of true elements in MASK, or the number of elements in ARRAY (if
MASK is a scalar with value true).

Elements in ARRAY are processed in array element order to form
the result array. Element i of the result is the element of ARRAY
that corresponds to the ith true element of MASK. If VECTOR is
present and has more elements than there are true values in MASK,
any result elements that are empty (because they were not true
according to MASK) are set to the corresponding values in VECTOR.

Examples

N is the array

�
�
 �

�

�
�.

PACK (N, MASK=N .NE. 0, VECTOR=(/1, 3, 5, 9, 11, 13/)) produces the result
(7, 8, 5, 9, 11, 13).

PACK (N, MASK=N .NE. 0) produces the result (7, 8).

9–108 Intrinsic Procedures

9.4.115 POPCNT (I)

Description: Returns the number of 1 bits in an integer.

Class: Elemental function; Generic

Arguments: I must be of type integer.

Results: The result type is the same as I. The result value is the number of 1
bits in the binary representation of the integer I.

The model for the interpretation of an integer value as a sequence of
bits is shown in Section D.3.

Examples

If the value of I is B’0...00011010110’, the value of POPCNT(I) is 5.

9.4.116 POPPAR (I)

Description: Returns the parity of an integer.

Class: Elemental function; Generic

Arguments: I must be of type integer.

Results: The result type is the same as I. If there are an odd number of 1 bits
in the binary representation of the integer I, the result value is 1. If
there are an even number, the result value is zero.

The model for the interpretation of an integer value as a sequence of
bits is shown in Section D.3.

Examples

If the value of I is B’0...00011010110’, the value of POPPAR(I) is 1.

9.4.117 PRECISION (X)

Description: Returns the decimal precision in the model representing real
numbers with the same kind parameter as the argument.

Class: Inquiry function; Generic

Arguments: X must be of type real or complex. It can be scalar or array valued.

Results: The result is a scalar of type default integer. The result has the
value INT((DIGITS(X) � 1) � LOG10(RADIX(X))). If RADIX(X) is an
integral power of 10, 1 is added to the result.

Examples

If X is a REAL(4) value, PRECISION (X) has the value 6. The value 6 is
derived from INT ((24-1) * LOG10 (2.)) = INT (6.92...). For more information
on the model for REAL(4), see Section D.2.

Intrinsic Procedures 9–109

9.4.118 PRESENT (A)

Description: Returns whether or not an optional dummy argument is present
(has an associated actual argument).

Class: Inquiry function; Generic

Arguments: A must be an optional argument of the current procedure.

Results: The result is a scalar of type default logical. The result is .TRUE. if
A is present; otherwise, the result is .FALSE..

Examples

Consider the following:

SUBROUTINE CHECK (X, Y)
REAL X, Z
REAL, OPTIONAL :: Y
...
IF (PRESENT (Y)) THEN
Z = Y

ELSE
Z = X * 2

END IF
END
...
CALL CHECK (15.0, 12.0) ! Causes B to be set to 12.0
CALL CHECK (15.0) ! Causes B to be set to 30.0

For more information, including a full example, see Section 8.8.1.1.

9.4.119 PROCESSORS_SHAPE ()

Description: Returns the shape of an implementation-dependent hardware
processor array.

Alpha MPI clusters are one-dimensional processor arrays whose
shape is the number of peers.

PROCESSORS_SHAPE is a specific function that has no generic
function associated with it. It must not be passed as an actual
argument.

Class: Inquiry function; Specific

Arguments: None.

Results: If a program is compiled for an Alpha MPI cluster, the result is
an array of rank one containing the number of processors (peers)
available to the program. Otherwise, the result is always a rank-one
array of size zero.

9–110 Intrinsic Procedures

9.4.120 PRODUCT (ARRAY [,DIM] [,MASK])

Description: Returns the product of all the elements in an entire array or in a
specified dimension of an array.

Class: Transformational function; Generic

Arguments: ARRAY Must be an array of type integer or real.

DIM (opt) Must be a scalar integer with a value in the range
1 to n, where n is the rank of ARRAY.

MASK (opt) Must be of type logical and conformable with
ARRAY.

Results: The result is an array or a scalar of the same data type as ARRAY.

The result is a scalar if DIM is omitted or ARRAY has rank one.

The following rules apply if DIM is omitted:

• If PRODUCT (ARRAY) is specified, the result is the product of
all elements of ARRAY. If ARRAY has size zero, the result is 1.

• If PRODUCT (ARRAY, MASK=MASK) is specified, the result
is the product of all elements of ARRAY corresponding to true
elements of MASK. If ARRAY has size zero, or every element of
MASK has the value .FALSE., the result is 1.

The following rules apply if DIM is specified:

• If ARRAY has rank one, the value is the same as PRODUCT
(ARRAY [,MASK=MASK]).

• An array result has a rank that is one less than ARRAY, and
shape (d1, d2,...,dDIM�1, dDIM+1,..., dn), where (d1, d2,..., dn) is the
shape of ARRAY.

• The value of element (s1, s2,..., sDIM�1, sDIM+1,..., sn) of
PRODUCT (ARRAY, DIM [,MASK]) is equal to PRODUCT
(ARRAY (s1, s2,..., sDIM�1, :, sDIM+1,..., sn) [,MASK=MASK (s1,
s2,..., sDIM�1, :, sDIM+1,..., sn)]).

Examples

PRODUCT ((/2, 3, 4/)) returns the value 24 (the product of 2 * 3 * 4).
PRODUCT ((/2, 3, 4/), DIM=1) returns the same result.

PRODUCT (C, MASK=C .LT. 0.0) returns the product of the negative elements
of C.

A is the array
�
� � �
� � �

�
.

Intrinsic Procedures 9–111

PRODUCT (A, DIM=1) returns the value (2, 12, 35), which is the product of
all elements in each column. 2 is the product of 1 * 2 in column 1. 12 is the
product of 4 * 3 in column 2, and so forth.

PRODUCT (A, DIM=2) returns the value (28, 30), which is the product of all
elements in each row. 28 is the product of 1 * 4 * 7 in row 1. 30 is the product
of 2 * 3 * 5 in row 2.

9.4.121 QCMPLX (X [,Y])

Description: Converts the argument to COMPLEX(16) type. This function must
not be passed as an actual argument.

Class: Elemental function; Generic

Arguments: X Must be of type integer, real, or complex.

Y (opt) Must be of type integer or real. It must not be
present if X is of type complex.

Results: The result is of type COMPLEX(16) (or COMPLEX*32).

If only one noncomplex argument appears, it is converted into the
real part of the result value and zero is assigned to the imaginary
part. If Y is not specified and X is complex, the result value is
CMPLX (REAL(X), AIMAG(X)).

If two noncomplex arguments appear, the complex value is produced
by converting the first argument into the real part of the value, and
converting the second argument into the imaginary part.

QCMPLX(X, Y) has the complex value whose real part is REAL(X,
KIND=16) and whose imaginary part is REAL(Y, KIND=16).

Examples

QCMPLX (–3) has the value (–3.0Q0, 0.0Q0).

QCMPLX (4.1, 2.3) has the value (4.1Q0, 2.3Q0).

9.4.122 QEXT (A)

Description: Converts a number to quad precision (REAL(16)) type.

Class: Elemental function; Generic

Arguments: A must be of type integer, real, or complex.

9–112 Intrinsic Procedures

Results: The result is of type REAL(16) (REAL*16). Functions that cause
conversion of one data type to another type have the same effect as
the implied conversion in assignment statements.

If A is of type REAL(16), the result is the value of the A with no
conversion (QEXT(A) = A).

If A is of type integer or real, the result has as much precision of the
significant part of A as a REAL(16) value can contain.

If A is of type complex, the result has as much precision of the
significant part of the real part of A as a REAL(16) value can
contain.

Specific Name1 Argument Type Result Type

INTEGER(1) REAL(16)

INTEGER(2) REAL(16)

INTEGER(4) REAL(16)

INTEGER(8) REAL(16)

QEXT REAL(4) REAL(16)

QEXTD REAL(8) REAL(16)

REAL(16) REAL(16)

COMPLEX(4) REAL(16)

COMPLEX(8) REAL(16)

COMPLEX(16) REAL(16)

1These specific functions cannot be passed as actual arguments.

Examples

QEXT (4) has the value 4.0 (rounded; there are 32 places to the right of the
decimal point).

QEXT ((3.4, 2.0)) has the value 3.4 (rounded; there are 32 places to the right of
the decimal point).

9.4.123 QFLOAT (A)

Description: Converts an integer to quad precision (REAL(16)) type.

Class: Elemental function; Generic

Arguments: A must be of type integer.

Intrinsic Procedures 9–113

Results: The result is of type REAL(16) (REAL*16).

Functions that cause conversion of one data type to another type
have the same affect as the implied conversion in assignment
statements.

Examples

QFLOAT (–4) has the value –4.0 (rounded; there are 32 places to the right of
the decimal point).

9.4.124 QREAL (A)

Description: Converts the real part of a COMPLEX(16) argument to REAL(16)
type. This is a specific function that has no generic function
associated with it. It must not be passed as an actual argument.

Class: Elemental function; Specific

Arguments: A must be of type COMPLEX(16) (or COMPLEX*32).

Results: The result is of type REAL(16) (or REAL*16).

Examples

QREAL ((2.0q0, 3.0q0)) has the value 2.0q0.

9.4.125 RADIX (X)

Description: Returns the base of the model representing numbers of the same
type and kind parameters as the argument.

Class: Inquiry function; Generic

Arguments: X must be of type integer or real; it can be scalar or array valued.

Results: The result is a scalar of type default integer. For an integer
argument, the result has the value r (as defined in Section D.1).
For a real argument, the result has the value b (as defined in
Section D.2).

Examples

If X is a REAL(4) value, RADIX (X) has the value 2.

9.4.126 RAN (I)

Description: Returns the next number from a sequence of pseudorandom
numbers of uniform distribution over the range 0 to 1.

This is a specific function that has no generic function associated
with it. It must not be passed as an actual argument. It is not a
pure function, so it cannot be referenced inside a FORALL construct.

9–114 Intrinsic Procedures

Class: Nonelemental function; Specific

Arguments: I is the seed. It must be an INTEGER(4) variable or array element.

It should initially be set to a large, odd integer value. The RAN
function stores a value in the argument that is later used to
calculate the next random number.

There are no restrictions on the seed, although it should be
initialized with different values on separate runs to obtain different
random numbers.

Results: The result is of type REAL(4). The result is a floating-point number
that is uniformly distributed in the range between 0.0 inclusive
and 1.0 exclusive. It is set equal to the value associated with the
argument I.

Examples

In RAN (I), if variable I has the value 3, RAN has the value 4.8220158E–05.

9.4.127 RANDOM_NUMBER (HARVEST)

Description: Returns one pseudorandom number or an array of such numbers.

Class: Subroutine

Arguments: HARVEST must be of type real. It is an INTENT(OUT) argument
(see Section 5.10), and can be a scalar or an array variable. It is
set to contain pseudorandom numbers from the uniform distribution
within the range 0 <= x < 1.

Examples

Consider the following:

REAL Y, Z (5, 5)
! Initialize Y with a pseudorandom number
CALL RANDOM_NUMBER (HARVEST = Y)
CALL RANDOM_NUMBER (Z)

Y and Z contain uniformly distributed random numbers.

9.4.128 RANDOM_SEED ([SIZE] [,PUT] [,GET])

Description: Changes or queries the seed (starting point) for the pseudorandom
number generator used by RANDOM_NUMBER.

Class: Subroutine

Intrinsic Procedures 9–115

Arguments: No more than one argument can be specified. If no argument is
specified, a random number based on the date and time is assigned
to the seed. The three optional arguments follow1:

SIZE (opt) Must be scalar and of type default integer. It is set to the number of
integers (N) that the processor uses to hold the value of the seed.

PUT (opt) Must be a default integer array of rank one and size >= N. It is used
to reset the value of the seed.

GET (opt) Must be a default integer array of rank one and size >= N. It is set
to the current value of the seed.

1SIZE and GET are INTENT(OUT) arguments; PUT is an INTENT(IN) argument. For more
information on INTENT, see Section 5.10.

Examples

Consider the following:

CALL RANDOM_SEED () ! Processor reinitializes the
! seed randomly from the date
! and time

CALL RANDOM_SEED (SIZE = M) ! Sets M to N
CALL RANDOM_SEED (PUT = SEED (1 : M)) ! Sets user seed
CALL RANDOM_SEED (GET = OLD (1 : M)) ! Reads current seed

9.4.129 RANDU (I1, I2, X)

Description: Computes a pseudorandom number as a single-precision value.

Class: Subroutine

Arguments: I1, I2 INTEGER(2) variables or array elements that
contain the seed for computing the random
number. These values are updated during the
computation so that they contain the updated
seed.

X A REAL(4) variable or array element where the
computed random number is returned.

9–116 Intrinsic Procedures

Results: The result is returned in X, which must be of type REAL(4). The
result value is a pseudorandom number in the range 0.0 to 1.0. The
algorithm for computing the random number value is based on the
values for I1 and I2.

If I1=0 and I2=0, the generator base is set as follows:

X(n + 1) = 2**16 + 3

Otherwise, it is set as follows:

X(n + 1) = (2**16 + 3) * X(n) mod 2**32

The generator base X(n + 1) is stored in I1, I2. The result is X(n +
1) scaled to a real value Y(n + 1), for 0.0 <= Y(n + 1) < 1.

Examples

Consider the following:

REAL X
INTEGER(2) I, J
...
CALL RANDU (I, J, X)

If I and J are values 4 and 6, X stores the value 5.4932479E–04.

9.4.130 RANGE (X)

Description: Returns the decimal exponent range in the model representing
numbers with the same kind parameter as the argument.

Class: Inquiry function; Generic

Arguments: X must be of type integer, real, or complex. It can be scalar or array
valued.

Results: The result is a scalar of type default integer.

For an integer argument, the result has the value INT (LOG10 (
HUGE(X))). For information on the integer model, see Section D.1;
on HUGE, see Section 9.4.56.

For a real or complex argument, the result has the value INT(MIN
(LOG10(HUGE(X)), –LOG10(TINY(X)))). For information on the
real model, see Section D.2; on TINY, see Section 9.4.157.

Examples

If X is a REAL(4) value, RANGE (X) has the value 37. (HUGE(X) = (����24	�
�128 and TINY(X) = ��126.)

Intrinsic Procedures 9–117

9.4.131 REAL (A [,KIND])

Description: Converts a value to real type.

Class: Elemental function; Generic

Arguments: A Must be of type integer, real, or complex.

KIND (opt) Must be a scalar integer initialization expression.

Results: The result is of type real. If KIND is present, the kind parameter
is that specified by KIND. If KIND is not present, see the following
table for the kind parameter.

Functions that cause conversion of one data type to another type
have the same affect as the implied conversion in assignment
statements.

If A is integer or real, the result is equal to an approximation of A.
If A is complex, the result is equal to an approximation of the real
part of A.

Specific Name1 Argument Type Result Type

INTEGER(1) REAL(4)

FLOATI INTEGER(2) REAL(4)

FLOAT2�3 INTEGER(4) REAL(4)

REAL3 INTEGER(4) REAL(4)

FLOATK INTEGER(8) REAL(4)

REAL(4) REAL(4)

SNGL2�3 REAL(8) REAL(4)

SNGLQ REAL(16) REAL(4)

COMPLEX(4) REAL(4)

COMPLEX(8) REAL(8)

1These specific functions cannot be passed as actual arguments.
2Or FLOATJ. For compatibility with older versions of Fortran, FLOAT can also be specified as a
generic function.
3The setting of compiler options specifying real size can affect FLOAT, REAL, and SNGL.

Examples

REAL (–4) has the value –4.0.

REAL (Y) has the same kind parameter and value as the real part of complex
variable Y.

9–118 Intrinsic Procedures

9.4.132 REPEAT (STRING, NCOPIES)

Description: Concatenates several copies of a string.

Class: Transformational function; Generic

Arguments: STRING Must be scalar and of type character.

NCOPIES Must be scalar and of type integer. It must not be
negative.

Results: The result is a scalar of type character and length NCOPIES �
LEN(STRING). The kind parameter is the same as STRING. The
value of the result is the concatenation of NCOPIES copies of
STRING.

Examples

REPEAT (’S’, 3) has the value SSS.

REPEAT (’ABC’, 0) has the value of a zero-length string.

9.4.133 RESHAPE (SOURCE, SHAPE [,PAD] [,ORDER])

Description: Constructs an array with a different shape from the argument array.

Class: Transformational function; Generic

Arguments: SOURCE Must be an array (of any data type). It supplies
the elements for the result array. Its size must
be greater than or equal to PRODUCT(SHAPE) if
PAD is omitted or has size zero.

SHAPE Must be an integer array of up to 7 elements, with
rank one and constant size. It defines the shape
of the result array. Its size must be positive; its
elements must not have negative values.

PAD (opt) Must be an array with the same type and kind
parameters as SOURCE. It is used to fill in extra
values if the result array is larger than SOURCE.

ORDER (opt) Must be an integer array with the same shape as
SHAPE. Its elements must be a permutation of
(1,2,...,n), where n is the size of SHAPE. If ORDER
is omitted, it is assumed to be (1,2,...,n).

Intrinsic Procedures 9–119

Results: The result is an array of shape SHAPE with the same type and kind
parameters as SOURCE. The size of the result is the product of the
values of the elements of SHAPE.

In the result array, the array elements of SOURCE are placed in the
order of dimensions specified by ORDER. If ORDER is omitted, the
array elements are placed in normal array element order.

The array elements of SOURCE are followed (if necessary) by
the array elements of PAD in array element order. If necessary,
additional copies of PAD follow until all the elements of the result
array have values.

Examples

RESHAPE ((/3, 4, 5, 6, 7, 8/), (/2, 3/)) has the value
�
� � �
� � �

�
.

RESHAPE ((/3, 4, 5, 6, 7, 8/), (/2, 4/), (/1, 1/), (/2, 1/)) has the value�
� � � �
� � � �

�
.

9.4.134 RRSPACING (X)

Description: Returns the reciprocal of the relative spacing of model numbers near
the argument value.

Class: Elemental function; Generic

Arguments: X must be of type real.

Results: The result type is the same as X. The result has the value
| X * b�e | � bp. Parameters b, e, p are defined in Section D.2.

Examples

If –3.0 is a REAL(4) value, RRSPACING (–3.0) has the value
���� �24.

9.4.135 SCALE (X, I)

Description: Returns the value of the exponent part (of the model for the
argument) changed by a specified value.

Class: Elemental function; Generic

Arguments: X Must be of type real.

I Must be of type integer.

Results: The result type is the same as X. The result has the value � � �� .
Parameter b is defined in Section D.2.

9–120 Intrinsic Procedures

Examples

If 3.0 is a REAL(4) value, SCALE (3.0, 2) has the value 12.0 and SCALE (3.0,
3) has the value 24.0.

9.4.136 SCAN (STRING, SET [,BACK] [,KIND])

Description: Scans a string for any character in a set of characters.

Class: Elemental function; Generic

Arguments: STRING Must be of type character.

SET Must be of type character with the same kind
parameter as STRING.

BACK (opt) Must be of type logical.

KIND (opt) Must be a scalar integer initialization expression.

Results: The result is of type integer. If KIND is present, the kind parameter
of the result is that specified by KIND; otherwise, the kind
parameter of the result is that of default integer. If the processor
cannot represent the result value in the kind of the result, the result
is undefined.

If BACK is omitted (or is present with the value false) and STRING
has at least one character that is in SET, the value of the result is
the position of the leftmost character of STRING that is in SET.

If BACK is present with the value true and STRING has at least
one character that is in SET, the value of the result is the position
of the rightmost character of STRING that is in SET.

If no character of STRING is in SET or the length of STRING or
SET is zero, the value of the result is zero.

Examples

SCAN (’ASTRING’, ’ST’) has the value 2.

SCAN (’ASTRING’, ’ST’, BACK=.TRUE.) has the value 3.

SCAN (’ASTRING’, ’CD’) has the value zero.

9.4.137 SECNDS (X)

Description: Provides the system time of day, or elapsed time, as a floating-point
value in seconds.

This is a specific function that has no generic function associated
with it. It must not be passed as an actual argument. It is not a
pure function, so it cannot be referenced inside a FORALL construct.

Class: Elemental function; Specific

Intrinsic Procedures 9–121

Arguments: X must be of type REAL(4).

Results: The result type is the same as X. The result value is the time in
seconds since midnight � X. (The function also produces correct
results for time intervals that span midnight.)

The value of SECNDS is accurate to 0.01 second, which is the
resolution of the system clock.

The 24 bits of precision provide accuracy to the resolution of the
system clock for about one day. However, loss of significance can
occur if you attempt to compute very small elapsed times late in the
day.

You can get more precise timing information by using the following
Run-Time Library (RTL) procedures:

• LIB$INIT_TIMER

• LIB$SHOW_TIMER

• LIB$STAT_TIMER

Examples

The following shows how to use SECNDS to perform elapsed-time
computations:

C START OF TIMED SEQUENCE
T1 = SECNDS(0.0)

C CODE TO BE TIMED
...
DELTA = SECNDS(T1) ! DELTA gives the elapsed time

9.4.138 SELECTED_INT_KIND (R)

Description: Returns the value of the kind parameter of an integer data type.

Class: Transformational function; Generic

Arguments: R must be scalar and of type integer.

Results: The result is a scalar of type default integer. The result has a value
equal to the value of the kind parameter of the integer data type
that represents all values n in the range of values n with –10R < n <
10R.

If no such kind type parameter is available on the processor, the
result is –1. If more than one kind type parameter meets the
criteria, the value returned is the one with the smallest decimal
exponent range. (For information on the integer model, see
Section D.1.)

Examples

9–122 Intrinsic Procedures

SELECTED_INT_KIND (6) = 4

9.4.139 SELECTED_REAL_KIND ([P] [,R])

Description: Returns the value of the kind parameter of a real data type.

Class: Transformational function; Generic

Arguments: P (opt) Must be scalar and of type integer.

R (opt) Must be scalar and of type integer.

At least one argument must be specified.

Results: The result is a scalar of type default integer. The result has a value
equal to a value of the kind parameter of a real data type with
decimal precision, as returned by the function PRECISION, of at
least P digits and a decimal exponent range, as returned by the
function RANGE, of at least R.

If no such kind type parameter is available on the processor, the
result is as follows:

–1 if the precision is not available
–2 if the exponent range is not available
–3 if neither is available

If more than one kind type parameter value meets the criteria, the
value returned is the one with the smallest decimal precision. (For
information on the real model, see Section D.2.)

Examples

SELECTED_REAL_KIND (6, 70) = 8

9.4.140 SET_EXPONENT (X, I)

Description: Returns the value the first argument would have if its exponent part
were set to the second argument.

Class: Elemental function; Generic

Arguments: X Must be of type real.

I Must be of type integer.

Results: The result type is the same as X. The result has the value � � ����.
Parameters b and e are defined in Section D.2. If X has the value
zero, the result is zero.

Examples

Intrinsic Procedures 9–123

Assume the following pseudocode:

struct FLOAT {
int exponent;
float fraction;

}

FLOAT set_exponent(FLOAT x, int i)
{

FLOAT y = x;
y.exponent = i;
return y;

}

Note that the operation is performed on the representation of the number, not
on the model number. The exponent argument is adjusted for the excess-128
notation used in the exponent field of a floating-point number. The fraction
field is not modified.

For example, if X is a REAL*4 variable holding 0.75, that value is represented
as 0.75 * 2 ** 0. The exponent is zero. SET_EXPONENT (X, 3) returns 0.75
* 2 ** 3, which is 6.0. SET_EXPONENT (X, 4) returns 0.75 * 2 ** 4, which is
12.0.

9.4.141 SHAPE (SOURCE [,KIND])

Description: Returns the shape of an array or scalar argument.

Class: Inquiry function; Generic

Arguments: SOURCE Is a scalar or array (of any data type). It must not
be an assumed-size array, a disassociated pointer,
or an allocatable array that is not allocated.

KIND (opt) Must be a scalar integer initialization expression.

Results: The result is a rank-one integer array whose size is equal to the
rank of SOURCE. If KIND is present, the kind parameter of the
result is that specified by KIND; otherwise, the kind parameter of
the result is that of default integer. If the processor cannot represent
the result value in the kind of the result, the result is undefined.

The value of the result is the shape of SOURCE.

The setting of compiler options that specify integer size can affect
the result of this function.

Examples

SHAPE (2) has the value of a rank-one array of size zero.

If B is declared as B(2:4, –3:1), then SHAPE (B) has the value (3, 5).

9–124 Intrinsic Procedures

9.4.142 SIGN (A, B)

Description: Returns the absolute value of A times the sign of B.

Class: Elemental function; Generic

Arguments: A Must be of type integer or real.

B Must have the same type and kind parameters as
A.

Results: The result type is the same as A. The value of the result is | A | if
B >= zero and – | A | if B < zero.

If B is of type real and zero, the value of the result is | A | .
However, if the processor can distinguish between positive and
negative real zero and the appropriate compiler option is specified,
the following occurs:

• If B is positive real zero, the value of the result is | A | .

• If B is negative real zero, the value of the result is – | A | .

Specific Name Argument Type Result Type

INTEGER(1) INTEGER(1)

IISIGN INTEGER(2) INTEGER(2)

ISIGN1 INTEGER(4) INTEGER(4)

KISIGN INTEGER(8) INTEGER(8)

SIGN REAL(4) REAL(4)

DSIGN REAL(8) REAL(8)

QSIGN REAL(16) REAL(16)

1Or JISIGN. For compatibility with older versions of Fortran, ISIGN can also be specified as a
generic function.

Examples

SIGN (4.0, –6.0) has the value –4.0.

SIGN (–5.0, 2.0) has the value 5.0.

Intrinsic Procedures 9–125

9.4.143 SIN (X)

Description: Produces the sine of X.

Class: Elemental function; Generic

Arguments: X must be of type real or complex. It must be in radians and is
treated as modulo 2*�. (If X is of type complex, its real part is
regarded as a value in radians.)

Results: The result type is the same as X.

Specific Name Argument Type Result Type

SIN REAL(4) REAL(4)

DSIN REAL(8) REAL(8)

QSIN REAL(16) REAL(16)

CSIN1 COMPLEX(4) COMPLEX(4)

CDSIN2 COMPLEX(8) COMPLEX(8)

CQSIN COMPLEX(16) COMPLEX(16)

1The setting of compiler options specifying real size can affect CSIN.
2This function can also be specified as ZSIN.

Examples

SIN (2.0) has the value 0.9092974.

SIN (0.8) has the value 0.7173561.

9.4.144 SIND (X)

Description: Produces the sine of X.

Class: Elemental function; Generic

Arguments: X must be of type real. It must be in degrees and is treated as
modulo 360.

Results: The result type is the same as X.

Specific Name Argument Type Result Type

SIND REAL(4) REAL(4)

DSIND REAL(8) REAL(8)

QSIND REAL(16) REAL(16)

9–126 Intrinsic Procedures

Examples

SIND (2.0) has the value 3.4899496E–02.

SIND (0.8) has the value 1.3962180E–02.

9.4.145 SINH (X)

Description: Produces a hyperbolic sine.

Class: Elemental function; Generic

Arguments: X must be of type real.

Results: The result type is the same as X.

Specific Name Argument Type Result Type

SINH REAL(4) REAL(4)

DSINH REAL(8) REAL(8)

QSINH REAL(16) REAL(16)

Examples

SINH (2.0) has the value 3.626860.

SINH (0.8) has the value 0.8881060.

9.4.146 SIZE (ARRAY [,DIM] [,KIND])

Description: Returns the total number of elements in an array, or the extent of
an array along a specified dimension.

Class: Inquiry function; Generic

Arguments: ARRAY Must be an array (of any data type). It must not
be a disassociated pointer or an allocatable array
that is not allocated. It can be an assumed-size
array if DIM is present with a value less than the
rank of ARRAY.

DIM (opt) Must be a scalar integer with a value in the range
1 to n, where n is the rank of ARRAY.

KIND (opt) Must be a scalar integer initialization expression.

Intrinsic Procedures 9–127

Results: The result is a scalar of type integer. If KIND is present, the
kind parameter of the result is that specified by KIND; otherwise,
the kind parameter of the result is that of default integer. If the
processor cannot represent the result value in the kind of the result,
the result is undefined.

If DIM is present, the result is the extent of dimension DIM in
ARRAY; otherwise, the result is the total number of elements in
ARRAY.

The setting of compiler options that specify integer size can affect
the result of this function.

Examples

If B is declared as B(2:4, –3:1), then SIZE (B, DIM=2) has the value 5 and
SIZE (B) has the value 15.

9.4.147 SIZEOF (X)

Description: Returns the number of bytes of storage used by the argument. This
is a specific function that has no generic function associated with it.
It must not be passed as an actual argument.

Class: Inquiry function; Specific

Arguments: X is a scalar or array (of any data type). It must not be an assumed-
size array.

Results: The result is of type INTEGER(8). The result value is the number
of bytes of storage used by X.

Examples

SIZEOF (3.44) has the value 4.

SIZEOF (’SIZE’) has the value 4.

9.4.148 SPACING (X)

Description: Returns the absolute spacing of model numbers near the argument
value.

Class: Elemental function; Generic

Arguments: X must be of type real.

Results: The result type is the same as X. The result has the value be�p.
Parameters b, e, and p are defined in Section D.2. If the result
value is outside of the real model range, the result is TINY(X). (For
information on TINY, see Section 9.4.157.)

Examples

If 3.0 is a REAL(4) value, SPACING (3.0) has the value 2�22.

9–128 Intrinsic Procedures

9.4.149 SPREAD (SOURCE, DIM, NCOPIES)

Description: Creates a replicated array with an added dimension by making
copies of existing elements along a specified dimension.

Class: Transformational function; Generic

Arguments: SOURCE Must be a scalar or array (of any data type). The
rank must be less than 7.

DIM Must be scalar and of type integer. It must have a
value in the range 1 to n + 1 (inclusive), where n
is the rank of SOURCE.

NCOPIES Must be scalar and of type integer. It becomes the
extent of the additional dimension in the result.

Results: The result is an array of the same type as SOURCE and of rank
that is one greater than SOURCE.

If SOURCE is an array, each array element in dimension DIM of the
result is equal to the corresponding array element in SOURCE.

If SOURCE is a scalar, the result is a rank-one array with NCOPIES
elements, each with the value SOURCE.

If NCOPIES <= zero, the result is an array of size zero.

Examples

SPREAD ("B", 1, 4) is the character array (/"B", "B", "B", "B"/).

B is the array (3, 4, 5) and NC has the value 4.

SPREAD (B, DIM=1, NCOPIES=NC) produces the array

�
��
� � �
� � �
� � �
� � �

�
��.

SPREAD (B, DIM=2, NCOPIES=NC) produces the array

�
� � � � �
� � � �
� � � �

�
�.

9.4.150 SQRT (X)

Description: Derives the square root of the argument.

Class: Elemental function; Generic

Arguments: X must be of type real or complex. If X is type real, its value must
be greater than or equal to zero.

Intrinsic Procedures 9–129

Results: The result type is the same as X. The result has a value equal to
the square root of X. A result of type complex is the principal value,
with the real part greater than or equal to zero. When the real part
of the result is zero, the imaginary part is greater than or equal to
zero.

Specific Name Argument Type Result Type

SQRT REAL(4) REAL(4)

DSQRT REAL(8) REAL(8)

QSQRT REAL(16) REAL(16)

CSQRT1 COMPLEX(4) COMPLEX(4)

CDSQRT2 COMPLEX(8) COMPLEX(8)

CQSQRT COMPLEX(16) COMPLEX(16)

1The setting of compiler options specifying real size can affect CSQRT.
2This function can also be specified as ZSQRT.

Examples

SQRT (16.0) has the value 4.0.

SQRT (3.0) has the value 1.732051.

9.4.151 SUM (ARRAY [,DIM] [,MASK])

Description: Returns the sum of all the elements in an entire array or in a
specified dimension of an array.

Class: Transformational function; Generic

Arguments: ARRAY Must be an array of type integer, real, or complex.

DIM (opt) Must be a scalar integer with a value in the range
1 to n, where n is the rank of ARRAY.

MASK (opt) Must be of type logical and conformable with
ARRAY.

9–130 Intrinsic Procedures

Results: The result is an array or a scalar of the same data type as ARRAY.

The result is a scalar if DIM is omitted or ARRAY has rank one.

The following rules apply if DIM is omitted:

• If SUM (ARRAY) is specified, the result is the sum of all
elements of ARRAY. If ARRAY has size zero, the result is
zero.

• If SUM (ARRAY, MASK=MASK) is specified, the result is the
sum of all elements of ARRAY corresponding to true elements of
MASK. If ARRAY has size zero, or every element of MASK has
the value .FALSE., the result is zero.

The following rules apply if DIM is specified:

• If ARRAY has rank one, the value is the same as SUM (ARRAY
[,MASK=MASK]).

• An array result has a rank that is one less than ARRAY, and
shape (d1, d2, ..., dDIM�1, dDIM+1, ..., dn), where (d1, d2, ..., dn) is
the shape of ARRAY.

• The value of element (s1, s2, ..., sDIM�1, sDIM+1, ..., sn) of SUM
(ARRAY, DIM [,MASK]) is equal to SUM (ARRAY (s1, s2, ...,
sDIM�1, :, sDIM+1, ..., sn)) [,MASK=MASK (s1, s2, ..., sDIM�1, :,
sDIM+1, ..., sn)].

Examples

SUM ((/2, 3, 4/)) returns the value 9 (sum of 2 + 3 + 4). SUM ((/2, 3, 4/),
DIM=1) returns the same result.

SUM (B, MASK=B .LT. 0.0) returns the arithmetic sum of the negative
elements of B.

C is the array
�
� � �
� � �

�
.

SUM (C, DIM=1) returns the value (5, 7, 9), which is the sum of all elements
in each column. 5 is the sum of 1 + 4 in column 1. 7 is the sum of 2 + 5 in
column 2, and so forth.

SUM (C, DIM=2) returns the value (6, 15), which is the sum of all elements in
each row. 6 is the sum of 1 + 2 + 3 in row 1. 15 is the sum of 4 + 5 + 6 in row
2.

Intrinsic Procedures 9–131

9.4.152 SYSTEM_CLOCK ([COUNT] [,COUNT_RATE] [,COUNT_MAX])

Description: Returns integer data from a real-time clock.1

Class: Subroutine

Arguments: There are three optional arguments2:

COUNT (opt) Must be scalar and of type default integer. It is set to a value based
on the current value of the processor clock. The value is increased
by one for each clock count until the value COUNT_MAX is reached,
and is reset to zero at the next count. (COUNT lies in the range 0
to COUNT_MAX.)

COUNT_
RATE (opt)

Must be scalar and of type default integer. It is set to the number of
processor clock counts per second modified by the kind of COUNT_
RATE.

If default integer is INTEGER(2), COUNT_RATE is 1000. If default
integer is INTEGER(4), COUNT_RATE is 10000. If default integer
is INTEGER(8), COUNT_RATE is 1000000.

COUNT_MAX
(opt)

Must be scalar and of type default integer. It is set to the maximum
value that COUNT can have, HUGE(0)3.

1SYSTEM_CLOCK returns the number of seconds from 00:00 Coordinated Universal Time (CUT)
on 1 JAN 1970. The number is returned with no bias. To get the elapsed time, you must call
SYSTEM_CLOCK twice, and subtract the starting time value from the ending time value.
2All are INTENT(OUT) arguments. (See Section 5.10.)
3For more information on HUGE, see Section 9.4.56.

Examples

Consider the following:

INTEGER(2) :: IC2, CRATE2, CMAX2
INTEGER(4) :: IC4, CRATE4, CMAX4
CALL SYSTEM_CLOCK(COUNT=IC2, COUNT_RATE=CRATE2, COUNT_MAX=CMAX2)
CALL SYSTEM_CLOCK(COUNT=IC4, COUNT_RATE=CRATE4, COUNT_MAX=CMAX4)
PRINT *, IC2, CRATE2, CMAX2
PRINT *, IC4, CRATE4, CMAX4
end

This program was run on Thursday Dec 11, 1997 at 14:23:55 EST and produced
the following output:

13880 1000 32767
1129498807 10000 2147483647

9–132 Intrinsic Procedures

9.4.153 TAN (X)

Description: Produces the tangent of X.

Class: Elemental function; Generic

Arguments: X must be of type real. It must be in radians and is treated as
modulo 2 * �.

Results: The result type is the same as X.

Specific Name Argument Type Result Type

TAN REAL(4) REAL(4)

DTAN REAL(8) REAL(8)

QTAN REAL(16) REAL(16)

Examples

TAN (2.0) has the value –2.185040.

TAN (0.8) has the value 1.029639.

9.4.154 TAND (X)

Description: Produces the tangent of X.

Class: Elemental function; Generic

Arguments: X must be of type real. It must be in degrees and is treated as
modulo 360.

Results: The result type is the same as X.

Specific Name Argument Type Result Type

TAND REAL(4) REAL(4)

DTAND REAL(8) REAL(8)

QTAND REAL(16) REAL(16)

Examples

TAND (2.0) has the value 3.4920771E–02.

TAND (0.8) has the value 1.3963542E–02.

Intrinsic Procedures 9–133

9.4.155 TANH (X)

Description: Produces a hyperbolic tangent.

Class: Elemental function; Generic

Arguments: X must be of type real.

Results: The result type is the same as X.

Specific Name Argument Type Result Type

TANH REAL(4) REAL(4)

DTANH REAL(8) REAL(8)

QTANH REAL(16) REAL(16)

Examples

TANH (2.0) has the value 0.9640276.

TANH (0.8) has the value 0.6640368.

9.4.156 TIME (BUF)

Description: Returns the current time as set within the system.

Class: Subroutine

Arguments: BUF is an 8-byte variable, array, array element, or character
substring.

The date is returned as an 8-byte ASCII character string taking the
form hh:mm:ss, where:

hh is the 2-digit hour
mm is the 2-digit minute
ss is the 2-digit second

If BUF is of numeric type and smaller than 8 bytes, data corruption
can occur.

If BUF is of character type, its associated length is passed to the
subroutine. If BUF is smaller than 8 bytes, the subroutine truncates
the date to fit in the specified length. If a CHARACTER array is
passed, the subroutine stores the date in the first array element,
using the element length, not the length of the entire array.

Examples

An example of a value returned from a call to TIME is 13:45:23 (a 24-hour
clock is used).

9–134 Intrinsic Procedures

Consider the following:

CHARACTER*1 HOUR(8)
...
CALL TIME (HOUR)

The length of the first array element in CHARACTER array HOUR is passed
to the TIME subroutine. The subroutine then truncates the time to fit into the
1-character element, producing an incorrect result.

9.4.157 TINY (X)

Description: Returns the smallest number in the model representing the same
type and kind parameters as the argument.

Class: Inquiry function; Generic

Arguments: X must be of type real; it can be scalar or array valued.

Results: The result is a scalar with the same type and kind parameters as X.
The result has the value ����	�1 . Parameters b and emin are defined
in Section D.2.

Examples

If X is of type REAL(4), TINY (X) has the value 2�126.

9.4.158 TRAILZ (I)

Description: Returns the number of trailing zero bits in an integer.

Class: Elemental function; Generic

Arguments: I must be of type integer.

Results: The result type is the same as I. The result value is the number of
trailing zeros in the binary representation of the integer I.

The model for the interpretation of an integer value as a sequence of
bits is shown in Section D.3.

Examples

Consider the following:

INTEGER*8 J, TWO
PARAMETER (TWO=2)
DO J= -1, 40
TYPE *, TRAILZ(TWO**J) ! Prints 64, then 0 up to

ENDDO ! 40 (trailing zeros)
END

Intrinsic Procedures 9–135

9.4.159 TRANSFER (SOURCE, MOLD [,SIZE])

Description: Copies the bit pattern of SOURCE and interprets it according to the
type and kind parameters of MOLD.

Class: Transformational function; Generic

Arguments: SOURCE Must be a scalar or array (of any data type).

MOLD Must be a scalar or array (of any data type). It
provides the type characteristics (not a value) for
the result.

SIZE (opt) Must be scalar and of type integer. It provides the
number of elements for the output result.

Results: The result has the same type and type parameters as MOLD.

If MOLD is a scalar and SIZE is omitted, the result is a scalar.

If MOLD is an array and SIZE is omitted, the result is a rank-one
array. Its size is the smallest that is possible to hold all of SOURCE.

If SIZE is present, the result is a rank-one array of size SIZE.

If the physical representation of the result is larger than SOURCE,
the result contains SOURCE’s bit pattern in its right-most bits; the
left-most bits of the result are undefined.

If the physical representation of the result is smaller than SOURCE,
the result contains the right-most bits of SOURCE’s bit pattern.

Examples

TRANSFER (1082130432, 0.0) has the value 4.0 (on processors that represent
the values 4.0 and 1082130432 as the string of binary digits 0100 0000 1000
0000 0000 0000 0000 0000).

TRANSFER ((/2.2, 3.3, 4.4/), ((0.0, 0.0))) results in a scalar whose value is (2.2,
3.3).

TRANSFER ((/2.2, 3.3, 4.4/), (/(0.0, 0.0)/)) results in a complex rank-one array
of length 2. Its first element is (2.2,3.3) and its second element has a real part
with the value 4.4 and an undefined imaginary part.

TRANSFER ((/2.2, 3.3, 4.4/), (/(0.0, 0.0)/), 1) results in a complex rank-one
array having one element with the value (2.2, 3.3).

9–136 Intrinsic Procedures

9.4.160 TRANSPOSE (MATRIX)

Description: Transposes an array of rank two.

Class: Transformational function; Generic

Arguments: MATRIX must be a rank-two array (of any data type).

Results: The result is a rank-two array with the same type and kind
parameters as MATRIX. Its shape is (n, m), where (m, n) is the
shape of MATRIX. For example, if the shape of MATRIX is (4,6), the
shape of the result is (6,4).

Element (i, j) of the result has the value MATRIX (j, i), where i is in
the range 1 to n, and j is in the range 1 to m.

Examples

B is the array

�
� � � �
� � �
�
 �

�
�.

TRANSPOSE (B) has the value

�
� � � �
� �

� � �

�
�.

9.4.161 TRIM (STRING)

Description: Returns the argument with trailing blanks removed.

Class: Transformational function; Generic

Arguments: STRING must be a scalar of type character.

Results: The result is of type character with the same kind parameter as
STRING. Its length is the length of STRING minus the number of
trailing blanks in STRING.

The value of the result is the same as STRING, except any trailing
blanks are removed. If STRING contains only blank characters, the
result has zero length.

Examples

TRIM (’∆∆NAME∆∆∆∆’) has the value ’∆∆NAME’.

TRIM (’∆∆C∆∆D∆∆∆∆∆’) has the value ’∆∆C∆∆D’.

Intrinsic Procedures 9–137

9.4.162 UBOUND (ARRAY [,DIM] [,KIND])

Description: Returns the upper bounds for all dimensions of an array, or the
upper bound for a specified dimension.

Class: Inquiry function; Generic

Arguments: ARRAY Must be an array (of any data type). It must not
be an allocatable array that is not allocated, or a
disassociated pointer. It can be an assumed-size
array if DIM is present with a value less than the
rank of ARRAY.

DIM (opt) Must be a scalar integer with a value in the range
1 to n, where n is the rank of ARRAY.

KIND (opt) Must be a scalar integer initialization expression.

Results: The result type is integer. If KIND is present, the kind parameter of
the result is that specified by KIND; otherwise, the kind parameter
of the result is that of default integer. If the processor cannot
represent the result value in the kind of the result, the result is
undefined.

If DIM is present, the result is a scalar. Otherwise, the result is
a rank-one array with one element for each dimension of ARRAY.
Each element in the result corresponds to a dimension of ARRAY.

If ARRAY is an array section or an array expression that is not a
whole array or array structure component, UBOUND (ARRAY, DIM)
has a value equal to the number of elements in the given dimension.

If ARRAY is a whole array or array structure component, UBOUND
(ARRAY, DIM) has a value equal to the upper bound for subscript
DIM of ARRAY (if DIM is nonzero). If DIM has size zero, the
corresponding element of the result has the value zero.

The setting of compiler options that specify integer size can affect
the result of this function.

Examples

Consider the following:

REAL ARRAY_A (1:3, 5:8)
REAL ARRAY_B (2:8, -3:20)

UBOUND (ARRAY_A) is (3, 8). UBOUND (ARRAY_A, DIM=2) is 8.

UBOUND (ARRAY_B) is (8, 20). UBOUND (ARRAY_B (5:8, :)) is (4,24)
because the number of elements is significant for array section arguments.

9–138 Intrinsic Procedures

9.4.163 UNPACK (VECTOR, MASK, FIELD)

Description: Takes elements from a rank-one array and unpacks them into
another (possibly larger) array under the control of a mask.

Class: Transformational function; Generic

Arguments: VECTOR Must be a rank-one array (of any data type). Its
size must be at least t, where t is the number of
true elements in MASK.

MASK Must be a logical array. It determines where
elements of VECTOR are placed when they are
unpacked.

FIELD Must be of the same type and type parameters as
VECTOR and conformable with MASK. Elements
in FIELD are inserted into the result array when
the corresponding MASK element has the value
false.

Results: The result is an array with the same shape as MASK, and the same
type and type parameters as VECTOR.

Elements in the result array are filled in array element order. If
element i of MASK is true, the corresponding element of the result
is filled by the next element in VECTOR. Otherwise, it is filled by
FIELD (if FIELD is scalar) or the ith element of FIELD (if FIELD is
an array).

Examples

N is the array

�
�

 �
�
 �
�

�
�, P is the array (2, 3, 4, 5), and Q is the array

�
� � � �
� � �
� � �

�
�.

UNPACK (P, MASK=Q, FIELD=N) produces the result

�
��
 �
� � �
� �

�
�.

UNPACK (P, MASK=Q, FIELD=1) produces the result

�
� � � �
� � �
� � �

�
�.

Intrinsic Procedures 9–139

9.4.164 VERIFY (STRING, SET [,BACK] [,KIND])

Description: Verifies that a set of characters contains all the characters in a
string by identifying the first character in the string that is not in
the set.

Class: Elemental function; Generic

Arguments: STRING Must be of type character.

SET Must be of type character with the same kind
parameter as STRING.

BACK (opt) Must be of type logical.

KIND (opt) Must be a scalar integer initialization expression.

Results: The result is of type integer. If KIND is present, the kind parameter
of the result is that specified by KIND; otherwise, the kind
parameter of the result is that of default integer. If the processor
cannot represent the result value in the kind of the result, the result
is undefined.

If BACK is omitted (or is present with the value false) and STRING
has at least one character that is not in SET, the value of the result
is the position of the leftmost character of STRING that is not in
SET.

If BACK is present with the value true and STRING has at least one
character that is not in SET, the value of the result is the position of
the rightmost character of STRING that is not in SET.

If each character of STRING is in SET or the length of STRING is
zero, the value of the result is zero.

Examples

VERIFY (’CDDDC’, ’C’) has the value 2.

VERIFY (’CDDDC’, ’C’, BACK=.TRUE.) has the value 4.

VERIFY (’CDDDC’, ’CD’) has the value zero.

9.4.165 ZEXT (X [,KIND])

Description: Extends the argument with zeros. This function is used primarily
for bit-oriented operations.

Class: Elemental function; Generic

Arguments: X Must be of type logical or integer.

KIND (opt) Must be a scalar integer initialization expression.

9–140 Intrinsic Procedures

Results: The result is of type integer. If KIND is present, the kind parameter
of the result is that specified by KIND; otherwise, the kind
parameter of the result is that of default integer. If the processor
cannot represent the result value in the kind of the result, the result
is undefined.

The result value is X extended with zeros and treated as an
unsigned value.

The storage requirements for integer constants are never less than
two bytes. Integer constants within the range of constants that can
be represented by a single byte still require two bytes of storage.

The setting of compiler options specifying integer size can affect
ZEXT.

Specific Name Argument Type Result Type

IZEXT LOGICAL(1) INTEGER(2)

LOGICAL(2) INTEGER(2)

INTEGER(1) INTEGER(2)

INTEGER(2) INTEGER(2)

JZEXT LOGICAL(1) INTEGER(4)

LOGICAL(2) INTEGER(4)

LOGICAL(4) INTEGER(4)

INTEGER(1) INTEGER(4)

INTEGER(2) INTEGER(4)

INTEGER(4) INTEGER(4)

KZEXT LOGICAL(1) INTEGER(8)

LOGICAL(2) INTEGER(8)

LOGICAL(4) INTEGER(8)

LOGICAL(8) INTEGER(8)

INTEGER(1) INTEGER(8)

INTEGER(2) INTEGER(8)

INTEGER(4) INTEGER(8)

INTEGER(8) INTEGER(8)

Examples

Intrinsic Procedures 9–141

Consider the following example:

INTEGER(2) W_VAR /’FFFF’X/
INTEGER(4) L_VAR
L_VAR = ZEXT(W_VAR)

This example stores an INTEGER(2) quantity in the low-order 16 bits of an
INTEGER(4) quantity, with the resulting value of L_VAR being ’0000FFFF’X.
If the ZEXT function had not been used, the resulting value would have been
’FFFFFFFF’X, because W_VAR would have been converted to the left-hand
operand’s data type by sign extension.

9–142 Intrinsic Procedures

10
Data Transfer I/O Statements

This chapter describes:

• Section 10.1, Overview of Records and Files

• Section 10.2, Components of Data Transfer Statements

• Section 10.3, READ Statements

• Section 10.4,

• Section 10.5, WRITE Statements

• Section 10.6, PRINT Statements

• Section 10.7,

File connection, file inquiry, and file positioning I/O statements are discussed
in Chapter 12.

10.1 Overview of Records and Files
A record is a sequence of values or a sequence of characters. There are three
kinds of Fortran records:

• Formatted

A record containing formatted data that requires translation from internal
to external form. Formatted I/O statements have explicit format specifiers
(which can specify list-directed formatting) or namelist specifiers (for
namelist formatting). Only formatted I/O statements can read formatted
data.

• Unformatted

A record containing unformatted data that is not translated from
internal form. An unformatted record can also contain no data. The
internal representation of unformatted data is processor-dependent. Only
unformatted I/O statements can read unformatted data.

• Endfile

Data Transfer I/O Statements 10–1

The last record of a file. An endfile record can be explicitly written to a
sequential file by an ENDFILE statement (see Section 12.4 for details).

A file is a sequence of records. There are two types of Fortran files, as follows:

• External

A file that exists in a medium (such as computer disks or terminals)
external to the executable program.

Records in an external file must be either all formatted or all unformatted.
There are three ways to access records in external files: sequential, keyed
access, and direct access.

In sequential access, records are processed in the order in which they
appear in the file. In direct access, records are selected by record number,
so they can be processed in any order. In keyed access, records are
processed by key-field value.

• Internal

Memory (internal storage) that behaves like a file. This type of file provides
a way to transfer and convert data in memory from one format to another.
The contents of these files are stored as scalar character variables.

For More Information:
On formatted and unformatted data transfers and external file access methods,
see the HP Fortran for OpenVMS User Manual.

10.2 Components of Data Transfer Statements
Data transfer statements take one of the following forms:

io-keyword (io-control-list) [io-list]
io-keyword format [,io-list]

io-keyword
Is one of the following: ACCEPT, PRINT (or TYPE), READ, REWRITE, or
WRITE.

io-control-list
Is one or more of the following input/output (I/O) control specifiers:

[UNIT=]io-unit ADVANCE ERR KEYID

[FMT=]format END IOSTAT REC

[NML=]group EOR KEY[con] SIZE

10–2 Data Transfer I/O Statements

io-list
Is an I/O list, which can contain variables (except for assumed-size arrays) or
implied-do lists. Output statements can contain constants or expressions.

format
Is the nonkeyword form of a control-list format specifier (no FMT=).

If a format specifier ([FMT=]format) or namelist specifier ([NML=]group) is
present, the data transfer statement is called a formatted I/O statement;
otherwise, it is an unformatted I/O statement.

If a record specifier (REC=) is present, the data transfer statement is a
direct-access I/O statement; otherwise, it is a sequential-access I/O statement.

If an error, end-of-record, or end-of-file condition occurs during data transfer,
file positioning and execution are affected, and certain control-list specifiers (if
present) become defined. (For more information, see Section 10.2.1.8.)

Section 10.2.1 describes the I/O control list and Section 10.2.2 describes I/O
lists.

10.2.1 I/O Control List
The I/O control list specifies one or more of the following:

• The I/O unit to act upon ([UNIT=]io-unit)

This specifier must be present; the rest are optional.

• The format (explicit or list-directed) to use for data editing; if explicit, the
keyword form must appear ([FMT=]format)

• The namelist group name to act upon ([NML=]group)

• The number of a record to access (REC)

• The name of a variable that contains the completion status of an I/O
operation (IOSTAT)

• The label of the statement that receives control if an error (ERR), end-of-file
(END), or end-of-record (EOR) condition occurs

• The key field (KEY[con]) and key of reference (KEYID) to access a
keyed-access record

• Whether you want to use advancing or nonadvancing I/O (ADVANCE)

• The number of characters read from a record (SIZE) by a nonadvancing
READ statement

No control specifier can appear more than once, and the list must not contain
both a format specifier and namelist group name specifier.

Data Transfer I/O Statements 10–3

Control specifiers can take any of the following forms:

• Keyword form

When the keyword form (for example, UNIT=io-unit) is used for all
control-list specifiers in an I/O statement, the specifiers can appear in any
order.

• Nonkeyword form

When the nonkeyword form (for example, io-unit) is used for all control-list
specifiers in an I/O statement, the io-unit specifier must be the first item
in the control list. If a format specifier or namelist group name specifier is
used, it must immediately follow the io-unit specifier.

• Mixed form

When a mix of keyword and nonkeyword forms is used for control-list
specifiers in an I/O statement, the nonkeyword values must appear first.
Once a keyword form of a specifier is used, all specifiers to the right must
also be keyword forms.

The following sections describe the control-list specifiers in detail.

10.2.1.1 Unit Specifier
The unit specifier identifies the I/O unit to be accessed. It takes the following
form:

[UNIT=]io-unit

io-unit
For external files, it identifies a logical unit and is one of the following:

• A scalar integer expression that refers to a specific file, I/O device, or pipe.
If necessary, the value is converted to integer data type before use. The
integer is in the range 0 through 2**31–1.

Units 5 and 6 are associated with preconnected units.

• An asterisk (*). This is the default (or implicit) external unit, which is
preconnected for formatted sequential access.

For internal files, io-unit identifies a scalar or array character variable that is
an internal file. An internal file is designated internal storage space (a variable
buffer) that is used with formatted (including list-directed) sequential READ
and WRITE statements.

The io-unit must be specified in a control list. If the keyword UNIT is omitted,
the io-unit must be first in the control list.

10–4 Data Transfer I/O Statements

A unit number is assigned either explicitly through an OPEN statement or
implicitly by the system. If a READ statement implicitly opens a file, the file’s
status is STATUS=’OLD’. If a WRITE statement implicitly opens a file, the
file’s status is STATUS=’NEW’.

If the internal file is a scalar character variable, the file has only one record;
its length is equal to that of the variable.

If the internal file is an array character variable, the file has a record for each
element in the array; each record’s length is equal to one array element.

An internal file can be read only if the variable has been defined and a value
assigned to each record in the file. If the variable representing the internal
file is a pointer, it must be associated; if the variable is an allocatable array, it
must be currently allocated.

Before data transfer, an internal file is always positioned at the beginning of
the first character of the first record.

For More Information:

• On the OPEN statement, see Section 12.6 for details.

• On implicit logical assignments, see the HP Fortran for OpenVMS User
Manual.

• On preconnected units, see the HP Fortran for OpenVMS User Manual.

• On using internal files, see the HP Fortran for OpenVMS User Manual.

10.2.1.2 Format Specifier
The format specifier indicates the format to use for data editing. It takes the
following form:

[FMT=]format

format
Is one of the following:

• The statement label of a FORMAT statement

The FORMAT statement must be in the same scoping unit as the data
transfer statement.

• An asterisk (*), indicating list-directed formatting

• A scalar default integer variable that has been assigned the label of a
FORMAT statement (through an ASSIGN statement)

The FORMAT statement must be in the same scoping unit as the data
transfer statement.

Data Transfer I/O Statements 10–5

• A character expression (which can be an array or character constant)
containing the run-time format

A default character expression must evaluate to a valid format specifica-
tion. If the expression is an array, it is treated as if all the elements of the
array were specified in array element order and were concatenated.

• The name of a numeric array (or array element) containing the format

If the keyword FMT is omitted, the format specifier must be the second
specifier in the control list; the io-unit specifier must be first.

If a format specifier appears in a control list, a namelist group specifier must
not appear.

For More Information:

• On FORMAT statements, see Section 11.2.

• On the interaction between FORMAT statements and I/O lists, see
Section 11.9.

• On list-directed input, see Section 10.3.1.2; output, see Section 10.5.1.2.

10.2.1.3 Namelist Specifier
The namelist specifier indicates namelist formatting and identifies the namelist
group for data transfer. It takes the following form:

[NML=]group

group
Is the name of a namelist group previously declared in a NAMELIST
statement.

If the keyword NML is omitted, the namelist specifier must be the second
specifier in the control list; the io-unit specifier must be first.

If a namelist specifier appears in a control list, a format specifier must not
appear.

For More Information:
On namelist input, see Section 10.3.1.3; output, see Section 10.5.1.3.

10.2.1.4 Record Specifier
The record specifier identifies the number of the record for data transfer in a
file connected for direct access. It takes the following form:

REC=r

10–6 Data Transfer I/O Statements

r
Is a scalar numeric expression indicating the record number. The value of the
expression must be greater than or equal to 1, and less than or equal to the
maximum number of records allowed in the file.

If necessary, the value is converted to integer data type before use.

If REC is present, no END specifier, * format specifier, or namelist group name
can appear in the same control list.

For More Information:
On an alternate form of a record specifier, see Section B.8.

10.2.1.5 Key-Field-Value Specifier
The key-field-value specifier identifies the key field of a record that you want
to access in an indexed file. The key-field value is equal to the contents of a
key field. The key field can be used to access records in indexed files because it
determines their location.

A key field has attributes, such as the number, direction, length, byte offset,
and type of the field. The attributes of the key field are specified at file
creation. Records in an indexed file have the same attributes for their key
fields.

A key-field-value specifier takes the following form:

KEY[con]=val

con
Is a selection condition keyword specifying how to compare val with key-field
values. The keyword can be any of the following:

In Ascending-Key Files:

Keyword Meaning

EQ The key-field value must be equal to val. KEYEQ is the same as
specifying KEY without the optional con.

GE The key-field value must be greater than or equal to val.

GT The key-field value must be greater than val.

NXT The key-field value must be the next value of the key equal to or
greater than val.

NXTNE The key-field value must be the next value of the key strictly
greater than val.

In Descending-Key Files:

Data Transfer I/O Statements 10–7

Keyword Meaning

EQ The key-field value must be equal to val. KEYEQ is the same as
specifying KEY without the optional con.

LE The key-field value must be less than or equal to val.

LT The key-field value must be less than val.

NXT The key-field value must be the next value of the key equal to or
less than val.

NXTNE The key-field value must be the next value of the key that is
strictly less than val.

val
Is an integer or character expression. The expression must match the type
of key defined for the file. For an integer key, you must pass an integer
expression; it cannot contain real or complex data. For a character key, you
can pass either a CHARACTER expression or a BYTE array that contains
CHARACTER data.

The specifiers KEY, KEYEQ, KEYNXT, and KEYNXTNE are interchangeable
between ascending-key files and descending-key files. However, KEYNXT and
KEYNXTNE are interpreted differently depending on the direction of the keys
in the file, as follows:

In Ascending-Key Files In Descending-Key Files

Specifier: Is Equivalent to Specifier:

KEYNXT KEYGE KEYLE

KEYNXTNE KEYGT KEYLT

The specifiers KEYGE and KEYGT can only be used with ascending-key files,
while the specifiers KEYLE and KEYLT can only be used with descending-key
files. Any other use of these key specifiers causes a run-time error to occur.

When a program must be able to use either ascending-key or descending-key
files, you should use KEYNXT and KEYNXTNE.

The Selection Process
To select key-field integer values, the process compares values using the signed
integers themselves.

To select key-field character values, the process compares values by using the
ASCII collating sequence.1 The comparative length of val and a key-field value,

1 Other collating sequences are available. For more information, see the Guide to
OpenVMS File Applications.

10–8 Data Transfer I/O Statements

as well as any specified selection condition, determine the kind of selection that
occurs. The selection can be exact, generic, or approximate-generic, as follows:

• Exact selections occur when the expression in val is equal in length to the
expression in the key field of the currently accessed record, and the con
keyword specifies a unique selection condition.

• Generic selections occur when the expression in val is shorter than the
expression in the key field of the currently accessed record, and the con
keyword specifies a unique selection condition.

The process compares all the characters in val, from left to right, with
the same amount of characters in the key field (also from left to right).
Remaining key-field characters are ignored.

For example, consider that a record’s key field is 10 characters long and the
following statement is entered:

READ (3, KEYEQ = ’ABCD’)

In this case, the process can select a record with a key-field value
’ABCDEFGHIJ’.

• An approximate-generic selection occurs when the expression in val is
shorter than the expression in the key field, and the con keyword does not
specify a unique selection condition.

As with generic selections, the process uses only the leftmost characters in
the key field to compare values. It selects the first key field that satisfies
the generic selection criterion.

For example, consider that a record’s key field is 5 characters long and the
following statement is entered:

READ (3, KEYGT = ’ABCD’)

In this case, the process can select the key-field value ’ABCEx’ (and not
the key-field value ’ABCDA’).

If val is longer than the key-field value, no selection is made and a run-time
error occurs.

10.2.1.6 Key-of-Reference Specifier
The key-of-reference specifier can optionally accompany the key-field-value
specifier. The key-of-reference specifier indicates the key-field index that is
searched to find the designated key-field value. It takes the following form:

KEYID=kn

Data Transfer I/O Statements 10–9

kn
Is an integer expression indicating the key-field index. This expression is
called the key of reference. Its value must be in the range 0 to 254.

A value of zero indicates the primary key, a value of 1 indicates the first
alternate key, a value of 2 indicates the second alternate key, and so forth.

If no kn is indicated, the default number is the last specification given in a
keyed I/O statement for that I/O unit.

For More Information:
On the key-field-value specifier, see Section 10.2.1.5.

10.2.1.7 I/O Status Specifier
The I/O status specifier designates a variable to store a value indicating the
status of a data transfer operation. It takes the following form:

IOSTAT=i-var

i-var
Is a scalar integer variable. When a data transfer statement is executed, i-var
is set to one of the following values:

A positive integer Indicating an error condition occurred.

A negative integer Indicating an end-of-file or end-of-record condition occurred.
The negative integers differ depending on which condition
occurred.

Zero Indicating no error, end-of-file, or end-of-record condition
occurred.

Execution continues with the statement following the data transfer statement,
or the statement identified by a branch specifier (if any).

An end-of-file condition occurs only during execution of a sequential READ
statement; an end-of-record condition occurs only during execution of a
nonadvancing READ statement.

Secondary operating system messages do not display when IOSTAT is specified.
To display these messages, remove IOSTAT or use a platform-specific method
such as a condition handler.

For More Information:

• On the error numbers returned by IOSTAT, see the HP Fortran for
OpenVMS User Manual.

• On condition handlers, see the HP Fortran for OpenVMS User Manual.

10–10 Data Transfer I/O Statements

10.2.1.8 Branch Specifiers
A branch specifier identifies a branch target statement that receives control if
an error, end-of-file, or end-of-record condition occurs. There are three branch
specifiers, taking the following forms:

ERR=label
END=label
EOR=label

label
Is the label of the branch target statement that receives control when the
specified condition occurs.

The branch target statement must be in the same scoping unit as the data
transfer statement.

The following rules apply to these specifiers:

• ERR

The error specifier can appear in a sequential access READ or WRITE
statement, a direct-access READ statement, an indexed READ statement,
or a REWRITE statement.

If an error condition occurs, the position of the file is indeterminate, and
execution of the statement terminates.

If IOSTAT was specified, the IOSTAT variable becomes defined as a positive
integer value. If SIZE was specified (in a nonadvancing READ statement),
the SIZE variable becomes defined as an integer value. If an ERR=label
was specified, execution continues with the labeled statement.

• END

The end-of-file specifier can appear only in a sequential access READ
statement.

An end-of-file condition occurs when no more records exist in a file during
a sequential read, or when an end-of-file record produced by the ENDFILE
statement is encountered. End-of-file conditions do not occur in indexed or
direct-access READ statements.

If an end-of-file condition occurs, the file is positioned after the end-of-file
record, and execution of the statement terminates.

If IOSTAT was specified, the IOSTAT variable becomes defined as a
negative integer value. If an END=label was specified, execution continues
with the labeled statement.

• EOR

Data Transfer I/O Statements 10–11

The end-of-record specifier can appear only in a formatted, sequential
access READ statement that has the specifier ADVANCE=’NO’
(nonadvancing input).

An end-of-record condition occurs when a nonadvancing READ statement
tries to transfer data from a position after the end of a record.

If an end-of-record condition occurs, the file is positioned after the current
record, and execution of the statement terminates.

If IOSTAT was specified, the IOSTAT variable becomes defined as a
negative integer value. If PAD=’YES’ was specified for file connection,
the record is padded with blanks (as necessary) to satisfy the input item
list and the corresponding data edit descriptor. If SIZE was specified, the
SIZE variable becomes defined as an integer value. If an EOR=label was
specified, execution continues with the labeled statement.

If one of the conditions occurs, no branch specifier appears in the control list,
but an IOSTAT specifier appears, execution continues with the statement
following the I/O statement. If neither a branch specifier nor an IOSTAT
specifier appears, the program terminates.

For More Information:

• On branch target statements, see Section 7.2.

• On the IOSTAT specifier, see Section 10.2.1.7.

• On error processing, see the HP Fortran for OpenVMS User Manual.

10.2.1.9 Advance Specifier
The advance specifier determines whether nonadvancing I/O occurs for a data
transfer statement. It takes the following form:

ADVANCE=c-expr

c-expr
Is a scalar character expression that evaluates to ’YES’ for advancing I/O or
’NO’ for nonadvancing I/O. The default value is ’YES’.

Trailing blanks in the expression are ignored.

The ADVANCE specifier can appear only in a formatted, sequential data
transfer statement that specifies an external unit. It must not be specified for
list-directed or namelist data transfer.

Advancing I/O always positions a file at the end of a record, unless an error
condition occurs. Nonadvancing I/O can position a file at a character position
within the current record.

10–12 Data Transfer I/O Statements

For More Information:
On advancing and nonadvancing I/O, see the HP Fortran for OpenVMS User
Manual.

10.2.1.10 Character Count Specifier
The character count specifier defines a variable to contain the count of how
many characters are read when a nonadvancing READ statement terminates.
It takes the following form:

SIZE=i-var

i-var
Is a scalar integer variable.

If PAD=’YES’ was specified for file connection, blanks inserted as padding are
not counted.

The SIZE specifier can appear only in a formatted, sequential READ statement
that has the specifier ADVANCE=’NO’ (nonadvancing input). It must not be
specified for list-directed or namelist data transfer.

10.2.2 I/O Lists
In a data transfer statement, the I/O list specifies the entities whose values
will be transferred. The I/O list is either an implied-do list or a simple list of
variables (except for assumed-size arrays).

In input statements, the I/O list cannot contain constants and expressions
because these do not specify named memory locations that can be referenced
later in the program.

However, constants and expressions can appear in the I/O lists for output
statements because the compiler can use temporary memory locations to hold
these values during the execution of the I/O statement.

If an input item is a pointer, it must be currently associated with a definable
target; data is transferred from the file to the associated target. If an output
item is a pointer, it must be currently associated with a target; data is
transferred from the target to the file.

If an input or output item is an array, it is treated as if the elements (if any)
were specified in array element order. For example, if ARRAY_A is an array of
shape (2,1), the following input statements are equivalent:

READ *, ARRAY_A
READ *, ARRAY_A(1,1), ARRAY_A(2,1)

Data Transfer I/O Statements 10–13

However, no element of that array can affect the value of any expression in the
input list, nor can any element appear more than once in an input list. For
example, the following input statements are invalid:

INTEGER B(50)
...
READ *, B(B)
READ *, B(B(1):B(10))

If an input or output item is an allocatable array, it must be currently
allocated.

If an input or output item is a derived type, the following rules apply:

• Any derived-type component must be in the scoping unit containing the I/O
statement.

• The derived type must not have a pointer component.

• In a formatted I/O statement, a derived type is treated as if all of the
components of the structure were specified in the same order as in the
derived-type definition.

• In an unformatted I/O statement, a derived type is treated as a single
object.

The following sections describe simple list items in I/O lists, and implied-do
lists in I/O lists.

10.2.2.1 Simple List Items in I/O Lists
In a data transfer statement, a simple list of items takes the following form:

item [,item]...

item
Is one of the following:

• For input statements: a variable name

The variable must not be an assumed-size array, unless one of the following
appears in the last dimension: a subscript, a vector subscript, or a section
subscript specifying an upper bound.

• For output statements: a variable name, expression, or constant

Any expression must not attempt further I/O operations on the same
logical unit. For example, it must not refer to a function subprogram that
performs I/O on the same logical unit.

The data transfer statement assigns values to (or transfers values from) the
list items in the order in which the items appear, from left to right.

10–14 Data Transfer I/O Statements

When multiple array names are used in the I/O list of an unformatted input or
output statement, only one record is read or written, regardless of how many
array name references appear in the list.

Examples
The following example shows a simple I/O list:

WRITE (6,10) J, K(3), 4, (L+4)/2, N

When you use an array name reference in an I/O list, an input statement reads
enough data to fill every item of the array. An output statement writes all of
the values in the array.

Data transfer begins with the initial item of the array and proceeds in the
order of subscript progression, with the leftmost subscript varying most rapidly.
The following statement defines a two-dimensional array:

DIMENSION ARRAY(3,3)

If the name ARRAY appears with no subscripts in a READ statement, that
statement assigns values from the input record(s) to ARRAY(1,1), ARRAY(2,1),
ARRAY(3,1), ARRAY(1,2), and so on through ARRAY(3,3).

An input record contains the following values:

1,3,721.73

The following example shows how variables in the I/O list can be used in array
subscripts later in the list:

DIMENSION ARRAY(3,3)
...
READ (1,30) J, K, ARRAY(J,K)

When the READ statement is executed, the first input value is assigned to J
and the second to K, establishing the subscript values for ARRAY(J,K). The
value 721.73 is then assigned to ARRAY(1,3). Note that the variables must
appear before their use as array subscripts.

Consider the following derived-type definition and structure declaration:

TYPE EMPLOYEE
INTEGER ID
CHARACTER(LEN=40) NAME

END TYPE EMPLOYEE
...
TYPE(EMPLOYEE) :: CONTRACT ! A structure of type EMPLOYEE

Data Transfer I/O Statements 10–15

The following statements are equivalent:

READ *, CONTRACT

READ *, CONTRACT%ID, CONTRACT%NAME

For More Information:
On the general rules for I/O lists, see Section 10.2.2.

10.2.2.2 Implied-Do Lists in I/O Lists
In a data transfer statement, an implied-do list acts as though it were a part of
an I/O statement within a DO loop. It takes the following form:

(list, do-var = expr1, expr2 [,expr3])

list
Is a list of variables, expressions, or constants (see Section 10.2.2.1).

do-var
Is the name of a scalar integer or real variable. The variable must not be one
of the input items in list.

expr
Are scalar numeric expressions of type integer or real. They do not all have to
be the same type, or the same type as the DO variable.

The implied-do loop is initiated, executed, and terminated in the same way as
a DO construct.

The list is the range of the implied-do loop. Items in that list can refer to
do-var, but they must not change the value of do-var.

Two nested implied-do lists must not have the same (or an associated) DO
variable.

Use an implied-do list to do the following:

• Specify iteration of part of an I/O list

• Transfer part of an array

• Transfer array items in a sequence different from the order of subscript
progression

If the I/O statement containing an implied-do list terminates abnormally (with
an END, EOR, or ERR branch or with an IOSTAT value other than zero), the
DO variable becomes undefined.

10–16 Data Transfer I/O Statements

Examples
The following two output statements are equivalent:

WRITE (3,200) (A,B,C, I=1,3) ! An implied-do list

WRITE (3,200) A,B,C,A,B,C,A,B,C ! A simple item list

The following example shows nested implied-do lists. Execution of the
innermost list is repeated most often:

WRITE (6,150) ((FORM(K,L), L=1,10), K=1,10,2)

The inner DO loop is executed 10 times for each iteration of the outer loop; the
second subscript (L) advances from 1 through 10 for each increment of the first
subscript (K). This is the reverse of the normal array element order. Note that
K is incremented by 2, so only the odd-numbered rows of the array are output.

In the following example, the entire list of the implied-do list (P(1), Q(1,1),
Q(1,2)...,Q(1,10)) are read before I is incremented to 2:

READ (5,999) (P(I), (Q(I,J), J=1,10), I=1,5)

The following example uses fixed subscripts and subscripts that vary according
to the implied-do list:

READ (3,5555) (BOX(1,J), J=1,10)

Input values are assigned to BOX(1,1) through BOX(1,10), but other elements
of the array are not affected.

The following example shows how a DO variable can be output directly:

WRITE (6,1111) (I, I=1,20)

Integers 1 through 20 are written.

For More Information:

• On the general rules for I/O lists, see Section 10.2.2.

• On DO constructs, see Section 7.6.

10.3 READ Statements
The READ statement is a data transfer input statement. Data can be input
from external sequential, keyed-access or direct-access records, or from internal
records.

Data Transfer I/O Statements 10–17

10.3.1 Forms for Sequential READ Statements
Sequential READ statements transfer input data from external sequential-
access records. The statements can be formatted with format specifiers
(which can use list-directed formatting) or namelist specifiers (for namelist
formatting), or they can be unformatted.

Sequential READ statements take one of the following forms:

Formatted

READ (eunit, format [,advance] [,size] [,iostat] [,err] [,end] [,eor]) [io-list]
READ form [,io-list]

Formatted: List-Directed

READ (eunit, * [,iostat] [,err] [,end]) [io-list]
READ * [,io-list]

Formatted: Namelist

READ (eunit, nml-group [,iostat] [,err] [,end])
READ nml

Unformatted

READ (eunit [,iostat] [,err] [,end]) [io-list]

eunit
Is an external unit specifier ([UNIT=]io-unit).

format
Is a format specifier ([FMT=]format).

advance
Is an advance specifier (ADVANCE=c-expr). If the value of c-expr is ’YES’,
the statement uses advancing input; if the value is ’NO’, the statement uses
nonadvancing input. The default value is ’YES’.

size
Is a character count specifier (SIZE=i-var). It can only be specified for
nonadvancing READ statements.

iostat
Is a status specifier (IOSTAT=i-var).

err, end, eor
Are branch specifiers if an error (ERR=label), end-of-file (END=label), or
end-of-record (EOR=label) condition occurs.

10–18 Data Transfer I/O Statements

EOR can only be specified for nonadvancing READ statements.

io-list
Is an I/O list.

form
Is the nonkeyword form of a format specifier (no FMT=).

*
Is the format specifier indicating list-directed formatting.

nml-group
Is a namelist specifier ([NML=]group) indicating namelist formatting.

nml
Is the nonkeyword form of a namelist specifier (no NML=) indicating namelist
formatting.

For More Information:

• On I/O control-list specifiers, see Section 10.2.1.

• On I/O lists, see Section 10.2.2.

• On advancing I/O, see Section 10.2.1.9 and the HP Fortran for OpenVMS
User Manual.

• On file sharing, see the HP Fortran for OpenVMS User Manual.

10.3.1.1 Rules for Formatted Sequential READ Statements
Formatted, sequential READ statements translate data from character to
binary form by using format specifications for editing (if any). The translated
data is assigned to the entities in the I/O list in the order in which the entities
appear, from left to right.

Values can be transferred to objects of intrinsic or derived types. For derived
types, values of intrinsic types are transferred to the components of intrinsic
types that ultimately make up these structured objects.

For data transfer, the file must be positioned so that the record read is a
formatted record or an end-of-file record.

If the number of I/O list items is less than the number of fields in an input
record, the statement ignores the excess fields.

Data Transfer I/O Statements 10–19

If the number of I/O list items is greater than the number of fields in an
input record, the input record is padded with blanks. However, if PAD=’NO’
was specified for file connection, the input list and file specification must not
require more characters from the record than it contains. If more characters
are required and nonadvancing input is in effect, an end-of-record condition
occurs.

If the file is connected for unformatted I/O, formatted data transfer is
prohibited.

Examples
The following example shows formatted, sequential READ statements:

READ (*, ’(B)’, ADVANCE=’NO’) C

READ (FMT="(E2.4)", UNIT=6, IOSTAT=IO_STATUS) A, B, C

10.3.1.2 Rules for List-Directed Sequential READ Statements
List-directed, sequential READ statements translate data from character
to binary form by using the data types of the corresponding I/O list item to
determine the form of the data. The translated data is then assigned to the
entities in the I/O list in the order in which they appear, from left to right.

When a slash (/) is encountered during execution, the READ statement is
terminated, and any remaining input list items are unchanged.

If the file is connected for unformatted I/O, list-directed data transfer is
prohibited.

List-Directed Records
A list-directed external record consists of a sequence of values and value
separators. A value can be any of the following:

• A constant

Each constant must be a literal constant of type integer, real, complex,
logical, or character; or a nondelimited character string. Binary, octal,
hexadecimal, Hollerith, and named constants are not permitted.

In general, the form of the constant must be acceptable for the type of the
list item. The data type of the constant determines the data type of the
value and the translation from external to internal form. The following
rules also apply:

A numeric list item can correspond only to a numeric constant, and
a character list item can correspond only to a character constant. If
the data types of a numeric list element and its corresponding numeric
constant do not match, conversion is performed according to the rules
for arithmetic assignment (see Table 4–2).

10–20 Data Transfer I/O Statements

A complex constant has the form of a pair of real or integer constants
separated by a comma and enclosed in parentheses. Blanks can appear
between the opening parenthesis and the first constant, before and
after the separating comma, and between the second constant and the
closing parenthesis.

A logical constant represents true values (.TRUE. or any value
beginning with T, .T, t, or .t) or false values (.FALSE. or any value
beginning with F, .F, f, or .f).

A character string does not need delimiting apostrophes or quotation
marks if the corresponding I/O list item is of type default character, and
the following is true:

The character string does not contain a blank, comma (,), or slash (/).

The character string is not continued across a record boundary.

The first nonblank character in the string is not an apostrophe or a
quotation mark.

The leading character is not a string of digits followed by an asterisk.

A nondelimited character string is terminated by the first blank, comma,
slash, or end-of-record encountered. Apostrophes and quotation marks
within nondelimited character strings are transferred as is.

• A null value

A null value is specified by two consecutive value separators (such as ,,) or
a nonblank initial value separator. (A value separator before the end of the
record does not signify a null value.)

A null value indicates that the corresponding list element remains
unchanged. A null value can represent an entire complex constant, but
cannot be used for either part of a complex constant.

• A repetition of a null value (r*) or a constant (r*constant), where r is an
unsigned, nonzero, integer literal constant with no kind parameter, and no
embedded blanks.

A value separator is any number of blanks, or a comma or slash, preceded or
followed by any number of blanks. When any of these appear in a character
constant, they are considered part of the constant, not value separators.

The end of a record is equivalent to a blank character, except when it occurs
in a character constant. In this case, the end of the record is ignored, and
the character constant is continued with the next record (the last character in
the previous record is immediately followed by the first character of the next
record).

Data Transfer I/O Statements 10–21

Blanks at the beginning of a record are ignored unless they are part of a
character constant continued from the previous record. In this case, the blanks
at the beginning of the record are considered part of the constant.

Examples
Suppose the following statements are specified:

CHARACTER*14 C
DOUBLE PRECISION T
COMPLEX D,E
LOGICAL L,M
READ (1,*) I,R,D,E,L,M,J,K,S,T,C,A,B

Then suppose the following external record is read:

4 6.3 (3.4,4.2), (3, 2) , T,F,,3*14.6 ,’ABC,DEF/GHI’’JK’/

The following values are assigned to the I/O list items:

I/O List Item Value Assigned

I 4

R 6.3

D (3.4,4.2)

E (3.0,2.0)

L .TRUE.

M .FALSE.

J Unchanged

K 14

S 14.6

T 14.6D0

C ABC,DEF/GHI’JK

A Unchanged

B Unchanged

For More Information:

• On the literal constant forms of intrinsic data types, see Section 3.2.

• On list-directed output, see Section 10.5.1.2.

• On the general rules for formatted, sequential READ statements, see
Section 10.3.1.1.

10–22 Data Transfer I/O Statements

10.3.1.3 Rules for Namelist Sequential READ Statements
Namelist, sequential READ statements translate data from external to internal
form by using the data types of the objects in the corresponding NAMELIST
statement to determine the form of the data. The translated data is assigned
to the specified objects in the namelist group in the order in which they appear,
from left to right.

If a slash (/) is encountered during execution, the READ statement is
terminated, and any remaining input list items are unchanged.

If the file is connected for unformatted I/O, namelist data transfer is
prohibited.

Namelist Records
A namelist external record takes the following form:

&group-name object = value [,object = value].../

group-name
Is the name of the group containing the objects to be given values. The name
must have been previously defined in a NAMELIST statement in the scoping
unit. The name cannot contain embedded blanks and must be contained within
a single record.

object
Is the name (or subobject designator) of an entity defined in the NAMELIST
declaration of the group name. The object name must not contain embedded
blanks except within the parentheses of a subscript or substring specifier. Each
object must be contained in a single record.

value
Is any of the following:

• A constant

Each constant must be a literal constant of type integer, real, complex,
logical, or character; or a nondelimited character string. Binary, octal,
hexadecimal, Hollerith, and named constants are not permitted.

In general, the form of the constant must be acceptable for the type of the
list item. The data type of the constant determines the data type of the
value and the translation from external to internal form. The following
rules also apply:

A numeric list item can correspond only to a numeric constant, and
a character list item can correspond only to a character constant. If
the data types of a numeric list element and its corresponding numeric

Data Transfer I/O Statements 10–23

constant do not match, conversion is performed according to the rules
for arithmetic assignment (see Table 4–2).

A complex constant has the form of a pair of real or integer constants
separated by a comma and enclosed in parentheses. Blanks can appear
between the opening parenthesis and the first constant, before and
after the separating comma, and between the second constant and the
closing parenthesis.

A logical constant represents true values (.TRUE. or any value
beginning with T, .T, t, or .t) or false values (.FALSE. or any value
beginning with F, .F, f, or .f).

A character string does not need delimiting apostrophes or quotation marks
if the corresponding NAMELIST item is of type default character, and the
following is true:

The character string does not contain a blank, comma (,), slash (/),
exclamation (!), ampersand (&), dollar sign ($), left parenthesis, equal
sign (=), percent sign (%), or period (.).

The character string is not continued across a record boundary.

The first nonblank character in the string is not an apostrophe or a
quotation mark.

The leading character is not a string of digits followed by an asterisk.

A nondelimited character string is terminated by the first blank, comma,
slash, end-of-record, exclamation, ampersand, or dollar sign encountered.
Apostrophes and quotation marks within nondelimited character strings
are transferred as is.

If an equal sign, percent sign, or period is encountered while scanning for a
nondelimited character string, the string is treated as a variable name (or
part of one) and not as a nondelimited character string.

• A null value

A null value is specified by two consecutive value separators (such as ,,) or
a nonblank initial value separator. (A value separator before the end of the
record does not signify a null value.)

A null value indicates that the corresponding list element remains
unchanged. A null value can represent an entire complex constant, but
cannot be used for either part of a complex constant.

• A repetition of a null value (r*) or a constant (r*constant), where r is an
unsigned, nonzero, integer literal constant with no kind parameter, and no
embedded blanks.

10–24 Data Transfer I/O Statements

Blanks can precede or follow the beginning ampersand (&), follow the group
name, precede or follow the equal sign, or precede the terminating slash.

Comments (beginning with ! only) can appear anywhere in namelist input.
The comment extends to the end of the source line.

If an entity appears more than once within the input record for a namelist data
transfer, the last value is the one that is used.

If there is more than one object=value pair, they must be separated by value
separators.

A value separator is any number of blanks, or a comma or slash, preceded or
followed by any number of blanks. When any of these appear in a character
constant, they are considered part of the constant, not value separators.

The end of a record is equivalent to a blank character, except when it occurs
in a character constant. In this case, the end of the record is ignored, and
the character constant is continued with the next record (the last character in
the previous record is immediately followed by the first character of the next
record).

Blanks at the beginning of a record are ignored unless they are part of a
character constant continued from the previous record. In this case, the blanks
at the beginning of the record are considered part of the constant.

Prompting for Namelist Group Information
During execution of a program containing a namelist READ statement, you can
specify a question mark character (?) or a question mark character preceded
by an equal sign (=?) to get information about the namelist group. The ? or =?
must follow one or more blanks.

If specified for a unit capable of both input and output, the ? causes display
of the group name and the objects in that group. The =? causes display of the
group name, objects within that group, and the current values for those objects
(in namelist output form). If specified for another type of unit, the symbols are
ignored.

For example, consider the following statements:

NAMELIST /NLIST/ A,B,C
REAL A /1.5/
INTEGER B /2/
CHARACTER*5 C /’ABCDE’/

READ (5,NML=NLIST)
WRITE (6,NML=NLIST)
END

Data Transfer I/O Statements 10–25

During execution, if a blank followed by ? is entered on a terminal device, the
following values are displayed:

&NLIST
A
B
C

/

If a blank followed by =? is entered, the following values are displayed:

&NLIST
A = 1.500000 ,
B = 2,
C = ABCDE

/

Examples
Suppose the following statements are specified:

NAMELIST /CONTROL/ TITLE, RESET, START, STOP, INTERVAL
CHARACTER*10 TITLE
REAL(KIND=8) START, STOP
LOGICAL(KIND=4) RESET
INTEGER(KIND=4) INTERVAL
READ (UNIT=1, NML=CONTROL)

The NAMELIST statement associates the group name CONTROL with a list
of five objects. The corresponding READ statement reads the following input
data from unit 1:

&CONTROL
TITLE=’TESTT002AA’,
INTERVAL=1,
RESET=.TRUE.,
START=10.2,
STOP =14.5

/

The following values are assigned to objects in group CONTROL:

Namelist Object Value Assigned

TITLE TESTT002AA

RESET T

START 10.2

STOP 14.5

INTERVAL 1

10–26 Data Transfer I/O Statements

It is not necessary to assign values to all of the objects declared in the
corresponding NAMELIST group. If a namelist object does not appear in
the input statement, its value (if any) is unchanged.

Similarly, when character substrings and array elements are specified, only
the values of the specified variable substrings and array elements are changed.
For example, suppose the following input is read:

&CONTROL TITLE(9:10)=’BB’ /

The new value for TITLE is TESTT002BB; only the last two characters in the
variable change.

The following example shows an array as an object:

DIMENSION ARRAY_A(20)
NAMELIST /ELEM/ ARRAY_A
READ (UNIT=1,NML=ELEM)

Suppose the following input is read:

&ELEM
ARRAY_A=1.1, 1.2, , 1.4
/

The following values are assigned to the ARRAY_A elements:

Array Element Value Assigned

ARRAY_A(1) 1.1

ARRAY_A(2) 1.2

ARRAY_A(3) Unchanged

ARRAY_A(4) 1.4

ARRAY_A(5)...ARRAY(20) Unchanged

When a list of values is assigned to an array element, the assignment begins
with the specified array element, rather than with the first element of the
array. For example, suppose the following input is read:

&ELEM
ARRAY_A(3)=34.54, 45.34, 87.63, 3*20.00
/

New values are assigned only to array ARRAY_A elements 3 through 8. The
other element values are unchanged.

Nondelimited character strings that are written out by using a NAMELIST
write may not be read in as expected by a corresponding NAMELIST read.
Consider the following:

Data Transfer I/O Statements 10–27

NAMELIST/TEST/ CHARR
CHARACTER*3 CHARR(4)
DATA CHARR/’AAA’, ’BBB’, ’CCC’, ’DDD’/
OPEN (UNIT=1, FILE=’NMLTEST.DAT’)
WRITE (1, NML=TEST)
END

The output file NMLTEST.DAT will contain:

&TEST
CHARR = AAABBBCCCDDD
/

If an attempt is then made to read the data in NMLTEST.DAT with a
NAMELIST read using nondelimited character strings, as follows:

NAMELIST/TEST/ CHARR
CHARACTER*3 CHARR(4)
DATA CHARR/4*’ ’/
OPEN (UNIT=1, FILE=’NMLTEST.DAT’)
READ (1, NML=TEST)
PRINT *, ’CHARR read in >’, CHARR(1),’< >’,CHARR(2),’< >’,
1 CHARR(3), ’< >’, CHARR(4), ’<’
END

The result is the following:

CHARR read in >AAA< < > < > < > <

For More Information:

• On the NAMELIST statement, in general, and rules for objects in a
namelist group, see Section 5.12.

• On an alternative form for namelist external records, see Section B.10.

• On namelist output, see Section 10.5.1.3.

• On the general rules for formatted, sequential READ statements, see
Section 10.3.1.1.

10.3.1.4 Rules for Unformatted Sequential READ Statements
Unformatted, sequential READ statements transfer binary data (without
translation) between the current record and the entities specified in the I/O
list. Only one record is read.

Objects of intrinsic or derived types can be transferred.

For data transfer, the file must be positioned so that the record read is an
unformatted record or an end-of-file record.

10–28 Data Transfer I/O Statements

The unformatted, sequential READ statement reads a single record. Each
value in the record must be of the same type as the corresponding entity in the
input list, unless the value is real or complex.

If the value is real or complex, one complex value can correspond to two real
list entities, or two real values can correspond to one complex list entity. The
corresponding values and entities must have the same kind parameter.

If the number of I/O list items is less than the number of fields in an input
record, the statement ignores the excess fields. If the number of I/O list items
is greater than the number of fields in an input record, an error occurs.

If a statement contains no I/O list, it skips over one full record, positioning the
file to read the following record on the next execution of a READ statement.

If the file is connected for formatted, list-directed, or namelist I/O, unformatted
data transfer is prohibited.

Examples
The following example shows an unformatted, sequential READ statement:

READ (UNIT=6, IOSTAT=IO_STATUS) A, B, C

10.3.2 Forms for Direct-Access READ Statements
Direct-access READ statements transfer input data from external records
with direct access. (The attributes of a direct-access file are established by the
OPEN statement.)

A direct-access READ statement can be formatted or unformatted, and takes
one of the following forms:

Formatted

READ (eunit, format, rec [,iostat] [,err]) [io-list]

Unformatted

READ (eunit, rec [,iostat] [,err]) [io-list]

eunit
Is an external unit specifier ([UNIT=]io-unit).

format
Is a format specifier ([FMT=]format). It must not be an asterisk (*).

rec
Is a record specifier (REC=r).

Data Transfer I/O Statements 10–29

iostat
Is a status specifier (IOSTAT=i-var).

err
Is a branch specifier (ERR=label) if an error condition occurs.

io-list
Is an I/O list.

For More Information:

• On I/O control-list specifiers, see Section 10.2.1.

• On I/O lists, see Section 10.2.2.

• On file sharing, see the HP Fortran for OpenVMS User Manual.

10.3.2.1 Rules for Formatted Direct-Access READ Statements
Formatted, direct-access READ statements translate data from character to
binary form by using format specifications for editing (if any). The translated
data is assigned to the entities in the I/O list in the order in which the entities
appear, from left to right.

Values can be transferred to objects of intrinsic or derived types. For derived
types, values of intrinsic types are transferred to the components of intrinsic
types that ultimately make up these structured objects.

For data transfer, the file must be positioned so that the record read is a
formatted record or an end-of-file record.

If the number of I/O list items is less than the number of fields in an input
record, the statement ignores the excess fields.

If the number of I/O list items is greater than the number of fields in an
input record, the input record is padded with blanks. However, if PAD=’NO’
was specified for file connection, the input list and file specification must not
require more characters from the record than it contains. If more characters
are required and nonadvancing input is in effect, an end-of-record condition
occurs.

If the format specification specifies another record, the record number is
increased by one as each subsequent record is read by that input statement.

Examples
The following example shows a formatted, direct-access READ statement:

READ (2, REC=35, FMT=10) (NUM(K), K=1,10)

10–30 Data Transfer I/O Statements

10.3.2.2 Rules for Unformatted Direct-Access READ Statements
Unformatted, direct-access READ statements transfer binary data (without
translation) between the current record and the entities specified in the I/O
list. Only one record is read.

Objects of intrinsic or derived types can be transferred.

For data transfer, the file must be positioned so that the record read is an
unformatted record or an end-of-file record.

The unformatted, direct-access READ statement reads a single record. Each
value in the record must be of the same type as the corresponding entity in the
input list, unless the value is real or complex.

If the value is real or complex, one complex value can correspond to two real
list entities, or two real values can correspond to one complex list entity. The
corresponding values and entities must have the same kind parameter.

If the number of I/O list items is less than the number of fields in an input
record, the statement ignores the excess fields. If the number of I/O list items
is greater than the number of fields in an input record, an error occurs.

If the file is connected for formatted, list-directed, or namelist I/O, unformatted
data transfer is prohibited.

Examples
The following example shows unformatted, direct-access READ statements:

READ (1, REC=10) LIST(1), LIST(8)
READ (4, REC=58, IOSTAT=K, ERR=500) (RHO(N), N=1,5)

10.3.3 Forms for Indexed READ Statements
Indexed READ statements transfer input data from external records that have
keyed access.

In an indexed file, a series of records can be read in key value sequence by
using an indexed READ statement and sequential READ statements. The first
record in the sequence is read by using the indexed statement, the rest are
read by using the sequential READ statements.

An indexed READ statement can be formatted or unformatted, and takes one
of the following forms:

Formatted

READ (eunit, format, key [,keyid] [,iostat] [,err]) [io-list]

Data Transfer I/O Statements 10–31

Unformatted

READ (eunit, key [,keyid] [,iostat] [,err]) [io-list]

eunit
Is an external unit specifier ([UNIT=]io-unit).

format
Is a format specifier ([FMT=]format).

key
Is a key specifier (KEY[con]=value).

keyid
Is a key-of-reference specifier (KEYID=kn).

iostat
Is a status specifier (IOSTAT=i-var).

err
Is a branch specifier (ERR=label) if an error condition occurs.

io-list
Is an I/O list.

For More Information:

• On I/O control-list specifiers, see Section 10.2.1.

• On I/O lists, see Section 10.2.2.

10.3.3.1 Rules for Formatted Indexed READ Statements
Formatted, indexed READ statements translate data from character to binary
form by using format specifications for editing (if any). The translated data is
assigned to the entities in the I/O list in the order in which the entities appear,
from left to right.

If the I/O list and format specifications indicate that additional records are to
be read, the statement reads the additional records sequentially by using the
current key-of-reference value.

If KEYID is omitted, the key-of-reference value is the same as the most recent
specification. If KEYID is omitted from the first indexed READ statement, the
key of reference is the primary key.

10–32 Data Transfer I/O Statements

If the specified key value is shorter than the key field referenced, the key value
is matched against the leftmost characters of the appropriate key field until a
match is found. The record supplying the match is then read. If the key value
is longer than the key field referenced, an error occurs.

If the file is connected for unformatted I/O, formatted data transfer is
prohibited.

Examples
Suppose the following statement is specified:

READ (3, KAT(25), KEY=’ABCD’) A,B,C,D

The READ statement retrieves a record with a key value of ’ABCD’ in the
primary key from the file connected to I/O unit 3. It then uses the format
contained in the array item KAT(25) to read the first four fields from the record
into variables A,B,C, and D.

10.3.3.2 Rules for Unformatted Indexed READ Statements
Unformatted, indexed READ statements transfer binary data (without
translation) between the current record and the entities specified in the I/O
list. Only one record is read.

If the number of I/O list items is less than the number of fields in the record
being read, the unused fields in the record are discarded. If the number of I/O
list items is greater than the number of fields, an error occurs.

If a specified key value is shorter than the key field referenced, the key value
is matched against the leftmost characters of the appropriate key field until a
match is found. The record supplying the match is then read. If the specified
key value is longer than the key field referenced, an error occurs.

If the file is connected for formatted I/O, unformatted data transfer is
prohibited.

Examples
Suppose the following statements are specified:

OPEN (UNIT=3, STATUS=’OLD’,
1 ACCESS=’KEYED’, ORGANIZATION=’INDEXED’,
2 FORM=’UNFORMATTED’,
3 KEY=(1:5,30:37,18:23))

READ (3,KEY=’SMITH’) ALPHA, BETA

The READ statement reads from the file connected to I/O unit 3 and retrieves
the record with the value ’SMITH’ in the primary key field (bytes 1 through
5). The first two fields of the record retrieved are placed in variables ALPHA
and BETA, respectively.

Data Transfer I/O Statements 10–33

Suppose the following statement is specified:

READ (3,KEYGE=’XYZDEF’,KEYID=2,ERR=99) IKEY

In this case, the READ statement retrieves the first record having a value
equal to or greater than ’XYZDEF’ in the second alternate key field (bytes 18
through 23). The first field of that record is placed in variable IKEY.

10.3.4 Forms and Rules for Internal READ Statements
Internal READ statements transfer input data from an internal file.

An internal READ statement can only be formatted. It must include format
specifiers (which can use list-directed formatting). Namelist formatting is not
permitted.

An internal READ statement takes the following form:

READ (iunit, format [,iostat] [,err] [,end]) [io-list]

iunit
Is an internal unit specifier ([UNIT=]io-unit). It must be a character variable.
It must not be an array section with a vector subscript.

format
Is a format specifier ([FMT=]format). An asterisk (*) indicates list-directed
formatting.

iostat
Is a status specifier (IOSTAT=i-var).

err, end
Are branch specifiers if an error (ERR=label) or end-of-file (END=label)
condition occurs.

io-list
Is an I/O list.

Formatted, internal READ statements translate data from character to binary
form by using format specifications for editing (if any). The translated data is
assigned to the entities in the I/O list in the order in which the entities appear,
from left to right.

This form of READ statement behaves as if the format begins with a BN edit
descriptor. (You can override this behavior by explicitly specifying the BZ edit
descriptor.)

10–34 Data Transfer I/O Statements

Values can be transferred to objects of intrinsic or derived types. For derived
types, values of intrinsic types are transferred to the components of intrinsic
types that ultimately make up these structured objects.

Before data transfer occurs, the file is positioned at the beginning of the first
record. This record becomes the current record.

If the number of I/O list items is less than the number of fields in an input
record, the statement ignores the excess fields.

If the number of I/O list items is greater than the number of fields in an
input record, the input record is padded with blanks. However, if PAD=’NO’
was specified for file connection, the input list and file specification must not
require more characters from the record than it contains.

In list-directed formatting, character strings have no delimiters.

Examples
An internal read can be used to convert character data to numeric values.

The following program segment reads a record and examines the first character
to determine whether the remaining data should be interpreted as decimal,
octal, or hexadecimal. It then uses internal READ statements to make
appropriate conversions from character string representations to binary.

INTEGER IVAL
CHARACTER TYPE, RECORD*80
CHARACTER*(*) AFMT, IFMT, OFMT, ZFMT
PARAMETER (AFMT=’(Q,A)’, IFMT= ’(I10)’, OFMT= ’(O11)’, &

ZFMT= ’(Z8)’)
ACCEPT AFMT, ILEN, RECORD
TYPE = RECORD(1:1)
IF (TYPE .EQ. ’D’) THEN

READ (RECORD(2:MIN(ILEN, 11)), IFMT) IVAL
ELSE IF (TYPE .EQ. ’O’) THEN

READ (RECORD(2:MIN(ILEN, 12)), OFMT) IVAL
ELSE IF (TYPE .EQ. ’X’) THEN

READ (RECORD(2:MIN(ILEN, 9)),ZFMT) IVAL
ELSE

PRINT *, ’ERROR’
END IF
END

Data Transfer I/O Statements 10–35

For More Information:

• On I/O control-list specifiers, see Section 10.2.1.

• On I/O lists, see Section 10.2.2.

• On list-directed input, see Section 10.3.1.2.

• On using internal files, see the HP Fortran for OpenVMS User Manual.

10.4 ACCEPT Statement
The ACCEPT statement is a data transfer input statement. This statement is
the same as a formatted, sequential READ statement, except that an ACCEPT
statement must never be connected to user-specified I/O units.

An ACCEPT statement takes one of the following forms:

Formatted

ACCEPT form [,io-list]

Formatted: List-Directed

ACCEPT * [,io-list]

Formatted: Namelist

ACCEPT nml

form
Is the nonkeyword form of a format specifier (no FMT=).

io-list
Is an I/O list.

*
Is the format specifier indicating list-directed formatting. (It can also be
specified as FMT=*.)

nml
Is the nonkeyword form of a namelist specifier (no NML=) indicating namelist
formatting.

10–36 Data Transfer I/O Statements

Examples
In the following example, character data is read from the implicit unit and
binary values are assigned to each of the five elements of array CHARAR:

CHARACTER*10 CHARAR(5)
ACCEPT 200, CHARAR

200 FORMAT (5A10)

For More Information:

• On formatted, sequential READ statements, see Section 10.3.1.1.

• On formatted data and data transfers, see the HP Fortran for OpenVMS
User Manual.

• On list-directed input, see Section 10.3.1.2.

• On namelist input, see Section 10.3.1.3.

• On I/O lists, see Section 10.2.2.

10.5 WRITE Statements
The WRITE statement is a data transfer output statement. Data can be output
to external sequential, keyed-access, or direct-access records, or to internal
records.

10.5.1 Forms for Sequential WRITE Statements
Sequential WRITE statements transfer output data to external sequential
access records. The statements can be formatted by using format specifiers
(which can use list-directed formatting) or namelist specifiers (for namelist
formatting), or they can be unformatted.

A sequential WRITE statement takes one of the following forms:

Formatted

WRITE (eunit, format [,advance] [,iostat] [,err]) [io-list]

Formatted: List-Directed

WRITE (eunit, * [,iostat] [,err]) [io-list]

Formatted: Namelist

WRITE (eunit, nml-group [,iostat] [,err])

Data Transfer I/O Statements 10–37

Unformatted

WRITE (eunit [,iostat] [,err]) [io-list]

eunit
Is an external unit specifier ([UNIT=]io-unit).

format
Is a format specifier ([FMT=]format).

advance
Is an advance specifier (ADVANCE=c-expr). If the value of c-expr is ’YES’,
the statement uses advancing output; if the value is ’NO’, the statement uses
nonadvancing output. The default value is ’YES’.

iostat
Is a status specifier (IOSTAT=i-var).

err
Is a branch specifier (ERR=label) if an error condition occurs.

io-list
Is an I/O list.

*
Is the format specifier indicating list-directed formatting. (It can also be
specified as FMT=*.)

nml-group
Is a namelist specifier ([NML=]group) indicating namelist formatting.

For More Information:

• On I/O control-list specifiers, see Section 10.2.1.

• On I/O lists, see Section 10.2.2.

• On advancing I/O, see Section 10.2.1.9 and the HP Fortran for OpenVMS
User Manual.

10–38 Data Transfer I/O Statements

10.5.1.1 Rules for Formatted Sequential WRITE Statements
Formatted, sequential WRITE statements translate data from binary to
character form by using format specifications for editing (if any). The
translated data is written to an external file that is connected for sequential
access.

Values can be transferred from objects of intrinsic or derived types. For derived
types, values of intrinsic types are transferred from the components of intrinsic
types that ultimately make up these structured objects.

The output list and format specification must not specify more characters for
a record than the record size. (Record size is specified by RECL in an OPEN
statement.)

If the file is connected for unformatted I/O, formatted data transfer is
prohibited.

Examples
The following example shows formatted, sequential WRITE statements:

WRITE (UNIT=8, FMT=’(B)’, ADVANCE=’NO’) C

WRITE (*, "(F6.5)", ERR=25, IOSTAT=IO_STATUS) A, B, C

10.5.1.2 Rules for List-Directed Sequential WRITE Statements
List-directed, sequential WRITE statements transfer data from binary to
character form by using the data types of the corresponding I/O list item to
determine the form of the data. The translated data is then written to an
external file.

In general, values transferred as output have the same forms as values
transferred as input.

Table 10–1 shows the default output formats for each intrinsic data type.

Data Transfer I/O Statements 10–39

Table 10–1 Default Formats for List-Directed Output

Data Type Output Format

BYTE I5

LOGICAL(1) L2

LOGICAL(2) L2

LOGICAL(4) L2

LOGICAL(8) L2

INTEGER(1) I5

INTEGER(2) I7

INTEGER(4) I12

INTEGER(8) I22

REAL(4) 1PG15.7E2

REAL(8) T_floating 1PG24.15E3

REAL(8) D_floating 1PG24.16E2

REAL(8) G_floating 1PG24.15E3

REAL(16) 1PG43.33E4

COMPLEX(4) ’(’,1PG14.7E2,’,’,1PG14.7E2,’)’

COMPLEX(8) T_floating ’(’,1PG23.15E3,’,’,1PG23.15E3,’)’

COMPLEX(8) D_floating ’(’,1PG23.16E2,’,’,1PG23.16E2,’)’

COMPLEX(8) G_floating ’(’,1PG23.15E3,’,’,1PG23.15E3,’)’

COMPLEX(16) ’(’,1PG42.33E4,’,’,1PG42.33E4,’)’

CHARACTER Aw1

1Where w is the length of the character expression.

By default, character constants are not delimited by apostrophes or quotation
marks, and each internal apostrophe or quotation mark is represented
externally by one apostrophe or quotation mark.

This behavior can be changed by the DELIM specifier (in an OPEN statement)
as follows:

• If the file is opened with the DELIM=’QUOTE’ specifier, character
constants are delimited by quotation marks and each internal quotation
mark is represented externally by two consecutive quotation marks.

10–40 Data Transfer I/O Statements

• If the file is opened with the DELIM=’APOSTROPHE’ specifier, character
constants are delimited by apostrophes and each internal apostrophe is
represented externally by two consecutive apostrophes.

Each output statement writes one or more complete records.

A literal character constant or complex constant can be longer than an entire
record. In the case of complex constants, the end of the record can occur
between the comma and the imaginary part, if the imaginary part and closing
right parenthesis cannot fit in the current record.

Each output record begins with a blank character for carriage control, except
for literal character constants that are continued from the previous record.

Slashes, octal values, null values, and repeated forms of values are not output.

If the file is connected for unformatted I/O, list-directed data transfer is
prohibited.

Examples
Suppose the following statements are specified:

DIMENSION A(4)
DATA A/4*3.4/
WRITE (1,*) ’ARRAY VALUES FOLLOW’
WRITE (1,*) A,4

The following records are then written to external unit 1:

ARRAY VALUES FOLLOW
3.400000 3.400000 3.400000 3.400000 4

For More Information:

• On list-directed input, see Section 10.3.1.2.

• On general rules for formatted, sequential WRITE statements, see
Section 10.5.1.1.

10.5.1.3 Rules for Namelist Sequential WRITE Statements
Namelist, sequential WRITE statements translate data from internal to
external form by using the data types of the objects in the corresponding
NAMELIST statement to determine the form of the data. The translated data
is then written to an external file.

In general, values transferred as output have the same forms as values
transferred as input.

By default, character constants are not delimited by apostrophes or quotation
marks, and each internal apostrophe or quotation mark is represented
externally by one apostrophe or quotation mark.

Data Transfer I/O Statements 10–41

This behavior can be changed by the DELIM specifier (in an OPEN statement)
as follows:

• If the file is opened with the DELIM=’QUOTE’ specifier, character
constants are delimited by quotation marks and each internal quotation
mark is represented externally by two consecutive quotation marks.

• If the file is opened with the DELIM=’APOSTROPHE’ specifier, character
constants are delimited by apostrophes and each internal apostrophe is
represented externally by two consecutive apostrophes.

Each output statement writes one or more complete records.

A literal character constant or complex constant can be longer than an entire
record. In the case of complex constants, the end of the record can occur
between the comma and the imaginary part, if the imaginary part and closing
right parenthesis cannot fit in the current record.

Each output record begins with a blank character for carriage control, except
for literal character constants that are continued from the previous record.

Slashes, octal values, null values, and repeated forms of values are not output.

If the file is connected for unformatted I/O, namelist data transfer is
prohibited.

Examples
Consider the following statements:

CHARACTER*19 NAME(2)/2*’ ’/
REAL PITCH, ROLL, YAW, POSITION(3)
LOGICAL DIAGNOSTICS
INTEGER ITERATIONS
NAMELIST /PARAM/ NAME, PITCH, ROLL, YAW, POSITION, &

DIAGNOSTICS, ITERATIONS
...
READ (UNIT=1,NML=PARAM)
WRITE (UNIT=2,NML=PARAM)

Suppose the following input is read:

&PARAM
NAME(2)(10:)=’HEISENBERG’,
PITCH=5.0, YAW=0.0, ROLL=5.0,
DIAGNOSTICS=.TRUE.
ITERATIONS=10

/

10–42 Data Transfer I/O Statements

The following is then written to the file connected to unit 2:

&PARAM
NAME = ’ ’, ’ HEISENBERG’,
PITCH = 5.000000 ,
ROLL = 5.000000 ,
YAW = 0.0000000E+00,
POSITION = 3*0.0000000E+00,
DIAGNOSTICS = T,
ITERATIONS = 10
/

Note that character values are not enclosed in apostrophes unless the output
file is opened with DELIM=’APOSTROPHE’. The value of POSITION is not
defined in the namelist input, so the current value of POSITION is written.

For More Information:

• On namelist input, see Section 10.3.1.3.

• On general rules for formatted, sequential WRITE statements, see
Section 10.5.1.1.

10.5.1.4 Rules for Unformatted Sequential WRITE Statements
Unformatted, sequential WRITE statements transfer binary data (without
translation) between the entities specified in the I/O list and the current
record. Only one record is written.

Objects of intrinsic or derived types can be transferred.

This form of WRITE statement writes exactly one record. If there is no I/O
item list, the statement writes one null record.

If the file is connected for formatted, list-directed, or namelist I/O, unformatted
data transfer is prohibited.

Examples
The following example shows an unformatted, sequential WRITE statement:

WRITE (UNIT=6, IOSTAT=IO_STATUS) A, B, C

10.5.2 Forms for Direct-Access WRITE Statements
Direct-access WRITE statements transfer output data to external records with
direct access. (The attributes of a direct-access file are established by the
OPEN statement.)

A direct-access WRITE statement can be formatted or unformatted, and takes
one of the following forms:

Data Transfer I/O Statements 10–43

Formatted

WRITE (eunit, format, rec [,iostat] [,err]) [io-list]

Unformatted

WRITE (eunit, rec [,iostat] [,err]) [io-list]

eunit
Is an external unit specifier ([UNIT=]io-unit).

format
Is a format specifier ([FMT=]format). It must not be an asterisk (*).

rec
Is a record specifier (REC=r).

iostat
Is a status specifier (IOSTAT=i-var).

err
Is a branch specifier (ERR=label) if an error condition occurs.

io-list
Is an I/O list.

For More Information:

• On I/O control-list specifiers, see Section 10.2.1.

• On I/O lists, see Section 10.2.2.

10.5.2.1 Rules for Formatted Direct-Access WRITE Statements
Formatted, direct-access WRITE statements translate data from binary
to character form by using format specifications for editing (if any). The
translated data is written to an external file that is connected for direct access.

Values can be transferred from objects of intrinsic or derived types. For derived
types, values of intrinsic types are transferred from the components of intrinsic
types that ultimately make up these structured objects.

If the values specified by the I/O list do not fill a record, blank characters are
added to fill the record. If the I/O list specifies too many characters for the
record, an error occurs.

If the format specification specifies another record, the record number is
increased by 1 as each subsequent record is written by that output statement.

10–44 Data Transfer I/O Statements

Examples
The following example shows a formatted, direct-access WRITE statement:

WRITE (2, REC=35, FMT=10) (NUM(K), K=1,10)

10.5.2.2 Rules for Unformatted Direct-Access WRITE Statements
Unformatted, direct-access WRITE statements transfer binary data (without
translation) between the entities specified in the I/O list and the current record.
Only one record is written.

Objects of intrinsic or derived types can be transferred.

If the values specified by the I/O list do not fill a record, blank characters are
added to fill the record. If the I/O list specifies too many characters for the
record, an error occurs.

If the file is connected for formatted, list-directed, or namelist I/O, unformatted
data transfer is prohibited.

Examples
The following example shows unformatted, direct-access WRITE statements:

WRITE (1, REC=10) LIST(1), LIST(8)
WRITE (4, REC=58, IOSTAT=K, ERR=500) (RHO(N), N=1,5)

10.5.3 Forms for Indexed WRITE Statements
Indexed WRITE statements transfer output data to external records that have
keyed access. (The OPEN statement establishes the attributes of an indexed
file.)

Indexed WRITE statements always write a new record. You should use the
REWRITE statement to update an existing record.

The syntax of an indexed WRITE statement is similar to a sequential WRITE
statement, but an indexed WRITE statement refers to an I/O unit connected to
an indexed file, whereas the sequential WRITE statement refers to an I/O unit
connected to a sequential file.

An indexed WRITE statement can be formatted or unformatted, and takes one
of the following forms:

Formatted

WRITE (eunit, format, [,iostat] [,err]) [io-list]

Unformatted

WRITE (eunit, [,iostat] [,err]) [io-list]

Data Transfer I/O Statements 10–45

eunit
Is an external unit specifier ([UNIT=]io-unit).

format
Is a format specifier ([FMT=]format).

iostat
Is a status specifier (IOSTAT=i-var).

err
Is a branch specifier (ERR=label) if an error condition occurs.

io-list
Is an I/O list.

For More Information:

• On I/O control-list specifiers, see Section 10.2.1.

• On I/O lists, see Section 10.2.2.

• On the REWRITE statement, see Section 10.7.

10.5.3.1 Rules for Formatted Indexed WRITE Statements
Formatted, indexed WRITE statements translate data from binary to character
form by using format specifications for editing (if any). The translated data is
written to an external file that is connected for keyed access.

No key parameters are required in the list of control parameters, because all
necessary key information is contained in the output record.

When you use a formatted indexed WRITE statement to write an INTEGER
key, the key is translated from internal binary form to external character form.
A subsequent attempt to read the record by using an integer key may not
match the key field in the record.

If the file is connected for unformatted I/O, formatted data transfer is
prohibited.

Examples
Consider the following example (which assumes that the first 10 bytes of a
record are a character key):

WRITE (4,100) KEYVAL, (RDATA(I), I=1, 20)
100 FORMAT (A10, 20F15.7)

The WRITE statement writes the translated values of each of the 20 elements
of the array RDATA to a new formatted record in the indexed file connected to
I/O unit 4. KEYVAL is the key by which the record is accessed.

10–46 Data Transfer I/O Statements

10.5.3.2 Rules for Unformatted Indexed WRITE Statements
Unformatted, indexed WRITE statements transfer binary data (without
translation) between the entities specified in the I/O list and the current
record.

No key parameters are required in the list of control parameters, because all
necessary key information is contained in the output record.

If the values specified by the I/O list do not fill a fixed-length record being
written, the unused portion of the record is filled with zeros. If the values
specified do not fit in the record, an error occurs.

Since derived data types of sequence type usually have a fixed record format,
you can write to indexed files by using a sequence derived-type structure that
models the file’s record format. This lets you perform the I/O operation with a
single derived-type variable instead of a potentially long I/O list. Nonsequence
derived types should not be used for this purpose.

If the file is connected for formatted I/O, unformatted data transfer is
prohibited.

Examples
The following example shows an unformatted, indexed WRITE statement:

WRITE (UNIT=8, IOSTAT=IO_STATUS) A, B, C

10.5.4 Forms and Rules for Internal WRITE Statements
Internal WRITE statements transfer output data to an internal file.

An internal WRITE statement can only be formatted. It must include format
specifiers (which can use list-directed formatting). Namelist formatting is not
permitted.

An internal WRITE statement takes the following form:

WRITE (iunit, format [,iostat] [,err]) [io-list]

iunit
Is an internal unit specifier ([UNIT=]io-unit). It must be a default character
variable. It must not be an array section with a vector subscript.

format
Is a format specifier ([FMT=]format). An asterisk (*) indicates list-directed
formatting.

iostat
Is a status specifier (IOSTAT=i-var).

Data Transfer I/O Statements 10–47

err
Is a branch specifier (ERR=label) if an error condition occurs.

io-list
Is an I/O list.

Formatted, internal WRITE statements translate data from binary to character
form by using format specifications for editing (if any). The translated data is
written to an internal file.

Values can be transferred from objects of intrinsic or derived types. For derived
types, values of intrinsic types are transferred from the components of intrinsic
types that ultimately make up these structured objects.

If the number of characters written in a record is less than the length of the
record, the rest of the record is filled with blanks. The number of characters to
be written must not exceed the length of the record.

Character constants are not delimited by apostrophes or quotation marks, and
each internal apostrophe or quotation mark is represented externally by one
apostrophe or quotation mark.

Examples
The following example shows an internal WRITE statement:

INTEGER J, K, STAT_VALUE
CHARACTER*50 CHAR_50
...
WRITE (FMT=*, UNIT=CHAR_50, IOSTAT=STAT_VALUE) J, K

For More Information:

• On I/O control-list specifiers, see Section 10.2.1.

• On I/O lists, see Section 10.2.2.

• On list-directed output, see Section 10.5.1.2.

• On using internal files, see the HP Fortran for OpenVMS User Manual.

10.6 PRINT and TYPE Statements
The PRINT statement is a data transfer output statement. TYPE is a synonym
for PRINT. All forms and rules for the PRINT statement also apply to the
TYPE statement.

The PRINT statement is the same as a formatted, sequential WRITE
statement, except that the PRINT statement must never transfer data to
user-specified I/O units.

10–48 Data Transfer I/O Statements

A PRINT statement takes one of the following forms:

Formatted

PRINT form [,io-list]

Formatted: List-Directed

PRINT * [,io-list]

Formatted: Namelist

PRINT nml

form
Is the nonkeyword form of a format specifier (no FMT=).

io-list
Is an I/O list.

*
Is the format specifier indicating list-directed formatting.

nml
Is the nonkeyword form of a namelist specifier (no NML=) indicating namelist
formatting.

Examples
In the following example, one record (containing four fields of data) is printed
to the implicit output device:

CHARACTER*16 NAME, JOB
PRINT 400, NAME, JOB

400 FORMAT (’NAME=’, A, ’JOB=’, A)

For More Information:

• On formatted, sequential WRITE statements, see Section 10.5.1.1.

• On formatted data and data transfers, see the HP Fortran for OpenVMS
User Manual.

• On list-directed output, see Section 10.5.1.2.

• On namelist output, see Section 10.5.1.3.

• On I/O lists, see Section 10.2.2.

Data Transfer I/O Statements 10–49

10.7 REWRITE Statement
The REWRITE statement is a data transfer output statement that rewrites the
current record.

A REWRITE statement can be formatted or unformatted, and takes one of the
following forms:

Formatted

REWRITE (eunit, format [,iostat] [,err]) [io-list]

Unformatted

REWRITE (eunit [,iostat] [,err]) [io-list]

eunit
Is an external unit specifier ([UNIT=]io-unit).

format
Is a format specifier ([FMT=]format).

iostat
Is a status specifier (IOSTAT=i-var).

err
Is a branch specifier (ERR=label) if an error condition occurs.

io-list
Is an I/O list.

In the REWRITE statement, data (translated if formatted; untranslated if
unformatted) is written to the current (existing) record in one of the following
types of external files:

• In all types of files. In sequential files, the current record and new record
must be the same length.

The current record is the last record accessed by a preceding, successful
sequential, indexed, or direct-access READ statement.

Between a READ and REWRITE statement, you should not specify any other
I/O statement (except INQUIRE) on that logical unit. Execution of any other
I/O statement on the logical unit destroys the current-record context and
causes the current record to become undefined.

Only one record can be rewritten in a single REWRITE statement operation.

10–50 Data Transfer I/O Statements

The output list (and format specification, if any) must not specify more
characters for a record than the record size. (Record size is specified by RECL
in an OPEN statement.)

If the number of characters specified by the I/O list (and format, if any) do not
fill a record, blank characters are added to fill the record.

If the primary key value is changed in a keyed-access file, an error occurs.

Examples
In the following example, the current record (contained in the relative
organization file connected to logical unit 3) is updated with the values
represented by NAME, AGE, and BIRTH:

REWRITE (3, 10, ERR=99) NAME, AGE, BIRTH
10 FORMAT (A16, I2, A8)

For More Information:

• On formatted data and data transfers, see the HP Fortran for OpenVMS
User Manual.

• On I/O control-list specifiers, see Section 10.2.1.

• On I/O lists, see Section 10.2.2.

• On the RECL specifier in OPEN statements, see Section 12.6.25 for details.

Data Transfer I/O Statements 10–51

11
I/O Formatting

This chapter contains information on the following topics:

• Section 11.1, Overview

• Section 11.2, Format Specifications

• Section 11.3, Data Edit Descriptors

• Section 11.4, Control Edit Descriptors

• Section 11.5, Character String Edit Descriptors

• Section 11.6, Nested and Group Repeat Specifications

• Section 11.7, Variable Format Expressions

• Section 11.8, Printing of Formatted Records

• Section 11.9, Interaction Between Format Specifications and I/O Lists

11.1 Overview
A format appearing in an input or output (I/O) statement specifies the form of
data being transferred and the data conversion (editing) required to achieve
that form. The format specified can be explicit or implicit.

Explicit format is indicated in a format specification that appears in a
FORMAT statement or a character expression (the expression must evaluate to
a valid format specification).

The format specification contains edit descriptors, which can be data edit
descriptors, control edit descriptors, or string edit descriptors.

Implicit format is determined by the processor and is specified using list-
directed or namelist formatting.

List-directed formatting is specified with an asterisk (*); namelist formatting is
specified with a namelist group name.

I/O Formatting 11–1

List-directed formatting can be specified for advancing sequential files and
internal files. Namelist formatting can be specified only for advancing
sequential files.

For More Information:

• On list-directed input, see Section 10.3.1.2; output, see Section 10.5.1.2.

• On namelist input, see Section 10.3.1.3; output, see Section 10.5.1.3.

11.2 Format Specifications
A format specification can appear in a FORMAT statement or character
expression. In a FORMAT statement, it is preceded by the keyword FORMAT.
A format specification takes the following form:

(format-list)

format-list
Is a list of one or more of the following edit descriptors, separated by commas
or slashes (/):

Data edit descriptors: I, B, O, Z, F, E, EN, ES, D, G, L, and A.

Control edit descriptors: T, TL, TR, X, S, SP, SS, BN, BZ, P, :, /, $, \, and Q.

String edit descriptors: H, ’c’, and "c", where c is a character constant.

A comma can be omitted in the following cases:

• Between a P edit descriptor and an immediately following F, E, EN, ES, D,
or G edit descriptor

• Before a slash (/) edit descriptor when the optional repeat specification is
not present

• After a slash (/) edit descriptor

• Before or after a colon (:) edit descriptor

Edit descriptors can be nested and a repeat specification can precede data edit
descriptors, the slash edit descriptor, or a parenthesized list of edit descriptors.

Rules and Behavior
A FORMAT statement must be labeled.

Named constants are not permitted in format specifications.

If the associated I/O statement contains an I/O list, the format specification
must contain at least one data edit descriptor or the control edit descriptor Q.

11–2 I/O Formatting

Blank characters can precede the initial left parenthesis, and additional blanks
can appear anywhere within the format specification. These blanks have no
meaning unless they are within a character string edit descriptor.

When a formatted input statement is executed, the setting of the BLANK
specifier (for the relevant logical unit) determines the interpretation of blanks
within the specification. If the BN or BZ edit descriptors are specified for a
formatted input statement, they supersede the default interpretation of blanks.
(For more information on BLANK defaults, see Section 12.6.4.)

For formatted input, use the comma as an external field separator. The
comma terminates the input of fields (for noncharacter data types) that are
shorter than the number of characters expected. It can also designate null
(zero-length) fields.

The first character of a record transmitted to a line printer or terminal is
typically used for carriage control; it is not printed. The first character of such
a record should be a blank, 0, 1, $, +, or ASCII NUL. Any other character is
treated as a blank.

A format specification cannot specify more output characters than the external
record can contain. For example, a line printer record cannot contain more
than 133 characters, including the carriage control character.

Table 11–1 summarizes the edit descriptors that can be used in format
specifications.

Table 11–1 Summary of Edit Descriptors

Code Form Effect

A A[w] Transfers character or Hollerith values. (Section 11.3.6)

B Bw[.m] Transfers binary values. (Section 11.3.3.2)

BN BN Ignores embedded and trailing blanks in a
numeric input field.

(Section 11.4.4.1)

BZ BZ Treats embedded and trailing blanks in a
numeric input field as zeros.

(Section 11.4.4.2)

D Dw.d Transfers real values with D exponents. (Section 11.3.4.2)

E Ew.d[Ee] Transfers real values with E exponents. (Section 11.3.4.2)

EN ENw.d[Ee] Transfers real values with engineering
notation.

(Section 11.3.4.3)

(continued on next page)

I/O Formatting 11–3

Table 11–1 (Cont.) Summary of Edit Descriptors

Code Form Effect

ES ESw.d[Ee] Transfers real values with scientific
notation.

(Section 11.3.4.4)

F Fw.d Transfers real values with no exponent. (Section 11.3.4.1)

G Gw.d[Ee] Transfers values of all intrinsic types. (Section 11.3.4.5)

H nHch[ch...] Transfers characters following the H edit
descriptor to an output record.

(Section 11.5)

I Iw[.m] Transfers decimal integer values. (Section 11.3.3.1)

L Lw Transfers logical values: on input,
transfers characters; on output, transfers
T or F.

(Section 11.3.5)

O Ow[.m] Transfers octal values. (Section 11.3.3.3)

P kP Interprets certain real numbers with a
specified scale factor.

(Section 11.4.5)

Q Q Returns the number of characters
remaining in an input record.

(Section 11.4.9)

S S Reinvokes optional plus sign (+) in
numeric output fields; counters the action
of SP and SS.

(Section 11.4.3.3)

SP SP Writes optional plus sign (+) into numeric
output fields.

(Section 11.4.3.1)

SS SS Suppresses optional plus sign (+) in
numeric output fields.

(Section 11.4.3.2)

T Tn Tabs to specified position. (Section 11.4.2.1)

TL TLn Tabs left the specified number of positions. (Section 11.4.2.2)

TR TRn Tabs right the specified number of
positions.

(Section 11.4.2.3)

X nX Skips the specified number of positions. (Section 11.4.2.4)

Z Zw[.m] Transfers hexadecimal values. (Section 11.3.3.4)

$ $ Suppresses trailing carriage return during
interactive I/O.

(Section 11.4.8)

: : Terminates format control if there are no
more items in the I/O list.

(Section 11.4.7)

(continued on next page)

11–4 I/O Formatting

Table 11–1 (Cont.) Summary of Edit Descriptors

Code Form Effect

/ [r]/ Terminates the current record and moves
to the next record.

(Section 11.4.6)

\ \ Continues the same record; same as $. (Section 11.4.8)

’c’1 ’c’ Transfers the character literal constant
(between the delimiters) to an output
record.

(Section 11.5)

1These delimiters can also be quotation marks (").

Character Format Specifications
In data transfer I/O statements, a format specifier ([FMT=]format) can be
a character expression that is a character array, character array element,
or character constant. This type of format is also called a run-time format
because it can be constructed or altered during program execution.

The expression must evaluate to a character string whose leading part is a
valid format specification (including the enclosing parentheses).

If the expression is a character array element, the format specification must be
contained entirely within that element.

If the expression is a character array, the format specification can continue
past the first element into subsequent consecutive elements.

If the expression is a character constant delimited by apostrophes, use two
consecutive apostrophes (’’) to represent an apostrophe character in the
format specification; for example:

PRINT ’("NUM can’’t be a real number")’

Similarly, if the expression is a character constant delimited by quotation
marks, use two consecutive quotation marks ("") to represent a quotation mark
character in the format specification.

To avoid using consecutive apostrophes or quotation marks, you can put the
character constant in an I/O list instead of a format specification, as follows:

PRINT "(A)", "NUM can’t be a real number"

The following shows another character format specification:

WRITE (6, ’(I12, I4, I12)’) I, J, K

I/O Formatting 11–5

In the following example, the format specification changes with each iteration
of the DO loop:

SUBROUTINE PRINT(TABLE)
REAL TABLE(10,5)
CHARACTER*5 FORCHR(0:5), RPAR*1, FBIG, FMED, FSML
DATA FORCHR(0),RPAR /’(’,’)’/
DATA FBIG,FMED,FSML /’F8.2,’,’F9.4,’,’F9.6,’/
DO I=1,10
DO J=1,5
IF (TABLE(I,J) .GE. 100.) THEN
FORCHR(J) = FBIG

ELSE IF (TABLE(I,J) .GT. 0.1) THEN
FORCHR(J) = FMED

ELSE
FORCHR(J) = FSML

END IF
END DO
FORCHR(5)(5:5) = RPAR
WRITE (6,FORCHR) (TABLE(I,J), J=1,5)

END DO
END

The DATA statement assigns a left parenthesis to character array element
FORCHR(0), and (for later use) a right parenthesis and three F edit
descriptors to character variables.

Next, the proper F edit descriptors are selected for inclusion in the format
specification. The selection is based on the magnitude of the individual
elements of array TABLE.

A right parenthesis is added to the format specification just before the WRITE
statement uses it.

Note

Format specifications stored in arrays are recompiled at run time each
time they are used. If a Hollerith or character run-time format is used
in a READ statement to read data into the format itself, that data is
not copied back into the original array, and the array is unavailable for
subsequent use as a run-time format specification.

11–6 I/O Formatting

For More Information:

• On data edit descriptors, see Section 11.3.

• On control edit descriptors, see Section 11.4.

• On character string edit descriptors, see Section 11.5.

• On nested and group repeats, see Section 11.6.

• On printing of formatted records, see Section 11.8.

11.3 Data Edit Descriptors
A data edit descriptor causes the transfer or conversion of data to or from its
internal representation.

The part of a record that is input or output and formatted with data edit
descriptors (or character string edit descriptors) is called a field.

This section describes the forms for data edit descriptors and the individual
descriptors, themselves. It also describes general rules for numeric editing and
default widths for data edit descriptors.

11.3.1 Forms for Data Edit Descriptors
A data edit descriptor takes one of the following forms:

[r]c
[r]cw
[r]cw.m
[r]cw.d
[r]cw.d[Ee]

r
Is a repeat specification. The range of r is 1 through 2147483647 (2**31–1). If
r is omitted, it is assumed to be 1.

c
Is one of the following format codes: I, B, O, Z, F, E, EN, ES, D, G, L, or A.

w
Is the total number of digits in the field (the field width). If omitted, the
system applies default values (see Section 11.3.7). The range of w is 1 through
2147483647 (2**31–1). For I, B, O, Z, and F, the range can start at zero.

I/O Formatting 11–7

m
Is the minimum number of digits that must be in the field (including leading
zeros). The range of m is 0 through 32767 (2**15–1).

d
Is the number of digits to the right of the decimal point (the significant digits).
The range of d is 0 through 32767 (2**15–1).

The number of significant digits is affected if a scale factor is specified for the
data edit descriptor.

E
Identifies an exponent field.

e
Is the number of digits in the exponent. The range of e is 1 through 32767
(2**15–1).

Rules and Behavior
Fortran 95/90 (and the previous standard) allows the field width to be omitted
only for the A descriptor. However, HP Fortran allows the field width to be
omitted for any data edit descriptor.

The r, w, m, d, and e must all be positive, unsigned, integer literal constants;
or variable format expressions; no kind parameter can be specified. They must
not be named constants.

Actual useful ranges for r, w, m, d, and e may be constrained by record sizes
(RECL) and the file system.

The data edit descriptors have the following specific forms:

Integer: Iw[.m], Bw[.m], Ow[.m], and Zw[.m]

Real and complex: Fw.d, Ew.d[Ee], ENw.d[Ee], ESw.d[Ee], Dw.d, and Gw.d[Ee]

Logical: Lw

Character: A[w]

The d must be specified with F, E, D, and G field descriptors even if d is zero.
The decimal point is also required. You must specify both w and d, or omit
them both.

A repeat specification can simplify formatting. For example, the following two
statements are equivalent:

20 FORMAT (E12.4,E12.4,E12.4,I5,I5,I5,I5)
20 FORMAT (3E12.4,4I5)

11–8 I/O Formatting

For More Information:

• On general rules for numeric editing, see Section 11.3.2.

• On nested and group repeats, see Section 11.6.

11.3.2 General Rules for Numeric Editing
The following rules apply to input and output data for numeric editing (data
edit descriptors I, B, O, Z, F, E, EN, ES, D, and G).

Rules for Input Processing
Leading blanks in the external field are ignored. If BLANK=’NULL’ is in
effect (or the BN edit descriptor has been specified) embedded and trailing
blanks are ignored; otherwise, they are treated as zeros. An all-blank field is
treated as a value of zero.

The following table shows how blanks are interpreted by default:

Type of Unit or File Default

An explicitly OPENed unit BLANK=’NULL’

An internal file BLANK=’NULL’

A preconnected file1 BLANK=’NULL’

1For interactive input from preconnected files, you should explicitly specify the BN or BZ edit
descriptor to ensure desired behavior.

A minus sign must precede a negative value in an external field; a plus sign is
optional before a positive value.

In input records, constants can include any valid kind parameter. Named
constants are not permitted.

If the data field in a record contains fewer than w characters, an input
statement will read characters from the next data field in the record. You
can prevent this by padding the short field with blanks or zeros, or by using
commas to separate the input data. The comma terminates the data field, and
can also be used to designate null (zero-length) fields. For more information,
see Section 11.3.8.

Rules for Output Processing
The field width w must be large enough to include any leading plus or minus
sign, and any decimal point or exponent. For example, the field width for an E
data edit descriptor must be large enough to contain the following:

• For positive numbers: d+5 or d+e+3 characters

I/O Formatting 11–9

• For negative numbers: d+6 or d+e+4 characters

A positive or zero value (zero is allowed for I, B, O, Z, and F descriptors) can
have a plus sign, depending on which sign edit descriptor is in effect. If a value
is negative, the leftmost nonblank character is a minus sign.

If the value is smaller than the field width specified, leading blanks are
inserted (the value is right-justified). If the value is too large for the field
width specified, the entire output field is filled with asterisks (*).

When the value of the field width is zero, the compiler selects the smallest
possible positive actual field width that does not result in the field being filled
with asterisks.

For More Information:

• On format specifications, in general, see Section 11.2.

• On the form for data edit descriptors, see Section 11.3.1.

• On compiler options, see the HP Fortran for OpenVMS User Manual.

11.3.3 Integer Editing
Integer editing is controlled by the I (decimal), B (binary), O (octal), and Z
(hexadecimal) data edit descriptors.

11.3.3.1 I Editing
The I edit descriptor transfers decimal integer values. It takes the following
form:

Iw[.m]

The value of m (the minimum number of digits in the constant) must not
exceed the value of w (the field width). The m has no effect on input, only
output.

The specified I/O list item must be of type integer or logical.

The G edit descriptor can be used to edit integer data; it follows the same rules
as Iw.

Rules for Input Processing
On input, the I data edit descriptor transfers w characters from an external
field and assigns their integer value to the corresponding I/O list item. The
external field data must be an integer constant.

If the value exceeds the range of the corresponding input list item, an error
occurs.

11–10 I/O Formatting

The following shows input using the I edit descriptor:

Format Input Value

I4 2788 2788

I3 -26 -26

I9 ∆∆∆∆∆∆312 312

Rules for Output Processing
On output, the I data edit descriptor transfers the value of the corresponding
I/O list item, right-justified, to an external field that is w characters long.

The field consists of zero or more blanks, followed by a sign (a plus sign is
optional for positive values, a minus sign is required for negative values),
followed by an unsigned integer constant with no leading zeros.

If m is specified, the unsigned integer constant must have at least m digits. If
necessary, it is padded with leading zeros.

If m is zero, and the output list item has the value zero, the external field is
filled with blanks.

The following shows output using the I edit descriptor:

Format Value Output

I3 284 284

I4 -284 -284

I4 0 ∆∆∆0

I5 174 ∆∆174

I2 3244 **

I3 -473 ***

I7 29.812 An error; the decimal point is invalid

I4.0 0 ∆∆∆∆
I4.2 1 ∆∆01

I4.4 1 0001

For More Information:

• On the form for data edit descriptors, see Section 11.3.1.

• On general rules for numeric editing, see Section 11.3.2.

I/O Formatting 11–11

11.3.3.2 B Editing
The B data edit descriptor transfers binary (base 2) values. It takes the
following form:

Bw[.m]

The value of m (the minimum number of digits in the constant) must not
exceed the value of w (the field width). The m has no effect on input, only
output.

The specified I/O list item can be of type integer, real, or logical.

Rules for Input Processing
On input, the B data edit descriptor transfers w characters from an external
field and assigns their binary value to the corresponding I/O list item. The
external field must contain only binary digits (0 or 1) or blanks.

If the value exceeds the range of the corresponding input list item, an error
occurs.

The following shows input using the B edit descriptor:

Format Input Value

B4 1001 9

B1 1 1

B2 0 0

Rules for Output Processing
On output, the B data edit descriptor transfers the binary value of the
corresponding I/O list item, right-justified, to an external field that is w
characters long.

The field consists of zero or more blanks, followed by an unsigned integer
constant (consisting of binary digits) with no leading zeros. A negative value is
transferred in internal form.

If m is specified, the unsigned integer constant must have at least m digits. If
necessary, it is padded with leading zeros.

If m is zero, and the output list item has the value zero, the external field is
filled with blanks.

11–12 I/O Formatting

The following shows output using the B edit descriptor:

Format Value Output

B4 9 1001

B2 0 ∆0

For More Information:

• On the form for data edit descriptors, see Section 11.3.1.

• On general rules for numeric editing, see Section 11.3.2.

11.3.3.3 O Editing
The O data edit descriptor transfers octal (base 8) values. It takes the following
form:

Ow[.m]

The value of m (the minimum number of digits in the constant) must not
exceed the value of w (the field width). The m has no effect on input, only
output.

The specified I/O list item can be of type integer, real, or logical.

Rules for Input Processing
On input, the O data edit descriptor transfers w characters from an external
field and assigns their octal value to the corresponding I/O list item. The
external field must contain only octal digits (0 through 7) or blanks.

If the value exceeds the range of the corresponding input list item, an error
occurs.

The following shows input using the O edit descriptor:

Format Input Value

O5 32767 32767

O4 16234 1623

O3 97∆ An error; the 9 is invalid in octal notation

Rules for Output Processing
On output, the O data edit descriptor transfers the octal value of the
corresponding I/O list item, right-justified, to an external field that is w
characters long.

I/O Formatting 11–13

The field consists of zero or more blanks, followed by an unsigned integer
constant (consisting of octal digits) with no leading zeros. A negative value is
transferred in internal form without a leading minus sign.

If m is specified, the unsigned integer constant must have at least m digits. If
necessary, it is padded with leading zeros.

If m is zero, and the output list item has the value zero, the external field is
filled with blanks.

The following shows output using the O edit descriptor:

Format Value Output

O6 32767 ∆77777

O12 –32767 ∆37777700001

O2 14261 **

O4 27 ∆∆33

O5 10.5 41050

O4.2 7 ∆∆07

O4.4 7 0007

For More Information:

• On the form for data edit descriptors, see Section 11.3.1.

• On general rules for numeric editing, see Section 11.3.2.

11.3.3.4 Z Editing
The Z data edit descriptor transfers hexadecimal (base 16) values. It takes the
following form:

Zw[.m]

The value of m (the minimum number of digits in the constant) must not
exceed the value of w (the field width). The m has no effect on input, only
output.

The specified I/O list item can be of type integer, real, or logical.

11–14 I/O Formatting

Rules for Input Processing
On input, the Z data edit descriptor transfers w characters from an external
field and assigns their hexadecimal value to the corresponding I/O list item.
The external field must contain only hexadecimal digits (0 though 9 and A (a)
through F(f)) or blanks.

If the value exceeds the range of the corresponding input list item, an error
occurs.

The following shows input using the Z edit descriptor:

Format Input Value

Z3 A94 A94

Z5 A23DEF A23DE

Z5 95.AF2 An error; the decimal point is invalid

Rules for Output Processing
On output, the Z data edit descriptor transfers the hexadecimal value of
the corresponding I/O list item, right-justified, to an external field that is w
characters long.

The field consists of zero or more blanks, followed by an unsigned integer
constant (consisting of hexadecimal digits) with no leading zeros. A negative
value is transferred in internal form without a leading minus sign.

If m is specified, the unsigned integer constant must have at least m digits. If
necessary, it is padded with leading zeros.

If m is zero, and the output list item has the value zero, the external field is
filled with blanks.

The following shows output using the Z edit descriptor:

Format Value Output

Z4 32767 7FFF

Z9 -32767 ∆FFFF8001

Z2 16 10

Z4 -10.5 ****

Z3.3 2708 A94

Z6.4 2708 ∆∆0A94

I/O Formatting 11–15

For More Information:

• On the form for data edit descriptors, see Section 11.3.1.

• On general rules for numeric editing, see Section 11.3.2.

11.3.4 Real and Complex Editing
Real and complex editing is controlled by the F, E, D, EN, ES, and G data edit
descriptors.

If no field width (w) is specified for a real data edit descriptor, the system
supplies default values.

Real data edit descriptors can be affected by specified scale factors.

Note

Do not use the real data edit descriptors when attempting to parse
textual input. These descriptors accept some forms that are purely
textual as valid numeric input values. For example, input values T
and F are treated as values -1.0 and 0.0, respectively, for .TRUE. and
.FALSE..

For More Information:

• On the scale factor, see Section 11.4.5.

• On system default values for data edit descriptors , see Section 11.3.7.

• On the form for data edit descriptors, see Section 11.3.1.

• On general rules for numeric editing, see Section 11.3.2.

11.3.4.1 F Editing
The F data edit descriptor transfers real values. It takes the following form:

Fw.d

The value of d (the number of places after the decimal point) must not exceed
the value of w (the field width).

The specified I/O list item must be of type real, or it must be the real or
imaginary part of a complex type.

11–16 I/O Formatting

Rules for Input Processing
On input, the F data edit descriptor transfers w characters from an external
field and assigns their real value to the corresponding I/O list item. The
external field data must be an integer or real constant.

If the input field contains only an exponent letter or decimal point, it is treated
as a zero value.

If the input field does not contain a decimal point or an exponent, it is treated
as a real number of w digits, with d digits to the right of the decimal point.
(Leading zeros are added, if necessary.)

If the input field contains a decimal point, the location of that decimal point
overrides the location specified by the F descriptor.

If the field contains an exponent, that exponent is used to establish the
magnitude of the value before it is assigned to the list element.

The following shows input using the F edit descriptor:

Format Input Value

F8.5 123456789 123.45678

F8.5 -1234.567 -1234.56

F8.5 24.77E+2 2477.0

F5.2 1234567.89 123.45

Rules for Output Processing
On output, the F data edit descriptor transfers the real value of the
corresponding I/O list item, right-justified and rounded to d decimal positions,
to an external field that is w characters long.

The w must be greater than or equal to d+3 to allow for the following:

• A sign (optional if the value is positive and descriptor SP is not in effect)

• At least one digit to the left of the decimal point

• The decimal point

• The d digits to the right of the decimal point

I/O Formatting 11–17

The following shows output using the F edit descriptor:

Format Value Output

F8.5 2.3547188 ∆2.35472

F9.3 8789.7361 ∆8789.736

F2.1 51.44 **

F10.4 -23.24352 ∆∆-23.2435

F5.2 325.013 ******

F5.2 -.2 -0.20

For More Information:

• On the form for data edit descriptors, see Section 11.3.1.

• On general rules for numeric editing, see Section 11.3.2.

11.3.4.2 E and D Editing
The E and D data edit descriptors transfer real values in exponential form.
They take the following form:

Ew.d[Ee]
Dw.d

For the E edit descriptor, the value of d (the number of places after the decimal
point) plus e (the number of digits in the exponent) must not exceed the value
of w (the field width).

For the D edit descriptor, the value of d must not exceed the value of w.

The specified I/O list item must be of type real, or it must be the real or
imaginary part of a complex type.

Rules for Input Processing
On input, the E and D data edit descriptors transfer w characters from an
external field and assigns their real value to the corresponding I/O list item.
The E and D descriptors interpret and assign input data in the same way as
the F data edit descriptor (see Section 11.3.4.1).

The following shows input using the E and D edit descriptors:

11–18 I/O Formatting

Format Input Value

E9.3 734.432E3 734432.0

E12.4 ∆∆1022.43E-6 1022.43E-6

E15.3 52.3759663∆∆∆∆∆ 52.3759663

E12.5 210.5271D+101 210.5271E10

BZ,D10.2 12345∆∆∆∆∆ 12345000.0D0

D10.2 ∆∆123.45∆∆ 123.45D0

D15.3 367.4981763D+04 3.674981763D+06

1If the I/O list item is single-precision real, the E edit descriptor treats the D exponent indicator as
an E indicator.

Rules for Output Processing
On output, the E and D data edit descriptors transfer the real value of the
corresponding I/O list item, right-justified and rounded to d decimal positions,
to an external field that is w characters long.

The w should be greater than or equal to d+7 to allow for the following:

• A sign (optional if the value is positive and descriptor SP is not in effect)

• An optional zero to the left of the decimal point

• The decimal point

• The d digits to the right of the decimal point

• The exponent

The exponent takes one of the following forms:

Edit
Descriptor

Absolute Value
of Exponent

Positive Form
of Exponent

Negative Form
of Exponent

Ew.d | exp |� 99 E+nn E–nn

99 < | exp |� 999 +nnn –nnn

Ew.dEe | exp |� 10e � 1 E+n1n2...ne E–n1n2...ne

Dw.d | exp |� 99 D+nn or E+nn D–nn or E–nn

99 < | exp |� 999 +nnn –nnn

If the exponent value is too large to be converted into one of these forms, an
error occurs.

I/O Formatting 11–19

The exponent field width (e) is optional for the E edit descriptor; if omitted, the
default value is 2. If e is specified, the w should be greater than or equal to
d+e+5.

Note

The w can be as small as d+5 or d+e+3, if the optional fields for the
sign and the zero are omitted.

The following shows output using the E and D edit descriptors:

Format Value Output

E11.2 475867.222 ∆∆∆0.48E+06

E11.5 475867.222 0.47587E+06

E12.3 0.00069 ∆∆∆0.690E-03

E10.3 -0.5555 -0.556E+00

E5.3 56.12 *****

E14.5E4 -1.001 -0.10010E+0001

E13.3E6 0.000123 0.123E-000003

D14.3 0.0363 ∆∆∆∆∆0.363D-01

D23.12 5413.87625793 ∆∆∆∆∆0.541387625793D+04

D9.6 1.2 *********

For More Information:

• On the form for data edit descriptors, see Section 11.3.1.

• On general rules for numeric editing, see Section 11.3.2.

• On the scale factor, see Section 11.4.5.

11.3.4.3 EN Editing
The EN data edit descriptor transfers values by using engineering notation. It
takes the following form:

ENw.d[Ee]

The value of d (the number of places after the decimal point) plus e (the
number of digits in the exponent) must not exceed the value of w (the field
width).

11–20 I/O Formatting

The specified I/O list item must be of type real, or it must be the real or
imaginary part of a complex type.

Rules for Input Processing
On input, the EN data edit descriptor transfers w characters from an external
field and assigns their real value to the corresponding I/O list item. The EN
descriptor interprets and assigns input data in the same way as the F data edit
descriptor (see Section 11.3.4.1).

The following shows input using the EN edit descriptor:

Format Input Value

EN11.3 ∆∆5.321E+00 5.32100

EN11.3 –600.00E-03 -.60000

EN12.3 ∆∆∆3.150E-03 .00315

EN12.3 ∆∆∆3.829E+03 3829.0

Rules for Output Processing
On output, the EN data edit descriptor transfers the real value of the
corresponding I/O list item, right-justified and rounded to d decimal positions,
to an external field that is w characters long. The real value is output in
engineering notation, where the decimal exponent is divisible by 3 and the
absolute value of the significand is greater than or equal to 1 and less than
1000 (unless the output value is zero).

The w should be greater than or equal to d+9 to allow for the following:

• A sign (optional if the value is positive and descriptor SP is not in effect)

• One to three digits to the left of the decimal point

• The decimal point

• The d digits to the right of the decimal point

• The exponent

The exponent takes one of the following forms:

I/O Formatting 11–21

Edit
Descriptor

Absolute Value
of Exponent

Positive Form
of Exponent

Negative Form
of Exponent

ENw.d | exp |� 99 E+nn E–nn

99 < | exp |� 999 +nnn –nnn

ENw.dEe | exp |� 10e � 1 E+n1n2...ne E–n1n2...ne

If the exponent value is too large to be converted into one of these forms, an
error occurs.

The exponent field width (e) is optional; if omitted, the default value is 2. If e
is specified, the w should be greater than or equal to d+e+5.

The following shows output using the EN edit descriptor:

Format Value Output

EN11.2 475867.222 ∆475.87E+03

EN11.5 475867.222 ***********

EN12.3 0.00069 ∆690.000E-06

EN10.3 -0.5555 **********

EN11.2 0.0 ∆000.00E-03

For More Information:

• On the form for data edit descriptors, see Section 11.3.1.

• On general rules for numeric editing, see Section 11.3.2.

11.3.4.4 ES Editing
The ES data edit descriptor transfers values by using scientific notation. It
takes the following form:

ESw.d[Ee]

The value of d (the number of places after the decimal point) plus e (the
number of digits in the exponent) must not exceed the value of w (the field
width).

The specified I/O list item must be of type real, or it must be the real or
imaginary part of a complex type.

11–22 I/O Formatting

Rules for Input Processing
On input, the ES data edit descriptor transfers w characters from an external
field and assigns their real value to the corresponding I/O list item. The ES
descriptor interprets and assigns input data in the same way as the F data edit
descriptor (see Section 11.3.4.1).

The following shows input using the ES edit descriptor:

Format Input Value

ES11.3 ∆∆5.321E+00 5.32100

ES11.3 -6.000E-01 -.60000

ES12.3 ∆∆∆3.150E-03 .00315

ES12.3 ∆∆∆3.829E+03 3829.0

Rules for Output Processing
On output, the ES data edit descriptor transfers the real value of the
corresponding I/O list item, right-justified and rounded to d decimal positions,
to an external field that is w characters long. The real value is output in
scientific notation, where the absolute value of the significand is greater than
or equal to 1 and less than 10 (unless the output value is zero).

The w should be greater than or equal to d+7 to allow for the following:

• A sign (optional if the value is positive and descriptor SP is not in effect)

• One digit to the left of the decimal point

• The decimal point

• The d digits to the right of the decimal point

• The exponent

The exponent takes one of the following forms:

Edit
Descriptor

Absolute Value
of Exponent

Positive Form
of Exponent

Negative Form
of Exponent

ESw.d | exp |� 99 E+nn E–nn

99 < | exp |� 999 +nnn –nnn

ESw.dEe | exp |� 10e � 1 E+n1n2...ne E–n1n2...ne

If the exponent value is too large to be converted into one of these forms, an
error occurs.

I/O Formatting 11–23

The exponent field width (e) is optional; if omitted, the default value is 2. If e
is specified, the w should be greater than or equal to d+e+5.

The following shows output using the ES edit descriptor:

Format Value Output

ES11.2 473214.356 ∆∆∆4.73E+05

ES11.5 473214.356 4.73214E+05

ES12.3 0.00069 ∆∆∆6.900E-04

ES10.3 -.5555 -5.555E-01

ES11.2 0.0 ∆0.000E+00

For More Information:

• On the form for data edit descriptors, see Section 11.3.1.

• On general rules for numeric editing, see Section 11.3.2.

11.3.4.5 G Editing
The G data edit descriptor generally transfers values of real type, but it can be
used to transfer values of any intrinsic type. It takes the following form:

Gw.d[Ee]

The value of d (the number of places after the decimal point) plus e (the
number of digits in the exponent) must not exceed the value of w (the field
width).

The specified I/O list item can be of any intrinsic type.

When used to specify I/O for integer, logical, or character data, the edit
descriptor follows the same rules as Iw, Lw, and Aw, respectively, and d
and e have no effect.

Rules for Real Input Processing
On input, the G data edit descriptor transfers w characters from an external
field and assigns their real value to the corresponding I/O list item. The G
descriptor interprets and assigns input data in the same way as the F data edit
descriptor (see Section 11.3.4.1).

11–24 I/O Formatting

Rules for Real Output Processing
On output, the G data edit descriptor transfers the real value of the
corresponding I/O list item, right-justified and rounded to d decimal positions,
to an external field that is w characters long.

The form in which the value is written is a function of the magnitude of the
value, as described in Table 11–2.

Table 11–2 Effect of Data Magnitude on G Format Conversions

Data Magnitude Equivalent Conversion

0 < m < 0.1 - 0.5 x 10�d�1 Ew.d[Ee]

m = 0 F(w�n).(d�1), n(’b’)

0.1 � 0.5 x 10�d�1� m < 1 � 0.5 x 10�d F(w�n).d, n(’b’)

1 � 0.5 x 10�d � m < 10 � 0.5 x 10�d+1 F(w�n).(d�1), n(’b’)

10 � 0.5 x 10�d+1 � m < 100 � 0.5 x 10�d+2 F(w�n).(d�2), n(’b’)

. .

. .

. .

10d�2 � 0.5 x 10�2 � m < 10d�1 � 0.5 x 10�1 F(w�n).1, n(’b’)

10d�1 � 0.5 x 10�1 � m < 10d � 0.5 F(w�n).0, n(’b’)

m � 10d - 0.5 Ew.d[Ee]

The ’b’ is a blank following the numeric data representation. For Gw.d, n(’b’)
is 4 blanks. For Gw.dEe, n(’b’) is e+2 blanks.

The w should be greater than or equal to d+7 to allow for the following:

• A sign (optional if the value is positive and descriptor SP is not in effect)

• One digit to the left of the decimal point

• The decimal point

• The d digits to the right of the decimal point

• The 4-digit or e+2-digit exponent

If e is specified, the w should be greater than or equal to d+e+5.

I/O Formatting 11–25

The following shows output using the G edit descriptor and compares it to
output using equivalent F editing:

Value Format Output with G Format Output with F

0.01234567 G13.6 ∆0.123457E-01 F13.6 ∆∆∆∆∆0.012346

-0.12345678 G13.6 -0.123457∆∆∆∆ F13.6 ∆∆∆∆-0.123457

1.23456789 G13.6 ∆∆1.23457∆∆∆∆ F13.6 ∆∆∆∆∆1.234568

12.34567890 G13.6 ∆∆12.3457∆∆∆∆ F13.6 ∆∆∆∆12.345679

123.45678901 G13.6 ∆∆123.457∆∆∆∆ F13.6 ∆∆∆123.456789

-1234.56789012 G13.6 ∆-1234.57∆∆∆∆ F13.6 ∆-1234.567890

12345.67890123 G13.6 ∆∆12345.7∆∆∆∆ F13.6 ∆12345.678901

123456.78901234 G13.6 ∆∆123457.∆∆∆∆ F13.6 123456.789012

-1234567.89012345 G13.6 -0.123457E+07 F13.6 *************

For More Information:

• On the form for data edit descriptors, see Section 11.3.1.

• On general rules for numeric editing, see Section 11.3.2.

• On the I data edit descriptor, see Section 11.3.3.1.

• On the L data edit descriptor, see Section 11.3.5.

• On the A data edit descriptor, see Section 11.3.6.

• On the scale factor, see Section 11.4.5.

11.3.4.6 Complex Editing
A complex value is an ordered pair of real values. Complex editing is specified
by a pair of real edit descriptors, using any combination of the forms: Fw.d,
Ew.d[Ee], Dw.d, ENw.d[Ee], ESw.d[Ee], or Gw.d[Ee].

Rules for Input Processing
On input, the two successive fields are read and assigned to the corresponding
complex I/O list item as its real and imaginary part, respectively.

The following shows input using complex editing:

11–26 I/O Formatting

Format Input Value

F8.5,F8.5 1234567812345.67 123.45678, 12345.67

E9.1,F9.3 734.432E8123456789 734.432E8, 123456.789

Rules for Output Processing
On output, the two parts of the complex value are transferred under the control
of repeated or successive real edit descriptors. The two parts are transferred
consecutively without punctuation or blanks, unless control or character string
edit descriptors are specified between the pair of real edit descriptors.

The following shows output using complex editing:

Format Value Output

2F8.5 2.3547188, 3.456732 ∆2.35472 ∆3.45673

E9.2,’∆,∆’,E5.3 47587.222, 56.123 ∆0.48E+06∆,∆*****

For More Information:

• On the form for data edit descriptors, see Section 11.3.1.

• On general rules for numeric editing, see Section 11.3.2.

• On complex constants, see Section 3.2.3.1.

11.3.5 Logical Editing (L)
The L data edit descriptor transfers logical values. It takes the following form:

Lw

The specified I/O list item must be of type logical or integer.

The G edit descriptor can be used to edit logical data; it follows the same rules
as Lw.

Rules for Input Processing
On input, the L data edit descriptor transfers w characters from an external
field and assigns their logical value to the corresponding I/O list item. The
value assigned depends on the external field data, as follows:

• .TRUE. is assigned if the first nonblank character is .T, T, .t, or t. The
logical constant .TRUE. is an acceptable input form.

• .FALSE. is assigned if the first nonblank character is .F, F. .f, or f, or
the entire field is filled with blanks. The logical constant .FALSE. is an
acceptable input form.

I/O Formatting 11–27

If an other value appears in the external field, an error occurs.

Rules for Output Processing
On output, the L data edit descriptor transfers the following to an external
field that is w characters long: w � 1 blanks, followed by a T or F (if the value
is .TRUE. or .FALSE., respectively).

The following shows output using the L edit descriptor:

Format Value Output

L5 .TRUE. ∆∆∆∆T

L1 .FALSE. F

For More Information:
On the general form for data edit descriptors, see Section 11.3.1.

11.3.6 Character Editing (A)
The A data edit descriptor transfers character or Hollerith values. It takes the
following form:

A[w]

If the corresponding I/O list item is of type character, character data is
transferred. If the list item is of any other type, Hollerith data is transferred.

The G edit descriptor can be used to edit character data; it follows the same
rules as Aw.

Rules for Input Processing
On input, the A data edit descriptor transfers w characters from an external
field and assigns them to the corresponding I/O list item.

The maximum number of characters that can be stored depends on the size of
the I/O list item, as follows:

• For character data, the maximum size is the length of the corresponding
I/O list item.

• For noncharacter data, the maximum size depends on the data type, as
shown in Table 11–3.

11–28 I/O Formatting

Table 11–3 Size Limits for Noncharacter Data Using A Editing

I/O List Element Maximum Number of Characters

BYTE 1

LOGICAL(1) or LOGICAL*1 1

LOGICAL(2) or LOGICAL*2 2

LOGICAL(4) or LOGICAL*4 4

LOGICAL(8) or LOGICAL*8 8

INTEGER(1) or INTEGER*1 1

INTEGER(2) or INTEGER*2 2

INTEGER(4) or INTEGER*4 4

INTEGER(8) or INTEGER*8 8

REAL(4) or REAL*4 4

DOUBLE PRECISION 8

REAL(8) or REAL*8 8

REAL(16) or REAL*16 16

COMPLEX(4) or COMPLEX*8 81

DOUBLE COMPLEX 161

COMPLEX(8) or COMPLEX*16 161

COMPLEX(16) or COMPLEX*32 321

1Complex values are treated as pairs of real numbers, so complex editing requires a pair of real
edit descriptors. (See Section 11.3.4.6.)

If w is equal to or greater than the length (len) of the input item, the rightmost
characters are assigned to that item. The leftmost excess characters are
ignored.

If w is less than len, or less than the number of characters that can be stored,
w characters are assigned to the list item, left-justified, and followed by trailing
blanks.

The following shows input using the A edit descriptor:

I/O Formatting 11–29

Format Input Value Data Type

A6 PAGE∆# # CHARACTER(LEN=1)

A6 PAGE∆# E∆# CHARACTER(LEN=3)

A6 PAGE∆# PAGE∆# CHARACTER(LEN=6)

A6 PAGE∆# PAGE∆#∆∆ CHARACTER(LEN=8)

A6 PAGE∆# # LOGICAL(1)

A6 PAGE∆# ∆# INTEGER(2)

A6 PAGE∆# GE∆# REAL(4)

A6 PAGE∆# PAGE∆#∆∆ REAL(8)

Rules for Output Processing
On output, the A data edit descriptor transfers the contents of the correspond-
ing I/O list item to an external field that is w characters long.

If w is greater than the size of the list item, the data is transferred to the
output field, right-justified, with leading blanks. If w is less than or equal to
the size of the list item, the leftmost w characters are transferred.

The following shows output using the A edit descriptor:

Format Value Output

A5 OHMS ∆OHMS

A5 VOLTS VOLTS

A5 AMPERES AMPER

11.3.7 Default Widths for Data Edit Descriptors
If w (the field width) is omitted for the data edit descriptors, the system applies
default values. For the real data edit descriptors, the system also applies
default values for d (the number of characters to the right of the decimal
point), and e (the number of characters in the exponent).

These defaults are based on the data type of the I/O list item, and are listed in
Table 11–4.

11–30 I/O Formatting

Table 11–4 Default Widths for Data Edit Descriptors

Edit Descriptor Data Type of I/O List Item w

I, B, O, Z, G BYTE 7

INTEGER(1), LOGICAL(1) 7

INTEGER(2), LOGICAL(2) 7

INTEGER(4), LOGICAL(4) 12

INTEGER(8), LOGICAL(8) 23

O, Z REAL(4) 12

REAL(8) 23

REAL(16) 44

CHARACTER*len MAX(7, 3*len)

L, G LOGICAL(1), LOGICAL(2)
LOGICAL(4), LOGICAL(8)

2

F, E, EN, ES, G, D REAL(4), COMPLEX(4) 15 d: 7 e: 2

REAL(8), COMPLEX(8) 25 d: 16 e: 2

REAL(16), COMPLEX(16) 42 d: 33 e: 3

A1, G LOGICAL(1) 1

LOGICAL(2), INTEGER(2) 2

LOGICAL(4), INTEGER(4) 4

LOGICAL(8), INTEGER(8) 8

REAL(4), COMPLEX(4) 4

REAL(8), COMPLEX(8) 8

REAL(16), COMPLEX(16) 16

CHARACTER*len len

1The default is the actual length of the corresponding I/O list item.

11.3.8 Terminating Short Fields of Input Data
On input, an edit descriptor such as Fw.d specifies that w characters (the field
width) are to be read from the external field.

If the field contains fewer than w characters, the input statement will read
characters from the next data field in the record. You can prevent this by
padding the short field with blanks or zeros, or by using commas to separate
the input data.

I/O Formatting 11–31

Padding Short Fields
You can use the OPEN statement specifier PAD=’YES’ to indicate blank
padding for short fields of input data. However, blanks can be interpreted as
blanks or zeros, depending on which default behavior is in effect at the time.
Consider the following:

READ (2, ’(I5)’) J

If 3 is input for J, the value of J will be 30000 or 3 depending on which default
behavior is in effect (BLANK=’NULL’ or BLANK=’ZERO’). This can give
unexpected results.

To ensure that the desired behavior is in effect, explicitly specify the BN or BZ
edit descriptor. For example, the following ensures that blanks are interpreted
as blanks (and not as zeros):

READ (2, ’(BN, I5)’) J

Using Commas to Separate Input Data
You can use a comma to terminate a short data field. The comma has no effect
on the d part (the number of characters to the right of the decimal point) of the
specification.

The comma overrides the w specified for the I, B, O, Z, F, E, D, EN, ES, G,
and L edit descriptors. For example, suppose the following statements are
executed:

READ (5,100) I,J,A,B
100 FORMAT (2I6,2F10.2)

Suppose a record containing the following values is read:

1, -2, 1.0, 35

The following assignments occur:

I = 1
J = -2
A = 1.0
B = 0.35

A comma can only terminate fields less than w characters long. If a comma
follows a field of w or more characters, the comma is considered part of the
next field.

A null (zero-length) field is designated by two successive commas, or by a
comma after a field of w characters. Depending on the field descriptor specified,
the resulting value assigned is 0, 0.0, 0.0D0, 0.0Q0, or .FALSE.

11–32 I/O Formatting

For More Information:
On input processing, see Section 11.3.2.

11.4 Control Edit Descriptors
A control edit descriptor either directly determines how text is displayed or
affects the conversions performed by subsequent data edit descriptors.

This section describes the forms for control edit descriptors and the individual
descriptors themselves.

11.4.1 Forms for Control Edit Descriptors
A control edit descriptor takes one of the following forms:

c
cn
nc

c
Is one of the following format codes: T, TL, TR, X, S, SP, SS, BN, BZ, P, :, /, \,
$, and Q.

n
Is a number of character positions. It must be a positive integer literal
constant; or variable format expression; no kind parameter can be specified. It
cannot be a named constant.

The range of n is 1 through 2147483647 (2**31–1). Actual useful ranges may
be constrained by record sizes (RECL) and the file system.

Rules and Behavior
In general, control edit descriptors are nonrepeatable. The only exception is
the slash (/) edit descriptor, which can be preceded by a repeat specification.

The control edit descriptors have the following specific forms:

Positional: Tn, TLn, TRn, and nX

Sign: S, SP, and SS

Blank interpretation: BN and BZ

Scale factor: kP

Miscellaneous: :, /, \ , $, and Q

The P edit descriptor is an exception to the general control edit descriptor
syntax. It is preceded by a scale factor, rather than a character position
specifier.

I/O Formatting 11–33

Control edit descriptors can be grouped in parentheses and preceded by a
group repeat specification.

For More Information:

• On format specifications, in general, see Section 11.2.

• On group repeat specifications, see Section 11.6.

11.4.2 Positional Editing
The T, TL, TR, and X edit descriptors specify the position where the next
character is transferred to or from a record.

On output, these descriptors do not themselves cause characters to be
transferred and do not affect the length of the record. If characters are
transferred to positions at or after the position specified by one of these
descriptors, positions skipped and not previously filled are filled with blanks.
The result is as if the entire record was initially filled with blanks.

The TR and X edit descriptors produce the same results.

11.4.2.1 T Editing
The T edit descriptor specifies a character position in an I/O record. It takes
the following form:

Tn

The n is a positive integer literal constant (with no kind parameter) indicating
the character position of the record, relative to the left tab limit.

On input, the T descriptor positions the external record at the character
position specified by n. On output, the T descriptor indicates that data transfer
begins at the nth character position of the external record.

Examples
Suppose a file has a record containing the value ABC∆∆∆XYZ, and the following
statements are executed:

READ (11,10) VALUE1, VALUE2
10 FORMAT (T7,A3,T1,A3)

The values read first are XYZ, then ABC.

Suppose the following statements are executed:

PRINT 25
25 FORMAT (T51,’COLUMN 2’,T21,’COLUMN 1’)

11–34 I/O Formatting

The following line is printed at the positions indicated:

Position 20 Position 50
� �
COLUMN 1 COLUMN 2

Note that the first character of the record printed was reserved as a control
character. (For more information, see Section 11.8.)

11.4.2.2 TL Editing
The TL edit descriptor specifies a character position to the left of the current
position in an I/O record. It takes the following form:

TLn

The n is a positive integer literal constant (with no kind parameter) indicating
the nth character position to the left of the current character.

If n is greater than or equal to the current position, the next character accessed
is the first character of the record.

11.4.2.3 TR Editing
The TR edit descriptor specifies a character position to the right of the current
position in an I/O record. It takes the following form:

TRn

The n is a positive integer literal constant (with no kind parameter) indicating
the nth character position to the right of the current character.

11.4.2.4 X Editing
The X edit descriptor specifies a character position to the right of the current
position in an I/O record. It takes the following form:

nX

The n is a positive integer literal constant (with no kind parameter) indicating
the nth character position to the right of the current character.

On output, the X edit descriptor does not output any characters when it
appears at the end of a format specification; for example:

WRITE (6,99) K
99 FORMAT (’∆K=’,I6,5X)

This example writes a record of only 9 characters. To cause n trailing blanks to
be output at the end of a record, specify a format of n(’∆’).

I/O Formatting 11–35

11.4.3 Sign Editing
The S, SP, and SS edit descriptors control the output of the optional plus (+)
sign within numeric output fields. These descriptors have no effect during
execution of input statements.

Within a format specification, a sign editing descriptor affects all subsequent
I, F, E, EN, ES, D, and G descriptors until another sign editing descriptor
occurs.

11.4.3.1 SP Editing
The SP edit descriptor causes the processor to produce a plus sign in any
subsequent position where it would be otherwise optional. It takes the
following form:

SP

11.4.3.2 SS Editing
The SS edit descriptor causes the processor to suppress a plus sign in any
subsequent position where it would be otherwise optional. It takes the
following form:

SS

11.4.3.3 S Editing
The S edit descriptor restores the plus sign as optional for all subsequent
positive numeric fields. It takes the following form:

S

The S edit descriptor restores to the processor the discretion of producing plus
characters on an optional basis.

11.4.4 Blank Editing
The BN and BZ descriptors control the interpretation of embedded and trailing
blanks within numeric input fields. These descriptors have no effect during
execution of output statements.

Within a format specification, a blank editing descriptor affects all subsequent
I, B, O, Z, F, E, EN, ES, D, and G descriptors until another blank editing
descriptor occurs.

The blank editing descriptors override the effect of the BLANK specifier during
execution of a particular input data transfer statement. (For more information
on the BLANK specifier in OPEN statements, see Section 12.6.4.)

11–36 I/O Formatting

11.4.4.1 BN Editing
The BN edit descriptor causes the processor to ignore all embedded and trailing
blanks in numeric input fields. It takes the following form:

BN

The input field is treated as if all blanks have been removed and the remainder
of the field is right-justified. An all-blank field is treated as zero.

11.4.4.2 BZ Editing
The BZ edit descriptor causes the processor to interpret all embedded and
trailing blanks in numeric input fields as zeros. It takes the following form:

BZ

11.4.5 Scale Factor Editing (P)
The P edit descriptor specifies a scale factor, which moves the location of the
decimal point in real values and the two real parts of complex values. It takes
the following form:

kP

The k is a signed (sign is optional if positive), integer literal constant specifying
the number of positions, to the left or right, that the decimal point is to move
(the scale factor). The range of k is –128 to 127.

At the beginning of a formatted I/O statement, the value of the scale factor is
zero. If a scale editing descriptor is specified, the scale factor is set to the new
value, which affects all subsequent real edit descriptors until another scale
editing descriptor occurs.

To reinstate a scale factor of zero, you must explicitly specify 0P.

Format reversion does not affect the scale factor. (For more information on
format reversion, see Section 11.9.)

Rules for Input Processing
On input, a positive scale factor moves the decimal point to the left, and a
negative scale factor moves the decimal point to the right. (On output, the
effect is the reverse.)

On input, when an input field using an F, E, D, EN, ES, or G real edit
descriptor contains an explicit exponent, the scale factor has no effect.
Otherwise, the internal value of the corresponding I/O list item is equal to
the external field data multiplied by 10�k. For example, a 2P scale factor
multiplies an input value by .01, moving the decimal point two places to the

I/O Formatting 11–37

left. A –2P scale factor multiplies an input value by 100, moving the decimal
point two places to the right.

The following shows input using the P edit descriptor:

Format Input Value

3PE10.5 ∆∆∆37.614∆ .037614

3PE10.5 ∆∆37.614E2 3761.4

-3PE10.5 ∆∆∆∆37.614 37614.0

The scale factor must precede the first real edit descriptor associated with it,
but it need not immediately precede the descriptor. For example, the following
all have the same effect:

(3P, I6, F6.3, E8.1)
(I6, 3P, F6.3, E8.1)
(I6, 3PF6.3, E8.1)

Note that if the scale factor immediately precedes the associated real edit
descriptor, the comma separator is optional.

Rules for Output Processing
On output, a positive scale factor moves the decimal point to the right, and a
negative scale factor moves the decimal point to the left. (On input, the effect
is the reverse.)

On output, the effect of the scale factor depends on which kind of real editing
is associated with it, as follows:

• For F editing, the external value equals the internal value of the I/O list
item multiplied by 10k. This changes the magnitude of the data.

• For E and D editing, the external decimal field of the I/O list item is
multiplied by 10k, and k is subtracted from the exponent. This changes the
form of the data.

A positive scale factor decreases the exponent; a negative scale factor
increases the exponent.

For a positive scale factor, k must be less than d + 2 or an output
conversion error occurs.

• For G editing, the scale factor has no effect if the magnitude of the data to
be output is within the effective range of the descriptor (the G descriptor
supplies its own scaling).

If the magnitude of the data field is outside G descriptor range, E editing is
used, and the scale factor has the same effect as E output editing.

11–38 I/O Formatting

• For EN and ES editing, the scale factor has no effect.

The following shows output using the P edit descriptor:

Format Value Output

1PE12.3 -270.139 ∆∆-2.701E+02

1P,E12.2 -270.139 ∆∆∆-2.70E+02

-1PE12.2 -270.139 ∆∆∆-0.03E+04

The following shows a FORMAT statement containing a scale factor:

DIMENSION A(6)
DO 10 I=1,6

10 A(I) = 25.
WRITE (6, 100) A

100 FORMAT(’ ’, F8.2, 2PF8.2, F8.2)

The preceding statements produce the following results:

25.00 2500.00 2500.00
2500.00 2500.00 2500.00

11.4.6 Slash Editing (/)
The slash edit descriptor terminates data transfer for the current record and
starts data transfer for a new record. It takes the following form:

[r]/

The r is a repeat specification. It must be a positive default integer literal
constant; no kind parameter can be specified.

The range of r is 1 through 2147483647 (2**31–1). If r is omitted, it is assumed
to be 1.

Multiple slashes cause the system to skip input records or to output blank
records, as follows:

• When n consecutive slashes appear between two edit descriptors, n � 1
records are skipped on input, or n � 1 blank records are output. The first
slash terminates the current record. The second slash terminates the first
skipped or blank record, and so on.

• When n consecutive slashes appear at the beginning or end of a format
specification, n records are skipped or n blank records are output, because
the opening and closing parentheses of the format specification are
themselves a record initiator and terminator, respectively. For example,
suppose the following statements are specified:

I/O Formatting 11–39

WRITE (6,99)
99 FORMAT (’1’,T51,’HEADING LINE’//T51,’SUBHEADING LINE’//)

The following lines are written:

Column 50, top of page

�

HEADING LINE

(blank line)

SUBHEADING LINE

(blank line)

(blank line)

Note that the first character of the record printed was reserved as a control
character (see Section 11.8).

11.4.7 Colon Editing (:)
The colon edit descriptor terminates format control if no more items are in the
I/O list. For example, suppose the following statements are specified:

PRINT 1,3
PRINT 2,13

1 FORMAT (’ I=’,I2,’ J=’,I2)
2 FORMAT (’ K=’,I2,:,’ L=’,I2)

The following lines are written:

I=∆3∆J=
K=13

If I/O list items remain, the colon edit descriptor has no effect.

11.4.8 Dollar Sign ($) and Backslash (\) Editing
The dollar sign and backslash edit descriptors modify the output of carriage
control specified by the first character of the record. They only affect carriage
control for formatted files, and have no effect on input.

If the first character of the record is a blank or a plus sign (+), the dollar sign
and backslash descriptors suppress carriage return (after printing the record).

For terminal device I/O, when this trailing carriage return is suppressed, a
response follows output on the same line. For example, suppose the following
statements are specified:

11–40 I/O Formatting

TYPE 100
100 FORMAT (’ ENTER RADIUS VALUE ’,$)

ACCEPT 200, RADIUS
200 FORMAT (F6.2)

The following prompt is displayed:

ENTER RADIUS VALUE

Any response (for example, ‘‘12.’’) is then displayed on the same line:

ENTER RADIUS VALUE 12.

If the first character of the record is 0, 1, or ASCII NUL, the dollar sign and
backslash descriptors have no effect.

Consider the following:

CHARACTER(20) MYNAME
WRITE (*,9000)

9000 FORMAT (’0Please type your name:’,\)
READ (*,9001) MYNAME

9001 FORMAT (A20)
WRITE (*,9002) ’ ’,MYNAME

9002 FORMAT (1X,A20)

This example advances two lines, prompts for input, awaits input on the same
line as the prompt, and prints the input.

11.4.9 Character Count Editing (Q)
The character count edit descriptor returns the remaining number of
characters in the current input record.

The corresponding I/O list item must be of type integer or logical. For example,
suppose the following statements are specified:

READ (4,1000) XRAY, KK, NCHRS, (ICHR(I), I=1,NCHRS)
1000 FORMAT (E15.7,I4,Q,(80A1))

Two fields are read into variables XRAY and KK. The number of characters
remaining in the record is stored in NCHRS, and exactly that many characters
are read into the array ICHR. (This instruction can fail if the record is longer
than 80 characters.)

If you place the character count descriptor first in a format specification, you
can determine the length of an input record.

On output, the character count edit descriptor causes the corresponding I/O list
item to be skipped.

I/O Formatting 11–41

11.5 Character String Edit Descriptors
Character string edit descriptors control the output of character strings.
The character string edit descriptors are the character constant and H edit
descriptor.

Although no string edit descriptor can be preceded by a repeat specification,
a parenthesized group of string edit descriptors can be preceded by a repeat
specification (see Section 11.6).

11.5.1 Character Constant Editing
The character constant edit descriptor causes a character string to be output to
an external record. It takes one of the following forms:

’string’
"string"

The string is a character literal constant; no kind parameter can be specified.
Its length is the number of characters between the delimiters; two consecutive
delimiters are counted as one character.

To include an apostrophe in a character constant that is enclosed by
apostrophes, place two consecutive apostrophes (’’) in the format specification;
for example:

50 FORMAT (’TODAY’’S∆DATE∆IS:∆’,I2,’/’,I2,’/’,I2)

Similarly, to include a quotation mark in a character constant that is enclosed
by quotation marks, place two consecutive quotation marks ("") in the format
specification.

For More Information:

• On format specifications, in general, see Section 11.2.

• On character constants, see Character Constants in Section 3.2.5.

11.5.2 H Editing
The H edit descriptor transfers data between the external record and the H
edit descriptor itself. The H edit descriptor is a deleted feature in Fortran 95;
it was obsolescent in Fortran 90. HP Fortran fully supports features deleted in
Fortran 95.

An H edit descriptor has the form of a Hollerith constant, as follows:

nHstring

11–42 I/O Formatting

n
Is an unsigned, positive default integer literal constant (with no kind
parameter) indicating the number of characters in string (including blanks
and tabs).

The range of n is 1 through 2147483647 (2**31–1). Actual useful ranges may
be constrained by record sizes (RECL) and the file system.

string
Is a string of printable ASCII characters.

On input, the H edit descriptor transfers n characters from the external field
to the edit descriptor. The first character appears immediately after the letter
H. Any characters in the edit descriptor before input are replaced by the input
characters.

On output, the H edit descriptor causes n characters following the letter H to
be output to an external record.

For More Information:

• On format specifications, in general, see Section 11.2.

• On obsolescent features in Fortran 95 and Fortran 90, see Appendix A.

11.6 Nested and Group Repeat Specifications
Format specifications can include nested format specifications enclosed in
parentheses; for example:

15 FORMAT (E7.2,I8,I2,(A5,I6))

35 FORMAT (A6,(L8(3I2)),A)

A group repeat specification can precede a nested group of edit descriptors. For
example, the following statements are equivalent, and the second statement
shows a group repeat specification:

50 FORMAT (I8,I8,F8.3,E15.7,F8.3,E15.7,F8.3,E15.7,I5,I5)

50 FORMAT (2I8,3(F8.3,E15.7),2I5)

If a nested group does not show a repeat count, a default count of 1 is assumed.

Normally, the string edit descriptors and control edit descriptors cannot be
repeated (except for slash), but any of these descriptors can be enclosed in
parentheses and preceded by a group repeat specification. For example, the
following statements are valid:

I/O Formatting 11–43

76 FORMAT (’MONTHLY’,3(’TOTAL’))

100 FORMAT (I8,4(T7),A4)

For More Information:

• On repeat specifications for data edit descriptors, see Section 11.3.1.

• On group repeat specifications and format reversion, see Section 11.9.

11.7 Variable Format Expressions
A variable format expression is a numeric expression enclosed in angle
brackets (<>) that can be used in a FORMAT statement or in a character
format specification.

The numeric expression can be any valid Fortran expression, including function
calls and references to dummy arguments.

If the expression is not of type integer, it is converted to integer type before
being used.

If the value of a variable format expression does not obey the restrictions on
magnitude applying to its use in the format, an error occurs.

Variable format expressions cannot be used with the H edit descriptor, and
they are not allowed in character format specifications.

Variable format expressions are evaluated each time they are encountered
in the scan of the format. If the value of the variable used in the expression
changes during the execution of the I/O statement, the new value is used the
next time the format item containing the expression is processed.

Examples
Consider the following statement:

FORMAT (I<J+1>)

When the format is scanned, the preceding statement performs an I (integer)
data transfer with a field width of J+1. The expression is reevaluated each
time it is encountered in the normal format scan.

Consider the following statements:

DIMENSION A(5)
DATA A/1.,2.,3.,4.,5./

DO 10 I=1,10
WRITE (6,100) I

100 FORMAT (I<MAX(I,5)>)
10 CONTINUE

11–44 I/O Formatting

DO 20 I=1,5
WRITE (6,101) (A(I), J=1,I)

101 FORMAT (<I>F10.<I-1>)
20 CONTINUE

END

On execution, these statements produce the following output:

1
2
3
4
5
6
7
8
9
10
1.
2.0 2.0

3.00 3.00 3.00
4.000 4.000 4.000 4.000
5.0000 5.0000 5.0000 5.0000 5.0000

For More Information:
On the synchronization of I/O lists with formats, see Section 11.9.

11.8 Printing of Formatted Records
On output, if a file was opened with CARRIAGECONTROL=’FORTRAN’
in effect or the file is being processed by the fortpr format utility, the first
character of a record transmitted to a line printer or terminal is typically a
character that is not printed, but used to control vertical spacing.

Table 11–5 lists the valid control characters for printing.

I/O Formatting 11–45

Table 11–5 Control Characters for Printing

Character Meaning Effect

+ Overprinting Outputs the record (at the current position in
the current line) and a carriage return.

∆ One line feed Outputs the record (at the beginning of the
following line) and a carriage return.

0 Two line feeds Outputs the record (after skipping a line) and a
carriage return.

1 Next page Outputs the record (at the beginning of a new
page) and a carriage return.

$ Prompting Outputs the record (at the beginning of the
following line), but no carriage return.

ASCII NUL1 Overprinting with
no advance

Outputs the record (at the current position in
the current line), but no carriage return.

1Specify as CHAR(0).

Any other character is interpreted as a blank and is deleted from the print
line. If you do not specify a control character for printing, the first character of
the record is not printed.

11.9 Interaction Between Format Specifications and I/O Lists
Format control begins with the execution of a formatted I/O statement. Each
action of format control depends on information provided jointly by the next
item in the I/O list (if one exists) and the next edit descriptor in the format
specification.

Both the I/O list and the format specification are interpreted from left to right,
unless repeat specifications or implied-do lists appear.

If an I/O list specifies at least one list item, at least one data edit descriptor (I,
B, O, Z, F, E, EN, ES, D, G, L, or A) or the Q edit descriptor must appear in
the format specification; otherwise, an error occurs.

Each data edit descriptor (or Q edit descriptor) corresponds to one item in the
I/O list, except that an I/O list item of type complex requires the interpretation
of two F, E, EN, ES, D, or G edit descriptors. No I/O list item corresponds
to a control edit descriptor (X, P, T, TL, TR, SP, SS, S, BN, BZ, $, or :), or a
character string edit descriptor (H and character constants). For character
string edit descriptors, data transfer occurs directly between the external
record and the format specification.

11–46 I/O Formatting

When format control encounters a data edit descriptor in a format specification,
it determines whether there is a corresponding I/O list item specified. If there
is such an item, it is transferred under control of the edit descriptor, and then
format control proceeds. If there is no corresponding I/O list item, format
control terminates.

If there are no other I/O list items to be processed, format control also
terminates when the following occurs:

• A colon edit descriptor is encountered.

• The end of the format specification is reached.

If additional I/O list items remain, part or all of the format specification is
reused in format reversion.

In format reversion, the current record is terminated and a new one is
initiated. Format control then reverts to one of the following (in order) and
continues from that point:

1. The group repeat specification whose opening parenthesis matches the
next-to-last closing parenthesis of the format specification

2. The initial opening parenthesis of the format specification

Format reversion has no effect on the scale factor, the sign control edit
descriptors (S, SP, or SS), or the blank interpretation edit descriptors (BN or
BZ).

Examples
The data in file FOR002.DAT is to be processed 2 records at a time. Each
record starts with a number to be put into an element of a vector B, followed
by 5 numbers to be put in a row in matrix A.

FOR002.DAT contains the following data:

001 0101 0102 0103 0104 0105
002 0201 0202 0203 0204 0205
003 0301 0302 0303 0304 0305
004 0401 0402 0403 0404 0405
005 0501 0502 0503 0504 0505
006 0601 0602 0603 0604 0605
007 0701 0702 0703 0704 0705
008 0801 0802 0803 0804 0805
009 0901 0902 0903 0904 0905
010 1001 1002 1003 1004 1005

I/O Formatting 11–47

Example 11–1 shows how several different format specifications interact with
I/O lists to process data in file FOR002.DAT.

Example 11–1 Interaction Between Format Specifications and I/O Lists

INTEGER I, J, A(2,5), B(2)

OPEN (unit=2, access=’sequential’, file=’FOR002.DAT’)

! READ (2,100) (B(I), (A(I,J), J=1,5),I=1,2)
" 100 FORMAT (2 (I3, X, 5(I4,X), /))

WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)
999 FORMAT (’ B is ’, 2(I3, X), ’; A is’, /

1 (’ ’, 5 (I4, X)))

$ READ (2,200) (B(I), (A(I,J), J=1,5),I=1,2)
200 FORMAT (2 (I3, X, 5(I4,X), :/))

% WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)

& READ (2,300) (B(I), (A(I,J), J=1,5),I=1,2)
300 FORMAT ((I3, X, 5(I4,X)))

’ WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)

(READ (2,400) (B(I), (A(I,J), J=1,5),I=1,2)
400 FORMAT (I3, X, 5(I4,X))

) WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)

END

! This statement reads B(1); then A(1,1) through A(1,5); then B(2) and A(2,1)
through A(2,5).

The first record read (starting with 001) starts the processing of the I/O
list.

" There are two records, each in the format I3, X, 5(I4, X). The slash (/)
forces the reading of the second record after A(1,5) is processed. It also
forces the reading of the third record after A(2,5) is processed; no data is
taken from that record.

This statement produces the following output:

B is 1 2 ; A is
101 102 103 104 105
201 202 203 204 205

11–48 I/O Formatting

$ This statement reads the record starting with 004. The slash (/) forces the
reading of the next record after A(1,5) is processed. The colon (:) stops the
reading after A(2,5) is processed, but before the slash (/) forces another
read.

% This statement produces the following output:

B is 4 5 ; A is
401 402 403 404 405
501 502 503 504 505

& This statement reads the record starting with 006. After A(1,5) is
processed, format reversion causes the next record to be read and starts
format processing at the left parenthesis before the I3.

’ This statement produces the following output:

B is 6 7 ; A is
601 602 603 604 605
701 702 703 704 705

(This statement reads the record starting with 008. After A(1,5) is
processed, format reversion causes the next record to be read and starts
format processing at the left parenthesis before the I4.

) This statement produces the following output:

B is 8 90 ; A is
801 802 803 804 805
9010 9020 9030 9040 100

The record 009 0901 0902 0903 0904 0905 is processed with I4 as ‘‘009 ’’ for
B(2), which is 90. X skips the next ‘‘0’’. Then ‘‘901 ’’ is processed for A(2,1),
which is 9010, ‘‘902 ’’ for A(2,2), ‘‘903 ’’ for A(2,3), and ‘‘904 ’’ for A(2,4). The
repeat specification of 5 is now exhausted and the format ends. Format
reversion causes another record to be read and starts format processing at
the left parenthesis before the I4, so ‘‘010 ’’ is read for A(2,5), which is 100.

For More Information:

• On data edit descriptors, see Section 11.3.

• On control edit descriptors, see Section 11.4.

• On the Q edit descriptor, see Section 11.4.9.

• On character string edit descriptors, see Section 11.5.

• On the scale factor, see Section 11.4.5.

I/O Formatting 11–49

12
File Operation I/O Statements

This chapter contains information on the following file connection, inquiry, and
positioning statements:

• BACKSPACE (Section 12.1)

Positions a sequential file at the beginning of the preceding record.

• CLOSE (Section 12.2)

Terminates the connection between a logical unit and a file or device.

• DELETE (Section 12.3)

Deletes a record from a relative or indexed file.

• ENDFILE (Section 12.4)

For sequential files, writes an end-of-file record to the file and positions
the file after this record. For direct access files, truncates the file after the
current record.

• INQUIRE (Section 12.5)

Requests information on the status of specified properties of a file or logical
unit.

• OPEN (Section 12.6)

Connects a Fortran logical unit to a file or device; declares attributes for
read and write operations.

• REWIND (Section 12.7)

Positions a sequential file to the beginning of that file.

• UNLOCK (Section 12.8)

Frees a record in a sequential, relative, or indexed file that was locked by a
previous READ statement.

File Operation I/O Statements 12–1

For More Information:

• On data transfer I/O statements, see Chapter 10.

• On control specifiers, see Section 10.2.1.

• On record position, advancement, and transfer, see the HP Fortran for
OpenVMS User Manual.

12.1 BACKSPACE Statement
The BACKSPACE statement positions a sequential file at the beginning of the
preceding record, making it available for subsequent I/O processing. It takes
one of the following forms:

BACKSPACE ([UNIT=]io-unit [,ERR=label] [,IOSTAT=i-var])
BACKSPACE io-unit

io-unit
Is an external unit specifier.

label
Is the label of the branch target statement that receives control if an error
occurs.

i-var
Is a scalar integer variable that is defined as a positive integer if an error
occurs and zero if no error occurs.

Rules and Behavior
The I/O unit number must specify an open file on disk or magnetic tape.

A BACKSPACE statement must not be specified for a file that is open for
direct, append, or keyed access, because record n is not available to the RMS
I/O system.

If a file is already positioned at the beginning of a file, a BACKSPACE
statement has no effect.

Examples
The following statement repositions the file connected to I/O unit 4 back to the
preceding record:

BACKSPACE 4

Consider the following statement:

BACKSPACE (UNIT=9, IOSTAT=IOS, ERR=10)

12–2 File Operation I/O Statements

This statement positions the file connected to unit 9 back to the preceding
record. If an error occurs, control is transferred to the statement labeled 10,
and a positive integer is stored in variable IOS.

For More Information:

• On the UNIT control specifier, see Section 10.2.1.1.

• On the ERR control specifier, see Section 10.2.1.8.

• On the IOSTAT control specifier, see Section 10.2.1.7.

• On append access, see Section 12.6.1.

• On record position, advancement, and transfer, see the HP Fortran for
OpenVMS User Manual.

12.2 CLOSE Statement
The CLOSE statement disconnects a file from a unit. It takes the following
form:

CLOSE ([UNIT=]io-unit [,

�
STATUS
DISPOSE
DISP

	
=p] [,ERR=label] [,IOSTAT=i-var])

io-unit
Is an external unit specifier.

p
Is a scalar default character expression indicating the status of the file after it
is closed. It has one of the following values:

’KEEP’ or ’SAVE’ Retains the file after the unit closes.

’DELETE’ Deletes the file after the unit closes.1

’PRINT’2 Submits the file to the line printer spooler, then retains it.

’PRINT/DELETE’2 Submits the file to the line printer spooler, then deletes it.

’SUBMIT’ Submits the file to the batch job queue, then retains it.

’SUBMIT/DELETE’ Submits the file to the batch job queue, then deletes it.

1Unless OPEN(READONLY) is in effect.
2Use only on sequential files.

The default is ’DELETE’ for scratch files. For all other files, the default is
’KEEP’.

File Operation I/O Statements 12–3

label
Is the label of the branch target statement that receives control if an error
occurs.

i-var
Is a scalar integer variable that is defined as a positive integer if an error
occurs and zero if no error occurs.

Rules and Behavior
The CLOSE statement specifiers can appear in any order. An I/O unit must be
specified, but the UNIT specifier is optional if the unit specifier is the first item
in the I/O control list.

The status specified in the CLOSE statement supersedes the status specified
in the OPEN statement, except that a file opened as a scratch file cannot be
saved, printed, or submitted, and a file opened for read-only access cannot be
deleted.

If a CLOSE statement is specified for a unit that is not open, it has no effect.

Examples
Consider the following statement:

CLOSE (UNIT=J, STATUS=’DELETE’, ERR=99)

This statement closes the file connected to unit J and deletes it. If an error
occurs, control is transferred to the statement labeled 99.

Consider the following statement:

CLOSE (UNIT=1, STATUS=’PRINT’)

This statement closes the file on unit 1 and submits it for printing.

For More Information:

• On the UNIT control specifier, see Section 10.2.1.1.

• On the ERR control specifier, see Section 10.2.1.8.

• On the IOSTAT control specifier, see Section 10.2.1.7.

• On the READONLY specifier, see Section 12.6.24.

12.3 DELETE Statement
The DELETE statement deletes a record from a relative or indexed
organization file. It takes one of the following forms:

12–4 File Operation I/O Statements

Keyed Access

DELETE ([UNIT=]io-unit [,ERR=label] [,IOSTAT=i-var])

Direct Access

DELETE ([UNIT=]io-unit [,REC=r] [,ERR=label] [,IOSTAT=i-var])

io-unit
Is an external unit specifier.

r
Is a scalar numeric expression indicating the record number to be deleted.

label
Is the label of the branch target statement that receives control if an error
occurs.

i-var
Is a scalar integer variable that is defined as a positive integer if an error
occurs and zero if no error occurs.

Rules and Behavior
In files with keyed access, the DELETE statement deletes the current record.
The current record is the last record that is accessed by a READ statement on
the specified external unit.

In files with direct access, the DELETE statement deletes the direct access
record specified by r. If REC=r is omitted, the current record is deleted. When
the direct access record is deleted, any associated variable is set to the next
record number.

The DELETE statement logically removes the appropriate record from the
specified file by locating the record and marking it as a deleted record. It then
frees the position formerly occupied by the deleted record so that a new record
can be written into that position.

Examples
The following statement deletes the fifth record in the file connected to I/O unit
10:

DELETE (10, REC=5)

In the next example, the current record is deleted from the file connected to I/O
unit 11:

DELETE (11)

File Operation I/O Statements 12–5

For More Information:

• On an alternative form for the DELETE statement, see Section B.9.

• On the UNIT control specifier, see Section 10.2.1.1.

• On the ERR control specifier, see Section 10.2.1.8.

• On the IOSTAT control specifier, see Section 10.2.1.7.

• On the REC control specifier, see Section 10.2.1.4.

12.4 ENDFILE Statement
For sequential files, the ENDFILE statement writes an end-of-file record to
the file and positions the file after this record (the terminal point). For direct
access files, the ENDFILE statement truncates the file after the current record.

An ENDFILE statement takes one of the following forms:

ENDFILE ([UNIT=]io-unit [,ERR=label] [,IOSTAT=i-var])
ENDFILE io-unit

io-unit
Is an external unit specifier.

label
Is the label of the branch target statement that receives control if an error
occurs.

i-var
Is a scalar integer variable that is defined as a positive integer if an error
occurs and zero if no error occurs.

Rules and Behavior
If the unit specified in the ENDFILE statement is not open, the default file is
opened for unformatted output.

An end-of-file record can be written only to files with sequential organization
that are accessed as formatted-sequential or unformatted-segmented sequential
files.

An ENDFILE statement performed on a direct access file always truncates the
file.

An ENDFILE statement must not be issued for a file that is open for keyed
access.

12–6 File Operation I/O Statements

An end-of-file record written to a file on magnetic tape is not the same as a
tape mark.

End-of-file records should not be written in files that are read by programs
written in a language other than Fortran, because other languages do not
support the embedded end-of-file concept.

Examples
The following statement writes an end-of-file record to I/O unit 2:

ENDFILE 2

Suppose the following statement is specified:

ENDFILE (UNIT=9, IOSTAT=IOS, ERR=10)

An end-of-file record is written to the file connected to unit 9. If an error
occurs, control is transferred to the statement labeled 10, and a positive
integer is stored in variable IOS.

For More Information:

• On the UNIT control specifier, see Section 10.2.1.1.

• On the ERR control specifier, see Section 10.2.1.8.

• On the IOSTAT control specifier, see Section 10.2.1.7.

• On record position, advancement, and transfer, see the HP Fortran for
OpenVMS User Manual.

12.5 INQUIRE Statement
The INQUIRE statement returns information on the status of specified
properties of a file or logical unit. It takes one of the following forms:

Inquiring by File

INQUIRE (FILE=name [,ERR=label] [,IOSTAT=i-var] [,DEFAULTFILE=def], slist)

Inquiring by Unit

INQUIRE ([UNIT=]io-unit [,ERR=label] [,IOSTAT=i-var], slist)

Inquiring by Output List

INQUIRE (IOLENGTH=len) out-item-list

File Operation I/O Statements 12–7

name
Is a scalar default character expression specifying the name of the file for
inquiry.

label
Is the label of the branch target statement that receives control if an error
occurs.

i-var
Is a scalar integer variable that is defined as a positive integer if an error
occurs and zero if no error occurs.

def
Is a scalar default character expression specifying a default file name
specification string. (For more information on the DEFAULTFILE specifier,
see the Section 12.6.10.)

slist
Is one or more inquiry specifiers. Each specifier can appear only once. (The
inquiry specifiers are described individually in the following sections.)

io-unit
Is an external unit specifier.

The unit does not have to exist, nor does it need to be connected to a file. If the
unit is connected to a file, the inquiry encompasses both the connection and the
file.

len
Is a scalar integer variable that is assigned a value corresponding to the
length of an unformatted, direct-access record resulting from the use of the
out-item-list in a WRITE statement.

The value is suitable to use as a RECL specifier value in an OPEN statement
that connects a file for unformatted, direct access.

The unit of the value is 4-byte longwords, by default. However, if you specify
the compiler option /ASSUME=BYTERECL, the unit is bytes.

out-item-list
Is a list of one or more output items (see Section 10.2.2).

12–8 File Operation I/O Statements

Rules and Behavior
The control specifiers ([UNIT=]io-unit, ERR=label, and IOSTAT=i-var) and
inquiry specifiers can appear anywhere within the parentheses following
INQUIRE. However, if the UNIT specifier is omitted, the io-unit must appear
first in the list.

An INQUIRE statement can be executed before, during, or after a file is
connected to a unit. The specifier values returned are those that are current
when the INQUIRE statement executes.

To get file characteristics, specify the INQUIRE statement after opening the
file.

Examples
The following are examples of INQUIRE statements:

INQUIRE (FILE=’FILE_B’, EXIST=EXT)
INQUIRE (4, FORM=FM, IOSTAT=IOS, ERR=20)
INQUIRE (IOLENGTH=LEN) A, B

In the last statement, you can use the length returned in LEN as the value for
the RECL specifier in an OPEN statement that connects a file for unformatted
direct access. If you have already specified a value for RECL, you can check
LEN to verify that A and B are less than or equal to the record length you
specified.

For More Information:

• On the UNIT control specifier, see Section 10.2.1.1.

• On the ERR control specifier, see Section 10.2.1.8.

• On the IOSTAT control specifier, see Section 10.2.1.7.

• On the RECL specifier in OPEN statements, see Section 12.6.25.

• On the FILE specifier in OPEN statements, see Section 12.6.14.

• On the DEFAULTFILE specifier in OPEN statements, see Section 12.6.10.

12.5.1 ACCESS Specifier
The ACCESS specifier asks how a file is connected. It takes the following form:

ACCESS = acc

File Operation I/O Statements 12–9

acc
Is a scalar default character variable that is assigned one of the following
values:

’SEQUENTIAL’ If the file is connected for sequential access

’DIRECT’ If the file is connected for direct access

’KEYED’ If the file is connected for keyed access

’UNDEFINED’ If the file is not connected

12.5.2 ACTION Specifier
The ACTION specifier asks which I/O operations are allowed for a file. It takes
the following form:

ACTION = act

act
Is a scalar default character variable that is assigned one of the following
values:

’READ’ If the file is connected for input only

’WRITE’ If the file is connected for output only

’READWRITE’ If the file is connected for both input and output

’UNDEFINED’ If the file is not connected

12.5.3 BLANK Specifier
The BLANK specifier asks what type of blank control is in effect for a file. It
takes the following form:

BLANK = blnk

blnk
Is a scalar default character variable that is assigned one of the following
values:

’NULL’ If null blank control is in effect for the file

’ZERO’ If zero blank control is in effect for the file

’UNDEFINED’ If the file is not connected, or it is not connected for formatted
data transfer

12–10 File Operation I/O Statements

12.5.4 BLOCKSIZE Specifier
The BLOCKSIZE specifier asks about the I/O buffer size. It takes the following
form:

BLOCKSIZE = bks

bks
Is a scalar integer variable.

The bks is assigned the current size of the I/O buffer. If the unit or file is not
connected, the value assigned is zero.

12.5.5 BUFFERED Specifier
The BUFFERED specifier asks whether run-time buffering is in effect. It takes
the following form:

BUFFERED = bf

bf
Is a scalar default character variable that is assigned one of the following
values:

’YES’ If the file or unit is connected and buffering is in effect.

’NO’ If the file or unit is connected, but buffering is not in effect.

’UNKNOWN’ If the file or unit is not connected.

12.5.6 CARRIAGECONTROL Specifier
The CARRIAGECONTROL specifier asks what type of carriage control is in
effect for a file. It takes the following form:

CARRIAGECONTROL = cc

cc
Is a scalar default character variable that is assigned one of the following
values:

’FORTRAN’ If the file is connected with Fortran carriage control in effect

’LIST’ If the file is connected with implied carriage control in effect

’NONE’ If the file is connected with no carriage control in effect

’UNKNOWN’ If the file is not connected, or if it has an unsupported
carriage control type

File Operation I/O Statements 12–11

12.5.7 CONVERT Specifier
The CONVERT specifier asks what type of data conversion is in effect for a
file. It takes the following form:

CONVERT = fm

fm
Is a scalar default character variable that is assigned one of the following
values:

’LITTLE_ENDIAN’ If the file is connected with little endian integer and IEEE
floating-point data conversion in effect

’BIG_ENDIAN’ If the file is connected with big endian integer and IEEE
floating-point data conversion in effect

’CRAY’ If the file is connected with big endian integer and CRAY®
floating-point data conversion in effect

’FDX’ If the file is connected with little endian integer and
VAX F_floating, D_floating, and IEEE X_floating data
conversion in effect

’FGX’ If the file is connected with little endian integer and
VAX F_floating, G_floating, and IEEE X_floating data
conversion in effect

’IBM’ If the file is connected with big endian integer and IBM®
System\370 floating-point data conversion in effect

’VAXD’ If the file is connected with little endian integer and VAX
F_floating, D_floating, and H_floating in effect

’VAXG’ If the file is connected with little endian integer and VAX
F_floating, G_floating, and H_floating in effect

’NATIVE’ If the file is connected with no data conversion in effect

’UNKNOWN’ If the file or unit is not connected for unformatted data
transfer

12.5.8 DELIM Specifier
The DELIM specifier asks how character constants are delimited in list-
directed and namelist output. It takes the following form:

DELIM = del

12–12 File Operation I/O Statements

del
Is a scalar default character variable that is assigned one of the following
values:

’APOSTROPHE’ If apostrophes are used to delimit character constants in
list-directed and namelist output

’QUOTE’ If quotation marks are used to delimit character constants in
list-directed and namelist output

’NONE’ If no delimiters are used

’UNDEFINED’ If the file is not connected, or is not connected for formatted
data transfer

12.5.9 DIRECT Specifier
The DIRECT specifier asks whether a file is connected for direct access. It
takes the following form:

DIRECT = dir

dir
Is a scalar default character variable that is assigned one of the following
values:

’YES’ If the file is connected for direct access

’NO’ If the file is not connected for direct access

’UNKNOWN’ If the file is not connected

12.5.10 EXIST Specifier
The EXIST specifier asks whether a file exists and can be opened. It takes the
following form:

EXIST = ex

ex
Is a scalar default logical variable that is assigned one of the following values:

.TRUE. If the specified file exists and can be opened, or if the specified
unit exists

.FALSE. If the specified file or unit does not exist or if the file exists
but cannot be opened

The unit exists if it is a number in the range allowed by the processor.

File Operation I/O Statements 12–13

12.5.11 FORM Specifier
The FORM specifier asks whether a file is connected for formatted or
unformatted data transfer. It takes the following form:

FORM = fm

fm
Is a scalar default character variable that is assigned one of the following
values:

’FORMATTED’ If the file is connected for formatted data transfer

’UNFORMATTED’ If the file is connected for unformatted data transfer

’UNDEFINED’ If the file is not connected

12.5.12 FORMATTED Specifier
The FORMATTED specifier asks whether a file is connected for formatted data
transfer. It takes the following form:

FORMATTED = fmt

fmt
Is a scalar default character variable that is assigned one of the following
values:

’YES’ If the file is connected for formatted data transfer

’NO’ If the file is not connected for formatted data transfer

’UNKNOWN’ If the processor cannot determine whether the file is
connected for formatted data transfer

12.5.13 KEYED Specifier
The KEYED specifier asks whether a file is connected for keyed access. It
takes the following form:

KEYED = kyd

kyd
Is a scalar default character variable that is assigned one of the following
values:

’YES’ If keyed access is allowed for the indexed file

’NO’ If keyed access is not allowed

12–14 File Operation I/O Statements

’UNKNOWN’ If the processor cannot determine whether keyed access is
allowed

12.5.14 NAME Specifier
The NAME specifier returns the name of a file. It takes the following form:

NAME = nme

nme
Is a scalar default character variable that is assigned the name of the file to
which the unit is connected. If the file does not have a name, nme is undefined.

The value assigned to nme is not necessarily the same as the value given in
the FILE specifier. For example, the value that the processor returns may be
qualified by a directory name or a version number.

However, the value that is assigned is always valid for use with the FILE
specifier in an OPEN statement, unless the value has been truncated in a way
that makes it unacceptable. (Values are truncated if the declaration of nme is
too small to contain the entire value.)

Note

The FILE and NAME specifiers are synonyms when used with the
OPEN statement, but not when used with the INQUIRE statement.

For More Information:
On the maximum possible size of file specifications, see the OpenVMS Record
Management Services Reference Manual.

12.5.15 NAMED Specifier
The NAMED specifier asks whether a file is named. It takes the following
form:

NAMED = nmd

nmd
Is a scalar default logical variable that is assigned one of the following values:

.TRUE. If the file has a name

.FALSE. If the file does not have a name

File Operation I/O Statements 12–15

12.5.16 NEXTREC Specifier
The NEXTREC specifier asks where the next record can be read or written in
a file connected for direct access. It takes the following form:

NEXTREC = nr

nr
Is a scalar integer variable that is assigned a value as follows:

• If the file is connected for direct access and a record (r) was previously read
or written, the value assigned is r � 1.

• If no record has been read or written, the value assigned is 1.

• If the file is not connected for direct access, or if the file position cannot be
determined because of an error condition, the value assigned is zero.

• If the file is connected for direct access and a REWIND has been performed
on the file, the value assigned is 1.

12.5.17 NUMBER Specifier
The NUMBER specifier asks the number of the unit connected to a file. It
takes the following form:

NUMBER = num

num
Is an scalar integer variable.

The num is assigned the number of the unit currently connected to the
specified file. If there is no unit connected to the file, num is not defined.

12.5.18 OPENED Specifier
The OPENED specifier asks whether a file is connected. It takes the following
form:

OPENED = od

od
Is a scalar default logical variable that is assigned one of the following values:

.TRUE. If the specified file or unit is connected

.FALSE. If the specified file or unit is not connected

12–16 File Operation I/O Statements

12.5.19 ORGANIZATION Specifier
The ORGANIZATION specifier asks how the file is organized. It takes the
following form:

ORGANIZATION = org

org
Is a scalar default character variable that is assigned one of the following
values:

’SEQUENTIAL’ If the file is a sequential file

’RELATIVE’ If the file is a relative file

’INDEXED’ If the file is an indexed file

’UNKNOWN’ If the processor cannot determine the file’s organization

12.5.20 PAD Specifier
The PAD specifier asks whether blank padding was specified for the file. It
takes the following form:

PAD = pd

pd
Is a scalar default character variable that is assigned one of the following
values:

’NO’ If the file or unit was connected with PAD=’NO’

’YES’ If the file or unit is not connected, or it was connected with
PAD=’YES’

12.5.21 POSITION Specifier
The POSITION specifier asks the position of the file. It takes the following
form:

POSITION = pos

pos
Is a scalar default character variable that is assigned one of the following
values:

’REWIND’ If the file is connected with its position at its initial point

File Operation I/O Statements 12–17

’APPEND’ If the file is connected with its position at its terminal point
(or before its end-of-file record, if any)

’ASIS’ If the file is connected without changing its position

’UNDEFINED’ If the file is not connected, or is connected for direct access
data transfer and a REWIND statement has not been
performed on the unit.

For More Information:
On record position, advancement, and transfer, see HP Fortran for OpenVMS
User Manual.

12.5.22 READ Specifier
The READ specifier asks whether a file can be read. It takes the following
form:

READ = rd

rd
Is a scalar default character variable that is assigned one of the following
values:

’YES’ If the file can be read

’NO’ If the file cannot be read

’UNKNOWN’ If the processor cannot determine whether the file can be read

12.5.23 READWRITE Specifier
The READWRITE specifier asks whether a file can be both read and written
to. It takes the following form:

READWRITE = rdwr

rdwr
Is a scalar default character variable that is assigned one of the following
values:

’YES’ If the file can be both read and written to

’NO’ If the file cannot be both read and written to

’UNKNOWN’ If the processor cannot determine whether the file can be both
read and written to

12–18 File Operation I/O Statements

12.5.24 RECL Specifier
The RECL specifier asks the maximum record length for a file. It takes the
following form:

RECL = rcl

rcl
Is a scalar integer variable that is assigned a value as follows:

• If the file or unit is connected, the value assigned is the maximum record
length allowed.

• If the file is not connected, the value assigned is the maximum record
length allowed in the file. However, if the maximum record length is zero,
the value assigned is the length of the longest record in the file.

If inquiring about a file that has no maximum record size, see
Section 12.6.25.

• If the file is segmented, the value assigned is the longest segment length in
the file.

• If the file does not exist, the value assigned is zero.

The assigned value is expressed in 4-byte units if a file is currently (or was
previously) connected for unformatted data transfer; otherwise, the value is
expressed in bytes.

12.5.25 RECORDTYPE Specifier
The RECORDTYPE specifier asks which type of records are in a file. It takes
the following form:

RECORDTYPE = rtype

rtype
Is a scalar default character variable that is assigned one of the following
values:

’FIXED’ If the file is connected for fixed-length records

’VARIABLE’ If the file is connected for variable-length records

’SEGMENTED’ If the file is connected for unformatted sequential data
transfer using segmented records

’STREAM’ If the file’s records are terminated with a carriage return
and line feed

File Operation I/O Statements 12–19

’STREAM_CR’ If the file’s records are terminated with only a carriage
return

’STREAM_LF’ If the file’s records are terminated with only a line feed

’UNKNOWN’ If the processor cannot determine the record type

12.5.26 SEQUENTIAL Specifier
The SEQUENTIAL specifier asks whether a file is connected for sequential
access. It takes the following form:

SEQUENTIAL = seq

seq
Is a scalar default character variable that is assigned one of the following
values:

’YES’ If the file is connected for sequential access

’NO’ If the file is not connected for sequential access

’UNKNOWN’ If the processor cannot determine whether the file is
connected for sequential access

12.5.27 UNFORMATTED Specifier
The UNFORMATTED specifier asks whether a file is connected for
unformatted data transfer. It takes the following form:

UNFORMATTED = unf

unf
Is a scalar default character variable that is assigned one of the following
values:

’YES’ If the file is connected for unformatted data transfer

’NO’ If the file is not connected for unformatted data transfer

’UNKNOWN’ If the processor cannot determine whether the file is
connected for unformatted data transfer

12.5.28 WRITE Specifier
The WRITE specifier asks whether a file can be written to. It takes the
following form:

WRITE = wr

12–20 File Operation I/O Statements

wr
Is a scalar default character variable that is assigned one of the following
values:

’YES’ If the file can be written to

’NO’ If the file cannot be written to

’UNKNOWN’ If the processor cannot determine whether the file can be
written to

12.6 OPEN Statement
The OPEN statement connects an external file to a unit, creates a new file and
connects it to a unit, creates a preconnected file, or changes certain properties
of a connection.

The OPEN statement takes the following form:

OPEN ([UNIT=]io-unit [,FILE=name] [,ERR=label] [,IOSTAT=i-var], slist)

io-unit
Is an external unit specifier.

name
Is a character or numeric expression specifying the name of the file to be
connected. For more information, see Section 12.6.14.

label
Is the label of the branch target statement that receives control if an error
occurs.

i-var
Is a scalar integer variable that is defined as a positive integer if an error
occurs and zero if no error occurs.

slist
Is one or more OPEN specifiers in the form specifier=value or specifier. Each
specifier can appear only once.

The OPEN specifiers and their acceptable values are summarized in
Table 12–1.

The OPEN specifiers are described individually in the following sections. The
control specifiers that can be specified in an OPEN statement (UNIT, ERR, and
IOSTAT) are discussed in Section 10.2.1.

File Operation I/O Statements 12–21

Table 12–1 OPEN Statement Specifiers and Values

Specifier Values Function Default

ACCESS ’SEQUENTIAL’
’DIRECT’
’KEYED’
’APPEND’

Access mode ’SEQUENTIAL’

ACTION ’READ’
’WRITE’
’READWRITE’

File access ’READWRITE’

ASSOCIATEVARIABLE var Next direct access
record

No default

BLANK ’NULL’
’ZERO’

Interpretation of
blanks

’NULL’

BLOCKSIZE n_expr Physical block size System default

BUFFERCOUNT n_expr Number of I/O
buffers

System default

BUFFERED ’YES’
’NO’

Buffering for WRITE
operations

’NO’

CARRIAGECONTROL ’FORTRAN’
’LIST’
’NONE’

Print control Formatted:
’FORTRAN’
Unformatted:
’NONE’

CONVERT ’LITTLE_ENDIAN’
’BIG_ENDIAN’
’CRAY’
’FDX’
’FGX’
’IBM’
’VAXD’
’VAXG’
’NATIVE’

Numeric format
specification

’NATIVE’

Key to Values

c_expr: A scalar default character expression
dr: A direction, ASCENDING or DESCENDING
dt: A data type, INTEGER or CHARACTER
e1: The first byte position of a key
e2: The last byte position of a key
func: An external function
label: A statement label
n_expr: A scalar numeric expression
var: A scalar integer variable

(continued on next page)

12–22 File Operation I/O Statements

Table 12–1 (Cont.) OPEN Statement Specifiers and Values

Specifier Values Function Default

DEFAULTFILE c_expr Default file
specification

Current working
directory

DELIM ’APOSTROPHE’
’QUOTE’
’NONE’

Delimiter for
character constants

’NONE’

DISPOSE
(or DISP)

’KEEP’ or ’SAVE’
’DELETE’
’PRINT’
’PRINT/DELETE’
’SUBMIT’
’SUBMIT/DELETE’

File disposition at
close

’KEEP’

ERR label Error transfer control No default

EXTENDSIZE n_expr File allocation
increment

Volume or system
default

FILE
(or NAME)

c_expr File specification
(file name)

FORnnn.DAT1

FORM ’FORMATTED’
’UNFORMATTED’

Format type Depends on ACCESS
setting

INITIALSIZE n_expr File allocation No default

IOSTAT var I/O status No default

KEY (e1:e2[:dt[:dr]],...) Key field definitions CHARACTER
ASCENDING

MAXREC n_expr Direct access record
limit

No limit

NOSPANBLOCKS No value Records do not span
blocks

No default

1nnn is the unit number (with leading zeros, if necessary).
Key to Values

c_expr: A scalar default character expression
dr: A direction, ASCENDING or DESCENDING
dt: A data type, INTEGER or CHARACTER
e1: The first byte position of a key
e2: The last byte position of a key
func: An external function
label: A statement label
n_expr: A scalar numeric expression
var: A scalar integer variable

(continued on next page)

File Operation I/O Statements 12–23

Table 12–1 (Cont.) OPEN Statement Specifiers and Values

Specifier Values Function Default

ORGANIZATION ’SEQUENTIAL’
’RELATIVE’
’INDEXED’

File organization ’SEQUENTIAL’

PAD ’YES’
’NO’

Record padding ’YES’

POSITION ’ASIS’
’REWIND’
’APPEND’

File positioning ’ASIS’

READONLY No value Write protection No default

RECL
(or RECORDSIZE)

n_expr Record length Depends on
RECORDTYPE,
ORGANIZATION,
and FORM settings

RECORDTYPE ’FIXED’
’VARIABLE’
’SEGMENTED’
’STREAM’
’STREAM_CR’
’STREAM_LF’

Record type Depends on
ORGANIZATION,
ACCESS, and
FORM settings

SHARED No value File sharing allowed No default 2

STATUS
(or TYPE)

’OLD’
’NEW’
’SCRATCH’
’REPLACE’
’UNKNOWN’

File status at open ’UNKNOWN’3

UNIT n_expr Logical unit number No default; an io-unit
must be specified

2For information on file sharing, see the HP Fortran for OpenVMS User Manual.
3The default differs under certain conditions (see Section 12.6.29).
Key to Values

c_expr: A scalar default character expression
dr: A direction, ASCENDING or DESCENDING
dt: A data type, INTEGER or CHARACTER
e1: The first byte position of a key
e2: The last byte position of a key
func: An external function
label: A statement label
n_expr: A scalar numeric expression
var: A scalar integer variable

(continued on next page)

12–24 File Operation I/O Statements

Table 12–1 (Cont.) OPEN Statement Specifiers and Values

Specifier Values Function Default

USEROPEN func User program option No default
Key to Values

c_expr: A scalar default character expression
dr: A direction, ASCENDING or DESCENDING
dt: A data type, INTEGER or CHARACTER
e1: The first byte position of a key
e2: The last byte position of a key
func: An external function
label: A statement label
n_expr: A scalar numeric expression
var: A scalar integer variable

Rules and Behavior
The control specifiers ([UNIT=]io-unit, ERR=label, and IOSTAT=i-var) and
OPEN specifiers can appear anywhere within the parentheses following OPEN.
However, if the UNIT specifier is omitted, the io-unit must appear first in the
list.

Specifier values that are scalar numeric expressions can be any integer or real
expression. The value of the expression is converted to integer data type before
it is used in the OPEN statement.

Only one unit at a time can be connected to a file, but multiple OPENs can be
performed on the same unit. If an OPEN statement is executed for a unit that
already exists, the following occurs:

• If FILE is not specified, or FILE specifies the same file name that appeared
in a previous OPEN statement, the current file remains connected.

If the file names are the same, the values for the BLANK, CONVERT,
CARRIAGECONTROL, DELIM, DISPOSE, ERR, IOSTAT, and PAD
specifiers can be changed. Other OPEN specifier values cannot be changed,
and the file position is unaffected.

• If FILE specifies a different file name, the previous file is closed and the
new file is connected to the unit.

The ERR and IOSTAT specifiers from any previously executed OPEN statement
have no effect on any currently executing OPEN statement. If an error occurs,
no file is opened or created.

Secondary operating system messages do not display when IOSTAT is specified.
To display these messages, remove IOSTAT or use a platform-specific method.
(For more information, see the HP Fortran for OpenVMS User Manual.)

File Operation I/O Statements 12–25

Examples
You can specify character values at run time by substituting a character
expression for a specifier value in the OPEN statement. The character value
can contain trailing blanks but not leading or embedded blanks; for example:

CHARACTER*7 QUAL /’ ’/
...
IF (exp) QUAL = ’/DELETE’
OPEN (UNIT=1, STATUS=’NEW’, DISP=’SUBMIT’//QUAL)

The following statement creates a new sequential formatted file on unit 1 with
the default file name FOR001.DAT:

OPEN (UNIT=1, STATUS=’NEW’, ERR=100)

The following statement creates a 50-block direct access file for temporary
storage. The file is deleted at program termination.

OPEN (UNIT=3, STATUS=’SCRATCH’, ACCESS=’DIRECT’, &
INITIALSIZE=50, RECL=64)

The following statement creates a file on magnetic tape with a large block size
for efficient processing:

OPEN (UNIT=I, FILE=’MTA0:MYDATA.DAT’, BLOCKSIZE=8192,
1 STATUS=’NEW’, ERR=14, RECL=1024,
1 RECORDTYPE=’FIXED’)

The following statement opens the file (created in the previous example) for
input:

OPEN (UNIT=I, FILE=’MTA0:MYDATA.DAT’, READONLY,
1 STATUS=’OLD’, RECL=1024, RECORDTYPE=’FIXED’,
1 BLOCKSIZE=8192)

The following statement uses the file name supplied by the user and the
default file specification supplied by the DEFAULTFILE specifier to define the
file specification for an existing file:

TYPE *, ’ENTER NAME OF DOCUMENT’
ACCEPT *, DOC
OPEN (UNIT=1, FILE=DOC, DEFAULTFILE=’[ARCHIVE].TXT’,
1 STATUS=’OLD’)

12–26 File Operation I/O Statements

For More Information:

• On Fortran IOSTAT errors, see the HP Fortran for OpenVMS User Manual.

• On the UNIT control specifier, see Section 10.2.1.1.

• On the ERR control specifier, see Section 10.2.1.8.

• On the IOSTAT control specifier, see Section 10.2.1.7.

• On using the INQUIRE statement to get file attributes of existing files, see
Section 12.5.

• On OPEN statements and file connection, see the HP Fortran for OpenVMS
User Manual.

12.6.1 ACCESS Specifier
The ACCESS specifier indicates the access method for the connection of the
file. It takes the following form:

ACCESS = acc

acc
Is a scalar default character expression that evaluates to one of the following
values:

’DIRECT’ Indicates direct access.

’SEQUENTIAL’ Indicates sequential access.

’KEYED’ Indicates keyed access.

’APPEND’ Indicates sequential access, but the file is positioned at the
end-of-file record.

The default is ’SEQUENTIAL’.

12.6.2 ACTION Specifier
The ACTION specifier indicates the allowed I/O operations for the file
connection. It takes the following form:

ACTION = act

act
Is a scalar default character expression that evaluates to one of the following
values:

’READ’ Indicates that only READ statements can refer to this
connection.

File Operation I/O Statements 12–27

’WRITE’ Indicates that only WRITE, DELETE, and ENDFILE
statements can refer to this connection.

’READWRITE’ Indicates that READ, WRITE, DELETE, and ENDFILE
statements can refer to this connection.

The default is ’READWRITE’.

12.6.3 ASSOCIATEVARIABLE Specifier
The ASSOCIATEVARIABLE specifier indicates a variable that is updated
after each direct access I/O operation, to reflect the record number of the next
sequential record in the file. It takes the following form:

ASSOCIATEVARIABLE = asv

asv
Is a scalar integer variable. It cannot be a dummy argument to the routine in
which the OPEN statement appears.

Direct access READs, direct access WRITEs, and the FIND, DELETE, and
REWRITE statements can affect the value of asv.

This specifier is valid only for direct access; it is ignored for other access modes.

12.6.4 BLANK Specifier
The BLANK specifier indicates how blanks are interpreted in a file. It takes
the following form:

BLANK = blnk

blnk
Is a scalar default character expression that evaluates to one of the following
values:

’NULL’ Indicates all blanks are ignored, except for an all-blank field
(which has a value of zero).

’ZERO’ Indicates all blanks (other than leading blanks) are treated as
zeros.

The default is ’NULL’ (for explicitly OPENed files, preconnected files, and
internal files). If you specify compiler option /NOF77 (or OPTIONS /NOF77),
the default is ’ZERO’.

If the BN or BZ edit descriptors are specified for a formatted input statement,
they supersede the default interpretation of blanks.

12–28 File Operation I/O Statements

For More Information:
On the BN and BZ edit descriptors, see Section 11.4.4.

12.6.5 BLOCKSIZE Specifier
The BLOCKSIZE specifier specifies the physical I/O transfer size for the file. It
takes the following form:

BLOCKSIZE = bks

bks
Is a scalar numeric expression. If necessary, the value is converted to integer
data type before use.

For magnetic tape files, the value of bks specifies the physical record size in
the range 18 to 32767 bytes. The default value is 2048 bytes.

For sequential disk files, the value of bks is rounded up to an integral number
of 512-byte blocks and used to specify multiblock transfers. The number of
blocks transferred can be 1 to 127; it is determined by RMS defaults.

For relative and indexed files, the value of bks is rounded up to an integral
number of 512-byte blocks, and is used to specify the RMS bucket size in the
range 1 to 63 blocks. The default is the smallest value capable of holding a
single record.

For More Information:

• On setting RMS defaults, see the SET RMS_DEFAULT command in the
HP OpenVMS DCL Dictionary.

• On tuning information, see the Guide to OpenVMS File Applications.

12.6.6 BUFFERCOUNT Specifier
The BUFFERCOUNT specifier indicates the number of buffers to be associated
with the unit for multibuffered I/O. It takes the following form:

BUFFERCOUNT = bc

bc
Is a scalar numeric expression in the range 1 through 127. If necessary, the
value is converted to integer data type before use.

The BLOCKSIZE specifier determines the size of each buffer. For example,
if BUFFERCOUNT=3 and BLOCKSIZE=2048, the total number of bytes
allocated for buffers is 3*2048, or 6144.

File Operation I/O Statements 12–29

If you do not specify BUFFERCOUNT or you specify zero for bc, the process or
system default is assumed.

For More Information:

• On setting RMS defaults, see the HP OpenVMS DCL Dictionary.

• On the BLOCKSIZE specifier, see Section 12.6.5.

12.6.7 BUFFERED Specifier
The BUFFERED specifier indicates run-time library behavior following WRITE
operations. It takes the following form:

BUFFERED = bf

bf
Is a scalar default character expression that evaluates to one of the following
values:

’NO’ Requests that the run-time library send output data to the
file system after each WRITE operation.

’YES’ Requests that the run-time library accumulate output data in
its internal buffer, possibly across several WRITE operations,
before the data is sent to the file system.

Buffering may improve run-time performance for output-
intensive applications.

The default is ’NO’.

BUFFERED has no effect. The operating system automatically performs
buffering, which can be affected by the values of the BUFFERCOUNT and
BUFFERSIZE keywords when the file is opened.

12.6.8 CARRIAGECONTROL Specifier
The CARRIAGECONTROL specifier indicates the type of carriage control used
when a file is printed. It takes the following form:

CARRIAGECONTROL = cc

cc
Is a scalar default character expression that evaluates to one of the following
values:

’FORTRAN’ Indicates normal Fortran interpretation of the first character.

’LIST’ Indicates one line feed between records.

12–30 File Operation I/O Statements

’NONE’ Indicates no carriage control processing.

The default for formatted files is ’FORTRAN’. The default for unformatted
files, is ’NONE’.

12.6.9 CONVERT Specifier
The CONVERT specifier indicates a nonnative numeric format for unformatted
data. It takes the following form:

CONVERT = fm

fm
Is a scalar default character expression that evaluates to one of the following
values:

’LITTLE_ENDIAN’1 Little endian integer data2 and IEEE floating-point data.3

’BIG_ENDIAN’1 Big endian integer data2 and IEEE floating-point data.3

’CRAY’ Big endian integer data2 and CRAY floating-point data of size
REAL(8) or COMPLEX(8).

’FDX’ Little endian integer data2 and VAX floating-point data of
format F_floating for REAL(4) or COMPLEX(4), D_floating
for size REAL(8) or COMPLEX(8), and IEEE X_floating for
REAL(16) or COMPLEX(16).

’FGX’ Little endian integer data2 and VAX floating-point data of
format F_floating for REAL(4) or COMPLEX(4), G_floating
for size REAL(8) or COMPLEX(8), and IEEE X_floating for
REAL(16) or COMPLEX(16).

’IBM’ Big endian integer data2 and IBM System\370 floating-point
data of size REAL(4) or COMPLEX(4) (IBM short 4), and size
REAL(8) or COMPLEX(8) (IBM long 8).

’VAXD’ Little endian integer data2 and VAX floating-point data of
format F_floating for size REAL(4) or COMPLEX(4), D_floating
for size REAL(8) or COMPLEX(8), and H_floating for REAL(16)
or COMPLEX(16).

’VAXG’ Little endian integer data2 and VAX floating-point data of
format F_floating for size REAL(4) or COMPLEX(4), G_floating
for size REAL(8) or COMPLEX(8), and H_floating for REAL(16)
or COMPLEX(16).

’NATIVE’ No data conversion. This is the default.

1INTEGER(1) data is the same for little endian and big endian.
2Of the appropriate size: INTEGER(1), INTEGER(2), INTEGER(4), or INTEGER(8)
3Of the appropriate size and type: REAL(4), REAL(8), REAL(16), COMPLEX(4), COMPLEX(8), or
COMPLEX(16)

File Operation I/O Statements 12–31

You can use CONVERT to specify multiple formats in a single program, usually
one format for each specified unit number.

When reading a nonnative format, the nonnative format on disk is converted to
native format in memory. If a converted nonnative value is outside the range
of the native data type, a run-time message appears.

There are other ways to specify numeric format for unformatted files: you can
specify an OpenVMS logical name, the command line qualifier /CONVERT, or
OPTIONS/CONVERT. The following shows the order of precedence:

Method Used Precedence

OpenVMS logical name Highest

OPEN (CONVERT=) .

OPTIONS/CONVERT .

The /CONVERT qualifier Lowest

The /CONVERT qualifier and OPTIONS/CONVERT affect all unit numbers
used by the program, while logical names and OPEN (CONVERT=) affect
specific unit numbers.

The following example shows how to code the OPEN statement to read
unformatted CRAY numeric data from unit 15, which might be processed and
possibly written in native little endian format to unit 20:

OPEN (CONVERT=’CRAY’, FILE=’graph3.dat’, FORM=’UNFORMATTED’,
1 UNIT=15)

.

.

.
OPEN (FILE=’graph3_native.dat’, FORM=’UNFORMATTED’, UNIT=20)

For More Information:

• On transporting data between HP Fortran platforms, see the HP Fortran
for OpenVMS User Manual.

• On supported ranges for data types, see Chapter 3 and HP Fortran for
OpenVMS User Manual.

• On using OpenVMS logical names to specify CONVERT options, see the
HP Fortran for OpenVMS User Manual.

• On qualifiers, in general, see the HP Fortran for OpenVMS User Manual.

12–32 File Operation I/O Statements

12.6.10 DEFAULTFILE Specifier
The DEFAULTFILE specifier indicates a default file specification string. It
takes the following form:

DEFAULTFILE = def

def
Is a character expression indicating a default file specification string.

This specifier can supply a value to the RMS default file specification string for
the missing components of a file specification. If you omit the DEFAULTFILE
specifier, HP Fortran uses the default value ‘‘FORnnn.DAT’’, where nnn is the
unit number with leading zeros.

The default file specification string is used primarily when accepting file
specifications interactively. Complete file specifications known to a user
program normally appear in the FILE specifier.

You can indicate default values for any one of the following file-specification
components:

• Node

• Device

• Directory

• File name

• File type

• File version number

If you indicate values for any of these components in the FILE specifier, they
override any values indicated in the DEFAULTFILE specifier.

For More Information:
On specifying file-specification components, see the OpenVMS Record
Management Services Reference Manual.

12.6.11 DELIM Specifier
The DELIM specifier indicates what characters (if any) are used to delimit
character constants in list-directed and namelist output. It takes the following
form:

DELIM = del

File Operation I/O Statements 12–33

del
Is a scalar default character expression that evaluates to one of the following
values:

’APOSTROPHE’ Indicates apostrophes delimit character constants. All
internal apostrophes are doubled.

’QUOTE’ Indicates quotation marks delimit character constants. All
internal quotation marks are doubled.

’NONE’ Indicates character constants have no delimiters. No internal
apostrophes or quotation marks are doubled.

The default is ’NONE’.

The DELIM specifier is only allowed for files connected for formatted data
transfer; it is ignored during input.

12.6.12 DISPOSE Specifier
The DISPOSE (or DISP) specifier indicates the status of the file after the unit
is closed. It takes one of the following forms:

DISPOSE = dis
DISP = dis

�

dis
Is a scalar default character expression that evaluates to one of the following
values:

’KEEP’ or ’SAVE’ Retains the file after the unit closes.

’DELETE’ Deletes the file after the unit closes.

’PRINT’1 Submits the file to the system line printer spooler and
retains it.

’PRINT/DELETE’1 Submits the file to the system line printer spooler and
then deletes it.

’SUBMIT’ Submits the file to the batch job queue and then retains it.

’SUBMIT/DELETE’ Submits the file to the batch job queue and then deletes it.

1Use only on sequential files.

A read-only file cannot be deleted.

The default is ’DELETE’ for scratch files; a scratch file cannot be saved,
printed, or submitted. For all other files, the default is ’KEEP’.

12–34 File Operation I/O Statements

12.6.13 EXTENDSIZE Specifier
The EXTENDSIZE specifier indicates the number of blocks by which to extend
a disk file (extent) when additional storage space is needed. It takes the
following form:

EXTENDSIZE = es

es
Is a scalar numeric expression.

If you do not specify EXTENDSIZE or if you specify zero, the process or system
default for the device is used.

For More Information:
On the relationship between the EXTENDSIZE specifier and the INITIALSIZE
specifier, see Section 12.6.16.

12.6.14 FILE Specifier
The FILE specifier indicates the name of the file to be connected to the unit. It
takes the following form:

FILE = name

name
Is a character or numeric expression.

The name can be any specification allowed by the operating system.

Any trailing blanks in the name are ignored.

If the following conditions occur:

• FILE is omitted

• The unit is not connected to a file

• STATUS=’SCRATCH’ is not specified

then HP Fortran generates a file name in the form FORnnn.DAT, where nnn is
the logical unit number (with leading zeros, if necessary).

If the file name is stored in a numeric scalar or array, the name must consist of
ASCII characters terminated by an ASCII null character (zero byte). However,
if it is stored in a character scalar or array, it must not contain a zero byte.

File Operation I/O Statements 12–35

For More Information:

• On default file name conventions, see the HP Fortran for OpenVMS User
Manual.

• On allowable file specifications, see the appropriate manual in your system
documentation set.

12.6.15 FORM Specifier
The FORM specifier indicates whether the file is being connected for formatted
or unformatted data transfer. It takes the following form:

FORM = fm

fm
Is a scalar default character expression that evaluates to one of the following
values:

’FORMATTED’ Indicates formatted data transfer

’UNFORMATTED’ Indicates unformatted data transfer

The default is ’FORMATTED’ for sequential access files, and
’UNFORMATTED’ for direct and keyed access files.

12.6.16 INITIALSIZE Specifier
The INITIALSIZE specifier indicates the number of blocks in the initial
storage allocation (extent) for a disk file. This information is used by the
EXTENDSIZE specifier, which indicates the number of blocks by which a disk
file is extended each time more space is needed for a file. The INITIALSIZE
specifier takes the following form:

INITIALSIZE = insz

insz
Is a scalar numeric expression.

If you do not specify INITIALSIZE or if you specify zero, no initial allocation
is made. The system attempts to allocate contiguous space for INITIALSIZE,
but noncontiguous space is allocated if there is not enough contiguous space
available.

INITIALSIZE is effective only at the time the file is created. If EXTENDSIZE
is specified when the file is created, the value specified is the default value
used to allocate additional storage for the file.

12–36 File Operation I/O Statements

If you specify EXTENDSIZE when you open an existing file, the value you
specify supersedes any EXTENDSIZE value specified when the file was created,
and remains in effect until you close the file. Unless specifically overridden,
the default EXTENDSIZE value is in effect on subsequent openings of the file.

12.6.17 KEY Specifier
The KEY specifier defines the access keys for records in an indexed file. It
takes the following form:

KEY = (kspec [,kspec]...)

kspec
Takes the following form:

e1:e2 [:dt[:dr]]

e1
Is the first byte position of the key.

e2
Is the last byte position of the key.

dt
Is the data type of the key: INTEGER or CHARACTER.

dr
Is the direction of the key: ASCENDING or DESCENDING.

The defaults are CHARACTER and ASCENDING.

The key starts at position e1 in a record and has a length of
� �
� � �. The
values of e1 and e2 must cause the following calculations to be true:

1 .LE. (e1) .AND. (e1) .LE. (e2) .AND. (e2) .LE. record-length
1 .LE. (e2-e1+1) .AND. (e2-e1+1) .LE. 255

If the key type is INTEGER, the key length must be either 2 or 4.

Defining Primary and Alternate Keys
You must define at least one key in an indexed file. This is the primary key
(the default key). It usually has a unique value for each record.

You can also define alternate keys. RMS allows up to 254 alternate keys.

If a file requires more keys than the OPEN statement limit, you must create
the file using another language or the File Definition Language (FDL).

File Operation I/O Statements 12–37

Specifying and Referencing Keys
You must use the KEY specifier when creating an indexed file. However, you
do not have to respecify it when opening an existing file, because key attributes
are permanent aspects of the file. These attributes include key definitions and
reference numbers for subsequent I/O operations.

However, if you use the KEY specifier for an existing file, your specification
must be identical to the established key attributes.

Subsequent I/O operations use a reference number, called the key-of-reference
number, to identify a particular key. You do not specify this number; it is
determined by the key’s position in the specification list: the primary key is
key-of-reference number 0; the first alternate key is key-of-reference number 1,
and so forth.

For More Information:
On the FDL, see the OpenVMS Record Management Services Reference
Manual.

12.6.18 MAXREC Specifier
The MAXREC specifier indicates the maximum number of records that can be
transferred from or to a direct access file while the file is connected. It takes
the following form:

MAXREC = mr

mr
Is a scalar numeric expression. If necessary, the value is converted to integer
data type before use.

The default is the maximum allowed (2**32–1).

12.6.19 NAME Specifier
NAME is a nonstandard synonym for FILE (see Section 12.6.14).

12.6.20 NOSPANBLOCKS Specifier
The NOSPANBLOCKS specifier indicates that records are not to cross disk
block boundaries. It takes the following form:

NOSPANBLOCKS

This specifier causes an error to occur if any record exceeds the size of a
physical block.

12–38 File Operation I/O Statements

12.6.21 ORGANIZATION Specifier
The ORGANIZATION specifier indicates the internal organization of the file.
It takes the following form:

ORGANIZATION = org

org
Is a scalar default character expression that evaluates to one of the following
values:

’SEQUENTIAL’ Indicates a sequential file.

’RELATIVE’ Indicates a relative file.

’INDEXED’ Indicates an indexed file.

The default is ’SEQUENTIAL’. However, if you omit the ORGANIZATION
specifier when you open an existing file, the organization already specified in
that file is used. If you specify ORGANIZATION for an existing file, org must
have the same value as that of the existing file.

12.6.22 PAD Specifier
The PAD specifier indicates whether a formatted input record is padded with
blanks when an input list and format specification requires more data than the
record contains.

The PAD specifier takes the following form:

PAD = pd

pd
Is a scalar default character expression that evaluates to one of the following
values:

’YES’ Indicates the record will be padded with blanks when
necessary.

’NO’ Indicates the record will not be padded with blanks. The
input record must contain the data required by the input list
and format specification.

The default is ’YES’.

This behavior is different from FORTRAN 77, which never pads short records
with blanks. For example, consider the following:

READ (5,’(I5)’) J

If you enter 123 followed by a carriage return, FORTRAN 77 turns the I5 into
an I3 and J is assigned 123.

File Operation I/O Statements 12–39

However, HP Fortran pads the 123 with 2 blanks unless you explicitly open the
unit with PAD=’NO’.

You can override blank padding by explicitly specifying the BN edit descriptor.

The PAD specifier is ignored during output.

12.6.23 POSITION Specifier
The POSITION specifier indicates the position of a file connected for sequential
access. It takes the following form:

POSITION = pos

pos
Is a scalar default character expression that evaluates to one of the following
values:

’ASIS’ Indicates the file position is unchanged if the file exists and is
already connected. The position is unspecified if the file exists
but is not connected.

’REWIND’ Indicates the file is positioned at its initial point.

’APPEND’ Indicates the file is positioned at its terminal point (or before
its end-of-file record, if any).

The default is ’ASIS’.

A new file (whether specified as new explicitly or by default) is always
positioned at its initial point.

For More Information:
On record position, advancement, and transfer, see the HP Fortran for
OpenVMS User Manual.

12.6.24 READONLY Specifier
The READONLY specifier indicates only READ statements can refer to this
connection. It takes the following form:

READONLY

READONLY is similar to specifying ACTION=’READ’, but READONLY
prevents deletion of the file if it is closed with STATUS=’DELETE’ in effect.

Default file access privileges are READWRITE, which can cause run-time I/O
errors if the file protection does not permit write access.

12–40 File Operation I/O Statements

The READONLY specifier has no effect on the protection specified for a file.
Its main purpose is to allow a file to be read simultaneously by two or more
programs. For example, use READONLY if you wish to open a file so you can
read it, but you also want others to be able to read the same file while you
have it open.

For More Information:
On file sharing, see the HP Fortran for OpenVMS User Manual.

12.6.25 RECL Specifier
The RECL specifier indicates the length of each record in a file connected for
direct or keyed access, or the maximum length of a record in a file connected
for sequential access.

The RECL specifier takes the following form:

RECL = rl

rl
Is a positive numeric expression indicating the length of records in the file. If
necessary, the value is converted to integer data type before use.

If the file is connected for formatted data transfer, the value must be expressed
in bytes (characters). Otherwise, the value is expressed in 4-byte units
(longwords). If the file is connected for unformatted data transfer, the value
can be expressed in bytes if compiler option /ASSUME=BYTERECL is specified.

The rl value is the length for record data only. It does not include space for
control information, such as two segment control bytes (if present) or the bytes
that RMS requires for maintaining record length and deleted record control
information.

The length specified is interpreted depending on the type of records in the
connected file, as follows:

• For segmented records, RECL indicates the maximum length for any
segment (not including the two segment control bytes).

• For fixed-length records, RECL indicates the size of each record.

• For variable-length or stream records, RECL specifies the size of the buffer
that will be allocated to hold records read or written. Specifying RECL for
stream records (STREAM, STREAM_CR or STREAM_LF) is required if the
longest record length in the file exceeds the default RECL value.

File Operation I/O Statements 12–41

Errors occur under the following conditions:

• If your program attempts to write to an existing file a record that is longer
than the logical record length

• If you are opening an existing file that contains fixed-length records or has
relative organization and you specify a value for RECL that is different
from the actual length of the records in the file

Table 12–2 lists the maximum values that can be specified for rl for disk files
that use the fixed-length record format:

Table 12–2 Maximum Record Lengths (RECL)

Record I/O Statement Format

File Organization Formatted (bytes) Unformatted (longwords)

Sequential 32767 8191

Relative 32255 8063

Indexed 32224 8056

For other record formats and device types, the record size limit may be less, as
described in the OpenVMS Record Management Services Reference Manual.

You must specify RECL when opening new files (STATUS=’NEW’,
’UNKNOWN’, or ’SCRATCH’) and one or more of the following conditions
exists:

• The file is connected for direct access (ACCESS=’DIRECT’).

• The record format is fixed length (RECORDTYPE=’FIXED’).

• The file organization is relative or indexed (ORGANIZATION=’RELATIVE’
or ’INDEXED’).

The default value depends on the setting of the RECORDTYPE specifier, as
shown in Table 12–3.

12–42 File Operation I/O Statements

Table 12–3 Default Record Lengths (RECL)

RECORDTYPE RECL value

’FIXED’ None; value must be explicitly specified

All other types 133 bytes (for formatted records)
511 longwords (for unformatted records)

12.6.26 RECORDSIZE Specifier
RECORDSIZE is a nonstandard synonym for RECL (see Section 12.6.25).

12.6.27 RECORDTYPE Specifier
The RECORDTYPE specifier indicates the type of records in a file. It takes the
following form:

RECORDTYPE = typ

typ
Is a scalar default character expression that evaluates to one of the following
values:

’FIXED’ Indicates fixed-length records.

’VARIABLE’ Indicates variable-length records.

’SEGMENTED’ Indicates segmented records.

’STREAM’ Indicates stream-type variable length records.

’STREAM_CR’ Indicates stream-type variable length records, terminated
with a carriage-return.

’STREAM_LF’ Indicates stream-type variable length records, terminated
with a line feed.

When you open a file, default record types are as follows:

’FIXED’ For relative or indexed files

’FIXED’ For direct access sequential files

’VARIABLE’ For formatted sequential access files

’SEGMENTED’ For unformatted sequential access files

A segmented record is a logical record consisting of one or more variable-
length records (segments). The logical record can span several physical records.
Only unformatted sequential-access files with sequential organization can have
segmented records; ’SEGMENTED’ must not be specified for any other file
type.

File Operation I/O Statements 12–43

Files containing segmented records can be accessed only by unformatted
sequential data transfer statements.

Normally, if you do not use the RECORDTYPE specifier when you are accessing
an existing file, the record type of the file is used. However, if the file is an
unformatted sequential-access file with sequential organization and variable-
length records, the default record type is ’SEGMENTED’.

If you use the RECORDTYPE specifier when you are accessing an existing file,
the type that you specify must match the type of the existing file.

If an output statement does not specify a full record for a file containing
fixed-length records, the following occurs:

• In formatted files, the record is filled with blanks

• In unformatted files, the record is filled with zeros

For More Information:
On record types and file organization, see the HP Fortran for OpenVMS User
Manual.

12.6.28 SHARED Specifier
The SHARED specifier indicates that the file is connected for shared access by
more than one program executing simultaneously. It takes the following form:

SHARED

For More Information:
On file sharing, see the HP Fortran for OpenVMS User Manual.

12.6.29 STATUS Specifier
The STATUS specifier indicates the status of a file when it is opened. It takes
the following form:

STATUS = sta

sta
Is a scalar default character expression that evaluates to one of the following
values:

’OLD’ Indicates an existing file.

’NEW’ Indicates a new file; if the file already exists, an error occurs.
Once the file is created, its status changes to ’OLD’.

12–44 File Operation I/O Statements

’SCRATCH’ Indicates a new file that is unnamed (called a scratch file).
When the file is closed or the program terminates, the scratch
file is deleted.

’REPLACE’ Indicates the file replaces another. If the file to be replaced
exists, it is deleted and a new file is created with the same
name. If the file to be replaced does not exist, a new file is
created and its status changes to ’OLD’.

’UNKNOWN’ Indicates the file may or may not exist. If the file does not
exist, a new file is created (using the next highest available
version number) and its status changes to ’OLD’.

The default is ’UNKNOWN’. However, if you implicitly open a file using
WRITE or you specify compiler option /NOF77 (or OPTIONS /NOF77), the
default value is ’NEW’. If you implicitly open a file using READ, the default
value is ’OLD’.

Scratch files (STATUS=’SCRATCH’) are created on your default disk
(SYS$DISK) and are not placed in a directory or given a name that is
externally visible. To indicate a different device, use the FILE specifier.

Note

The STATUS specifier can also appear in CLOSE statements to indicate
the file’s status after it is closed. However, in CLOSE statements the
STATUS values are the same as those listed for the DISPOSE specifier
(see Section 12.6.12).

12.6.30 TYPE Specifier
TYPE is a nonstandard synonym for STATUS (see Section 12.6.29).

12.6.31 USEROPEN Specifier
The USEROPEN specifier indicates a user-written external function that
controls the opening of the file. It takes the following form:

USEROPEN = function-name

function-name
Is the name of the user-written function to receive control.

The function must be declared in a previous EXTERNAL statement; if it is
typed, it must be of type INTEGER(4) (INTEGER*4).

File Operation I/O Statements 12–45

The USEROPEN specifier lets experienced users use additional features of the
operating system that are not normally available in Fortran.

For More Information:
On user-supplied functions to use with USEROPEN, including examples, see
the HP Fortran for OpenVMS User Manual.

12.7 REWIND Statement
The REWIND statement positions a sequential or direct access file at the
beginning of the file (the initial point). It takes one of the following forms:

REWIND ([UNIT=]io-unit [,ERR=label] [,IOSTAT=i-var])
REWIND io-unit

io-unit
Is an external unit specifier.

label
Is the label of the branch target statement that receives control if an error
occurs.

i-var
Is a scalar integer variable that is defined as a positive integer if an error
occurs and zero if no error occurs.

Rules and Behavior
The unit number must refer to a file on disk or magnetic tape, and the file
must be open for sequential, direct, or append access.

If a REWIND is done on a direct access file, the NEXTREC specifier is assigned
a value of 1.

A REWIND statement must not be specified for a file that is open for or keyed
access.

If a file is already positioned at the initial point, a REWIND statement has no
effect.

If a REWIND statement is specified for a unit that is not open, it has no
effect.

12–46 File Operation I/O Statements

Examples
The following statement repositions the file connected to I/O unit 3 to the
beginning of the file:

REWIND 3

Consider the following statement:

REWIND (UNIT=9, IOSTAT=IOS, ERR=10)

This statement positions the file connected to unit 9 at the beginning of the
file. If an error occurs, control is transferred to the statement labeled 10, and a
positive integer is stored in variable IOS.

For More Information:

• On the UNIT control specifier, see Section 10.2.1.1.

• On the ERR control specifier, see Section 10.2.1.8.

• On the IOSTAT control specifier, see Section 10.2.1.7.

• On record position, advancement, and transfer, see the HP Fortran for
OpenVMS User Manual.

12.8 UNLOCK Statement
The UNLOCK statement frees a record in an indexed, relative, or sequential
file that was locked by a previous READ statement.

The UNLOCK statement takes one of the following forms:

UNLOCK ([UNIT=]io-unit [,ERR=label] [,IOSTAT=i-var])
UNLOCK io-unit

io-unit
Is an external unit specifier.

label
Is the label of the branch target statement that receives control if an error
occurs.

i-var
Is a scalar integer variable that is defined as a positive integer if an error
occurs and zero if no error occurs.

If no record is locked, the UNLOCK statement has no effect.

File Operation I/O Statements 12–47

Examples
The following statement frees any record previously read and locked in the file
connected to I/O unit 4:

UNLOCK 4

Consider the following statement:

UNLOCK (UNIT=9, IOSTAT=IOS, ERR=10)

This statement frees any record previously read and locked in the file connected
to unit 9. If an error occurs, control is transferred to the statement labeled 10,
and a positive integer is stored in variable IOS.

For More Information:

• On the UNIT control specifier, see Section 10.2.1.1.

• On the ERR control specifier, see Section 10.2.1.8.

• On the IOSTAT control specifier, see Section 10.2.1.7.

• On shared files and locked records, see the HP Fortran for OpenVMS User
Manual.

12–48 File Operation I/O Statements

13
Compilation Control Statements

In addition to specifying options on the compiler command line, you can specify
the following statements in a program unit to influence compilation:

• DICTIONARY statement (Section 13.1)

Extracts records from the Common Data Dictionary (CDD) and converts
them into HP Fortran STRUCTURE declarations.

• INCLUDE statement (Section 13.2)

Incorporates external source code into programs.

• OPTIONS statement (Section 13.3)

Sets options usually specified in the compiler command line. OPTIONS
statement settings override command line options.

13.1 DICTIONARY Statement
The DICTIONARY statement incorporates common data dictionary (CDD) data
definitions into the current HP Fortran source program during compilation.
The statement can occur any place in a Fortran source program where a
STRUCTURE statement can occur.

The DICTIONARY statement takes the following form:

DICTIONARY ’cdd-path [/[NO]LIST]’

cdd-path
Is interpreted as the full or relative pathname of a CDD object.

/[NO]LIST
Controls whether the source code representation of the resulting structure
declaration is listed in a compilation source listing. The default is /NOLIST.
/LIST and /NOLIST must be spelled completely.

Compilation Control Statements 13–1

Rules and Behavior
There are two types of CDD pathnames: full and relative. Their form must
conform to the rules for forming CDD pathnames.

A full CDD pathname begins with CDD$TOP and specifies the given names
of all its descendants; it is a complete path to the record definition. Multiple
descendant names are separated by periods.

A relative CDD pathname begins with any generation name other than
CDD$TOP and specifies the given names of the descendants after that point. A
relative path comes into existence when a default directory is established with
a logical name.

Examples
In the following example, the logical name definition specifies the beginning
of the CDD pathname. So, a relative pathname specifies the remainder of the
path to the record definition:

$ DEFINE CDD$DEFAULT CDD$TOP.FOR

The following examples show how a CDD pathname beginning with CDD$TOP
overrides the default CDD pathname. Consider a record with the pathname
CDD$TOP.SALES.JONES.SALARY. If you define CDD$DEFAULT to be
CDD$TOP.SALES.JONES, you can then specify a relative pathname; for
example:

DICTIONARY ’SALARY’

You can also specify this as a full pathname, for example:

DICTIONARY ’CDD$TOP.SALES.JONES.SALARY’

For More Information:
On CDD pathnames, see Using CDD/Repository on VMS Systems.

13.2 INCLUDE Statement
The INCLUDE statement directs the compiler to stop reading statements from
the current file and read statements in an included file or text module.

The INCLUDE statement takes one of the following forms:

INCLUDE ’file-name [/[NO]LIST]’
INCLUDE ’[text-lib] (module-name) [/[NO]LIST]’

13–2 Compilation Control Statements

file-name
Is a character string specifying the name of the file to be included; it must not
be a named constant.

The form of the file name must be acceptable to the operating system, as
described in your system documentation.

/[NO]LIST
Specifies whether the incorporated code is to appear in the compilation source
listing. In the listing, a number precedes each incorporated statement. The
number indicates the ‘‘include’’ nesting depth of the code. The default is
/NOLIST. /LIST and /NOLIST must be spelled completely.

text-lib
Is a character string specifying the file name of the text library to be searched.

The form of the file name must be acceptable to the operating system, as
described in your system documentation.

module-name
Is a character string specifying the name of the text library module to be
included. The name of the text module must be enclosed in parentheses. It can
contain any alphanumeric character and the special characters dollar sign ($)
and underscore (_).

The length of the file name must be acceptable to the operating system, as
described in your system documentation.

Rules and Behavior
An INCLUDE statement can appear anywhere within a scoping unit. The
statement can span more than one source line, but no other statement can
appear on the same line. The source line cannot be labeled.

An included file or text module cannot begin with a continuation line, and each
Fortran statement must be completely contained within a single file.

An included file or text module can contain any source text, but it cannot begin
or end with an incomplete Fortran statement.

The included statements, when combined with the other statements in
the compilation, must satisfy the statement-ordering restrictions shown in
Figure 2–1.

Included files or text modules can contain additional INCLUDE statements,
but they must not be recursive. INCLUDE statements can be nested until
system resources are exhausted.

Compilation Control Statements 13–3

When the included file or text module completes execution, compilation
resumes with the statement following the INCLUDE statement.

When including files that contain datatype declarations, it is recommended
that such declarations explicitly specify the kind of the datatype. If an explicit
kind is omitted, the declarations will be interpreted according to the command-
line options in effect when the file is included, which may result in unintended
behavior.

Examples
In Example 13–1, a file named COMMON.FOR (in the current working
directory) is included and read as input.

Example 13–1 Including Text from a File

Main Program File COMMON.FOR File

PROGRAM
INCLUDE ’COMMON.FOR’ INTEGER, PARAMETER :: M=100
REAL, DIMENSION(M) :: Z REAL, DIMENSION(M) :: X, Y
CALL CUBE COMMON X, Y
DO I = 1, M
Z(I) = X(I) + SQRT(Y(I))
...

END DO
END

SUBROUTINE CUBE
INCLUDE ’COMMON.FOR’
DO I=1,M
X(I) = Y(I)**3

END DO
RETURN

END

The file COMMON.FOR defines a named constant M, and defines arrays X and
Y as part of blank common.

For More Information:

• On compiler options, see the HP Fortran for OpenVMS User Manual.

• On using text libraries, see the HP Fortran for OpenVMS User Manual.

13–4 Compilation Control Statements

13.3 OPTIONS Statement
The OPTIONS statement overrides or confirms the compiler options in effect
for a program unit. It takes the following form:

OPTIONS option [option...]

option
Is one of the following:

/CHECK =

�

�

�

ALL
[NO]BOUNDS
[NO]OVERFLOW
[NO]UNDERFLOW
NONE

�

�

�

/NOCHECK

/CONVERT =

�

�

�

BIG_ENDIAN
CRAY
FDX
FGX
IBM
LITTLE_ENDIAN
NATIVE
VAXD
VAXG

�

�

�

/[NO]EXTEND_SOURCE
/[NO]F77

/FLOAT =

� D_FLOAT
G_FLOAT
IEEE_FLOAT

	

/[NO]G_FLOATING
/[NO]I4
/[NO]RECURSIVE

Note that an option must always be preceded by a slash (/).

Some OPTIONS statement options are equivalent to compiler options.

Compilation Control Statements 13–5

Rules and Behavior
The OPTIONS statement must be the first statement in a program unit,
preceding the PROGRAM, SUBROUTINE, FUNCTION, MODULE, and
BLOCK DATA statements.

OPTIONS statement options override compiler options, but only until the
end of the program unit for which they are defined. If you want to override
compiler options in another program unit, you must specify the OPTIONS
statement before that program unit.

Examples
The following are valid OPTIONS statements:

OPTIONS /CHECK=ALL/F77

OPTIONS /I4

For More Information:
On compiler options, see the HP Fortran for OpenVMS User Manual.

13–6 Compilation Control Statements

14
Compiler Directives

HP Fortran provides compiler directives to perform general-purpose tasks
during compilation. You do not need to specify a compiler option to enable
general directives.

Compiler directives are preceded by a special prefix that identifies them to the
compiler.

This chapter describes:

• Syntax rules for general directives (Section 14.1)

• ALIAS (Section 14.2)

Specifies an alternate external name to be used when referring to external
subprograms.

• ATTRIBUTES (Section 14.3)

Specifies properties for data objects and procedures.

• DECLARE and NODECLARE (Section 14.4)

Generates or disables warnings for variables that have been used but not
declared.

• DEFINE and UNDEFINE (Section 14.5)

Specifies a symbolic variable whose existence (or value) can be tested
during conditional compilation.

• FIXEDFORMLINESIZE (Section 14.6)

Sets the line length for fixed-form source code.

• FREEFORM and NOFREEFORM (Section 14.7)

Specifies free-format or fixed-format source code.

• IDENT (Section 14.8)

Specifies an identifier for an object module.

• IF and IF DEFINED (Section 14.9)

Compiler Directives 14–1

Specifies a conditional compilation construct.

• INTEGER (Section 14.10)

Specifies the default integer kind.

• IVDEP (Section 14.11)

Assists the compiler’s dependence analysis.

• MESSAGE (Section 14.12)

Specifies a character string to be sent to the standard output device during
the first compiler pass.

• OBJCOMMENT (Section 14.13)

Specifies a library search path in an object file.

• OPTIONS (Section 14.14)

Affects data alignment and warnings about data alignment.

• PACK (Section 14.15)

Specifies the memory starting addresses of derived-type items.

• PSECT (Section 14.16)

Modifies certain characteristics of a common block.

• REAL (Section 14.17)

Specifies the default real kind.

• STRICT and NOSTRICT (Section 14.18)

Disables or enables language features not found in the language standard
specified on the command line (Fortran 95 or Fortran 90).

• TITLE and SUBTITLE (Section 14.19)

Specifies a title or subtitle for a listing header.

• UNROLL (Section 14.20)

Tells the compiler’s optimizer how many times to unroll a DO loop.

14.1 Syntax Rules for General Directives
The following general syntax rules apply to all general compiler directives. You
must follow these rules precisely to compile your program properly and obtain
meaningful results.

14–2 Compiler Directives

A general directive prefix (tag) takes the following form:

cDEC$

c
Is one of the following: C (or c), !, or *.

The following are source form rules for directive prefixes:

• Prefixes beginning with C (or c) and * are only allowed in fixed and tab
source forms.

In these source forms, the prefix must appear in columns 1 through
5; column 6 must be a blank or tab. From column 7 on, blanks are
insignificant, so the directive can be positioned anywhere on the line after
column 6.

• Prefixes beginning with ! are allowed in all source forms.

The prefix can appear in any valid column, but it cannot be preceded by
any nonblank characters on the same line. It can only be preceded by
whitespace.

A general directive ends in column 72 (or column 132, if a compiler option is
specified).

General directives cannot be continued.

A comment can follow a directive on the same line.

Additional Fortran statements (or directives) cannot appear on the same line
as the general directive.

General directives cannot appear within a continued Fortran statement.

If a blank common is used in a general compiler directive, it must be specified
as two slashes (/ /).

14.2 ALIAS Directive
The ALIAS directive lets you specify an alternate external name to be
used when referring to external subprograms. This can be useful when
compiling applications written for other platforms that have different naming
conventions.

The ALIAS directive takes the following form:

cDEC$ ALIAS internal-name, external-name

Compiler Directives 14–3

c
Is one of the following: C (or c), !, or * (see Section 14.1).

internal-name
Is the name of the subprogram as used in the current program unit.

external-name
Is a name, or a character constant delimited by apostrophes or quotation
marks.

If a name is specified, the name (in uppercase) is used as the external name for
the specified internal-name. If a character constant is specified, it is used as is;
the string is not changed to uppercase, nor are blanks removed.

The ALIAS directive affects only the external name used for references to the
specified internal-name.

Names that are not acceptable to the linker will cause link-time errors.

For More Information:

• On syntax rules for all general directives, see Section 14.1.

• On the linker, see the HP OpenVMS Linker Utility Manual.

14.3 ATTRIBUTES Directive
The ATTRIBUTES directive lets you specify properties for data objects and
procedures. It takes the following form: 1

cDEC$ ATTRIBUTES att [,att]... :: object [,object]...

c
Is one of the following: C (or c), !, or * (see Section 14.1).

att
Is one of the following:

ADDRESS64 DESCRIPTOR32 REFERENCE

ALIAS DESCRIPTOR64 REFERENCE32

ALLOW_NULL REFERENCE64

STDCALL

C EXTERN VALUE

1 The following form is also allowed: !MS$ATTRIBUTES att [,att]... :: object [,object]...

14–4 Compiler Directives

DECORATE IGNORE_LOC VARYING

DEFAULT NO_ARG_CHECK

DESCRIPTOR NOMIXED_STR_LEN_
ARG

object
Is the name of a data object or procedure.

The following table shows which properties can be used with various objects:

Property
Variable and
Array Declarations

Common Block
Names1

Subprogram Specification
and EXTERNAL Statements

ADDRESS64 Yes Yes No

ALIAS No Yes Yes

ALLOW_NULL Yes No No

C No Yes Yes

DECORATE No No Yes

DEFAULT No Yes Yes

DESCRIPTOR Yes2 No No

DESCRIPTOR32 Yes2 No No

DESCRIPTOR64 Yes2 No No

EXTERN Yes No No

IGNORE_LOC Yes No No

NO_ARG_CHECK Yes No Yes3

NOMIXED_STR_LEN_
ARG

No No Yes

REFERENCE Yes No Yes

REFERENCE32 Yes No No

REFERENCE64 Yes No No

STDCALL No Yes Yes

VALUE Yes No No

VARYING No No Yes

1A common block name is specified as [/]common-block-name[/].
2This property can only be applied to INTERFACE blocks.
3This property cannot be applied to EXTERNAL statements.

Compiler Directives 14–5

These properties can be used in function and subroutine definitions, in type
declarations, and with the INTERFACE and ENTRY statements.

Properties applied to entities available through use or host association are in
effect during the association. For example, consider the following:

MODULE MOD1
INTERFACE
SUBROUTINE SUB1
!DEC$ ATTRIBUTES C, ALIAS:’othername’ :: NEW_SUB
END SUBROUTINE

END INTERFACE
CONTAINS
SUBROUTINE SUB2
CALL NEW_SUB
END SUBROUTINE

END MODULE

In this case, the call to NEW_SUB within SUB2 uses the C and ALIAS
properties specified in the interface block.

The properties are described as follows:

• ADDRESS64

Specifies that the object has a 64-bit address. This property can be
specified for any variable or dummy argument, including ALLOCATABLE
and deferred-shape arrays. However, variables with this property cannot
be data-initialized.

It can also be specified for COMMON blocks or for variables in a COMMON
block. If specified for a COMMON block variable, the COMMON block
implicitly has the ADDRESS64 property.

ADDRESS64 is not compatible with the AUTOMATIC attribute.

• ALIAS

Specifies an alternate external name to be used when referring to external
subprograms. Its form is:

ALIAS:external-name

external-name
Is a character constant delimited by apostrophes or quotation marks. The
character constant is used as is; the string is not changed to uppercase, nor
are blanks removed.

14–6 Compiler Directives

The ALIAS property overrides the C (and STDCALL) property. If both C
and ALIAS are specified for a subprogram, the subprogram is given the C
calling convention, but not the C naming convention. It instead receives
the name given for ALIAS, with no modifications.

ALIAS cannot be used with internal procedures, and it cannot be applied
to dummy arguments.

cDEC$ ATTRIBUTES ALIAS has the same effect as the cDEC$ ALIAS
directive (see Section 14.2).

• ALLOW_NULL

Enables a corresponding dummy argument to pass a NULL pointer (defined
by a zero or the NULL intrinsic function) by value for the argument.

ALLOW_NULL is only valid if the REFERENCE property is also specified;
otherwise, it has no effect.

• C and STDCALL

Specify how data is to be passed when you use routines written in C or
assembler with FORTRAN or Fortran 95/90 routines.

C and STDCALL are synonyms.

When applied to a subprogram, these properties define the subprogram as
having a specific set of calling conventions.

The following table summarizes the differences between the calling
conventions:

Convention C1 STDCALL1 Default2

Arguments passed by value Yes Yes No

1C and STDCALL are synonyms.
2Fortran 95/90 calling convention.

If C or STDCALL is specified for a subprogram, arguments (except for
arrays and characters) are passed by value. Subprograms using standard
Fortran 95/90 conventions pass arguments by reference.

Character arguments are passed as follows:

• By default, hidden lengths are put at the end of the argument list.

• If C or STDCALL (only) is specified, the first character of the string is
passed (and padded with zeros out to INTEGER(4) length).

• If C or STDCALL is specified, and REFERENCE is specified for the
argument, the string is passed but the length is not passed.

Compiler Directives 14–7

• If C or STDCALL is specified, and REFERENCE is specified for the
routine (but REFERENCE is not specified for the argument, if any),
the string is passed but the length is not passed.

For details, see information on mixed-language programming in the
HP Fortran for OpenVMS User Manual. See also the description of
REFERENCE in this list.

• DECORATE

Specifies that the external name used in cDEC$ ALIAS or cDEC$
ATTRIBUTES ALIAS should have the prefix and postfix decorations
performed on it that are associated with the calling mechanism that is in
effect. These are the same decorations performed on the procedure name
when ALIAS is not specified.

The case of the external name is not modified.

If ALIAS is not specified, this property has no effect.

See also the summary of prefix and postfix decorations in the above
description of ATTRIBUTES options C and STDCALL.

• DEFAULT

Overrides certain compiler options that can affect external routine and
COMMON block declarations.

It specifies that the compiler should ignore compiler options that change
the default conventions for external symbol naming and argument passing
for routines and COMMON blocks.

This option can be combined with other cDEC$ ATTRIBUTES options, such
as STDCALL, C, REFERENCE, ALIAS, etc. to specify attributes different
from the compiler defaults.

This option is useful when declaring INTERFACE blocks for external
routines, since it prevents compiler options from changing calling or
naming conventions.

• DESCRIPTOR

Specifies that the argument is passed by VMS descriptor. This property
can be specified only for dummy arguments in an INTERFACE block (not
for a routine name).

• DESCRIPTOR32

Specifies that the argument is passed as a 32-bit descriptor.

• DESCRIPTOR64

Specifies that the argument is passed as a 64-bit descriptor.

14–8 Compiler Directives

• EXTERN

Specifies that a variable is allocated in another source file. EXTERN
can be used in global variable declarations, but it must not be applied to
dummy arguments.

EXTERN must be used when accessing variables declared in other
languages.

• IGNORE_LOC

Enables %LOC to be stripped from an argument.

IGNORE_LOC is only valid if the REFERENCE property is also specified;
otherwise, it has no effect.

• NO_ARG_CHECK

Specifies that type and shape matching rules related to explicit interfaces
are to be ignored. This permits the construction of an INTERFACE block
for an external procedure or a module procedure that accepts an argument
of any type or shape; for example, a memory copying routine.

NO_ARG_CHECK can appear only in an INTERFACE block for a non-
generic procedure or in a module procedure. It can be applied to an
individual dummy argument name or to the routine name, in which case
the property is applied to all dummy arguments in that interface.

NO_ARG_CHECK cannot be used for procedures with the PURE or
ELEMENTAL prefix. If an argument has an INTENT or OPTIONAL
attribute, any NO_ARG_CHECK specification is ignored.

• NOMIXED_STR_LEN_ARG

Specifies that hidden lengths be placed in sequential order at the end of
the argument list.

• REFERENCE and VALUE

Specify how a dummy argument is to be passed.

REFERENCE specifies a dummy argument’s memory location is to be
passed instead of the argument’s value.

VALUE specifies a dummy argument’s value is to be passed instead of the
argument’s memory location.

When a dummy argument has the VALUE property, the actual argument
passed to it can be of a different type. If necessary, type conversion is
performed before the subprogram is called.

When a complex (KIND=4 or KIND=8) argument is passed by value, two
floating-point arguments (one containing the real part, the other containing
the imaginary part) are passed by immediate value.

Compiler Directives 14–9

Character values, substrings, assumed-size arrays, and adjustable arrays
cannot be passed by value.

If REFERENCE (only) is specified for a character argument, the string is
passed but the length is not passed.

If REFERENCE is specified for a character argument, and C (or STDCALL)
has been specified for the routine, the string is passed with no length. This
is true even if REFERENCE is also specified for the routine.

If REFERENCE and C (or STDCALL) are specified for a routine, but
REFERENCE has not been specified for the argument, the string is passed
with the length.

VALUE is the default if the C or STDCALL property is specified in the
subprogram definition.

For more details, see information on mixed-language programming in the
HP Fortran for OpenVMS User Manual.

• REFERENCE32

Specifies that the argument is accepted only by 32-bit address.

• REFERENCE64

Specifies that the argument is accepted only by 64-bit address.

• VARYING

Allows a variable number of calling arguments. If VARYING is specified,
the C property must also be specified.

Either the first argument must be a number indicating how many
arguments to process, or the last argument must be a special marker (such
as –1) indicating it is the final argument. The sequence of the arguments,
and types and kinds must be compatible with the called procedure.

Options C, STDCALL, REFERENCE, VALUE, and VARYING affect the calling
conventions of routines:

• You can specify C, STDCALL, REFERENCE, and VARYING for an entire
routine.

• You can specify VALUE and REFERENCE for individual arguments.

For More Information:

• On syntax rules for all general directives, see Section 14.1.

• On using the cDEC$ ATTRIBUTES directive, see the HP Fortran for
OpenVMS User Manual.

14–10 Compiler Directives

14.4 DECLARE or NODECLARE Directives
The DECLARE directive generates warnings for variables that have been
used but have not been declared (like the IMPLICIT NONE statement). The
NODECLARE directive (the default) disables these warnings.

The DECLARE and NODECLARE directives take the following forms: 1

cDEC$ DECLARE
cDEC$ NODECLARE

c
Is one of the following: C (or c), !, or * (see Section 14.1).

The DECLARE directive is primarily a debugging tool that locates variables
that have not been properly initialized, or that have been defined but never
used.

For More Information:

• On syntax rules for all general directives, see Section 14.1.

• On the IMPLICIT NONE statement, see Section 5.9.

14.5 DEFINE and UNDEFINE Directives
The DEFINE directive creates a symbolic variable whose existence or value can
be tested during conditional compilation. The UNDEFINE directive removes a
defined symbol.

The DEFINE and UNDEFINE directives take the following forms: 2

cDEC$ DEFINE name [=val]
cDEC$ UNDEFINE name

c
Is one of the following: C (or c), !, or * (see Section 14.1).

name
Is the name of the variable.

val
Is an INTEGER(4) value assigned to name.

1 The following forms are also allowed: !MS$DECLARE and !MS$NODECLARE.
2 The following forms are also allowed: !MS$DEFINE name[=val] and !MS$UNDEFINE

name.

Compiler Directives 14–11

Rules and Behavior
DEFINE and UNDEFINE create and remove variables for use with the IF (or
IF DEFINED) directive. Symbols defined with the DEFINE directive are local
to the directive. They cannot be declared in the Fortran program.

Because Fortran programs cannot access the named variables, the names can
duplicate Fortran keywords, intrinsic functions, or user-defined names without
conflict.

To test whether a symbol has been defined, use the IF DEFINED (name)
directive You can assign an integer value to a defined symbol. To test the
assigned value of name, use the IF directive. IF test expressions can contain
most logical and arithmetic operators.

Attempting to undefine a symbol that has not been defined produces a compiler
warning.

The DEFINE and UNDEFINE directives can appear anywhere in a program,
enabling and disabling symbol definitions.

Examples
Consider the following:

!DEC$ DEFINE testflag
!DEC$ IF DEFINED (testflag)

WRITE (*,*) ’Compiling first line’
!DEC$ ELSE

WRITE (*,*) ’Compiling second line’
!DEC$ ENDIF
!DEC$ UNDEFINE testflag

For More Information:

• On syntax rules for all general directives, see Section 14.1.

• On the IF and IF DEFINED directives, see Section 14.9.

14.6 FIXEDFORMLINESIZE Directive
The FIXEDFORMLINESIZE directive sets the line length for fixed-form source
code. The directive takes the following form: 1

cDEC$ FIXEDFORMLINESIZE:{72 | 80 | 132}

1 The following form is also allowed: !MS$FIXEDFORMLINESIZE:{72 | 80 | 132}.

14–12 Compiler Directives

c
Is one of the following: C (or c), !, or * (see Section 14.1).

You can set FIXEDFORMLINESIZE to 72 (the default), 80, or 132 characters.
The FIXEDFORMLINESIZE setting remains in effect until the end of the file,
or until it is reset.

The FIXEDFORMLINESIZE directive sets the source-code line length in
include files, but not in USE modules, which are compiled separately. If an
include file resets the line length, the change does not affect the host file.

This directive has no effect on free-form source code.

Examples
Consider the following:

CDEC$ NOFREEFORM
CDEC$ FIXEDFORMLINESIZE:132
WRITE(*,*) ’Sentence that goes beyond the 72nd column without continuation.’

For More Information:

• On syntax rules for all general directives, see Section 14.1.

• On fixed-format source code, see Section 2.3.2.

14.7 FREEFORM and NOFREEFORM Directives
The FREEFORM directive specifies that source code is in free-form format.
The NOFREEFORM directive specifies that source code is in fixed-form format.

These directives take the following forms: 2

cDEC$ FREEFORM
cDEC$ NOFREEFORM

c
Is one of the following: C (or c), !, or * (see Section 14.1).

When the FREEFORM or NOFREEFORM directives are used, they remain in
effect for the remainder of the file, or until the opposite directive is used. When
in effect, they apply to include files, but do not affect USE modules, which are
compiled separately.

2 The following forms are also allowed: !MS$FREEFORM and !MS$NOFREEFORM.

Compiler Directives 14–13

For More Information:

• On syntax rules for all general directives, see Section 14.1.

• On free-form and fixed-form source code, see Section 2.3.

14.8 IDENT Directive
The IDENT directive specifies a string that identifies an object module. The
compiler places the string in the identification field of an object module when
it generates the module for each source program unit. The IDENT directive
takes the following form:

cDEC$ IDENT string

c
Is one of the following: C (or c), !, or * (see Section 14.1).

string
Is a character constant containing up to 31 printable characters.

Only the first IDENT directive is effective; the compiler ignores any additional
IDENT directives in a program unit or module.

For More Information:
On syntax rules for all general directives, see Section 14.1.

14.9 IF and IF DEFINED Directives
The IF and IF DEFINED directives specify a conditional compilation construct.
IF tests whether a logical expression is .TRUE. or .FALSE.. IF DEFINED tests
whether a symbol has been defined.

The directive-initiated construct takes the following form: 1

cDEC$ IF (expr) [or cDEC$ IF DEFINED (name)]
block

[cDEC$ ELSE IF (expr)
block]...

[cDEC$ ELSE
block]

cDEC$ ENDIF

1 Each directive in the construct can begin with !MS$ instead of cDEC$

14–14 Compiler Directives

c
Is one of the following: C (or c), !, or * (see Section 14.1).

expr
Is a logical expression that evaluates to .TRUE. or .FALSE..

name
Is the name of a symbol to be tested for definition.

block
Are executable statements that are compiled (or not) depending on the value of
logical expressions in the IF directive construct.

Rules and Behavior
The IF and IF DEFINED directive constructs end with an ENDIF directive and
can contain one or more ELSEIF directives and at most one ELSE directive.
If the logical condition within a directive evaluates to .TRUE. at compilation,
and all preceding conditions in the IF construct evaluate to .FALSE., then the
statements contained in the directive block are compiled.

A name can be defined with a DEFINE directive, and can optionally be
assigned an integer value. If the symbol has been defined, with or without
being assigned a value, IF DEFINED (name) evaluates to .TRUE.; otherwise,
it evaluates to .FALSE..

If the logical condition in the IF or IF DEFINED directive is .TRUE.,
statements within the IF or IF DEFINED block are compiled. If the condition
is .FALSE., control transfers to the next ELSEIF or ELSE directive, if any.

If the logical expression in an ELSEIF directive is .TRUE., statements within
the ELSEIF block are compiled. If the expression is .FALSE., control transfers
to the next ELSEIF or ELSE directive, if any.

If control reaches an ELSE directive because all previous logical conditions in
the IF construct evaluated to .FALSE., the statements in an ELSE block are
compiled unconditionally.

You can use any Fortran logical or relational operator or symbol in the logical
expression of the directive, including: .LT., <, .GT., >, .EQ., = =, .LE., <=,
.GE., >=, .NE., /=, .EQV., .NEQV., .NOT., .AND., .OR., and .XOR.. The logical
expression can be as complex as you like, but the whole directive must fit on
one line.

Compiler Directives 14–15

Examples
Consider the following:

! When the following code is compiled and run,
! the output depends on whether one of the expressions
! tests .TRUE., or all test .FALSE.

!DEC$ DEFINE flag=3
!DEC$ IF (flag .LT. 2)

WRITE (*,*) "This is compiled if flag less than 2."
!DEC$ ELSEIF (flag >= 8)

WRITE (*,*) "Or this compiled if flag greater than &
or equal to 8."

!DEC$ ELSE
WRITE (*,*) "Or this compiled if all preceding &

conditions .FALSE."
!DEC$ ENDIF
END

For More Information:

• On syntax rules for all general directives, see Section 14.1.

• On the DEFINE and UNDEFINE directives, see Section 14.5.

14.10 INTEGER Directive
The INTEGER directive specifies the default integer kind. This directive takes
the following form: 1

cDEC$ INTEGER:{1 | 2 | 4 | 8}

c
Is one of the following: C (or c), !, or * (see Section 14.1).

Rules and Behavior
The INTEGER directive specifies a size of 1 (KIND=1), 2 (KIND=2), 4
(KIND=4), or 8 (KIND=8) bytes for default integer numbers.

When the INTEGER directive is effect, all default integer variables are of the
kind specified in the directive. Only numbers specified or implied as INTEGER
without KIND are affected.

1 The following form is also allowed: !MS$INTEGER:{2 | 4 | 8}.

14–16 Compiler Directives

The INTEGER directive can only appear at the top of a program unit. A
program unit is a main program, an external subroutine or function, a module
or a block data program unit. The directive cannot appear between program
units, or at the beginning of internal subprograms. It does not affect modules
invoked with the USE statement in the program unit that contains it.

The default logical kind is the same as the default integer kind. So, when you
change the default integer kind you also change the default logical kind.

Examples
Consider the following:

INTEGER i ! a 4-byte integer
WRITE(*,*) KIND(i)
CALL INTEGER2()
WRITE(*,*) KIND(i) ! still a 4-byte integer

! not affected by setting in subroutine
END
SUBROUTINE INTEGER2()

!DEC$ INTEGER:2
INTEGER j ! a 2-byte integer
WRITE(*,*) KIND(j)

END SUBROUTINE

For More Information:

• On syntax rules for all general directives, see Section 14.1.

• On the INTEGER data type, see Section 3.2.1.

• On the REAL directive, see Section 14.17.

14.11 IVDEP Directive
The IVDEP directive assists the compiler’s dependence analysis. It can only
be applied to iterative DO loops. This directive can also be specified as INIT_
DEP_FWD (INITialize DEPendences ForWarD).

The IVDEP directive takes the following form:

cDEC$ IVDEP

c
Is one of the following: C (or c), !, or * (see Section 14.1).

Compiler Directives 14–17

Rules and Behavior
The IVDEP directive is an assertion to the compiler’s optimizer about the order
of memory references inside a DO loop.

The IVDEP directive tells the compiler to begin dependence analysis by
assuming all dependences occur in the same forward direction as their
appearance in the normal scalar execution order. This contrasts with normal
compiler behavior, which is for the dependence analysis to make no initial
assumptions about the direction of a dependence.

The IVDEP directive must precede the DO statement for each DO loop it
affects. No source code lines, other than the following, can be placed between
the IVDEP directive statement and the DO statement:

• An UNROLL directive

• Placeholder lines

• Comment lines

• Blank lines

The IVDEP directive is applied to a DO loop in which the user knows that
dependences are in lexical order. For example, if two memory references in the
loop touch the same memory location and one of them modifies the memory
location, then the first reference to touch the location has to be the one that
appears earlier lexically in the program source code. This assumes that the
right-hand side of an assignment statement is ‘‘earlier’’ than the left-hand side.

The IVDEP directive informs the compiler that the program would behave
correctly if the statements were executed in certain orders other than the
sequential execution order, such as executing the first statement or block to
completion for all iterations, then the next statement or block for all iterations,
and so forth. The optimizer can use this information, along with whatever else
it can prove about the dependences, to choose other execution orders.

Examples
In the following example, the IVDEP directive provides more information about
the dependences within the loop, which may enable loop transformations to
occur:

!DEC$ IVDEP
DO I=1, N

A(INDARR(I)) = A(INDARR(I)) + B(I)
END DO

In this case, the scalar execution order follows:

1. Retrieve INDARR(I).

14–18 Compiler Directives

2. Use the result from step 1 to retrieve A(INDARR(I)).

3. Retrieve B(I).

4. Add the results from steps 2 and 3.

5. Store the results from step 4 into the location indicated by A(INDARR(I))
from step 1.

IVDEP directs the compiler to initially assume that when steps 1 and 5
access a common memory location, step 1 always accesses the location first
because step 1 occurs earlier in the execution sequence. This approach lets the
compiler reorder instructions, as long as it chooses an instruction schedule that
maintains the relative order of the array references.

For More Information:
On syntax rules for all general directives, see Section 14.1.

14.12 MESSAGE Directive
The MESSAGE directive specifies a character string to be sent to the standard
output device during the first compiler pass; this aids debugging.

This directive takes the following form: 1

cDEC$ MESSAGE:string

c
Is one of the following: C (or c), !, or * (see Section 14.1).

string
Is a character constant specifying a message.

Examples
Consider the following:

!DEC$ MESSAGE:’Compiling Sound Speed Equations’

For More Information:
On syntax rules for all general directives, see Section 14.1.

1 The following form is also allowed: !MS$MESSAGE:string.

Compiler Directives 14–19

14.13 OBJCOMMENT Directive
The OBJCOMMENT directive specifies a library search path in an object file.
This directive takes the following form: 1

cDEC$ OBJCOMMENT LIB:library

c
Is one of the following: C (or c), !, or * (see Section 14.1).

library
Is a character constant specifying the name and, if necessary, the path of the
library that the linker is to search.

Rules and Behavior
The linker searches for the library named by the OBJCOMMENT directive as
if you named it on the command line, that is, before default library searches.
You can place multiple library search directives in the same source file. Each
search directive appears in the object file in the order it is encountered in the
source file.

If the OBJCOMMENT directive appears in the scope of a module, any
program unit that uses the module also contains the directive, just as if
the OBJCOMMENT directive appeared in the source file using the module.

If you want to have the OBJCOMMENT directive in a module, but do not want
it in the program units that use the module, place the directive outside the
module that is used.

Examples
Consider the following:

! MOD1.F90
MODULE a

!DEC$ OBJCOMMENT LIB: "opengl32.lib"
END MODULE a

! MOD2.F90
!DEC$ OBJCOMMENT LIB: "graftools.lib"
MODULE b

!
END MODULE b

1 The following form is also allowed: !MS$OBJCOMMENT LIB:library.

14–20 Compiler Directives

! USER.F90
PROGRAM go

USE a ! library search contained in MODULE a
! included here

USE b ! library search not included
END

For More Information:
On syntax rules for all general directives, see Section 14.1.

14.14 OPTIONS Directive
The OPTIONS directive affects data alignment and warnings about data
alignment. It takes the following form:

cDEC$ OPTIONS option [option]
. . .

cDEC$ END OPTIONS

c
Is one of the following: C (or c), !, or * (see Section 14.1).

option
Is one (or both) of the following:

• /WARN=[NO]ALIGNMENT

Controls whether warnings are issued by the compiler for data that is
not naturally aligned. By default, you receive compiler messages when
misaligned data is encountered (/WARN=ALIGNMENT).

Compiler Directives 14–21

• /[NO]ALIGN[=p]

Controls alignment of fields in record structures and data items in common
blocks. The fields and data items can be naturally aligned (for performance
reasons) or they can be packed together on arbitrary byte boundaries.

p
Is a specifier with one of the following forms:�
�

�

[class =] rule
(class = rule,...)
ALL
NONE

�
�

�

class
Is one of the following keywords:

COMMONS: For common blocks

RECORDS: For records

STRUCTURES: A synonym for RECORDS

rule
Is one of the following keywords:

PACKED

Packs fields in records or data items in common blocks on arbitrary
byte boundaries.

NATURAL

Naturally aligns fields in records and data items in common blocks on
up to 64-bit boundaries (inconsistent with the Fortran 95/90 standard).

This keyword causes the compiler to naturally align all data in a
common block, including INTEGER(8), REAL(8), and all COMPLEX
data.

STANDARD

Naturally aligns data items in common blocks on up to 32-bit
boundaries (consistent with the Fortran 95/90 standard).

This keyword only applies to common blocks; so, you can specify
/ALIGN=COMMONS=STANDARD, but you cannot specify
/ALIGN=STANDARD.

14–22 Compiler Directives

ALL
Is the same as specifying /ALIGN, /ALIGN=NATURAL, and
/ALIGN=(RECORDS=NATURAL,COMMONS=NATURAL).

NONE
Is the same as specifying /NOALIGN, /ALIGN=PACKED, and
/ALIGN=(RECORDS=PACKED,COMMONS=PACKED).

Rules and Behavior
The OPTIONS (and accompanying END OPTIONS) directives must come after
OPTIONS, SUBROUTINE, FUNCTION, and BLOCK DATA statements (if
any) in the program unit, and before the executable part of the program unit.

The OPTIONS directive supersedes the compiler option that sets alignment
and the compiler option that sets warnings about alignment.

For performance reasons, HP Fortran aligns local data items on natu-
ral boundaries. However, EQUIVALENCE, COMMON, RECORD, and
STRUCTURE data declaration statements can force misaligned data. If
/WARN=NOALIGNMENT is specified, warnings will not be issued if misaligned
data is encountered.

Note

Misaligned data significantly increases the time it takes to execute a
program. As the number of misaligned fields encountered increases,
so does the time needed to complete program execution. Specifying
cDEC$ OPTIONS/ALIGN (or the compiler option that sets alignment)
minimizes misaligned data.

If you want aligned data in common blocks, do one of the following:

• Specify /ALIGN=COMMONS=STANDARD for data items up to 32 bits in
length.

• Specify /ALIGN=COMMONS=NATURAL for data items up to 64 bits in
length.

• Place source data declarations within the common block in descending size
order, so that each data item is naturally aligned.

If you want packed, unaligned data in a record structure, do one of the
following:

• Specify /ALIGN=RECORDS=PACKED.

Compiler Directives 14–23

• Place source data declarations in the record structure so that the data is
naturally aligned.

An OPTIONS directive must be accompanied by an END OPTIONS directive;
the directives can be nested up to 100 levels. For example:

CDEC$ OPTIONS /ALIGN=PACKED ! Start of Group A
declarations

CDEC$ OPTIONS /ALIGN=RECO=NATU ! Start of nested Group B
more declarations

CDEC$ END OPTIONS ! End of Group B
still more declarations

CDEC$ END OPTIONS ! End of Group A

The CDEC$ OPTIONS specification for Group B only applies to RECORDS;
common blocks within Group B will be PACKED. This is because COMMONS
retains the previous setting (in this case, from the Group A specification).

For More Information:

• On syntax rules for all general directives, see Section 14.1.

• On alignment and data sizes, see the HP Fortran for OpenVMS User
Manual.

• On compiler options, see the HP Fortran for OpenVMS User Manual.

14.15 PACK Directive
The PACK directive specifies the memory starting addresses of derived-type or
record structure items. This directive takes the following form: 1

cDEC$ PACK:[{1 | 2 | 4}]

c
Is one of the following: C (or c), !, or * (see Section 14.1).

Rules and Behavior
Items of derived types and record structures are aligned in memory on the
smaller of two sizes: the size of the type of the item, or the current alignment
setting. The current alignment setting can be 1, 2, 4, or 8 bytes. The default
initial setting is 8 bytes (unless a compiler option specifies otherwise). By
reducing the alignment setting, you can pack variables closer together in
memory.

1 The following form is also allowed: !MS$PACK:[{1 | 2 | 4}].

14–24 Compiler Directives

The PACK directive lets you control the packing of derived-type or record
structure items inside your program by overriding the current memory
alignment setting.

For example, if CDEC$ PACK:1 is specified, all variables begin at the next
available byte, whether odd or even. Although this slightly increases access
time, no memory space is wasted. If CDEC$ PACK:4 is specified, INTEGER(1),
LOGICAL(1), and all character variables begin at the next available byte,
whether odd or even. INTEGER(2) and LOGICAL(2) begin on the next even
byte; all other variables begin on 4-byte boundaries.

If the PACK directive is specified without a number, packing reverts to the
compiler option setting (if any), or the default setting of 8.

The directive can appear anywhere in a program before the derived-type
definition or record structure definition. It cannot appear inside a derived-type
or record structure definition.

Examples
Consider the following:

! Use 4-byte packing for this derived type
! Note PACK is used outside of the derived-type definition
!DEC$ PACK:4
TYPE pair
INTEGER a, b

END TYPE
! revert to default or compiler option
!DEC$ PACK:

For More Information:

• On syntax rules for all general directives, see Section 14.1.

• On compiler options that affect packing, see the HP Fortran for OpenVMS
User Manual.

• On record structures, see Section B.12.

14.16 PSECT Directive
The PSECT directive modifies several characteristics of a common block. It
takes the following form:

cDEC$ PSECT /common-name/ a [,a] . . .

Compiler Directives 14–25

c
Is one of the following: C (or c), !, or * (see Section 14.1).

common-name
Is the name of the common block. The slashes (/) are required.

a
Is one of the following keywords:

• ALIGN=val or ALIGN=keyword

Specifies alignment for the common block.

The val is a constant ranging from 0 through 16. The specified number is
interpreted as a power of 2. The value of the expression is the alignment
in bytes.

The keyword is one of the following:

Keyword Equivalent to val

BYTE 0

WORD 1

LONG 2

QUAD 3

OCTA 4

PAGE 1 Alpha: 16
I64: 13

1Range for Alpha is 0 to 16; for I64, 0 to 13.

• GBL

Specifies global scope.

• LCL

Specifies local scope. This keyword is opposite to GBL and cannot appear
with it.

• [NO]MULTILANGUAGE

Controls whether the compiler pads the size of common blocks to ensure
compatibility when the common block program section (psect) is shared by
code created by other HP compilers.

14–26 Compiler Directives

When a program section generated by a Fortran common block is
overlaid with a program section consisting of a C structure, linker
error messages can occur. This is because the sizes of the program sections
are inconsistent; the C structure is padded, but the Fortran common block
is not.

Specifying MULTILANGUAGE ensures that HP Fortran follows a
consistent program section size allocation scheme that works with HP C
program sections shared across multiple images. Program sections shared
in a single image do not have a problem.

You can use a compiler option to specify MULTILANGUAGE for all
common blocks in a module.

• [NO]SHR

Determines whether the contents of a common block can be shared by more
than one process.

• [NO]WRT

Determines whether the contents of a common block can be modified
during program execution.

Rules and Behavior
Global or local scope is significant for an image that has more than one cluster.
Program sections with the same name that are from different modules in
different clusters are placed in separate clusters if local scope is in effect. They
are placed in the same cluster if global scope is in effect.

If one program unit changes one or more characteristics of a common block,
all other units that reference that common block must also change those
characteristics in the same way.

Default characteristics apply if you do not modify them with a PSECT
directive. Table 14–1 lists the default characteristics of common blocks and
how they can be modified by PSECT.

Compiler Directives 14–27

Table 14–1 Common Block Defaults and PSECT Modification

Default Characteristics PSECT Modification

Relocatable None

Overlaid None

Global Scope Global or local scope

Not executable None

Not multilanguage Multilanguage or not multilanguage

Writable Writable or not writable

Readable None

No protection None

Octaword alignment1 (4) 0 through 162

Not shareable Shareable or not shareable

Position dependent None

1An address that is an integral multiple of 16.
2Or keywords BYTE through PAGE.

For More Information:

• On syntax rules for all general directives, see Section 14.1.

• On the default characteristics of common blocks on OpenVMS systems, see
the HP OpenVMS Linker Utility Manual.

• On compiler options, see the HP Fortran for OpenVMS User Manual.

14.17 REAL Directive
The REAL directive specifies the default real kind. This directive takes the
following form: 1

cDEC$ REAL:{4 | 8 | 16}

1 The following form is also allowed: !MS$REAL:{4 | 8}.

14–28 Compiler Directives

c
Is one of the following: C (or c), !, or * (see Section 14.1).

Rules and Behavior
The REAL directive specifies a size of 4 (KIND=4), 8 (KIND=8), or 16
(KIND=16) bytes for default real numbers.

When the REAL directive is effect, all default real variables are of the kind
specified in the directive. Only numbers specified or implied as REAL without
KIND are affected.

The REAL directive can only appear at the top of a program unit. A program
unit is a main program, an external subroutine or function, a module or a block
data program unit. The directive cannot appear between program units, or at
the beginning of internal subprograms. It does not affect modules invoked with
the USE statement in the program unit that contains it.

Examples
Consider the following:

REAL r ! a 4-byte REAL
WRITE(*,*) KIND(r)
CALL REAL8()
WRITE(*,*) KIND(r) ! still a 4-byte REAL

! not affected by setting in subroutine
END
SUBROUTINE REAL8()

!DEC$ REAL:8
REAL s ! an 8-byte REAL
WRITE(*,*) KIND(s)

END SUBROUTINE

For More Information:

• On syntax rules for all general directives, see Section 14.1.

• On the REAL data type, see Section 3.2.2.

• On the INTEGER directive, see Section 14.10.

• On compiler options that can affect REAL types, see the HP Fortran for
OpenVMS User Manual.

Compiler Directives 14–29

14.18 STRICT and NOSTRICT Directives
The STRICT directive disables language features not found in the language
standard specified on the command line (Fortran 95 or Fortran 90). The
NOSTRICT directive (the default) enables these language features.

These directives take the following forms: 1

cDEC$ STRICT
cDEC$ NOSTRICT

c
Is one of the following: C (or c), !, or * (see Section 14.1).

If STRICT is specified and no language standard is specified on the command
line, the default is to disable features not found in Fortran 90.

The STRICT and NOSTRICT directives can appear only appear at the top of a
program unit. A program unit is a main program, an external subroutine or
function, a module or a block data program unit. The directives cannot appear
between program units, or at the beginning of internal subprograms. They do
not affect any modules invoked with the USE statement in the program unit
that contains them.

Examples
Consider the following:

! NOSTRICT by default
TYPE stuff

INTEGER(4) k
INTEGER(4) m
CHARACTER(4) name

END TYPE stuff
TYPE (stuff) examp
DOUBLE COMPLEX cd ! non-standard data type, no error
cd =(3.0D0, 4.0D0)
examp.k = 4 ! non-standard component designation,

! no error
END
SUBROUTINE STRICTDEMO()
!DEC$ STRICT
TYPE stuff
INTEGER(4) k
INTEGER(4) m
CHARACTER(4) name

END TYPE stuff

1 The following forms are also allowed: !MS$STRICT and !MS$NOSTRICT.

14–30 Compiler Directives

TYPE (stuff) samp
DOUBLE COMPLEX cd ! ERROR
cd =(3.0D0, 4.0D0)
samp.k = 4 ! ERROR

END SUBROUTINE

For More Information:
On syntax rules for all general directives, see Section 14.1.

14.19 TITLE and SUBTITLE Directives
The TITLE directive specifies a string for the title field of a listing header.
Similarly, SUBTITLE specifies a string for the subtitle field of a listing header.

These directives take the following forms: 1

cDEC$ TITLE string
cDEC$ SUBTITLE string

c
Is one of the following: C (or c), !, or * (see Section 14.1).

string
Is a character constant containing up to 31 printable characters.

Rules and Behavior
To enable TITLE and SUBTITLE directives, you must specify the compiler
option that produces a source listing file.

When TITLE or SUBTITLE appear on a page of a listing file, the specified
string appears in the listing header of the following page.

If two or more of either directive appear on a page, the last directive is the one
in effect for the following page.

If neither directive specifies a string, no change occurs in the listing file header.

For More Information:

• On syntax rules for all general directives, see Section 14.1.

• On compiler options, see the HP Fortran for OpenVMS User Manual.

1 The following forms are also allowed: !MS$TITLE:string and !MS$SUBTITLE:string.

Compiler Directives 14–31

14.20 UNROLL Directive
The UNROLL directive tells the compiler’s optimizer how many times to unroll
a DO loop. This directive can only be applied to iterative DO loops.

The UNROLL directive takes the following form:

cDEC$ UNROLL [(n)]

c
Is one of the following: C (or c), !, or * (see Section 14.1).

n
Is an integer constant. The range of n is 0 through 255.

Rules and Behavior
The UNROLL directive must precede the DO statement for each DO loop it
affects. No source code lines, other than the following, can be placed between
the UNROLL directive statement and the DO statement:

• An IVDEP directive

• Placeholder lines

• Comment lines

• Blank lines

If n is specified, the optimizer unrolls the loop n times. If n is omitted, or if it
is outside the allowed range, the optimizer picks the number of times to unroll
the loop.

The UNROLL directive overrides any setting of loop unrolling from the
command line.

For More Information:
On syntax rules for all general directives, see Section 14.1.

14–32 Compiler Directives

15
Scope and Association

This chapter describes:

• Section 15.1, Overview

• Section 15.2, Scope

• Section 15.3, Unambiguous Generic Procedure References

• Section 15.4, Resolving Procedure References

• Section 15.5, Association

15.1 Overview
Program entities are identified by names, labels, input/output unit numbers,
operator symbols, or assignment symbols. For example, a variable, a derived
type, or a subroutine is identified by its name.

Scope refers to the area in which a name is recognized. A scoping unit is the
program or part of a program in which a name is defined and known. It can be
any of the following:

• Entire executable program

• Single scoping unit

• Single statement (or part of a statement)

The region of the program in which a name is known and accessible is referred
to as the scope of that name. These different scopes allow the same name to be
used for different things in different regions of the program.

Association is the language concept that allows different names to refer to
the same entity in a particular region of a program.

Scope and Association 15–1

15.2 Scope
Program entities have the following kinds of scope (as shown in Table 15–1):

• Global

Entities that are accessible throughout an executable program.

The name of a global entity must be unique. It cannot be used to identify
any other global entity in the same executable program.

• Scoping unit (local scope)

Entities that are declared within a scoping unit.

These entities are local to that scoping unit. The names of local entities
are divided into classes (see Table 15–1).

A scoping unit is one of the following:

Derived-type definition

Procedure interface body (excluding any derived-type definitions and
interface bodies contained within it)

Program unit or subprogram (excluding any derived-type definitions,
interface bodies, and subprograms contained within it)

A scoping unit that immediately surrounds another scoping unit is called
the host scoping unit. Named entities within the host scoping unit are
accessible to the nested scoping unit by host association. (For information
about host association, see Section 15.5.1.2.)

Once an entity is declared in a scoping unit, its name can be used
throughout that scoping unit. An entity declared in another scoping unit is
a different entity even if it has the same name and properties.

Within a scoping unit, a local entity name that is not generic must be
unique within its class. However, the name of a local entity in one class
can be used to identify a local entity of another class.

Within a scoping unit, a generic name can be the same as any one of the
procedure names in the interface block.

A component name has the same scope as the derived type of which it
is a component. It can appear only within a component designator of a
structure of that type.

For information on interactions between local and global names, see
Table 15–1.

• Statement

15–2 Scope and Association

Entities that are accessible only within a statement or part of a statement;
such entities cannot be referenced in subsequent statements.

The name of a statement entity can also be the name of a global or local
entity in the same scoping unit; in this case, the name is interpreted within
the statement as that of the statement entity.

Scope and Association 15–3

Table 15–1 Scope of Program Entities

Entity Scope

Program units Global

Common blocks1 Global

External procedures Global

Intrinsic procedures Global2

Module procedures Local Class I

Internal procedures Local Class I

Dummy procedures Local Class I

Statement functions Local Class I

Derived types Local Class I

Components of derived types Local Class II

Named constants Local Class I

Named constructs Local Class I

Namelist group names Local Class I

Generic identifiers Local Class I

Argument keywords in procedures Local Class III

Variables that can be referenced throughout a
subprogram

Local Class I

Variables that are dummy arguments in
statement functions

Statement

DO variables in an implied-do list3 of a DATA or
FORALL statement, or an array constructor

Statement

Intrinsic operators Global

Defined operators Local

Statement labels Local

External I/O unit numbers Global

Intrinsic assignment Global4

Defined assignment Local

1Names of common blocks can also be used to identify local entities.
2If an intrinsic procedure is not used in a scoping unit, its name can be used as a local entity
within that scoping unit. For example, if intrinsic function COS is not used in a program unit,
COS can be used as a local variable there.
3The DO variable in an implied-do list of an I/O list has local scope.
4The scope of the assignment symbol (=) is global, but it can identify additional operations (see
Section 8.9.5).

15–4 Scope and Association

Scoping units can contain other scoping units. For example, the following
shows six scoping units:

MODULE MOD_1 ! Scoping unit 1
... ! Scoping unit 1

CONTAINS ! Scoping unit 1
FUNCTION FIRST ! Scoping unit 2
TYPE NAME ! Scoping unit 3
... ! Scoping unit 3
END TYPE NAME ! Scoping unit 3
... ! Scoping unit 2

CONTAINS ! Scoping unit 2
SUBROUTINE SUB_B ! Scoping unit 4
TYPE PROCESS ! Scoping unit 5
... ! Scoping unit 5
END TYPE PROCESS ! Scoping unit 5
INTERFACE ! Scoping unit 5
SUBROUTINE SUB_A ! Scoping unit 6
... ! Scoping unit 6
END SUBROUTINE SUB_A ! Scoping unit 6

END INTERFACE ! Scoping unit 5
END SUBROUTINE SUB_B ! Scoping unit 4

END FUNCTION FIRST ! Scoping unit 2
END MODULE ! Scoping unit 1

For More Information:

• On derived data types, see Section 3.3.

• On user-defined generic procedures, see Section 8.9.3.

• On intrinsic procedures, see Chapter 9.

• On procedures and subprograms, see Chapter 8.

• On use and host association, see Section 15.5.1.2.

• On defined operations, see Section 8.9.4.

• On defined assignment, see Section 8.9.5.

• On how the PRIVATE attribute can affect accessibility of entities, see
Section 5.16.

Scope and Association 15–5

15.3 Unambiguous Generic Procedure References
When a generic procedure reference is made, a specific procedure is invoked. If
the following rules are used, the generic reference will be unambiguous:

• Within a scoping unit, two procedures that have the same generic name
must both be subroutines (or both be functions). One of the procedures
must have a nonoptional dummy argument that is one of the following:

Not present by position or argument keyword in the other argument
list

Is present, but has different type and kind parameters, or rank

• Within a scoping unit, two procedures that have the same generic operator
must both have the same number of arguments or both define assignment.
One of the procedures must have a dummy argument that corresponds by
position in the argument list to a dummy argument of the other procedure
that has a different type and kind parameters, or rank.

When an interface block extends an intrinsic procedure, operator, or
assignment, the rules apply as if the intrinsic consists of a collection of
specific procedures, one for each allowed set of arguments.

When a generic procedure is accessed from a module, the rules apply to all the
specific versions, even if some of them are inaccessible by their specific names.

For More Information:
For details on generic procedure names, see Section 8.9.3.

15.4 Resolving Procedure References
The procedure name in a procedure reference is either established to be
generic or specific, or is not established. The rules for resolving a procedure
reference differ depending on whether the procedure is established and how it
is established.

15.4.1 References to Generic Names
Within a scoping unit, a procedure name is established to be generic if any of
the following is true:

• The scoping unit contains an interface block with that procedure name.

• The procedure name matches the name of a generic intrinsic procedure,
and it is specified with the INTRINSIC attribute in that scoping unit.

15–6 Scope and Association

• The procedure name is established to be generic in a module, and the
scoping unit contains a USE statement making that procedure name
accessible.

• The scoping unit contains no declarations for that procedure name, but the
procedure name is established to be generic in a host scoping unit.

To resolve a reference to a procedure name established to be generic, the
following rules are used in the order shown:

1. If an interface block with that procedure name appears in one of the
following, the reference is to the specific procedure providing that
interface:

a. The scoping unit that contains the reference

b. A module made accessible by a USE statement in the scoping unit

The reference must be consistent with one of the specific interfaces of the
interface block.

2. If the procedure name is specified with the INTRINSIC attribute in one of
the following, the reference is to that intrinsic procedure:

a. The same scoping unit

b. A module made accessible by a USE statement in the scoping unit

The reference must be consistent with the interface of that intrinsic
procedure.

3. If the following is true, the reference is resolved by applying rules 1 and 2
to the host scoping unit:

a. The procedure name is established to be generic in the host scoping
unit

b. There is agreement between the scoping unit and the host scoping unit
as to whether the procedure is a function or subroutine name.

4. If none of the preceding rules apply, the reference must be to the generic
intrinsic procedure with that name. The reference must be consistent with
the interface of that intrinsic procedure.

Scope and Association 15–7

15.4.2 References to Specific Names
In a scoping unit, a procedure name is established to be specific if it is not
established to be generic and any of the following is true:

• The scoping unit contains an interface body with that procedure name.

• The scoping unit contains an internal procedure, module procedure, or
statement function with that procedure name.

• The procedure name is the same as the name of a generic intrinsic
procedure, and it is specified with the INTRINSIC attribute in that scoping
unit.

• The procedure name is specified with the EXTERNAL attribute in that
scoping unit.

• The procedure name is established to be specific in a module, and the
scoping unit contains a USE statement making that procedure name
accessible.

• The scoping unit contains no declarations for that procedure name, but the
procedure name is established to be specific in a host scoping unit.

To resolve a reference to a procedure name established to be specific, the
following rules are used in the order shown:

1. If either of the following is true, the dummy argument is a dummy
procedure and the reference is to that dummy procedure:

a. The scoping unit is a subprogram, and it contains an interface body
with that procedure name.

b. The procedure name has been declared EXTERNAL, and the procedure
name is a dummy argument of that subprogram.

The procedure invoked by the reference is the one supplied as the
corresponding actual argument.

2. If the scoping unit contains an interface body or the procedure name has
been declared EXTERNAL, and Rule 1 does not apply, the reference is to
an external procedure with that name.

3. If the scoping unit contains an internal procedure or statement function
with that procedure name, the reference is to that entity.

4. If the procedure name has been declared INTRINSIC in the scoping unit,
the reference is to the intrinsic procedure with that name.

15–8 Scope and Association

5. If the scoping unit contains a USE statement that makes the name of a
module procedure accessible, the reference is to that procedure. (The USE
statement allows renaming, so the name referenced may differ from the
name of the module procedure.)

6. If none of the preceding rules apply, the reference is resolved by applying
these rules to the host scoping unit.

15.4.3 References to Nonestablished Names
In a scoping unit, a procedure name is not established if it is not determined to
be generic or specific.

To resolve a reference to a procedure name that is not established, the following
rules are used in the order shown:

1. If both of the following are true, the dummy argument is a dummy
procedure and the reference is to that dummy procedure:

a. The scoping unit is a subprogram.

b. The procedure name is a dummy argument of that subprogram.

The procedure invoked by the reference is the one supplied as the
corresponding actual argument.

2. If both of the following are true, the procedure is an intrinsic procedure
and the reference is to that intrinsic procedure:

a. The procedure name matches the name of an intrinsic procedure.

b. There is agreement between the intrinsic procedure definition and the
reference of the name as a function or subroutine.

3. If neither of the preceding rules apply, the reference is to an external
procedure with that name.

For More Information:

• On subroutine references, see Section 7.3.

• On function references, see Section 8.5.2.2.

• On generic procedure names, see Section 8.9.3.

• On the USE statement, see Section 8.3.2.

Scope and Association 15–9

15.5 Association
Association allows different program units to access the same value through
different names. Entities are associated when each is associated with the same
storage location.

There are three kinds of association:

• Name association (Section 15.5.1)

• Pointer association (Section 15.5.2)

• Storage association (Section 15.5.3)

Example 15–1 shows name, pointer, and storage association between an
external program unit and an external procedure.

Example 15–1 Example of Name, Pointer, and Storage Association

! Scoping Unit 1: An external program unit

REAL A, B(4)
REAL, POINTER :: M(:)
REAL, TARGET :: N(12)
COMMON /COM/...
EQUIVALENCE (A, B(1)) ! Storage association between A and B(1)
M => N ! Pointer association
CALL P (actual-arg,...)
...

! Scoping Unit 2: An external procedure
SUBROUTINE P (dummy-arg,...) ! Name and storage association between

! these arguments and the calling
! routine’s arguments in scoping unit 1

COMMON /COM/... ! Storage association with common block COM
! in scoping unit 1

REAL Y
CALL Q (actual-arg,...)
CONTAINS
SUBROUTINE Q (dummy-arg,...) ! Name and storage association between

! these arguments and the calling
! routine’s arguments in host procedure
! P (subprogram Q has host association
! with procedure P)

Y = 2.0*(Y-1.0) ! Name association with Y in host procedure P
...

15–10 Scope and Association

15.5.1 Name Association
Name association allows an entity (such as the name of a variable, constant,
or procedure) to be accessed from different scoping units by the same name or
by different names. There are three types of name association: argument, use,
and host.

15.5.1.1 Argument Association
Arguments are the values passed to and from functions and subroutines
through calling program argument lists.

Execution of a procedure reference establishes argument association between
an actual argument and its corresponding dummy argument. The name of
a dummy argument can be different from the name of its associated actual
argument (if any).

When the procedure completes execution, the argument association is
terminated.

For More Information:
For details on argument association, see Section 8.8.

15.5.1.2 Use and Host Association
Use association allows the entities in a module to be accessible to other
scoping units. The mechanism for use association is the USE statement. The
USE statement provides access to all public entities in the module, unless
ONLY is specified. In this case, only the entities named in the ONLY list can
be accessed.

Host association allows the entities in a host scoping unit to be accessible to
an internal procedure, derived-type definition, or module procedure contained
within the host. The accessed entities are known by the same name and have
the same attributes as in the host. Entities that are local to a procedure are
not accessible to its host.

Use or host association remains in effect throughout the execution of the
executable program.

If an entity that is accessed by use association has the same nongeneric name
as a host entity, the host entity is inaccessible. A name that appears in the
scoping unit as an external name in an EXTERNAL statement is a global
name, and any entity of the host that has this as its nongeneric name is
inaccessible.

An interface body does not access named entities by host association, but it can
access entities by use association.

Scope and Association 15–11

If a procedure gains access to a pointer by host association, the association of
the pointer with a target that is current at the time the procedure is invoked
remains current within the procedure. This pointer association can be changed
within the procedure. After execution of the procedure, the pointer association
remains current, unless the execution caused the target to become undefined.
If this occurs, the host associated pointer becomes undefined.

Note

Implicit declarations can cause problems for host association. It is
recommended that you use IMPLICIT NONE in both the host and the
contained procedure, and that you explicitly declare all entities.

When all entities are explicitly declared, local declarations override
host declarations, and host declarations that are not overridden are
available in the contained procedure.

The following example shows host and use association:

MODULE SHARE_DATA
REAL Y, Z

END MODULE

PROGRAM DEMO
USE SHARE_DATA ! All entities in SHARE_DATA are available
REAL B, Q ! through use association.
...
CALL CONS (Y)

CONTAINS
SUBROUTINE CONS (Y) ! Y is a local entity (dummy argument).
REAL C, Y
...
Y = B + C + Q + Z ! B and Q are available through host association.
... ! C is a local entity, explicitly declared. Z

END SUBROUTINE CONS ! is available through use association.
END PROGRAM DEMO

For More Information:

• On the USE statement, see Section 8.3.2.

• On entities with local scope, see Section 15.2.

15–12 Scope and Association

15.5.2 Pointer Association
A pointer can be associated with a target. At different times during the
execution of a program, a pointer can be undefined, associated with different
targets, or be disassociated. The initial association status of a pointer is
undefined. A pointer can become associated by the following:

• By pointer assignment (pointer => target)

The target must be associated, or specified with the TARGET attribute. If
the target is allocatable, it must be currently allocated.

• By allocation (successful execution of an ALLOCATE statement)

The ALLOCATE statement must reference the pointer.

A pointer becomes disassociated if any of the following occur:

• The pointer is nullified by a NULLIFY statement.

• The pointer is deallocated by a DEALLOCATE statement.

• The pointer is assigned a disassociated pointer (or the NULL intrinsic
function).

When a pointer is associated with a target, the definition status of the pointer
is defined or undefined, depending on the definition status of the target. A
target is undefined in the following cases:

• If it was never allocated

• If it is not deallocated through the pointer

• If a RETURN or END statement causes it to become undefined

If a pointer is associated with a definable target, the definition status of the
pointer can be defined or undefined, according to the rules for a variable.

If the association status of a pointer is disassociated or undefined, the pointer
must not be referenced or deallocated.

Whatever its association status, a pointer can always be nullified, allocated, or
associated with a target. When a pointer is nullified, it is disassociated. When
a pointer is allocated, it becomes associated, but is undefined. When a pointer
is associated with a target, its association and definition status are determined
by its target.

Scope and Association 15–13

For More Information:

• On pointer assignment, see Section 4.2.3.

• On the ALLOCATE and DEALLOCATE statements, see Chapter 6.

• On the NULLIFY statement, see Chapter 6.

• On the NULL intrinsic function, see Section 9.4.111.

15.5.3 Storage Association
Storage association is the association of two or more data objects. It occurs
when two or more storage sequences share (or are aligned with) one or more
storage units. Storage sequences are used to describe relationships among
variables, common blocks, and result variables.

15.5.3.1 Storage Units and Storage Sequence
A storage unit is a fixed unit of physical memory allocated to certain data.
A storage sequence is a sequence of storage units. The size of a storage
sequence is the number of storage units in the storage sequence. A storage
unit can be numeric, character, or unspecified.

A nonpointer scalar of type default real, integer, or logical occupies one numeric
storage unit. A nonpointer scalar of type double precision real or default
complex occupies two contiguous numeric storage units. In HP Fortran, one
numeric storage unit corresponds to 4 bytes of memory.

A nonpointer scalar of type default character with character length 1 occupies
one character storage unit. A nonpointer scalar of type default character with
character length len occupies len contiguous character storage units. In HP
Fortran, one character storage unit corresponds to 1 byte of memory.

A nonpointer scalar of nondefault data type occupies a single unspecified
storage unit. The number of bytes corresponding to the unspecified storage
unit differs depending on the data type.

Table 15–2 lists the storage requirements (in bytes) for the intrinsic data types.

15–14 Scope and Association

Table 15–2 Data Type Storage Requirements

Data Type Storage Requirements (in bytes)

BYTE 1

LOGICAL 2, 4, or 81

LOGICAL(1) 1

LOGICAL(2) 2

LOGICAL(4) 4

LOGICAL(8) 8

INTEGER 2, 4, or 81

INTEGER(1) 1

INTEGER(2) 2

INTEGER(4) 4

INTEGER(8) 8

REAL 4, 8, or 162

REAL(4) 4

DOUBLE PRECISION 8

REAL(8) 8

REAL(16) 16

COMPLEX 8, 16, or 322

COMPLEX(4) 8

DOUBLE COMPLEX 16

COMPLEX(8) 16

COMPLEX(16) 32

CHARACTER 1

CHARACTER*len len3

1Depending on default integer, LOGICAL and INTEGER can have 2, 4, or 8 bytes. The default
allocation is four bytes.
2Depending on default real, REAL can have 4, 8, or 16 bytes and COMPLEX can have 8, 16, or 32
bytes. The default allocations are four bytes for REAL and eight bytes for COMPLEX.
3The value of len is the number of characters specified. The largest valid value is 65535. Negative
values are treated as zero.

(continued on next page)

Scope and Association 15–15

Table 15–2 (Cont.) Data Type Storage Requirements

Data Type Storage Requirements (in bytes)

CHARACTER*(*) assumed-length4

4The assumed-length format *(*) applies to dummy arguments, PARAMETER statements, or
character functions, and indicates that the length of the actual argument or function is used. (See
Section 8.8.4 and the HP Fortran for OpenVMS User Manual.)

A nonpointer scalar of sequence derived type occupies a sequence of storage
sequences corresponding to the components of the structure, in the order
they occur in the derived-type definition. (A sequence derived type has a
SEQUENCE statement.)

A pointer occupies a single unspecified storage unit that is different from that
of any nonpointer object and is different for each combination of type, type
parameters, and rank.

The definition status and value of a data object affects the definition status and
value of any storage-associated entity.

When two objects occupy the same storage sequence, they are totally storage-
associated. When two objects occupy parts of the same storage sequence,
they are partially associated. An EQUIVALENCE statement, a COMMON
statement, or an ENTRY statement can cause total or partial storage
association of storage sequences.

For More Information:

• On the COMMON statement, see Section 5.4.

• On the ENTRY statement, see Section 8.11.

• On the EQUIVALENCE statement, see Section 5.7.

• On the hardware representations of data types, see the HP Fortran for
OpenVMS User Manual.

15.5.3.2 Array Association
A nonpointer array occupies a sequence of contiguous storage sequences, one
for each array element, in array element order.

Two or more arrays are associated when each one is associated with the
same storage location. They are partially associated when part of the storage
associated with one array is the same as part or all of the storage associated
with another array.

15–16 Scope and Association

If arrays with different data types are associated (or partially associated)
with the same storage location, and the value of one array is defined (for
example, by assignment), the value of the other array becomes undefined.
This happens because an element of an array is considered defined only if the
storage associated with it contains data of the same type as the array name.

An array element, array section, or whole array is defined by a DATA
statement before program execution. (The array properties must be declared in
a previous specification statement.) During program execution, array elements
and sections are defined by an assignment or input statement, and entire
arrays are defined by input statements.

For More Information:

• On arrays, see Section 3.5.2.

• On array element order, see Section 3.5.2.2.

• On the DATA statement, see Section 5.5.

Scope and Association 15–17

A
Deleted and Obsolescent Language

Features

This appendix describes deleted and obsolescent language features.

Fortran 90 identified certain FORTRAN 77 features to be obsolescent. Fortran
95 deleted some of these features, and identified a few more language features
to be obsolescent. Features considered obsolescent might be removed from
future revisions of the Fortran Standard.

You can specify a compiler option to have these features flagged.

Note

HP Fortran fully supports features deleted from Fortran 95.

A.1 Deleted Language Features in Fortran 95
Some language features, considered redundant in FORTRAN 77, are not
included in Fortran 95. However, they are still fully supported by HP Fortran:

• ASSIGN and assigned GO TO statements

• Assigned FORMAT specifier

• Branching to an END IF statement from outside its IF block

• H edit descriptor

• PAUSE statement

• Real and double precision DO control variables and DO loop control
expressions

For suggested methods to achieve the functionality of these features, see
Section A.3.

Deleted and Obsolescent Language Features A–1

A.2 Obsolescent Language Features in Fortran 95
Some language features considered redundant in Fortran 90 are identified as
obsolescent in Fortran 95.

Other methods are suggested to achieve the functionality of the following
obsolescent features:

• Alternate returns

To replace this functionality, it is recommended that you use an integer
variable to return a value to the calling program, and let the calling
program use a CASE construct to test the value and perform operations
(see Section 7.4).

• Arithmetic IF

To replace this functionality, it is recommended that you use an IF
statement or construct (see Section 7.8).

• Assumed-length character functions

To replace this functionality, it is recommended that you use one of the
following:

An automatic character-length function, where the length of the
function result is declared in a specification expression

A subroutine whose arguments correspond to the function result and
the function arguments

Dummy arguments of a function can still have assumed character length;
this feature is not obsolescent.

• CHARACTER*(*) form of CHARACTER declaration

To replace this functionality, it is recommended that you use the Fortran
90 forms of specifying a length selector in CHARACTER declarations (see
Section 5.1.2).

• Computed GO TO statement

To replace this functionality, it is recommended that you use a CASE
construct (see Section 7.4).

A–2 Deleted and Obsolescent Language Features

• DATA statements among executable statements

This functionality has been included since FORTRAN 66, but is considered
to be a potential source of errors.

• Fixed source form

Newer methods of entering data have made this source form obsolescent
and error-prone.

The recommended method for coding is to use free source form (see
Section 2.3.1).

• Shared DO termination and termination on a statement other than END
DO or CONTINUE

To replace this functionality, it is recommended that you use an END DO
statement (see Section 7.6.1) or a CONTINUE statement (see Section 7.5).

• Statement functions

To replace this functionality, it is recommended that you use an internal
function (see Section 8.7).

A.3 Obsolescent Language Features in Fortran 90
Fortran 90 did not delete any of the features in FORTRAN 77, but some
FORTRAN 77 features were identified as obsolescent.

Other methods are suggested to achieve the functionality of the following
obsolescent features:

• Alternate return (labels in an argument list)

To replace this functionality, it is recommended that you use an integer
variable to return a value to the calling program, and let the calling
program test the value and perform operations, using a computed GO TO
statement (see Section 7.2.2) or CASE construct (see Section 7.4).

• Arithmetic IF

To replace this functionality, it is recommended that you use an IF
statement or construct (see Section 7.8).

Deleted and Obsolescent Language Features A–3

• ASSIGN and assigned GO TO statements

These statements are usually used to simulate internal procedures (see
Section 8.7), which can now be coded directly.

• Assigned FORMAT specifier (label of a FORMAT statement assigned to an
integer variable)

To replace this functionality, it is recommended that you use character
expressions to define format specifications (see Section 11.2).

• Branching to an END IF statement from outside its IF block

To replace this functionality, it is recommended that you branch to the
statement following the END IF statement (see Section 7.8.1).

• H edit descriptor

To replace this functionality, it is recommended that you use the character
constant edit descriptor (see Section 11.5).

• PAUSE statement

To replace this functionality, it is recommended that you use a READ
statement that awaits input data (see Section 10.3).

• Real and double precision DO control variables and DO loop control
expressions

To replace this functionality, it is recommended that you use integer DO
variables and expressions (see Section 7.6).

• Shared DO termination and termination on a statement other than END
DO or CONTINUE

To replace this functionality, it is recommended that you use an END DO
statement (see Section 7.6.1) or a CONTINUE statement (see Section 7.5).

A–4 Deleted and Obsolescent Language Features

B
Additional Language Features

This appendix describes additional language features provided by HP Fortran
to facilitate compatibility with older versions of Fortran.

Note

These language features are particularly useful in porting older
Fortran programs to Fortran 95/90. However, you should avoid using
them in new programs, especially new programs for which portability
to other Fortran 95/90 implementations is important.

B.1 DEFINE FILE Statement
The DEFINE FILE statement establishes the size and structure of files with
relative organization and associates them with a logical unit number. The
DEFINE FILE statement is comparable to the OPEN statement. In situations
where you can use the OPEN statement, OPEN is the preferable mechanism
for creating and opening files.

The DEFINE FILE statement takes the following form:

DEFINE FILE u(m, n, U, asv) [,u(m, n, U, asv)] . . .

u
Is a scalar integer constant or variable that specifies the logical unit number.

m
Is a scalar integer constant or variable that specifies the number of records in
the file.

n
Is a scalar integer constant or variable that specifies the length of each record
in 16-bit words (2 bytes).

Additional Language Features B–1

U
Specifies that the file is unformatted (binary); this is the only acceptable entry
in this position.

asv
Is a scalar integer variable, called the associated variable of the file. At the
end of each direct access I/O operation, the record number of the next higher
numbered record in the file is assigned to asv. The asv must not be a dummy
argument.

Rules and Behavior
The DEFINE FILE statement specifies that a file containing m fixed-length
records, each composed of n 16-bit words, exists (or will exist) on the specified
logical unit. The records in the file are numbered sequentially from 1
through m.

A DEFINE FILE statement does not itself open a file. However, the statement
must be executed before the first direct access I/O statement referring to the
specified file. The file is opened when the I/O statement is executed.

If this I/O statement is a WRITE statement, a direct access sequential file is
opened, or created if necessary.

If the I/O statement is a READ or FIND statement, an existing file is opened,
unless the specified file does not exist. If a file does not exist, an error occurs.

The DEFINE FILE statement establishes the variable asv as the associated
variable of a file. At the end of each direct access I/O operation, the Fortran
I/O system places in asv the record number of the record immediately following
the one just read or written.

The associated variable always points to the next sequential record in the file
(unless the associated variable is redefined by an assignment, input, or FIND
statement). So, direct access I/O statements can perform sequential processing
on the file by using the associated variable of the file as the record number
specifier.

Examples
In the following example, the DEFINE FILE statement specifies that the
logical unit 3 is to be connected to a file of 1000 fixed-length records; each
record is 48 16-bit words long. The records are numbered sequentially from
1 through 1000 and are unformatted. After each direct access I/O operation
on this file, the integer variable NREC will contain the record number of the
record immediately following the record just processed.

DEFINE FILE 3(1000,48,U,NREC)

B–2 Additional Language Features

B.2 ENCODE and DECODE Statements
The ENCODE and DECODE statements translate data and transfer it
between variables or arrays in internal storage. The ENCODE statement
translates data from internal (binary) form to character form; the DECODE
statement translates data from character to internal form. These statements
are comparable to using internal files in formatted sequential WRITE and
READ statements, respectively.

The ENCODE and DECODE statements take the following forms:

ENCODE (c,f,b [,IOSTAT=i-var] [,ERR=label]) [io-list]
DECODE (c,f,b [,IOSTAT=i-var] [,ERR=label]) [io-list]

c
Is a scalar integer expression. In the ENCODE statement, c is the number
of characters (in bytes) to be translated to character form. In the DECODE
statement, c is the number of characters to be translated to internal form.

f
Is a format identifier. An error occurs if more than one record is specified.

b
Is a scalar or array reference. If b is an array reference, its elements are
processed in the order of subscript progression.

In the ENCODE statement, b receives the characters after translation to
external form. If less than c characters are received, the remaining character
positions are filled with blank characters. In the DECODE statement, b
contains the characters to be translated to internal form.

i-var
Is a scalar integer variable that is defined as a positive integer if an error
occurs and as zero if no error occurs (see Section 10.2.1.7).

label
Is the label of an executable statement that receives control if an error occurs.

io-list
Is an I/O list (see Section 10.2.2).

In the ENCODE statement, the list contains the data to be translated to
character form. In the DECODE statement, the list receives the data after
translation to internal form.

Additional Language Features B–3

The interaction between the format specifier and the I/O list is the same as for
a formatted I/O statement.

Rules and Behavior
The number of characters that the ENCODE or DECODE statement can
translate depends on the data type of b. For example, an INTEGER (2) array
can contain two characters per element, so that the maximum number of
characters is twice the number of elements in that array.

The maximum number of characters a character variable or character array
element can contain is the length of the character variable or character array
element.

The maximum number of characters a character array can contain is the
length of each element multiplied by the number of elements.

Examples
In the following example, the DECODE statement translates the 12 characters
in A to integer form (as specified by the FORMAT statement):

DIMENSION K(3)
CHARACTER*12 A,B
DATA A/’123456789012’/
DECODE(12,100,A) K

100 FORMAT(3I4)
ENCODE(12,100,B) K(3), K(2), K(1)

The 12 characters are stored in array K:

K(1) = 1234
K(2) = 5678
K(3) = 9012

The ENCODE statement translates the values K(3), K(2), and K(1) to character
form and stores the characters in the character variable B:

B = ’901256781234’

For More Information:

• On internal READ statements, see Section 10.3.4.

• On internal WRITE statements, see Section 10.5.4.

B–4 Additional Language Features

B.3 FIND Statement
The FIND statement positions a direct access file at a particular record and
sets the associated variable of the file to that record number. It is comparable
to a direct access READ statement with no I/O list, and it can open an existing
file. No data transfer takes place.

The FIND statement takes one of the following forms:

FIND ([UNIT=]io-unit, REC=r [,ERR=label] [,IOSTAT=i-var])
FIND (io-unit’rec [,ERR=label] [,IOSTAT=i-var])

io-unit
Is a logical unit number. It must refer to a relative organization file (see
Section 10.2.1.1).

r
Is the direct access record number. It cannot be less than one or greater than
the number of records defined for the file (see Section 10.2.1.4).

label
Is the label of the executable statement that receives control if an error occurs.

i-var
Is a scalar integer variable that is defined as a positive integer if an error
occurs, and as zero if no error occurs (see Section 10.2.1.7).

Examples
In the following example, the FIND statement positions logical unit 1 at the
first record in the file. The file’s associated variable is set to one:

FIND(1, REC=1)

In the following example, the FIND statement positions the file at the record
identified by the content of INDX. The file’s associated variable is set to the
value of INDX:

FIND(4, REC=INDX)

For More Information:
On direct access READ statements, see Section 10.3.2.

Additional Language Features B–5

B.4 FORTRAN-66 Interpretation of the EXTERNAL Statement
If you specify the compiler option indicating FORTRAN-66 semantics,
the EXTERNAL statement is interpreted in a way that was specified by
the FORTRAN IV (FORTRAN-66) standard. This interpretation became
incompatible with FORTRAN 77 and later revisions of the Fortran standard.

The FORTRAN-66 interpretation of the EXTERNAL statement combines the
functionality of the INTRINSIC statement (Section 5.11) with that of the
EXTERNAL statement (Section 5.8).

This lets you use subprograms as arguments to other subprograms. The
subprograms to be used as arguments can be either user-supplied functions or
Fortran 95/90 library functions.

The FORTRAN-66 EXTERNAL statement takes the following form:

EXTERNAL [*]v [,[*]v] . . .

*
Specifies that a user-supplied function is to be used instead of a Fortran 95/90
library function having the same name.

v
Is the name of a subprogram or the name of a dummy argument associated
with the name of a subprogram.

Rules and Behavior
The FORTRAN-66 EXTERNAL statement declares that each name in its list
is an external function name. Such a name can then be used as an actual
argument to a subprogram, which then can use the corresponding dummy
argument in a function reference or CALL statement.

However, when used as an argument, a complete function reference represents
a value, not a subprogram name; for example, SQRT(B) in CALL SUBR(A,
SQRT(B), C). It is not, therefore, defined in an EXTERNAL statement (as
would be the incomplete reference SQRT).

Examples
Example B–1 demonstrates the FORTRAN-66 EXTERNAL statement.

B–6 Additional Language Features

Example B–1 Using the F66 EXTERNAL Statement

Main Program Subprograms

EXTERNAL SIN, COS, *TAN, SINDEG SUBROUTINE TRIG(X,F,Y)
. Y = F(X)
. RETURN
. END

CALL TRIG(ANGLE, SIN, SINE)
.
. FUNCTION TAN(X)
. TAN = SIN(X)/COS(X)

CALL TRIG(ANGLE, COS, COSINE) RETURN
. END
.
.

CALL TRIG(ANGLE, TAN, TANGNT) FUNCTION SINDEG(X)
. SINDEG = SIN(X*3.1459/180)
. RETURN
. END

CALL TRIG(ANGLED, SINDEG, SINE)

The CALL statements pass the name of a function to the subroutine TRIG.
The function reference F(X) subsequently invokes the function in the second
statement of TRIG. Depending on which CALL statement invoked TRIG, the
second statement is equivalent to one of the following:

Y = SIN(X)
Y = COS(X)
Y = TAN(X)
Y = SINDEG(X)

The functions SIN and COS are examples of trigonometric functions supplied in
the Fortran 95/90 library. The function TAN is also supplied in the library, but
the asterisk (*) in the EXTERNAL statement specifies that the user-supplied
function be used, instead of the library function. The function SINDEG is also
a user-supplied function. Because no library function has the same name, no
asterisk is required.

For More Information:
On Fortran 95/90 intrinsic functions, see Chapter 9.

Additional Language Features B–7

B.5 Alternative Syntax for the PARAMETER Statement
The PARAMETER statement discussed here is similar to the one discussed
in Section 5.14; they both assign a name to a constant. However, this
PARAMETER statement differs from the other one in the following ways:

• Its list is not bounded with parentheses.

• The form of the constant, rather than implicit or explicit typing of the
name, determines the data type of the variable.

This PARAMETER statement takes the following form:

PARAMETER c = expr [,c = expr]...

c
Is the name of the constant.

expr
Is an initialization expression. It can be of any data type.

Rules and Behavior
Each name c becomes a constant and is defined as the value of expression expr.
Once a name is defined as a constant, it can appear in any position in which
a constant is allowed. The effect is the same as if the constant were written
there instead of the name.

The name of a constant cannot appear as part of another constant, except as
the real or imaginary part of a complex constant. For example:

PARAMETER I=3
PARAMETER M=I.25 ! Not allowed
PARAMETER N=(1.703, I) ! Allowed

The name used in the PARAMETER statement identifies only the name’s
corresponding constant in that program unit. Such a name can be defined only
once in PARAMETER statements within the same program unit.

The name of a constant assumes the data type of its corresponding constant
expression. The data type of a parameter constant cannot be specified in a
type declaration statement. Nor does the initial letter of the constant’s name
implicitly affect its data type.

B–8 Additional Language Features

Examples
The following are valid examples of this form of the PARAMETER statement:

PARAMETER PI=3.1415927, DPI=3.141592653589793238D0
PARAMETER PIOV2=PI/2, DPIOV2=DPI/2
PARAMETER FLAG=.TRUE., LONGNAME=’A STRING OF 25 CHARACTERS’

For More Information:
On compile-time constant expressions, see Section 5.14.

B.6 VIRTUAL Statement
The VIRTUAL statement is included for compatibility with PDP-11 Fortran. It
has the same form and effect as the DIMENSION statement (see Section 5.6).

B.7 Alternative Syntax for Octal and Hexadecimal Constants
In HP Fortran, you can use an alternative syntax for octal and hexadecimal
constants. The following table shows this alternative syntax and equivalents:

Constant Alternative Syntax Equivalent

Octal ’0..7’O O’0..7’

Hexadecimal ’0..F’X Z’0..F’

You can use a quotation mark (") in place of an apostrophe in all the above
syntax forms.

For More Information:

• On octal constants, see Section 3.4.2.

• On hexadecimal constants, see Section 3.4.3.

B.8 Alternative Syntax for a Record Specifier
In HP Fortran, you can specify the following form for a record specifier in an
I/O control list:

’r

Additional Language Features B–9

r
Is a numeric expression with a value that represents the position of the record
to be accessed using direct access I/O.

The value must be greater than or equal to 1, and less than or equal to the
maximum number of records allowed in the file. If necessary, a record number
is converted to integer data type before being used.

If this nonkeyword form is used in an I/O control list, it must immediately
follow the nonkeyword form of the io-unit specifier.

B.9 Alternative Syntax for the DELETE Statement
In HP Fortran, you can specify the following form of the DELETE statement
when deleting records from a relative file:

DELETE (io-unit’r [,ERR=label] [,IOSTAT=i-var])

io-unit
Is the number of the logical unit containing the record to be deleted.

r
Is the positional number of the record to be deleted.

label
Is the label of an executable statement that receives control if an error
condition occurs.

i-var
Is a scalar integer variable that is defined as a positive integer if an error
occurs and zero if no error occurs.

This form deletes the direct access record specified by r.

For More Information:
On the DELETE statement, see Section 12.3.

B.10 Alternative Form for Namelist External Records
In HP Fortran, you can use the following form for an external record:

$group-name object = value [object = value]...$[END]

B–10 Additional Language Features

group-name
Is the name of the group containing the objects to be given values. The name
must have been previously defined in a NAMELIST statement in the scoping
unit.

object
Is the name (or subobject designator) of an entity defined in the NAMELIST
declaration of the group name. The object name must not contain embedded
blanks, but it can be preceded or followed by blanks.

value
Is a null value, a constant (or list of constants), a repetition of constants in the
form r*c, or a repetition of null values in the form r*.

If more than one object=value or more than one value is specified, they must be
separated by value separators.

A value separator is any number of blanks, or a comma or slash, preceded or
followed by any number of blanks.

For More Information:
On namelist input, see Section 10.3.1.3; output, see Section 10.5.1.3.

B.11 HP Fortran POINTER Statement
The POINTER statement discussed here is different from the one discussed
in Section 5.15. It establishes pairs of variables and pointers, in which each
pointer contains the address of its paired variable.

This POINTER statement takes the following form:

POINTER (pointer,pointee) [,(pointer,pointee)] . . .

pointer
Is a variable whose value is used as the address of the pointee.

pointee
Is a variable; it can be an array name or array specification.

Rules and Behavior
The following are pointer rules and behavior:

• Two pointers can have the same value, so pointer aliasing is allowed.

• When used directly, a pointer is treated like an integer variable. A pointer
occupies two numeric storage units, so it is a 64-bit quantity (INTEGER(8)).

• A pointer cannot be a pointee.

Additional Language Features B–11

• A pointer cannot appear in an ASSIGN statement and cannot have the
following attributes:

ALLOCATABLE INTRINSIC POINTER

EXTERNAL PARAMETER TARGET

A pointer can appear in a DATA statement with integer literals only.

• Integers can be converted to pointers, so you can point to absolute memory
locations.

• A pointer variable cannot be declared to have any other data type.

• A pointer cannot be a function return value.

• You can give values to pointers by doing the following:

Retrieve addresses by using the LOC intrinsic function (or the %LOC
built-in function)

Allocate storage for an object by using the MALLOC intrinsic function
(or by using LIB$GET_VM)

For example:

Using %LOC: Using MALLOC: Using LIB$GET_VM:

INTEGER I(10) INTEGER I(10) INTEGER I(10)
INTEGER I1(10) /10*10/ POINTER (P,I) INTEGER LIB$GET_VM,STATUS
POINTER (P,I) P = MALLOC(40) POINTER (P,I)
P = %LOC(I1) I(2) = I(2) + 1 STATUS = LIB$GET_VM(P,40)
I(2) = I(2) + 1 IF (.NOT. STATUS) CALL EXIT(STATUS)

I(2) = I(2) + 1

• The value in a pointer is used as the pointee’s base address.

The following are pointee rules and behavior:

• A pointee is not allocated any storage. References to a pointee look to the
current contents of its associated pointer to find the pointee’s base address.

• A pointee cannot be data-initialized or have a record structure that
contains data-initialized fields.

• A pointee can appear in only one POINTER statement.

• A pointee array can have fixed, adjustable, or assumed dimensions.

• A pointee cannot appear in a COMMON, DATA, EQUIVALENCE, or
NAMELIST statement, and it cannot have the following attributes:

B–12 Additional Language Features

ALLOCATABLE OPTIONAL SAVE

AUTOMATIC PARAMETER STATIC

INTENT POINTER TARGET

• A pointee cannot be:

A dummy argument

A function return value

A record field or an array element

Zero-sized

An automatic object

The name of a generic interface block

• If a pointee is of derived type, it must be of sequence type.

B.12 Record Structures
HP Fortran record structures are similar to Fortran 95/90 derived types.

A record structure is an aggregate entity containing one or more elements.
(Record elements are also called fields or components.) You can use records
when you need to declare and operate on multi-field data structures in your
programs.

Creating a record is a two-step process:

1. You must define the form of the record with a multistatement structure
declaration.

2. You must use a RECORD statement to declare the record as an entity
with a name. (More than one RECORD statement can refer to a given
structure.)

For More Information:
On derived types, see Section 3.3.

Additional Language Features B–13

B.12.1 Structure Declarations
A structure declaration defines the field names, types of data within fields, and
order and alignment of fields within a record. Fields and structures can be
initialized, but records cannot be initialized.

A structure declaration takes the following form:

STRUCTURE [/structure-name/][field-namelist]
field-declaration
[field-declaration]
. . .

[field-declaration]
END STRUCTURE

structure-name
Is the name used to identify a structure, enclosed by slashes.

Subsequent RECORD statements use the structure name to refer to the
structure. A structure name must be unique among structure names, but
structures can share names with variables (scalar or array), record fields,
PARAMETER constants, and common blocks.

Structure declarations can be nested (contain one or more other structure
declarations). A structure name is required for the structured declaration at
the outermost level of nesting, and is optional for the other declarations nested
in it. However, if you wish to reference a nested structure in a RECORD
statement in your program, it must have a name.

Structure, field, and record names are all local to the defining program unit.
When records are passed as arguments, the fields in the defining structures
within the calling and called subprograms must match in type, order, and
dimension.

field-namelist
Is a list of fields having the structure of the associated structure declaration. A
field namelist is allowed only in nested structure declarations.

field-declaration
Also called the declaration body. A field-declaration consists of any combination
of the following:

• Type declarations (Section B.12.1.1)

These are ordinary Fortran data type declarations.

• Substructure declarations (Section B.12.1.2)

B–14 Additional Language Features

A field within a structure can be a substructure composed of atomic fields,
other substructures, or a combination of both.

• Union declarations (Section B.12.1.3)

A union declaration is composed of one or more mapped field declarations.

• PARAMETER statements

PARAMETER statements can appear in a structure declaration, but cannot
be given a data type within the declaration block.

Type declarations for PARAMETER names must precede the PARAMETER
statement and be outside of a STRUCTURE declaration, as follows:

INTEGER*4 P
STRUCTURE /ABC/
PARAMETER (P=4)
REAL*4 F

END STRUCTURE
REAL*4 A(P)

Rules and Behavior
Unlike type declaration statements, structure declarations do not create
variables. Structured variables (records) are created when you use a RECORD
statement containing the name of a previously declared structure. The
RECORD statement can be considered as a kind of type declaration statement.
The difference is that aggregate items, not single items, are being defined.

Within a structure declaration, the ordering of both the statements and
the field names within the statements is important, because this ordering
determines the order of the fields in records.

In a structure declaration, each field offset is the sum of the lengths of the
previous fields, so the length of the structure is the sum of the lengths of its
fields. The structure is packed; you must explicitly provide any alignment that
is needed by including, for example, unnamed fields of the appropriate length.

By default, fields are aligned on natural boundaries; misaligned fields are
padded as necessary. To avoid padding of records, you should lay out structures
so that all fields are naturally aligned.

To pack fields on arbitrary byte boundaries, you must specify a compiler option.
You can also specify alignment for fields by using the cDEC$ OPTIONS or
cDEC$ PACK general directive.

A field name must not be the same as any intrinsic or user-defined operator
(for example, EQ cannot be used as a field name).

Additional Language Features B–15

Examples
In the following example, the declaration defines a structure named
APPOINTMENT. APPOINTMENT contains the structure DATE (field
APP_DATE) as a substructure. It also contains a substructure named TIME
(field APP_TIME, an array), a CHARACTER*20 array named APP_MEMO,
and a LOGICAL*1 field named APP_FLAG.

STRUCTURE /DATE/
INTEGER*1 DAY, MONTH
INTEGER*2 YEAR

END STRUCTURE

STRUCTURE /APPOINTMENT/
RECORD /DATE/ APP_DATE
STRUCTURE /TIME/ APP_TIME (2)
INTEGER*1 HOUR, MINUTE

END STRUCTURE
CHARACTER*20 APP_MEMO (4)
LOGICAL*1 APP_FLAG

END STRUCTURE

The length of any instance of structure APPOINTMENT is 89 bytes.

Figure B–1 shows the memory mapping of any record or record array element
with the structure APPOINTMENT.

B–16 Additional Language Features

Figure B–1 Memory Map of Structure APPOINTMENT

0

1

2

3

4

5

6

7

8

28

48

68

88

89

(byte offset)

field YEAR of field APP_DATE

ZK−1848−GE

field APP_FLAG

field APP_MEMO(4)

field APP_MEMO(3)

field APP_MEMO(2)

field APP_MEMO(1)

field MINUTE of field APP_TIME(2)

field HOUR of field APP_TIME(2)

field MINUTE of field APP_TIME(1)

field HOUR of field APP_TIME(1)

field MONTH of field APP_DATE

field DAY of field APP_DATE

For More Information:

• On compiler options, see the HP Fortran for OpenVMS User Manual.

Additional Language Features B–17

• On the cDEC$ OPTIONS directive, see Section 14.14.

B.12.1.1 Type Declarations
The syntax of a type declaration within a record structure is identical to that
of a normal Fortran type statement.

The following rules and behavior apply to type declarations in record
structures:

• %FILL can be specified in place of a field name to leave space in a record
for purposes such as alignment. This creates an unnamed field.

%FILL can have an array specification; for example:

INTEGER %FILL (2,2)

Unnamed fields cannot be initialized. For example, the following statement
is invalid and generates an error message:

INTEGER %FILL /1980/

• Initial values can be supplied in field declaration statements. Unnamed
fields cannot be initialized; they are always undefined.

• Field names must always be given explicit data types. The IMPLICIT
statement does not affect field declarations.

• Any required array dimensions must be specified in the field declaration
statements. DIMENSION statements cannot be used to define field names.

• Adjustable or assumed sized arrays and assumed-length CHARACTER
declarations are not allowed in field declarations.

B.12.1.2 Substructure Declarations
A field within a structure can itself be a structured item composed of other
fields, other structures, or both. You can declare a substructure in two ways:

• By nesting structure declarations within other structure or union
declarations (with the limitation that you cannot refer to a structure
inside itself at any level of nesting).

One or more field names must be defined in the STRUCTURE statement
for the substructure, because all fields in a structure must be named. In
this case, the substructure is being used as a field within a structure or
union.

Field names within the same declaration nesting level must be unique, but
an inner structure declaration can include field names used in an outer
structure declaration without conflict.

B–18 Additional Language Features

• By using a RECORD statement that specifies another previously defined
record structure, thereby including it in the structure being declared.

See the example in Section B.12.1 for a sample structure declaration containing
both a nested structure declaration (TIME) and an included structure (DATE).

B.12.1.3 Union Declarations
A union declaration is a multistatement declaration defining a data area that
can be shared intermittently during program execution by one or more fields or
groups of fields. A union declaration must be within a structure declaration.

Each unique field or group of fields is defined by a separate map declaration.

A union declaration takes the following form:

UNION
map-declaration
map-declaration
[map-declaration]
. . .

[map-declaration]
END UNION

map-declaration
Takes the following form:

MAP
field-declaration
[field-declaration]
. . .

[field-declaration]
END MAP

field-declaration
Is a structure declaration or RECORD statement contained within a union
declaration, a union declaration contained within a union declaration, or
the declaration of a data field (having a data type) within a union. See
Section B.12.1 for a more detailed description of what can be specified in
field declarations.

Additional Language Features B–19

Rules and Behavior
As with normal Fortran type declarations, data can be initialized in field
declaration statements in union declarations. However, if fields within multiple
map declarations in a single union are initialized, the data declarations are
initialized in the order in which the statements appear. As a result, only
the final initialization takes effect and all of the preceding initializations are
overwritten.

The size of the shared area established for a union declaration is the size of the
largest map defined for that union. The size of a map is the sum of the sizes of
the fields declared within it.

Manipulating data by using union declarations is similar to using
EQUIVALENCE statements. The difference is that data entities specified
within EQUIVALENCE statements are concurrently associated with a common
storage location and the data residing there; with union declarations you
can use one discrete storage location to alternately contain a variety of fields
(arrays or variables).

With union declarations, only one map declaration within a union declaration
can be associated at any point in time with the storage location that they share.
Whenever a field within another map declaration in the same union declaration
is referenced in your program, the fields in the prior map declaration become
undefined and are succeeded by the fields in the map declaration containing
the newly referenced field.

Examples
In the following example, the structure WORDS_LONG is defined. This
structure contains a union declaration defining two map fields. The first map
field consists of three INTEGER*2 variables (WORD_0, WORD_1, and
WORD_2), and the second, an INTEGER*4 variable, LONG:

STRUCTURE /WORDS_LONG/
UNION

MAP
INTEGER*2 WORD_0, WORD_1, WORD_2

END MAP
MAP

INTEGER*4 LONG
END MAP

END UNION
END STRUCTURE

B–20 Additional Language Features

The length of any record with the structure WORDS_LONG is 6 bytes.
Figure B–2 shows the memory mapping of any record with the structure
WORDS_LONG:

Figure B–2 Memory Map of Structure WORDS_LONG

0 1 2 3 4 5 6 (byte offset)

Field WORD_0 Field WORD_1 Field WORD_2

Field LONG Unused Space

ZK−1846−GE

B.12.2 RECORD Statement
A RECORD statement takes the following form:

RECORD /structure-name/record-namelist
[, /structure-name/record-namelist]
. . .

[, /structure-name/record-namelist]

structure-name
Is the name of a previously declared structure.

record-namelist
Is a list of one or more variable names, array names, or array specifications,
separated by commas. All of the records named in this list have the same
structure and are allocated separately in memory.

Rules and Behavior
You can use record names in COMMON and DIMENSION statements, but not
in DATA or NAMELIST statements.

Records initially have undefined values unless you have defined their values in
structure declarations.

Additional Language Features B–21

B.12.3 References to Record Fields
References to record fields must correspond to the kind of field being
referenced. Aggregate field references refer to composite structures (and
substructures). Scalar field references refer to singular data items, such as
variables.

An operation on a record can involve one or more fields.

Record field references take one of the following forms:

Aggregate Field Reference

record-name [.aggregate-field-name] . . .

Scalar Field Reference

record-name [.aggregate-field-name]scalar-field-name

record-name
Is the name used in a RECORD statement to identify a record.

aggregate-field-name
Is the name of a field that is a substructure (a record or a nested structure
declaration) within the record structure identified by the record name.

scalar-field-name
Is the name of a data item (having a data type) defined within a structure
declaration.

Rules and Behavior
Records and record fields cannot be used in DATA statements, but individual
fields can be initialized in the STRUCTURE definition.

An automatic array cannot be a record field.

A scalar field reference consists of the name of a record (as specified in a
RECORD statement) and zero or more levels of aggregate field names followed
by the name of a scalar field. A scalar field reference refers to a single data
item (having a data type) and can be treated like a normal reference to a
Fortran variable or array element.

You can use scalar field references in statement functions and in executable
statements. However, they cannot be used in COMMON, SAVE, NAMELIST, or
EQUIVALENCE statements, or as the control variable in an indexed DO-loop.

Type conversion rules for scalar field references are the same as those for
variables and array elements.

B–22 Additional Language Features

An aggregate field reference consists of the name of a record (as specified in a
RECORD statement) and zero or more levels of aggregate field names.

You can only assign an aggregate field to another aggregate field
(record = record) if the records have the same structure. HP Fortran supports
no other operations (such as arithmetic or comparison) on aggregate fields.

HP Fortran requires qualification on all levels. While some languages allow
omission of aggregate field names when there is no ambiguity as to which field
is intended, HP Fortran requires all aggregate field names to be included in
references.

You can use aggregate field references in unformatted I/O statements; one I/O
record is written no matter how many aggregate and array name references
appear in the I/O list. You cannot use aggregate field references in formatted,
namelist, and list-directed I/O statements.

You can use aggregate field references as actual arguments and record dummy
arguments. The declaration of the dummy record in the subprogram must
match the form of the aggregate field reference passed by the calling program
unit; each structure must have the same number and types of fields in the
same order. The order of map fields within a union declaration is irrelevant.

Records are passed by reference. Aggregate field references are treated like
normal variables. You can use adjustable arrays in RECORD statements that
are used as dummy arguments.

Note

Because periods are used in record references to separate fields, you
should not use relational operators (.EQ., .XOR.), logical constants
(.TRUE., .FALSE.), and logical expressions (.AND., .NOT., .OR.) as field
names in structure declarations.

Examples
The following examples show record and field references. Consider the
following structure declarations:

Structure DATE:

STRUCTURE /DATE/
INTEGER*1 DAY, MONTH
INTEGER*2 YEAR

END STRUCTURE

Additional Language Features B–23

Structure APPOINTMENT:

STRUCTURE /APPOINTMENT/
RECORD /DATE/ APP_DATE
STRUCTURE /TIME/ APP_TIME(2)
INTEGER*1 HOUR, MINUTE

END STRUCTURE
CHARACTER*20 APP_MEMO(4)
LOGICAL*1 APP_FLAG

END STRUCTURE

The following RECORD statement creates a variable named NEXT_APP and a
10-element array named APP_LIST. Both the variable and each element of the
array take the form of the structure APPOINTMENT.

RECORD /APPOINTMENT/ NEXT_APP,APP_LIST(10)

Each of the following examples of record and field references are derived from
the previous structure declarations and RECORD statement:

Aggregate Field References

• The record NEXT_APP:

NEXT_APP

• The field APP_DATE, a 4-byte array field in the record array APP_LIST(3):

APP_LIST(3).APP_DATE

Scalar Field References

• The field APP_FLAG, a LOGICAL field of the record NEXT_APP:

NEXT_APP.APP_FLAG

• The first character of APP_MEMO(1), a CHARACTER*20 field of the record
NEXT_APP:

NEXT_APP.APP_MEMO(1)(1:1)

For More Information:

• On specification of fields within structure declarations, see Section B.12.1.

• On structure declarations, see Section B.12.1.

• On UNION and MAP statements, see Section B.12.1.3.

• On the RECORD statement, see Section B.12.2.

• On alignment of data, see the HP Fortran for OpenVMS User Manual.

B–24 Additional Language Features

B.12.4 Aggregate Assignment
For aggregate assignment statements, the variable and expression must have
the same structure as the aggregate they reference.

The aggregate assignment statement assigns the value of each field of the
aggregate on the right of an equal sign to the corresponding field of the
aggregate on the left. Both aggregates must be declared with the same
structure.

Examples
The following example shows valid aggregate assignments:

STRUCTURE /DATE/
INTEGER*1 DAY, MONTH
INTEGER*2 YEAR

END STRUCTURE

RECORD /DATE/ TODAY, THIS_WEEK(7)
STRUCTURE /APPOINTMENT/
...
RECORD /DATE/ APP_DATE

END STRUCTURE

RECORD /APPOINTMENT/ MEETING

DO I = 1,7
CALL GET_DATE (TODAY)
THIS_WEEK(I) = TODAY
THIS_WEEK(I).DAY = TODAY.DAY + 1

END DO
MEETING.APP_DATE = TODAY

Additional Language Features B–25

C
ASCII and DEC Multinational Character

Sets

This appendix describes the ASCII and DEC Multinational character sets that
are available on OpenVMS systems.

For details on the Fortran 95/90 character set, see Section 2.2.

C.1 ASCII Character Set
Figure C–1 represents the ASCII character set (characters with decimal values
0 through 127). The first half of each of the numbered columns identifies the
character as you would enter it on a terminal or as you would see it on a
printer. Except for SP and HT, the characters with names are nonprintable. In
Figure C–1, the characters with names are defined as follows:

NUL Null DC1 Device Control 1 (XON)

SOH Start of Heading DC2 Device Control 2

STX Start of Text DC3 Device Control 3 (XOFF)

ETX End of Text DC4 Device Control 4

EOT End of Transmission NAK Negative Acknowledge

ENQ Enquiry SYN Synchronous Idle

ACK Acknowledge ETB End of Transmission Block

BEL Bell CAN Cancel

BS Backspace EM End of Medium

HT Horizontal Tab SUB Substitute

LF Line Feed ESC Escape

VT Vertical Tab FS File Separator

FF Form Feed GS Group Separator

CR Carriage Return RS Record Separator

ASCII and DEC Multinational Character Sets C–1

SO Shift Out US Unit Separator

SI Shift In SP Space

DLE Data Link Escape DEL Delete

The remaining half of each column identifies the character by the binary
value of the byte; the value is stated in three radixes—octal, decimal,
and hexadecimal. For example, the uppercase letter A has, under ASCII
conventions, a storage value of hexadecimal 41 (a bit configuration of
01000001), equivalent to 101 in octal notation and 65 in decimal notation.

C–2 ASCII and DEC Multinational Character Sets

Figure C–1 Graphic Representation of the ASCII Character Set

Row

b8
b7

b6
b5

b4 b3 b2 b1

Column

Bits
1 2

0
0

0
1

0
0

1
0

0
0

0
0

0

3
0

0
1

1

4
0

1
0

0

5
0

1
0

1

6
0

1
1

0

7
0

1
1

1

0 0 0 0 0 NUL DLE SP

1 0 0 0 1 SOH DC1

2 0 0 1 0 STX DC2

3 0 0 1 1 ETX DC3

4 0 1 0 0 EOT DC4

5 0 1 0 1 ENQ NAK

6 0 1 1 0 ACK SYN

7 0 1 1 1 BEL ETB

8 1 0 0 0 CAN

9 1 0 0 1

10 1 0 1 0 SUB

11 1 0 1 1 ESC

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1 DEL

0
0
0

20
16
10

40
32
20

60
48
30

100
64
40

120
80
50

140
96
60

160
112
70

1
1
1

21
17
11

41
33
21

61
49
31

101
65
41

121
81
51

141
97
61

161
113
71

2
2
2

22
18
12

42
34
22

62
50
32

102
66
42

122
82
52

142
98
62

162
114
72

3
3
3

23
19
13

43
35
23

63
51
33

103
67
43

123
83
53

143
99
63

163
115
73

4
4
4

24
20
14

44
36
24

64
52
34

104
68
44

124
84
54

144
100
64

164
116
74

5
5
5

25
21
15

45
37
25

65
53
35

105
69
45

125
85
55

145
101
65

165
117
75

6
6
6

26
22
16

46
38
26

66
54
36

106
70
46

126
86
56

146
102
66

166
118
76

7
7
7

27
23
17

47
39
27

67
55
37

107
71
47

127
87
57

147
103
67

167
119
77

10
8
8

30
24
18

50
40
28

70
56
38

110
72
48

130
88
58

150
104
68

170
120
78

11
9
9

31
25
19

51
41
29

71
57
39

111
73
49

131
89
59

151
105
69

171
121
79

12
10
A

32
26
1A

52
42
2A

72
58
3A

112
74
4A

132
90
5A

152
106
6A

172
122
7A

13
11
B

33
27
1B

53
43
2B

73
59
3B

113
75
4B

133
91
5B

153
107
6B

173
123
7B

14
12
C

34
28
1C

54
44
2C

74
60
3C

114
76
4C

134
92
5C

154
108
6C

174
124
7C

15
13
D

35
29
1D

56
45
2D

75
61
3D

115
77
4D

135
93
5D

155
109
6D

175
125
7D

16
14
E

36
30
1E

56
46
2E

76
62
3E

116
78
4E

136
94
5E

156
110
6E

176
126
7E

17
15
F

37
31
1F

57
47
2F

77
63
3F

117
79
4F

137
95
5F

157
111
6F

177
127
7F

ZK−1752−GE

ESC
33
27
1B

Octal
Decimal
Hex

Character

Key

(XON)

(XOFF)

SI

SO

CR

FF

VT

LF

HT

BS

US

RS

GS

FS

EM

/

.

−

,

+

*

)

(

&

%

$

"

!

?

>

=

<

;

:

9

8

7

6

5

4

3

2

1

0

O

N

M

L

K

J

I

H

G

F

E

D

C

B

A

@

_

^

]

\

[

Z

Y

X

W

V

U

T

S

R

Q

P

o

n

m

l

k

j

i

h

g

f

e

d

c

b

a

~

}

|

{

z

y

x

w

v

u

t

s

r

q

p

ASCII and DEC Multinational Character Sets C–3

C.2 DEC Multinational Character Set
The ASCII character set comprises the first half of the DEC Multinational
Character Set. Figure C–2 represents the second half of the DEC Multinational
Character Set (characters with decimal values 128 through 255). The first
half of each of the numbered columns identifies the character as you would
see it on a terminal or printer (these characters cannot be output on some
older terminals and printers). The characters with names are nonprintable. In
Figure C–2, the characters with names are defined as follows:

IND Index PU1 Private Use 1

NEL Next Line PU2 Private Use 2

SSA Start of Selected Area STS Set Transmit State

ESA End of Selected Area CCH Cancel Character

HTS Horizontal Tab Set MW Message Waiting

HTJ Horizontal Tab Set with
Justification

SPA Start of Protected Area

VTS Vertical Tab Set EPA End of Protected Area

PLD Partial Line Down CSI Control Sequence Introducer

PLU Partial Line Up ST String Terminator

RI Reverse Index OSC Operating System Command

SS2 Single Shift 2 PM Privacy Message

SS3 Single Shift 3 APC Application

DCS Device Control String

The shaded boxes in Figure C–2 indicate positions that are not part of the
character set.

C–4 ASCII and DEC Multinational Character Sets

Figure C–2 Graphic Representation of the DEC Multinational Extension to the ASCII
Character Set

Bits

DCS

PU1

PU2

STS

CCHIND

MWNEL

SPASSA

EPAESA

HTS

HTJ

VTS

CSIPLD

STPLU

OSCRI

PMSS2

APCSS3

ZK−1753−GE

360
240
F0

340
224
E0

320
208
D0

300
192
C0

260
176
B0

240
160
A0

220
144
90

200
128
80

361
241
F1

341
225
E1

321
209
D1

301
193
C1

261
177
B1

241
161
A1

221
145
91

201
129
81

362
242
F2

342
226
E2

322
210
D2

302
194
C2

262
178
B2

242
162
A2

222
146
92

202
130
82

363
243
F3

343
227
E3

323
211
D3

303
195
C3

263
179
B3

243
163
A3

223
147
93

203
131
83

364
244
F4

344
228
E4

324
212
D4

304
196
C4

264
180
B4

244
164
A4

224
148
94

204
132
84

365
245
F5

345
229
E5

325
213
D5

305
197
C5

265
181
B5

245
165
A5

225
149
95

205
133
85

366
246
F6

346
230
E6

326
214
D6

306
198
C6

266
182
B6

246
166
A6

226
150
96

206
134
86

367
247
F7

347
231
E7

327
215
D7

307
199
C7

267
183
B7

247
167
A7

227
151
97

207
135
87

370
248
F8

350
232
E8

330
216
D8

310
200
C8

270
184
B8

250
168
A8

230
152
98

210
136
88

371
249
F9

351
233
E9

331
217
D9

311
201
C9

271
185
B9

251
169
A9

231
153
99

211
137
89

372
250
FA

352
234
EA

332
218
DA

312
302
CA

272
186
BA

252
170
AA

232
154
9A

212
138
8A

373
251
FB

353
235
EB

333
219
DB

313
203
CB

273
187
BB

253
171
AB

233
155
9B

213
139
8B

374
252
FC

354
236
EC

334
220
DC

314
204
CC

274
188
BC

254
172
AC

234
156
9C

214
140
8C

375
253
FD

355
237
ED

335
221
DD

315
205
CD

275
189
BD

255
173
AD

235
157
9D

215
141
8D

376
254
FE

356
238
EE

336
222
DE

316
206
CE

276
190
BE

256
174
AE

236
158
9E

216
142
8E

377
255
FF

357
239
EF

337
223
DF

317
207
CF

277
191
BF

257
175
AF

237
159
9F

217
143
8F

ESC
33
27
1B

Octal
Decimal
Hex

Character

«

ª

©

¤

§

¥

£

¢

¡

¿

½

¼

»

º

¹

·

¶

µ

³

²

±

°

Ï

Î

Í

Ì

Ë

Ê

É

È

Ç

Æ

Å

Ä

Ã

Â

Á

À

ß

Column

Y

15

Ü

14

Û

13

Ú

12

Ù

11

Ø

10

E

9

O

8

Ö

b8
b7

b6
b5

b4 b3 b2 b1

Õ

1

Ô

1

Ó

1

Ò

1

Ñ

0

ï

î

í

ì

ë

ê

é

è

ç

æ

å

ä

ã

â

á

à

1

ÿ

ü

û

ú

ù

ø

eo

ö

õ

ô

ó

ò

ñ

1

..

1

1
0

1
1

0
0

1
1

1
1

0
1

0
1

0
1

1
0

0
1

0
0

0
1

Row

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Key

ASCII and DEC Multinational Character Sets C–5

D
Data Representation Models

Several of the numeric intrinsic functions are defined by a model set for
integers (for each integer kind used) and reals (for each real kind used). The
bit functions are defined by a model set for bits (binary digits). This appendix
describes these models.

For more information on the range of values for each data type (and kind), see
the HP Fortran for OpenVMS User Manual.

D.1 Model for Integer Data
In general, the model set for integers is defined as follows:

� � ��

��
�=1

�� � ���1

Data Representation Models D–1

The following values apply to this model set:

• i is the integer value.

• s is the sign (either +1 or –1).

• q is the number of digits (a positive integer).

• r is the radix (an integer greater than 1).

• wk is a nonnegative number less than r.

The model for INTEGER(4) is as follows:

� � ��
31�
�=1

�� � ���1

The following example shows the general integer model for i = –20 using a
base (r) of 2:

� � ���	� �
� �0 �
� �1 � �� �2 �
� �3 � �� �4	
� � ���	� �� � ��	
� � ��� �

� � ��

D.2 Model for Real Data
The model set for reals, in general, is defined as one of the following:

� �

� � ��
� �

��
�=1

�� �
��

The following values apply to this model set:

• x is the real value.

• s is the sign (either +1 or –1).

• b is the base (real radix; an integer greater than 1).

D–2 Data Representation Models

• p is the number of mantissa digits (an integer greater than 1). The number
of digits differs depending on the real format, as follows:

IEEE S_floating 24

VAX F_floating 24

IEEE T_floating 53

VAX D_floating 531

VAX G_floating 53

1The memory format for VAX D_floating format is 56 mantissa digits, but computationally it
is 53 digits. It is considered to have 53 digits by HP Fortran.

• e is an integer in the range emin to emax, inclusive. This range differs
depending on the real format, as follows:

emin emax

IEEE S_floating –125 128

VAX F_floating –127 127

IEEE T_floating –1021 1024

VAX D_floating –127 127

VAX G_floating –1023 1023

• fk is a nonnegative number less than b (f1 is also nonzero).

For � �
, its exponent e and digits fk are defined to be zero.

The model set for single-precision real (REAL(4)) is defined as one of the
following:

� �

� � �� �� �

�
��� �

24�
�=2

�� � ���

�
����� �
 ����

The following example shows the general real model for x = 20.0 using a base
(b) of 2:

� � �� �5 � ��� ��1 �
� ��2 � �� ��3	
� � �� ��� ��� � ����	
� � ��� �����	
� � �
�

Data Representation Models D–3

D.3 Model for Bit Data
The model set for bits (binary digits) interprets a nonnegative scalar data
object of type integer as a sequence, as follows:

� �
��1�
�=0

�� � ��

The following values apply to this model set:

• j is the integer value.

• s is the number of bits.

• wk is a bit value of 0 or 1.

The bits are numbered from right to left beginning with 0.

The following example shows the bit model for j = 1001 (integer 9) using a bit
number (s) of 4:

�

 �
� � � �

�3 �2 �1 �0

� � ��0 � �0	 � ��1 � �1	 � ��2 � �2	 � ��3 � �3	
� � � �
 �
 � �
� �

D–4 Data Representation Models

E
Summary of Language Extensions

This appendix summarizes the HP Fortran language extensions to the
ANSI/ISO Fortran 95 Standard.

E.1 HP Fortran Language Extensions
This section summarizes the HP Fortran language extensions. Most extensions
are available on all supported operating systems. However, some extensions
are limited to one or more platforms. If an extension is limited, it is labeled.

Source Forms
The following are extensions to the methods and rules for source forms:

• Tab-formatting as a method to code lines (see Section 2.3.2.2)

• The letter D as a debugging statement indicator in column 1 of fixed or tab
source form (see Section 2.3.2)

• An optional statement field width of 132 columns for fixed or tab source
form (see Section 2.3.2)

• An optional sequence number field for fixed source form (see Section 2.3.2.1)

• Up to 511 continuation lines in a source program (see Section 2.3)

Names
The following are extensions to the rules for names (see Section 2.1.2):

• Names can contain up to 63 characters

• The dollar sign ($) is a valid character in names, and can be the first
character

Summary of Language Extensions E–1

Character Sets
The following are extensions to the Fortran 95 character set:

• The Tab (<Tab>) character (see Section 2.2)

• The DEC Multinational extension to the ASCII character set (see
Section C.2)

Intrinsic Data Types
The following are data-type extensions (see Section 3.2):

BYTE INTEGER*1 REAL*8

LOGICAL*1 INTEGER*2 REAL*16

LOGICAL*2 INTEGER*4 COMPLEX*8

LOGICAL*4 INTEGER*8 COMPLEX*16

LOGICAL*8 REAL*4 COMPLEX*32

Constants
C strings are allowed in character constants as an extension (see
Section 3.2.5.1).

Hollerith constants are allowed as an extension (see Section 3.4.4).

Expressions and Assignment
When operands of different intrinsic data types are combined in expressions,
conversions are performed as necessary (see Section 4.1.1.2).

Binary, octal, hexadecimal, and Hollerith constants can appear wherever
numeric constants are allowed (see Section 3.4).

The following are extensions allowed in logical expressions (see Section 4.1.4):

• .XOR. as a synonym for .NEQV.

• Integers as valid logical items

Specification Statements
The following specification attributes and statements are extensions:

• AUTOMATIC and STATIC (see Section 5.3)

• VOLATILE (see Section 5.19)

E–2 Summary of Language Extensions

Execution Control
The following control statements are extensions to Fortran 95 (see Chapter 7):

• ASSIGN

• Assigned GO TO

• PAUSE

These are older Fortran features that have been deleted in Fortran 95. HP
Fortran fully supports these features.

Built-In Functions
The %VAL, %REF, %DESCR, and %LOC built-in functions are extensions (see
Section 8.8.9).

I/O Formatting
The following are extensions allowed in I/O formatting:

• The Q edit descriptor (see Section 11.4.9)

• The dollar sign ($) edit descriptor (see Section 11.4.8 and carriage-control
character (see Section 11.8)

• The backslash (\) edit descriptor (see Section 11.4.8)

• The ASCII NUL carriage-control character (see Section 11.8)

• Variable format expressions (see Section 11.7)

• The H edit descriptor (see Section 11.5.2)

This is an older Fortran feature that has been deleted in Fortran 95. HP
Fortran fully supports this feature.

Compilation Control Statements
The following statements are extensions that can influence compilation (see
Chapter 13):

• INCLUDE statement format:

INCLUDE ’[text-lib] (module-name) [/[NO]LIST]’

Summary of Language Extensions E–3

• OPTIONS statement:

/CHECK =

�

�

�

ALL
[NO]BOUNDS
[NO]OVERFLOW
[NO]UNDERFLOW
NONE

�

�

�

/NOCHECK

/CONVERT =

�

�

�

BIG_ENDIAN
CRAY
FDX
FGX
IBM
LITTLE_ENDIAN
NATIVE
VAXD
VAXG

�

�

�

/[NO]EXTEND_SOURCE
/[NO]F77

/FLOAT =

� D_FLOAT
G_FLOAT
IEEE_FLOAT

	

/[NO]G_FLOATING
/[NO]I4
/[NO]RECURSIVE

I/O Statements
The following I/O statements and specifiers are extensions:

• REWRITE statement (see Section 10.7)

• ACCEPT statement (see Section 10.4)

• TYPE statement; a synonym for the PRINT statement (see Section 10.6)

• A key-field-value specifier as a control list parameter (see Section 10.2.1.5)

• A key-of-reference specifier as a control list parameter (see Section 10.2.1.6)

• Indexed READ statement (see Section 10.3.3)

• Indexed WRITE statement (see Section 10.5.3)

E–4 Summary of Language Extensions

File Operation Statements
The following statement specifiers and statements are extensions (see
Chapter 12 for details):

• CLOSE statement specifiers:

STATUS values: ’SAVE’ (as a synonym for ’KEEP’), ’PRINT’,
’PRINT/DELETE’, ’SUBMIT’, ’SUBMIT/DELETE’

DISPOSE (or DISP)

• DELETE statement

• INQUIRE statement specifiers:

ACCESS value: ’KEYED’

BLOCKSIZE

BUFFERED

CARRIAGECONTROL

CONVERT

DEFAULTFILE

FORM values: ’UNKNOWN’

KEYED

ORGANIZATION

RECORDTYPE

• OPEN statement specifiers:

ACCESS values: ’KEYED’, ’APPEND’

ASSOCIATEVARIABLE

BLOCKSIZE

BUFFERCOUNT

BUFFERED

CARRIAGECONTROL

CONVERT

DEFAULTFILE

DISPOSE

EXTENDSIZE

Summary of Language Extensions E–5

FORM value: ’BINARY’

INITIALSIZE

KEY

MAXREC

NAME as a synonym for FILE

NOSPANBLOCKS

ORGANIZATION

READONLY

RECORDSIZE as a synonym for RECL

RECORDTYPE

SHARED

TYPE as a synonym for STATUS

USEROPEN

• UNLOCK statement

Compiler Directives
The following general directives are extensions (see Chapter 14):

ALIAS INTEGER PSECT

ATTRIBUTES IVDEP REAL

DECLARE MESSAGE SUBTITLE

DEFINE NODECLARE STRICT

FIXEDFORMLINESIZE NOFREEFORM TITLE

FREEFORM NOSTRICT UNDEFINE

IDENT OBJCOMMENT UNROLL

IF OPTIONS

IF DEFINED PACK

E–6 Summary of Language Extensions

Intrinsic Procedures
The following intrinsic procedures are extensions (see Chapter 9):

ACOSD AIMAX0 AIMIN0 AJMAX0

AJMIN0 AND ASIND ASM

ATAN2D ATAND BITEST BJTEST

CDABS CDCOS CDEXP CDLOG

CDSIN CDSQRT COSD COTAN

COTAND CQABS CQCOS CQEXP

CQLOG CQSIN CQSQRT DACOSD

DASIND DASM DATAN2 DATAN2D

DATAND DATE DBLEQ DCMPLX

DCONJG DCOSD DCOTAN DCOTAND

DFLOAT DFLOTI DFLOTJ DIMAG

DREAL DSIND DTAND EOF

ERRSNS EXIT FASM FLOATI

FLOATJ FP_CLASS FREE HFIX

IARGCOUNT IARGPTR IBCHNG IDATE

IIABS IIAND IIBCLR IIBITS

IIBSET IIDIM IIDINT IIDNNT

IIEOR IIFIX IINT IIOR

IIQINT IIQNNT IISHFT IISHFTC

IISIGN IMAX0 IMAX1 IMIN0

IMIN1 IMOD IMVBITS ININT

INOT INT1 INT2 INT4

IQINT IQNINT ISHA ISHC

ISHL ISNAN IZEXT JFIX

JIAND JIBCLR JIBITS JIBSET

JIDIM JIDINT JIDNNT JIEOR

JINT JIOR JIQINT JIQNNT

JISHFT JISHFTC JISIGN JMAX0

JMAX1 JMIN0 JMIN1 JMOD

JMVBITS JNINT JNOT JZEXT

KIQINT KIQNNT LEADZ LOC

Summary of Language Extensions E–7

LSHIFT MALLOC MULT_HIGH NWORKERS

OR POPCNT POPPAR QABS

QACOS QACOSD QASIN QASIND

QATAN QATAND QATAN2 QATAN2D

QCMPLX QCONJG QCOS QCOSD

QCOSH QCOTAN QCOTAND QDIM

QEXP QEXT QEXTD QFLOAT

QIMAG QINT QLOG QLOG10

QMAX1 QMIN1 QMOD QNINT

QREAL QSIGN QSIN QSIND

QSINH QSQRT QTAN QTAND

QTANH RAN RANDU RSHIFT

SECNDS SIND SIZEOF SNGLQ

TAND TIME TRAILZ XOR

ZABS ZCOS ZEXP ZEXT

ZLOG ZSIN ZSQRT

The argument KIND is an extension available in the following intrinsic
procedures (see Chapter 9):

COUNT LEN_TRIM SHAPE ZEXT

INDEX MAXLOC SIZE

LBOUND MINLOC UBOUND

LEN SCAN VERIFY

See Appendix B for additional language extensions that facilitate compatibility
with other versions of Fortran.

E–8 Summary of Language Extensions

Glossary

This glossary contains terms that are commonly used in this manual and in
the HP Fortran for OpenVMS User Manual. The terms and descriptions are
informative and are not part of the standard definition of the Fortran 95/90
programming language.

actual argument

A value (a variable, expression, or procedure) passed from a calling program
unit to a subprogram.

adjustable array

An explicit-shape array that is a dummy argument to a subprogram. The term
is from FORTRAN 77. See also explicit-shape array.

aggregate reference

A reference to a record structure field.

allocatable array

A named array that has the ALLOCATABLE attribute. Once space has been
allocated for this type of array, the array has a shape and can be defined (and
redefined) or referenced. (It is an error to allocate an allocatable array that is
currently allocated.)

alphanumeric

Pertaining to letters and digits.

alternate key

An optional key within the data records in an indexed file, which can be used
to build an alternate index.

Glossary–1

alternate return

A subroutine argument that permits control to branch immediately to some
position other than the statement following the call. The actual argument
in an alternate return is the statement label to which control should be
transferred.

ANSI

The American National Standards Institute. An organization through which
accredited organizations create and maintain voluntary industry standards.

argument

See actual argument and dummy argument.

argument association

The relationship (or ‘‘matching up’’) between an actual argument and dummy
argument during the execution of a procedure reference.

argument keyword

The name of a dummy (formal) argument. The name is used in a subprogram
(routine) definition. It can also be used when the subprogram is invoked to
associate dummy arguments with actual arguments, so that they can appear in
any order.

Argument keywords are supplied for many of the intrinsic procedures.

array

A set of scalar data that all have the same type and kind parameters. An
array can be referenced by element (using a subscript), by section (using a
section subscript list), or as a whole. An array has a rank (up to 7), bounds,
size, and a shape. Contrast with scalar. See also bounds, conformable,
shape, and size.

array constructor

A mechanism used to specify a sequence of scalar values that produce a
rank-one array.

To construct an array of rank greater than one, you must apply the RESHAPE
intrinsic function to the array constructor.

Glossary–2

array element

A scalar item in an array. An array element is identified by the array name
followed by one or more subscripts in parentheses, indicating the element’s
position in the array. For example, B(3) or A(2,5).

array pointer

A pointer to an array. See also array and pointer.

array section

A subobject (or portion) of an array. It consists of the set of array elements
or substrings of this set. The set (or section subscript list) is specified by
subscripts, subscript triplets, and vector subscripts. If the set does not contain
at least one subscript triplet or vector subscript, the reference indicates an
array element, not an array.

array specification

A program statement specifying an array name and the number of dimensions
the array contains (its rank). An array specification can appear in a
DIMENSION or COMMON statement, or in a type declaration statement.

ASCII

The American Standard Code for Information Interchange. A 7-bit character
encoding scheme associating an integer from 0 through 127 with 128
characters. See also multinational character set.

assignment statement

Usually, a statement that assigns (stores) the value of an expression on the
right of an equal sign to the storage location of the variable to the left of
the equal sign. In the case of Fortran 95/90 pointers, the storage location is
assigned, not the pointer itself.

association

The relationship that allows an entity to be referenced by different names
in one scoping unit or by the same or different names in more than one
scoping unit. The principal kinds of association are argument association,
host association, pointer association, storage association, and use association.
See also argument association, host association, pointer association,
storage association, and use association.

Glossary–3

assumed-length character argument

A dummy argument that assumes the length attribute of the corresponding
actual argument. An asterisk (*) specifies the length of the dummy character
argument.

assumed-shape array

A dummy argument array that assumes the shape of its associated actual
argument array.

assumed-size array

A dummy array whose size (only) is assumed from its associated actual
argument. The upper bound of its last dimension is specified by an asterisk
(*). All other extents (if any) must be specified.

attribute

A property of a data object that can be specified in a type declaration
statement. These properties determine how the data object can be used in a
program.

Most attributes can be alternatively specified in statements. For example, the
DIMENSION statement has the same meaning as the DIMENSION attribute
appearing in a type declaration statement.

automatic array

Is an explicit-shape array that is a local variable in a subprogram. It is
not a dummy argument, and has bounds that are nonconstant specification
expressions. The bounds (and shape) are determined at entry to the procedure
by evaluating the bounds expressions. See also automatic object.

automatic object

A local data object that is created upon entry to a subprogram and disappears
when the execution of the subprogram is completed. There are two kinds of
automatic objects: arrays (of any data type) and objects of type CHARACTER.
Automatic objects cannot be saved or initialized.

An automatic object is not a dummy argument, but is declared with a
specification expression that is not a constant expression. The specification
expression can be the bounds of the array or the length of the character object.

batch process

A process that runs without user interaction. Contrast with interactive
process.

Glossary–4

big endian

A method of data storage in which the least significant bit of a numeric value
spanning multiple bytes is in the highest addressed byte. Contrast with little
endian.

binary constant

A constant that is a string of binary (base 2) digits (0 or 1) enclosed by
apostrophes or quotation marks and preceded by the letter B.

binary operator

An operator that acts on a pair of operands. The exponentiation,
multiplication, division, and concatenation operators are binary operators.

bit constant

A constant that is a binary, octal, or hexadecimal number.

bit field

A contiguous group of bits within a binary pattern; they are specified by a
starting bit position and length. The functions IBSET, IBCLR, BTEST, and
IBITS, and the subroutine MVBITS operate on bit fields.

blank common

A common block (one or more contiguous areas of storage) without a name.
Common blocks are defined by a COMMON statement.

block

In general, a group of related items treated as a physical unit. For example, a
block can be a group of constructs or statements that perform a task; the task
can be executed once, repeatedly, or not at all.

block data program unit

A program unit, containing a BLOCK DATA statement and its associated
specification statements, that establishes common blocks and assigns initial
values to the variables in named common blocks. In FORTRAN 77, this was
called a block data subprogram.

bottleneck

The slowest process in an executing program. This process determines the
maximum speed of execution.

Glossary–5

bounds

The range of subscript values for elements of an array. The lower bound is the
smallest subscript value in a dimension, and the upper bound is the largest
subscript value in that dimension. Array bounds can be positive, zero, or
negative.

These bounds are specified in an array specification. See also array
specification.

breakpoint

A critical point in a program, at which execution is stopped so that you can see
if the program variables contain the correct values. Breakpoints are often used
to debug programs.

built-in procedure

See intrinsic procedure.

carriage-control character

A character in the first position of a printed record that determines the vertical
spacing of the output line.

character constant

A constant that is a string of printable ASCII characters enclosed by
apostrophes (’) or quotation marks (").

character expression

A character constant, variable, function value, or another constant expression,
separated by a concatenation operator (//); for example, DAY//’ FIRST’.

character storage unit

The unit of storage for holding a scalar value of default character type
(and character length one) that is not a pointer. One character storage unit
corresponds to one byte of memory.

character string

A sequence of contiguous characters; a character data value. See also
character constant.

character substring

One or more contiguous characters in a character string.

Glossary–6

child process

A process initiated by another process (the parent). The child process can
operate independently from the parent process. See also parent process.

comment

Text that documents or explains a program. In free source form, a comment
begins with an exclamation point (!), unless it appears in a Hollerith or
character constant.

In fixed and tab source form, a comment begins with a letter C or an asterisk
(*) in column 1. A comment can also begin with an exclamation point
anywhere in a source line (except in a Hollerith or character constant) or in
column 6 of a fixed-format line. The comment extends from the exclamation
point to the end of the line.

The compiler does not process comments, but shows them in program listings.
See also compiler directive.

common block

A physical storage area shared by one or more program units. This storage
area is defined by a COMMON statement. If the common block is given a
name, it is a named common block; if it is not given a name, it is a blank
common. See also blank common and named common block.

compilation unit

The source file or files that are compiled together to form a single object file,
possibly using interprocedural optimization across source files. Only one f90
command is used for each compilation, but one f90 command can specify that
multiple compilation units be used.

compiler directive

A structured comment that tells the compiler to perform certain tasks when it
compiles a source program unit.

complex constant

A constant that is a pair of real or integer constants representing a complex
number; the pair is separated by a comma and enclosed in parentheses. The
first constant represents the real part of the number; the second constant
represents the imaginary part. The following types of complex constants are
available on all systems: COMPLEX (COMPLEX(4)) and DOUBLE COMPLEX
(COMPLEX(8)). COMPLEX(16) is also available.

Glossary–7

complex type

A data type that represents the values of complex numbers. The value is
expressed as a complex constant. See also data type.

component

Part of a derived-type definition. There must be at least one component
(intrinsic or derived type) in every derived-type definition.

concatenate

The combination of two items into one by placing one of the items after the
other. In Fortran 95/90, the concatenation operator (//) is used to combine
character items. See also character expression.

conformable

Pertains to dimensionality. Two arrays are conformable if they have the same
shape. A scalar is conformable with any array.

conformance

See shape conformance.

conservative automatic inlining

The inline expansion of small procedures, with conservative heuristics to limit
extra code.

constant

A data object whose value does not change during the execution of a program;
the value is defined at the time of compilation. A constant can be named
(using the PARAMETER attribute or statement) or unnamed. An unnamed
constant is called a literal constant. The value of a constant can be numeric or
logical, or it can be a character string. Contrast with variable.

constant expression

An expression whose value does not change during program execution.

construct

A series of statements starting with a DO, CASE, IF, WHERE, or FORALL
statement and ending with a corresponding terminal statement.

Glossary–8

contiguous

Pertaining to entities that are adjacent (next to one another) without
intervening blanks (spaces); for example, contiguous characters or contiguous
areas of storage.

control edit descriptor

A format descriptor that directly displays text or affects the conversions
performed by subsequent data edit descriptors. Except for the slash descriptor,
control edit descriptors are nonrepeatable.

control statement

A statement that alters the normal order of execution by transferring control
to another part of a program unit or a subprogram. A control statement can
be conditional (such as the IF construct or computed GO TO statement) or
unconditional (such as the STOP or GO TO statement).

data abstraction

A style of programming in which you define types to represent objects in your
program, define a set of operations for objects of each type, and restrict the
operations to only this set, making the types abstract. The Fortran 95/90
modules, derived types, and defined operators, support this programming
paradigm.

data edit descriptor

A repeatable format descriptor that causes the transfer or conversion of data to
or from its internal representation. In FORTRAN 77, this term was called a
field descriptor.

data entity

A data object that has a data type. It is the result of the evaluation of an
expression, or the result of the execution of a function reference (the function
result).

data item

A unit of data (or value) to be processed. Includes constants, variables, arrays,
character substrings, or records.

data object

A constant, variable, or subobject of a constant.

Glossary–9

data type

The properties and internal representation that characterize data and
functions. Each intrinsic and user-defined data type has a name, a set of
operators, a set of values, and a way to show these values in a program. The
basic intrinsic data types are integer, real, complex, logical, and character.
The data value of an intrinsic data type depends on the value of the type
parameter. See also type parameter.

data type declaration

See type declaration statement.

data type length specifier

The form *n appended to HP Fortran-specific data type names. For example,
in REAL*4, the *4 is the data type length specifier.

declaration

See specification statement.

default character

The kind for character constants if no kind parameter is specified. Currently,
the only kind parameter for character constants is CHARACTER(1), the
default character kind.

default complex

The kind for complex constants if no kind parameter is specified. The default
complex kind is affected by compiler options that specify real size. If no
compiler option is specified, default complex is COMPLEX(4) (COMPLEX*8).
See also default real.

default integer

The kind for integer constants if no kind parameter is specified. The default
integer kind is affected by compiler options that specify integer size. If no
compiler option is specified, default integer is INTEGER(4) (INTEGER*4).

If a compiler option affecting integer size has been specified, the integer has
the kind specified, unless it is outside the range of the kind specified by the
option. In this case, the kind of the integer is the smallest integer kind which
can hold the integer.

Glossary–10

default logical

The kind for logical constants if no kind parameter is specified. The default
logical kind is affected by compiler options that specify integer size. If no
compiler option is specified, default logical is LOGICAL(4) (LOGICAL*4). See
also default integer.

default real

The kind for real constants if no kind parameter is specified. The default real
kind is determined by the compiler option specifying real size. If no compiler
option is specified, default real is REAL(4) (REAL*4).

If a real constant is encountered that is outside the range for the default, an
error occurs.

deferred-shape array

An array pointer (an array with the POINTER attribute) or an allocatable
array (an array with the ALLOCATABLE attribute). The size in each
dimension is determined by pointer assignment or when the array is allocated.

The declared bounds are specified by a colon (:).

definable

A property of variables. A variable is definable if its value can be changed
by the appearance of its name or designator on the left of an assignment
statement. An example of a variable that is not definable is an allocatable
array that has not been allocated.

defined

For a data object, the property of having or being given a valid value.

defined assignment

An assignment statement that is not intrinsic, but is defined by a subroutine
and an interface block. See also derived type.

defined operation

An operation that is not intrinsic, but is defined by a function subprogram
containing a generic interface block with the specifier OPERATOR. See also
interface block.

Glossary–11

denormalized number

A computational floating-point result smaller than the lowest value in the
normal range of a data type (the smallest representable normalized number).
You cannot write a constant for a denormalized number.

derived type

A data type that is user-defined and not intrinsic. It requires a type definition
to name the type and specify its components (which can be intrinsic or
user-defined types). A structure constructor can be used to specify a value of
derived type. A component of a structure is referenced using a percent sign
(%).

Operations on objects of derived types (structures) must be defined by a
function with an OPERATOR interface. Assignment for derived types can be
defined intrinsically, or be redefined by a subroutine with an ASSIGNMENT
interface. Structures can be used as procedure arguments and function results,
and can appear in input and output lists. Also called a user-defined type. See
also record, the first definition.

designator

A name that references a subobject (part of an object). A designator is the
name of the object followed by a selector that selects the subobject. For
example, B(3) is a designator for an array element. Also called a subobject
designator. See also selector and subobject.

dimension

A range of values for one subscript or index of an array. An array can have
from 1 to 7 dimensions. The number of dimensions is the rank of the array.

dimension bounds

See bounds.

direct access

A method for retrieving or storing data in which the data (record) is identified
by the record number, or the position of the record in the file. The record
is accessed directly (nonsequentially); therefore, all information is equally
accessible. Also called random access. Contrast with sequential access.

Glossary–12

double-precision constant

A processor approximation to the value of a real number that occupies 8 bytes
of memory and can assume a positive, negative, or zero value. The precision is
greater than a constant of real (single-precision) type. For the precise ranges of
the double-precision constants, see the HP Fortran for OpenVMS User Manual.
See also denormalized number.

dummy aliasing

The sharing of memory locations between dummy (formal) arguments and
other dummy arguments or COMMON variables that are assigned.

dummy argument

A variable whose name appears in the parenthesized list following the
procedure name in a FUNCTION statement, a SUBROUTINE statement, an
ENTRY statement, or a statement function statement. A dummy argument
takes the value of the corresponding actual argument in the calling program
unit (through argument association). Also called a formal argument.

dummy procedure

Is a dummy argument that is specified as a procedure or appears in a
procedure reference. The corresponding actual argument must be a procedure.

edit descriptor

A descriptor in a format specification. It can be a data edit descriptor, control
edit descriptor, or string edit descriptor. See also control edit descriptor,
data edit descriptor, and string edit descriptor.

element

See array element.

elemental

Pertains to an intrinsic operation, intrinsic procedure, or assignment statement
that is independently applied to either of the following:

• The elements of an array

• Corresponding elements of a set of conformable arrays and scalars

end-of-file

The condition that exists when all records in a file open for sequential access
have been read.

Glossary–13

entity

A general term referring to any Fortran 95/90 concept; for example, a constant,
a variable, a program unit, a statement label, a common block, a construct, an
I/O unit and so forth.

environment variable

A symbolic variable that represents some element of the operating system,
such as logical names or a filename, or other literal data.

error number

An integer value denoting an I/O error condition, obtained by using the
IOSTAT specifier in an I/O statement.

exceptional values

For floating-point numbers, values outside the range of normalized numbers,
including denormal (subnormal) numbers, infinity, Not-a-Number (NaN)
values, zero, and other architecture-defined numbers.

executable construct

A CASE, DO, IF, WHERE, or FORALL construct.

executable program

A set of program units that include only one main program.

executable statement

A statement that specifies an action to be performed or controls one or more
computational instructions.

explicit interface

A procedure interface whose properties are known within the scope of the
calling program, and do not have to be assumed. These properties are
the names of the procedure and its dummy arguments, the attributes of a
procedure (if it is a function), and the attributes and order of the dummy
arguments.

The following have explicit interfaces:

• Internal and module procedures (explicit by definition)

• Intrinsic procedures

• External procedures that have an interface block

• External procedures that are defined by the scoping unit and are recursive

Glossary–14

• Dummy procedures that have an interface block

explicit-shape array

An array whose rank and bounds are specified when the array is declared.

expression

Is either a data reference or a computation, and is formed from operands,
operands, and parentheses. The result of an expression is either a scalar value
or an array of scalar values.

extension

See language extension.

extent

The size of (number of elements in) one dimension of an array.

external file

A sequence of records that exists in a medium external to the executing
program.

external procedure

A procedure that is contained in an external subprogram. External procedures
can be used to share information (such as source files, common blocks, and
public data in modules) and can be used independently of other procedures and
program units. Also called an external routine.

external subprogram

A subroutine or function that is not contained in a main program, module, or
other subprogram. A module is not a subprogram.

field

Can be either of the following:

• A set of contiguous characters, considered as a single item, in a record or
line.

• A substructure of a STRUCTURE declaration.

field descriptor

See data edit descriptor.

Glossary–15

field separator

The comma (,) or slash (/) that separates edit descriptors in a format
specification.

field width

The total number of characters in the field. See also field, the first definition.

file

A collection of logically related records. If the file is in internal storage, it is an
internal file; if the file is on an input/output device, it is an external file.

file access

The way records are accessed (and stored) in a file. The Fortran 95/90 file
access modes are sequential and direct. You can also use a keyed mode of
access.

file organization

The way records in a file are physically arranged on a storage device. Fortran
95/90 files can have sequential or relative organization. Files can also have
indexed organization.

fixed-length record type

A file format in which all the records are the same length.

foreign file

An unformatted file that contains data from a foreign platform, such as data
from a CRAY, IBM, or big endian IEEE machine.

format

A specific arrangement of data. A FORMAT statement specifies how data is to
be read or written.

format specification

The part of a FORMAT statement that specifies explicit data arrangement.
It is a list within parentheses that can include edit descriptors and field
separators. A character expression can also specify format; the expression
must evaluate to a valid format specification.

formatted data

Data written to a file by using formatted I/O statements. Such data contains
ASCII representations of binary values.

Glossary–16

formatted I/O statement

An I/O statement specifying a format for data transfer. The format specified
can be explicit (specified in a format specification) or implicit (specified
using list-directed or namelist formatting). Contrast with unformatted
I/O statement. See also list-directed I/O statement and namelist I/O
statement.

full pathname

See absolute pathname.

function

A series of statements that perform some operation and return a single value
(through the function or result name) to the calling program unit. A function
is invoked by a function reference in a main program unit or a subprogram
unit.

In Fortran 95/90, a function can be used to define a new operator or extend
the meaning of an intrinsic operator symbol. The function is invoked by the
appearance of the new or extended operator in the expression (along with the
appropriate operands). For example, the symbol * can be defined for logical
operands, extending its intrinsic definition for numeric operands. See also
function subprogram, statement function, and subroutine.

function reference

Used in an expression to invoke a function, it consists of the function name
and its actual arguments. A function reference returns a value (through the
function or result name) which is used to evaluate the calling expression.

function result

The result value associated with a particular execution or call to a function.
This result can be of any data type (including derived type) and can be
array-valued. In a FUNCTION statement, the RESULT option can be used
to give the result a name different from the function name. This option is
required for a recursive function that directly calls itself.

function subprogram

A sequence of statements beginning with a FUNCTION (or optional OPTIONS)
statement that is not in an interface block and ending with the corresponding
END statement. See also function.

Glossary–17

generic identifier

A generic name, operator, or assignment specified in an INTERFACE
statement that is associated with all of the procedures within the interface
block. Also called a generic specification.

global entity

An entity (a program unit, common block, or external procedure) that can be
used with the same meaning throughout the executable program. A global
entity has global scope; it is accessible throughout an executable program. See
also local entity.

global section

A data structure (for example, global COMMON) or shareable image section
potentially available to all processes in the system.

global symbol

A name defined in a source file, object file, or image file, that is available for
reference by another source file.

handle

A value (often, but not always, a 32-bit integer) that identifies some operating
system resource, for example, a window or a process. The handle value is
returned from an operating system call when the resource is created; your
program then passes that value as an argument to subsequent operating
system routines to identify which resource is being accessed.

Your program should consider the handle value a ‘‘private’’ type and not try to
interpret it as having any specific meaning (for example, an address).

hexadecimal constant

A constant that is a string of hexadecimal (base 16) digits (range 0 to 9, or an
uppercase or lowercase letter in the range A to F) enclosed by apostrophes or
quotation marks and preceded by the letter Z.

Hollerith constant

A constant that is a string of printable ASCII characters preceded by nH,
where n is the number of characters in the string (including blanks and tabs).

host

Either the main program or subprogram that contains an internal procedure,
or the module that contains a module procedure. The data environment of the
host is available to the (internal or module) procedure.

Glossary–18

host association

The process by which a module procedure, internal procedure, or derived-type
definition accesses the entities of its host.

implicit interface

A procedure interface whose properties (the collection of names, attributes,
and arguments of the procedure) are not known within the scope of the calling
program, and have to be assumed. The information is assumed by the calling
program from the properties of the procedure name and actual arguments in
the procedure call.

implicit typing

The mechanism by which the data type for a variable is determined by the
beginning letter of the variable name.

index

Can be any of the following:

• The variable used as a loop counter in a DO statement.

• An intrinsic function specifying the starting position of a substring inside a
string.

• An internal data structure that provides a guide, based on key values, to
file components in an indexed file.

indexed file organization

A file organization that allows random retrieval of records by key value and
sequential retrieval of records within the key of reference. Each file contains
records and a primary key index; it can also optionally have one or more
alternate key indexes.

initialization expression

A form of constant expression that is used to specify an initial value for an
entity.

initialize

The assignment of an initial value to a variable.

inlining

An optimization that replaces a subprogram reference (CALL statement or
function invocation) with the replicated code of the subprogram.

Glossary–19

input/output (I/O)

The data that a program reads or writes. Also, devices to read and write data.

inquiry function

An intrinsic function whose result depends on properties of the principal
argument, not the value of the argument.

integer constant

A constant that is a whole number with no decimal point. It can have a
leading sign and is interpreted as a decimal number.

intent

An attribute of a dummy argument that is not a pointer or procedure. It
indicates whether the argument is used to transfer data into the procedure,
out of the procedure, or both.

interactive process

A process that must periodically get user input to do its work. Contrast with
background process or batch process.

interface block

The sequence of statements starting with an INTERFACE statement and
ending with the corresponding END INTERFACE statement.

interface body

The sequence of statements in an interface block starting with a FUNCTION
or SUBROUTINE statement and ending with the corresponding END
statement. Also called a procedure interface body.

internal file

The designated internal storage space (or variable buffer) that is manipulated
during input and output. An internal file can be a character variable, character
array, character array element, or character substring. In general, an internal
file contains one record. However, an internal file that is a character array has
one record for each array element.

Glossary–20

internal procedure

A procedure (other than a statement function) that is contained within an
internal subprogram. The program unit containing an internal procedure
is called the host of the internal procedure. The internal procedure (which
appears between a CONTAINS and END statement) is local to its host and
inherits the host’s environment through host association.

internal subprogram

A subprogram contained in a main program or another subprogram.

intrinsic

Describes entities defined by the Fortran 95/90 language (such as data types
and procedures). Intrinsic entities can be used freely in any scoping unit.

intrinsic procedure

A subprogram supplied as part of the Fortran 95/90 library that performs
array, mathematical, numeric, character, bit manipulation, and other
miscellaneous functions. Intrinsic procedures are automatically available
to any Fortran 95/90 program unit (unless specifically overridden by an
EXTERNAL statement or a procedure interface block). Also called a built-in or
library procedure.

invoke

To call upon; used especially with reference to subprograms. For example, to
invoke a function is to execute the function.

I/O

See input/output.

iteration count

The number of executions of the DO range, which is determined as follows:

[(terminal value - initial value + increment value) / increment value]

key

A value in a file of indexed organization that the system uses to build indexes
into the file. Each key is identified by its location within the component, its
length, and its data type. Also called the key field. See also alternate key,
index, and primary key.

Glossary–21

keyed access

A method for retrieving or writing data in which the data (a record) is
identified by specifying the information in a key field of the record. See also
key.

key of reference

A key used to determine the index to use when sequentially accessing
components of an indexed file. See also key, indexed file organization, and
sequential access.

kind type parameter

Indicates the range of an intrinsic data type. For real and complex types,
it also indicates precision. If a specific kind parameter is not specified (for
example, INTEGER), the kind is the default for that type (for example, default
integer). See also default character, default complex, default integer,
default logical, and default real.

label

An integer, from 1 to 5 digits long, that is used to identify a statement. For
example, labels can be used to refer to a FORMAT statement or branch target
statement.

language extension

A HP Fortran language element or interpretation that is not part of the
Fortran 95 standard.

lexical token

A sequence of one or more characters that have an indivisible interpretation.
A lexical token is the smallest meaningful unit (a basic language element) of a
Fortran 95/90 statement; for example, constants and statement keywords.

library function

See intrinsic procedure.

linker

A system program that creates an executable program from one or more object
files (or modules) produced by a language compiler or assembler. The linker
resolves external references, acquires referenced library routines, and performs
other processing required to create executable images.

Glossary–22

list-directed I/O statement

An implicit, formatted I/O statement that uses an asterisk (*) specifier rather
than an explicit format specification. See also formatted I/O statement and
namelist I/O statement.

listing

A printed copy of a program.

literal constant

A constant without a name.

little endian

A method of data storage in which the least significant bit of a numeric value
spanning multiple bytes is in the lowest addressed byte. This is the method
used on HP systems. Contrast with big endian.

local entity

An entity that can be used only within the context of a subprogram (its scoping
unit); for example, a statement label. A local entity has local scope. See also
global entity.

local optimization

A level of optimization enabling optimizations within the source program unit
and recognition of common expressions. See also optimization.

local symbol

A name defined in a program unit that is not accessible outside of that
program unit.

logical constant

A constant that specifies the value .TRUE. or .FALSE..

logical expression

An integer or logical constant, variable, function value, or another
constant expression, joined by a relational or logical operator. The logical
expression is evaluated to a value of either true or false. For example,
.NOT. 6.5 + (B .GT. D).

logical operator

A symbol that represents an operation on logical expressions. The logical
operators are .AND., .OR., .NEQV., .XOR., .EQV., and .NOT..

Glossary–23

logical unit

A channel in memory through which data transfer occurs between the program
and the device or file. See also unit identifier.

longword

Four contiguous bytes (32 bits) starting on any addressable byte boundary.
Bits are numbered 0 to 31. The address of the longword is the address of the
byte containing bit 0. When the longword is interpreted as a signed integer,
bit 31 is the sign bit. The value of signed integers is in the range –2**31 to
2**31–1. The value of unsigned integers is in the range 0 to 2**32–1.

loop

A group of statements that are executed repeatedly until an ending condition
is reached.

lower bound

See bounds.

main program

A program unit containing a PROGRAM statement (or not containing a
SUBROUTINE, FUNCTION, or BLOCK DATA statement). The main program
is the first program unit to receive control when a program is run, and
exercises control over subprograms. Contrast with subprogram.

many-one array section

An array section with a vector subscript having two or more elements with the
same value.

message file

A file that contains the diagnostic message text of errors that can occur during
program execution (run time).

misaligned data

Data not aligned on a natural boundary. See also natural boundary.

module

A program unit that contains specifications and definitions that other program
units can access (unless the module entities are declared PRIVATE). Modules
are referenced in USE statements.

Glossary–24

module procedure

A subroutine or function defined within a module subprogram (the module
procedure’s host). The module procedure appears between a CONTAINS and
END statement in its host module, and inherits the host module’s environment
through host association. A module procedure can be declared PRIVATE to the
module; it is public by default.

module subprogram

A subprogram that is contained in a module. (It cannot be an internal
subprogram.)

multinational character set

An 8-bit character encoding scheme associating an integer from 128
through 255 with 128 characters. This character set contains international
alphanumeric characters, including characters with diacritical marks. See also
ASCII.

multitasking

The ability of an operating system to execute several programs (tasks) at once.

multithreading

The ability of an operating system to execute different parts of a program,
called threads, simultaneously.

If the system supports parallel processing, multiple processors may be used to
execute the threads.

name

Identifies an entity within a Fortran program unit (such as a variable, function
result, common block, named constant, procedure, program unit, namelist
group, or dummy argument). In FORTRAN 77, this term was called a symbolic
name.

name association

Pertains to argument, host, or use association. See also argument
association, host association, and use association.

named common block

A common block (one or more contiguous areas of storage) with a name.
Common blocks are defined by a COMMON statement.

Glossary–25

named constant

A constant that has a name. In FORTRAN 77, this term was called a symbolic
constant.

namelist I/O statement

An implicit, formatted I/O statement that uses a namelist group specifier
rather than an explicit format specifier. See also formatted I/O statement
and list-directed I/O statement.

NaN

Not-a-Number. The condition that results from a floating-point operation that
has no mathematical meaning; for example, zero divided by zero.

natural boundary

The virtual address of a data item that is the multiple of the size of its
data type. For example, a REAL(8) (REAL*8) data item aligned on natural
boundaries has an address that is a multiple of eight.

naturally aligned record

A record that is aligned on a hardware-specific natural boundary; each field is
naturally aligned. (For more information, see the HP Fortran for OpenVMS
User Manual.) Contrast with packed record.

nesting

The placing of one entity (such as a construct, subprogram, format
specification, or loop) inside another entity of the same kind. For example,
nesting a loop within another loop (a nested loop), or nesting a subroutine
within another subroutine (a nested subroutine).

nonexecutable statement

A Fortran 95/90 statement that describes program attributes, but does not
cause any action to be taken when the program is executed.

numeric expression

A numeric constant, variable, or function value, or combination of these, joined
by numeric operators and parentheses, so that the entire expression can be
evaluated to produce a single numeric value. For example, -L or X+(Y-4.5)*Z.

Glossary–26

numeric operator

A symbol designating an arithmetic operation. In Fortran 95/90, the symbols
+, -, *, /, and ** are used to designate addition, subtraction, multiplication,
division, and exponentiation, respectively.

numeric storage unit

The unit of storage for holding a non-pointer scalar value of type default real,
default integer, or default logical. One numeric storage unit corresponds to 4
bytes of memory.

object

See data object.

object file

The binary output of a language processor (such as the assembler or compiler),
which can either be executed or used as input to the linker.

octal constant

A constant that is a string of octal (base 8) digits (range of 0 to 7) enclosed by
apostrophes or quotation marks and preceded by the letter O.

operand

The passive element in an expression on which an operation is performed.
Every expression must have at least one operand. For example, in I .NE. J,
I and J are operands. Contrast with operator.

operation

A computation involving one or two operands.

operator

The active element in an expression that performs an operation. An expression
can have zero or more operators. For example, in I .NE. J, .NE. is the
operator. Contrast with operand.

optimization

The process of producing efficient object or executing code that takes advantage
of the hardware architecture to produce more efficient execution.

Glossary–27

optional argument

A dummy argument that has the OPTIONAL attribute (or is included in an
OPTIONAL statement in the procedure definition). Such an argument does not
have to be associated with an actual argument.

order of subscript progression

A characteristic of a multidimensional array in which the leftmost subscripts
vary most rapidly.

overflow

An error condition occurring when an arithmetic operation yields a result that
is larger than the maximum value in the range of a data type.

packed record

A record that starts on an arbitrary byte boundary; each field starts in the
next unused byte. Contrast with naturally aligned record.

pad

The filling of unused positions in a field or character string with dummy data
(such as zeros or blanks).

parallel processing

The simultaneous use of more than one processor (CPU) to execute a program.

parameter

Can be either of the following:

• In general, any quantity of interest in a given situation; often used in place
of the term ‘‘argument.’’

• A Fortran 95/90 named constant.

parent process

A process that initiates and controls another process (child). The parent
process defines the environment for the child process. Further, the parent
process can suspend or terminate without affecting the child process. See also
child process.

platform

A combination of operating system and hardware that provides a distinct
environment in which to use a software product (for example, OpenVMS on
Alpha processors).

Glossary–28

pointer

Is one of the following:

• Fortran 95/90 pointer

A data object that has the POINTER attribute. A Fortran 95/90 pointer
does not contain data, but points to a scalar or array variable where data is
stored. To be referenced or defined, it must be ‘‘pointer-associated’’ with a
target (have storage space associated with it). If the pointer is an array, it
must be pointer-associated to have a shape. See also pointer association.

• HP Fortran pointer

A data object that contains the address of its paired variable.

pointer association

The association of storage space to a Fortran 95/90 pointer by means of a
target. A pointer is associated with a target after pointer assignment or the
valid execution of an ALLOCATE statement.

precision

The number of significant digits in a real number. See also double-precision
constant, kind type parameter, and single-precision constant.

primary

The simplest form of an expression. A primary can be any of the following data
objects:

• Constant

• Constant subobject (parent is a constant)

• Variable (scalar, structure, array, or pointer; an array cannot be assumed
size)

• Array constructor

• Structure constructor

• Function reference

• Expression in parentheses

primary key

The required key within the data records of an indexed file. This key is used
to determine the placement of records within the file and to build the primary
index.

Glossary–29

procedure

A computation that can be invoked during program execution. It can be a
subroutine or function, an internal, external, dummy or module procedure, or
a statement function. A subprogram can define more than one procedure if it
contains an ENTRY statement. See also subprogram.

procedure interface

The statements that specify the name and characteristics of a procedure, the
name and attributes of each dummy argument, and the generic identifier (if
any) by which the procedure can be referenced. If these properties are all
known to the calling program, the procedure interface is explicit; otherwise it
is implicit.

program

A set of instructions that can be compiled and executed by itself. Program
blocks contain a declaration and an executable section.

program section

A particular common block or local data area for a particular routine
containing equivalence groups.

program unit

The fundamental component of an executable program. A sequence of
statements and optional comments that can be a main program, a procedure,
an external program, or a block data program unit.

quadword

Four contiguous words (64 bits) starting on any addressable byte boundary.
Bits are numbered 0 to 63. (Bit 63 is used as the sign bit.) A quadword is
identified by the address of the word containing the low-order bit (bit 0). The
value of a signed quadword integer is in the range –2**63 to 2**63–1.

random access

See direct access.

rank

The number of dimensions in an array. A scalar has a rank of zero.

rank-one object

A data structure comprising scalar elements with the same data type and
organized as a simple linear sequence. See also scalar.

Glossary–30

real constant

A constant that is a number written with a decimal point, exponent, or both.
It can have single precision (REAL(4)) or double precision (REAL(8)). It can
also have quad precision (REAL(16)).

record

Can be either of the following:

• A set of logically related data items (in a file) that is treated as a unit; such
a record contains one or more fields. This definition applies to I/O records
and items that are declared in a record structure.

• One or more data items that are grouped in a structure declaration and
specified in a RECORD statement.

record access

The method used to store and retrieve records in a file.

record structure declaration

A block of statements that define the fields in a record. The block begins with
a STRUCTURE statement and ends with END STRUCTURE. The name of the
structure must be specified in a RECORD statement.

record type

The property that determines whether records in a file are all the same length,
of varying length, or use other conventions to define where one record ends and
another begins.

recursion

Pertains to a subroutine or function that directly or indirectly references itself.

reference

Can be any of the following:

• For a data object, the appearance of its name, designator, or associated
pointer where the value of the object is required. When an object is
referenced, it must be defined.

• For a procedure, the appearance of its name, operator symbol, or
assignment symbol that causes the procedure to be executed. Procedure
reference is also called ‘‘calling’’ or ‘‘invoking’’ a procedure.

• For a module, the appearance of its name in a USE statement.

Glossary–31

relational expression

An expression containing one relational operator and two operands of numeric
or character type. The result is a value that is true or false. For example,
A-C .GE. B+2 or DAY .EQ. ’MONDAY’.

relational operator

The symbols used to express a relational condition or expression. The
relational operators are = =, /=, <, <=, >, and >= (.EQ., .NE., .LT., .LE., .GT.,
and .GE.).

relative file organization

A file organization that consists of a series of component positions, called
cells, numbered consecutively from 1 to n. HP Fortran uses these numbered,
fixed-length cells to calculate the component’s physical position in the file.

routine

A subprogram; a function or procedure. See also function, subroutine, and
procedure.

run time

The time during which a computer executes the statements of a program.

saved object

A variable that retains its association status, allocation status, definition
status, and value after execution of a RETURN or END statement in the
scoping unit containing the declaration.

scalar

Pertaining to data items with a rank of zero. A single data object of any
intrinsic or derived data type. Contrast with array. See also rank-one
object.

scalar memory reference

A reference to a scalar variable, scalar record field, or array element that
resolves into a single data item (having a data type) and can be assigned a
value with an assignment statement. It is similar to a scalar reference, but it
excludes constants, character substrings, and expressions.

Glossary–32

scalar reference

A reference to a scalar variable, scalar record field, derived-type component,
array element, constant, character substring, or expression that resolves
into a single data item having a data type. Contrast with scalar memory
reference.

scalar variable

A variable name specifying one storage location.

scale factor

A number indicating the location of the decimal point in a real number and, if
there is no exponent, the size of the number on input.

scope

The portion of a program in which a declaration or a particular name has
meaning. Scope can be global (throughout an executable program), scoping
unit (local to the scoping unit), or statement (within a statement, or part of a
statement).

scoping unit

The part of the program in which a name has meaning. It is one of the
following:

• A program unit or subprogram

• A derived-type definition

• A procedure interface body

Scoping units cannot overlap, though one scoping unit can contain another
scoping unit. (The outer scoping unit is called the host scoping unit.)

section subscript

A subscript list (enclosed in parentheses and appended to the array name)
indicating a portion (section) of an array. At least one of the subscripts in the
list must be a subscript triplet or vector subscript. The number of section
subscripts is the rank of the array. See also array section, subscript,
subscript triplet, and vector subscript.

seed

A value (which can be assigned to a variable) that is required in order to
properly determine the result of a calculation; for example, the argument i in
the random number generator (RAN) function syntax:
y = RAN (i).

Glossary–33

selector

A mechanism for designating the following:

• Part of a data object (an array element or section, a substring, a derived
type, or a structure component)

• The set of values for which a CASE block is executed

sequence

A set ordered by a one-to-one correspondence with the numbers 1 through n,
where n is the total number of elements in the sequence. A sequence can be
empty (contain no elements).

sequential access

A method for retrieving or storing data in which the data (record) is read from,
written to, or removed from a file based on the logical order (sequence) of
the record in the file. (The record cannot be accessed directly.) Contrast with
direct access.

sequential file organization

A file organization in which records are stored one after the other, in the order
in which they were written to the file.

shape

The rank and extents of an array. Shape can be represented by a rank-one
array (vector) whose elements are the extents in each dimension.

shape conformance

Pertains to the rule concerning operands of binary intrinsic operations in
expressions: to be in shape conformance, the two operands must both be arrays
of the same shape, or one or both of the operands must be scalars.

short field termination

The use of a comma (,) to terminate the field of a numeric data edit descriptor.
This technique overrides the field width (w) specification in the data edit
descriptor and therefore avoids padding of the input field. The comma can only
terminate fields less than w characters long. See also data edit descriptor.

signal

The software mechanism used to indicate that an exception condition
(abnormal event) has been detected. For example, a signal can be generated by
a program or hardware error, or by request of another program.

Glossary–34

single-precision constant

A processor approximation of the value of a real number that occupies 4 bytes
of memory and can assume a positive, negative, or zero value. The precision
is less than a constant of double-precision type. For the precise ranges of the
single-precision constants, see the HP Fortran for OpenVMS User Manual. See
also denormalized number.

size

The total number of elements in an array (the product of the extents).

source file

A program or portion of a program library, such as an object file, or image file.

specification expression

A restricted expression that is of type integer and has a scalar value. This type
of expression appears only in the declaration of array bounds and character
lengths.

specification statement

A nonexecutable statement that provides information about the data used in
the source program. Such a statement can be used to allocate and initialize
variables, arrays, records, and structures, and define other characteristics of
names used in a program.

statement

An instruction in a programming language that represents a step in a sequence
of actions or a set of declarations. In Fortran 95/90, an ampersand (&) can be
used to continue a statement from one line to another, and a semicolon (;) can
be used to separate several statements on one line.

There are two main classes of statements: executable and nonexecutable. See
also executable statement and nonexecutable statement.

statement function

A computing procedure defined by a single statement in the same program
unit in which the procedure is referenced.

Glossary–35

statement function definition

A statement that defines a statement function. Its form is the statement
function name (followed by its optional dummy arguments in parentheses),
followed by an equal sign (=), followed by a numeric, logical, or character
expression.

A statement function definition must precede all executable statements and
follow all specification statements. See also statement function.

statement keyword

A word that begins the syntax of a statement. All program statements (except
assignment statements and statement function definitions) begin with a
statement keyword. Examples are INTEGER, DO, IF, and WRITE.

statement label

See label.

static variable

A variable whose storage is allocated for the entire execution of a program.

storage association

The relationship between two storage sequences when the storage unit of one
is the same as the storage unit of the other. Storage association is provided
by the COMMON and EQUIVALENCE statements. For modules, pointers,
allocatable arrays, and automatic data objects, the SEQUENCE statement
defines a storage order for structures.

storage location

An addressable unit of main memory.

storage sequence

A sequence of any number of consecutive storage units. The size of a storage
sequence is the number of storage units in the storage sequence. A sequence
of storage sequences forms a composite storage sequence. See also storage
association and storage unit.

storage unit

In a storage sequence, the number of storage units needed to represent one
real, integer, logical, or character value. See also character storage unit,
numeric storage unit, and storage sequence.

Glossary–36

stride

The increment between subscript values that can optionally be specified in a
subscript triplet. If it is omitted, it is assumed to be one.

string edit descriptor

A format descriptor that transfers characters to an output record.

structure

Can be either of the following:

• A scalar data object of derived (user-defined) type.

• An aggregate entity containing one or more fields or components.

structure component

Can be either of the following:

• One of the components of a structure.

• An array whose elements are components of the elements of an array of
derived type.

structure constructor

A mechanism that is used to specify a scalar value of a derived type. A
structure constructor is the name of the type followed by a parenthesized list
of values for the components of the type.

subobject

Part of a data object (parent object) that can be referenced and defined
separately from other parts of the data object. A subobject can be an
array element, an array section, a substring, a derived type, or a structure
component. Subobjects are referenced by designators and can be considered to
be data objects themselves. See also designator.

subobject designator

See designator.

subprogram

A user-written function or subroutine subprogram that can be invoked
from another program unit to perform a specific task. Contrast with main
program.

Glossary–37

subroutine

A procedure that can return many values, a single value, or no value to the
calling program unit (through arguments). A subroutine is invoked by a CALL
statement in another program unit.

In Fortran 95/90, a subroutine can also be used to define a new form of
assignment (defined assignment), which is different from those intrinsic to
Fortran 95/90. Such assignments are invoked with assignment syntax (using
the = symbol) rather than the CALL statement. See also function, statement
function, and subroutine subprogram.

subroutine subprogram

A sequence of statements starting with a SUBROUTINE (or optional
OPTIONS) statement and ending with the corresponding END statement. See
also subroutine.

subscript

A scalar integer expression (enclosed in parentheses and appended to the array
name) indicating the position of an array element. The number of subscripts is
the rank of the array. See also array element.

subscript triplet

An item in a section subscript list specifying a range of values for the array
section. A subscript triplet contains at least one colon and has three optional
parts: a lower bound, an upper bound, and a stride. Contrast with vector
subscript. See also array section and section subscript.

substring

A contiguous portion of a scalar character string. Do not confuse this with
the substring selector in an array section, where the result is another array
section, not a substring.

symbolic name

See name.

syntax

The formal structure of a statement or command string.

Glossary–38

target

The named data object associated with a pointer (in the form
pointer-object => target). A target is declared in a type declaration
statement that contains the TARGET attribute. See also pointer and pointer
association.

thread

Part of a program that can run at the same time as other parts, usually with
some form of communication and/or synchronization among the threads. See
also multithreading.

transformational function

An intrinsic function that is not an elemental or inquiry function. A
transformational function usually changes an array actual argument into a
scalar result or another array, rather than applying the argument element by
element.

truncation

Can be either of the following:

• A technique that approximates a numeric value by dropping its fractional
value and using only the integer portion.

• The process of removing one or more characters from the left or right of a
number or string.

type declaration statement

A nonexecutable statement specifying the data type of one or more variables:
an INTEGER, REAL, DOUBLE PRECISION, COMPLEX, DOUBLE
COMPLEX, CHARACTER, LOGICAL, or TYPE statement. Also called a type
declaration or type specification.

type parameter

Defines an intrinsic data type. The type parameters are kind and length. The
kind type parameter (KIND=) specifies the range for the integer data type,
the precision and range for real and complex data types, and the machine
representation method for the character and logical data types. The length
type parameter (LEN=) specifies the length of a character string. See also
kind type parameter.

unary operator

An operator that operates on one operand. For example, the minus sign in -A
and the .NOT. operator in .NOT. (J .GT. K).

Glossary–39

underflow

An error condition occurring when the result of an arithmetic operation
yields a result that is smaller than the minimum value in the range of a data
type. For example, in unsigned arithmetic, underflow occurs when a result is
negative. See also denormalized number.

unformatted data

Data written to a file by using unformatted I/O statements; for example, binary
numbers.

unformatted I/O statement

An I/O statement that does not contain format specifiers and therefore does not
translate the data being transferred. Contrast with formatted I/O statement.

unformatted record

A record that is transmitted in internal format between internal and external
storage.

unit identifier

The identifier that specifies an external unit or internal file. The identifier can
be any one of the following:

• An integer expression whose value must be zero or positive

• An asterisk (*) that corresponds to the default (or implicit) I/O unit

• The name of a character scalar memory reference or character array name
reference for an internal file

Also called a device code, or logical unit number.

unspecified storage unit

A unit of storage for holding a pointer or other scalar object of non-default
intrinsic type.

upper bound

See bounds.

use association

The process by which the entities in a module are made accessible to other
scoping units (through a USE statement in the scoping unit).

Glossary–40

user-defined type

See derived type.

variable

A data object (stored in a memory location) whose value can change during
program execution. A variable can be a named data object, an array element,
an array section, a structure component, or a substring. Contrast with
constant.

variable format expression

A numeric expression enclosed in angle brackets (<>) that can be used in a
FORMAT statement. If necessary, it is converted to integer type before use.

variable-length record type

A file format in which records may be of different lengths.

vector subscript

A rank-one array of integer values used as a section subscript to select
elements from a parent array. Unlike a subscript triplet, a vector subscript
specifies values (within the declared bounds for the dimension) in an arbitrary
order. Contrast with subscript triplet. See also array section and section
subscript.

whole array

An array reference (for example, in a type declaration statement) that consists
of the array name alone, without subscript notation. Whole array operations
affect every element in the array. See also array.

zero-sized array

An array with at least one dimension that has at least one extent of zero. A
zero-sized array has a size of zero and contains no elements. See also array.

Glossary–41

Index

\
See Backslash character

"
See Quotation mark character

’
See Apostrophe character

!
See Exclamation point character

%
See Built-in functions

&
See Ampersand character

(/.../)
See Array constructors

*
See Asterisk character

**
See Exponential operator

+
See Addition operator

–
See Subtraction operator

/
See Slash character

//
See also Concatenation operator
See Blank common blocks

/=
See Relational operators

::
See also Type declaration statements
See Double colon separator

= =
See Relational operators

;
See Semicolon character

<
See Relational operators

<=
See Relational operators

=>
See Pointer assignment statements

>
See Relational operators

>=
See Relational operators

?
See Question mark character

[...]
See Array constructors

A
A edit descriptor, 11–28 to 11–30
ABS function, 9–8, 9–22
Absolute spacing

function returning, 9–128
Absolute value

function computing, 9–22
function returning, 9–125

Abstraction
data

See Data abstraction

Index–1

ACCEPT statements, 10–36 to 10–37
Access

modes of record, 10–2
Access keys for indexed files

specifying in OPEN statement, 12–37
Access methods, 10–2
ACCESS specifier

in INQUIRE statements, 12–9
in OPEN statements, 12–27

Accessibility of modules, 5–57
Accuracy

See HP Fortran for OpenVMS User
Manual

ACHAR function, 9–8, 9–22
ACOS function, 9–8, 9–23
ACOSD function, 9–8, 9–23
ACTION specifier

in INQUIRE statements, 12–10
in OPEN statements, 12–27

Actual arguments, 8–31
definition of, 8–31
function returning pointer to list of, 9–64
passing to procedures, 9–2
using aggregate field references as, B–23

Addition operator (+), 4–3 to 4–4
See also Unary operators
order of precedence of, 4–12

Address
function allocating, 9–88
subroutine freeing allocated, 9–61

ADDRESS64 keyword
for ATTRIBUTES directive, 14–6

Adjustable arrays, 5–13, 5–14
examples of, 5–15
in RECORD statements, B–23

ADJUSTL function, 9–8, 9–24
ADJUSTR function, 9–8, 9–24
ADVANCE specifier, 10–12
Advancing I/O, 10–12

See also HP Fortran for OpenVMS User
Manual

Aggregate assignment, B–25

AIMAG function, 9–8, 9–25
AIMAX0 function, 9–89
AIMIN0 function, 9–96
AINT function, 9–8, 9–25
AJMAX0 function, 9–89
AJMIN0 function, 9–96
AKMAX0 function, 9–89
AKMIN0 function, 9–96
ALIAS

directive, 14–3
keyword for ATTRIBUTES directive,

14–6
ALIGN

OPTIONS directive option, 14–21
Alignment

See HP Fortran for OpenVMS User
Manual

ALL function, 9–8, 9–26
Allocatable arrays, 5–18, 5–19 to 5–20

See also Arrays
allocation of, 6–3
allocation status of, 6–3
deallocation of, 6–6
dynamically allocating and deallocating,

6–1
function to determine status of, 9–27

ALLOCATABLE attribute and statement,
5–19 to 5–20

attributes compatible with, 5–5
ALLOCATE statement, 6–2
ALLOCATED function, 6–3, 6–7, 9–8, 9–27
Allocating virtual memory

allocatable array, 6–4
Allocation

of allocatable arrays, 6–2, 6–3
of pointer targets, 6–2, 6–5

Allocation status
of allocatable arrays, 6–3

ALLOW_NULL keyword
for ATTRIBUTES directive, 14–7

ALOG function, 9–86
ALOG10 function, 9–87

Index–2

Alphabetic characters
case sensitivity for, 2–6

Alternate entry points, 8–59
Alternate return

alternative for, A–3
arguments, 8–41
specifier, 7–8, 8–25, 8–42

AMAX0 function, 9–8, 9–89
AMAX1 function, 9–89
AMIN0 function, 9–8, 9–96
AMIN1 function, 9–96
AMOD function, 9–101
Ampersand character (&)

as continuation indicator in free source
form, 2–10

AND function, 9–63
.AND.

See Logical operators
ANINT function, 9–8, 9–27
ANSI standard

language extensions to, 1–1, E–1 to E–8
ANSI standards, 1–1
ANY function, 9–8, 9–28
Apostrophe character (’)

See also Character constants
See also Character strings
as delimiter for character strings, 3–16

APOSTROPHE value
for INQUIRE (DELIM), 12–13
for OPEN (DELIM), 12–34

Append access
specifying for sequential files, 12–27

APPEND value
for INQUIRE (POSITION), 12–17
for OPEN (ACCESS), 12–27
for OPEN (POSITION), 12–40

Arccosine
function returning degrees, 9–23
function returning radians, 9–23

Arcsine
function returning degrees, 9–29
function returning radians, 9–29

Arctangent
function returning degrees, 9–33

Arctangent (cont’d)
function returning degrees (complex),

9–35
function returning radians, 9–33
function returning radians (complex),

9–34
Argument association, 8–31 to 8–50, 15–11
Argument intent, 5–45
Argument keywords

argument association using, 8–31
BACK, 9–4
DIM, 9–4
in function references, 8–23
in intrinsic procedures, 9–4
in subroutine references, 7–7
KIND, 9–4
MASK, 9–4

Argument passing
defaults for, 8–49
using %VAL, %REF, and %DESCR, 8–48

Argument presence function, 9–110
Argument-list functions

See Built-in functions
Arguments

See also HP Fortran for OpenVMS User
Manual

actual, 8–31
aggregate field references as, B–23
alternate return, 8–41
array, 8–38
associating array elements with, 15–17
association of procedure, 8–31 to 8–50
assumed-shape, 8–38
character, 8–40
character constants as, 8–41
defaults for %VAL, %REF, and %DESCR

functions, 8–48 to 8–49
dummy, 8–31, 8–42
Hollerith constants as, 8–41
intent of, 5–45
list of

effect in CALL statement, 7–8
of generic intrinsic functions, 9–2
optional, 8–33
pointer, 8–39

Index–3

Arguments (cont’d)
using external and dummy procedures as,

5–42 to 5–43
using intrinsic procedures as, 5–47 to

5–49
Arithmetic exception handling

See HP Fortran for OpenVMS User
Manual

Arithmetic expressions
See Numeric expressions

Arithmetic IF statement, 7–6 to 7–7
alternative for, A–3

Array assignment statements, 4–23
Array assignments

masking in, 4–26
Array components, 3–25, 3–27
Array constructors, 3–48

implied-do loops in, 3–48
Array declaration statements, 5–12 to 5–18
Array declarators, 5–12
Array elements, 3–38, 3–41

association of, 15–16
function returning location of maximum,

9–91
function returning location of minimum,

9–97
function returning maximum value of,

9–93
function returning minimum value of,

9–99
function returning product of, 9–111
function returning sum of, 9–130
order of, 3–42
references to, 3–41
storage of, 3–42

Array expressions, 4–23
Array functions

categories of, 9–6 to 9–7
for construction, 9–95, 9–108, 9–129,

9–139
for inquiry, 9–27, 9–80, 9–124, 9–127,

9–138
for location, 9–91, 9–97
for manipulation, 9–44, 9–55, 9–119,

9–137

Array functions (cont’d)
for reduction, 9–26, 9–28, 9–42, 9–93,

9–99, 9–111, 9–130
Array name

unsubscripted in a DATA statement,
5–28

Array pointers, 5–18
Array properties, 3–37
Array sections, 3–38, 3–44

assigning values to, 4–23
many-one, 3–47, 4–23
restrictions to vector subscripts in, 3–47

Array specifications, 5–12 to 5–18
Array structure component, 3–27
Array transposition, 9–137
Array variables, 4–23
Arrays, 3–37 to 3–50

adjustable, 5–14
allocatable, 5–18, 5–19 to 5–20

example of, 6–4
allocating allocatable, 6–2, 6–3
as automatic objects, 5–14
as components in derived types, 3–23
as operands in expressions, 4–2
as structure components, 3–27
as variables, 3–35
assignment of, 4–23
associating group name with, 5–49
association of, 15–16
assumed-shape, 5–16
assumed-size, 5–16
automatic

See Automatic arrays
bounds of, 3–38
components of, 3–41
conformable, 3–39
constructing multidimensional, 3–49
constructing one-dimension, 3–48
data type of, 3–38
deallocating allocatable, 6–5, 6–6
declaration of

using ALLOCATABLE, 5–19
using COMMON, 5–24
using DIMENSION, 5–30
using POINTER, 5–55

Index–4

Arrays
declaration of (cont’d)

using TARGET, 5–62
using type declaration, 5–3

deferred-shape, 5–18
defining constants for, 3–48
dummy argument, 5–14
element order in, 3–42
elements in, 3–41
establishing with subprogram references,

15–17
explicit-shape, 5–13 to 5–15
extending, 9–119, 9–129
extent of, 3–38
function performing circular shift of,

9–44
function performing dot-product

multiplication of, 9–52
function performing end-of shift on, 9–55
function performing matrix multiplication

of, 9–88
function returning location of maximum

value in, 9–91
function returning location of minimum

value in, 9–97
function returning lower bounds of, 9–80
function returning maximum value of

elements in, 9–93
function returning minimum value of

elements in, 9–99
function returning shape of, 9–124
function returning shape of processor,

9–110
function returning size (extent) of, 9–127
function returning upper bounds of,

9–138
function to add a dimension to, 9–129
function to combine, 9–95
function to count true elements in MASK,

9–42
function to determine all true in, 9–26
function to determine allocation of, 9–27
function to determine any true in, 9–28
function to pack, 9–108
function to replicate, 9–129

Arrays (cont’d)
function to reshape, 9–119
function to unpack, 9–139
function transposing rank-two, 9–137
functions for geometric location, 9–6
functions to construct, 9–6
functions to determine properties of, 9–6
functions to manipulate, 9–6
functions to reduce, 9–6
initializing elements with DATA

statements, 5–27
intrinsic assignment of, 4–23
intrinsic functions for, 9–6
making equivalent, 5–35 to 5–37
many-one, 3–47, 4–23
number of storage elements for, 5–31
properties of, 3–37
rank of, 3–38
referencing, 4–2
section subscript in, 3–44
sections in, 3–44
shape of, 3–38
size of, 3–38
size of dummy, 5–17
specifications for, 5–12 to 5–18
specifying the values in, 3–48
storage of, 3–42
subscript list in, 3–38
subscript triplets in, 3–45
vector subscripts in, 3–47
volatile, 5–64
whole, 3–40
zero-size, 3–38, 5–13

Ascending keys
values for, 10–7

ASCII
character set, C–1

ASCII constants
assigned in DATA statements, 5–29

ASIN function, 9–8, 9–29
ASIND function, 9–8, 9–29
ASIS value

for INQUIRE (POSITION), 12–17
for OPEN (POSITION), 12–40

Index–5

ASM function (Alpha only), 9–8, 9–30
Assembly language instructions

function to include, 9–30
ASSIGN statement, 7–4 to 7–5

See also HP Fortran for OpenVMS User
Manual

alternative for, A–4
establishing assigned GO TO, 7–5

Assigned FORMAT specifier
alternative for, A–4

Assigned GO TO statement, 7–5 to 7–6
alternative for, A–4
establishing labels for, 7–4 to 7–5

Assignment
array, 4–23
character, 4–21 to 4–22
defined, 4–24
derived-type, 4–22 to 4–23
element array (FORALL), 4–29 to 4–32
generic, 8–57
intrinsic, 4–18 to 4–23
logical, 4–21
masked-array (WHERE), 4–26 to 4–29

generalization of, 4–29
numeric, 4–19 to 4–21
pointer, 4–25 to 4–26

ASSIGNMENT interface specifier
for subroutines, 4–24, 8–52, 8–57

Assignment statements, 4–17 to 4–32
kinds of, 4–17

Assignment symbol
scope of, 15–4

ASSOCIATED function, 6–5, 9–8, 9–31
ASSOCIATEVARIABLE specifier

in OPEN statements, 12–28
Association, 15–10 to 15–17

argument, 8–31 to 8–50, 15–11
common, 5–23
equivalence, 5–32
of arrays, 15–16
pointer, 15–13
storage, 15–14

full, 15–16
partial, 15–16

use and host, 15–11

ASSUME
OPTIONS statement option, 13–5

Assumed-length character
arguments, 3–37, 8–40

See also HP Fortran for OpenVMS
User Manual

functions, 8–20
alternative for, A–2

Assumed-shape
arguments, 8–38

requiring explicit interface, 8–51
arrays, 5–16

Assumed-size
arguments, 8–38
arrays, 5–16

as whole array references, 5–17
determining the size of, 5–17
in SIZE function, 9–127
in UBOUND function, 9–138
restrictions to using, 5–17
subscript triplets for, 3–45

Asterisk character (*)
as comment line indicator, 2–12
as dummy argument, 8–40, 8–41
as multiplication operator, 4–3 to 4–4

order of precedence of, 4–12
using to specify length of function type,

8–20
ATAN function, 9–9, 9–33
ATAN2 function, 9–9, 9–34
ATAN2D function, 9–9, 9–35
ATAND function, 9–9, 9–33
Attributes

ALLOCATABLE, 5–19
AUTOMATIC, 5–20
DIMENSION, 5–30
EXTERNAL, 5–42
in type declaration statements, 5–3
INTENT, 5–45
INTRINSIC, 5–47
OPTIONAL, 5–51
PARAMETER, 5–53
POINTER, 5–55
PRIVATE, 5–57
PUBLIC, 5–57

Index–6

Attributes (cont’d)
SAVE, 5–60
STATIC, 5–20
summary of compatible, 5–5
TARGET, 5–62
VOLATILE, 5–63

ATTRIBUTES directive, 14–4 to 14–10
ADDRESS64 keyword, 14–6
ALIAS keyword, 14–6
ALLOW_NULL keyword, 14–7
C keyword, 14–7
DECORATE keyword, 14–8
DEFAULT keyword, 14–8
DESCRIPTOR keyword, 14–8
DESCRIPTOR32 keyword, 14–8
DESCRIPTOR64 keyword, 14–8
EXTERN keyword, 14–9
IGNORE_LOC keyword, 14–9
NOMIXED_STR_LEN_ARG keyword,

14–9
NO_ARG_CHECK keyword, 14–9
REFERENCE keyword, 14–9
REFERENCE32 keyword, 14–10
REFERENCE64 keyword, 14–10
STDCALL keyword, 14–7
VALUE keyword, 14–9
VARYING keyword, 14–10

Automatic arrays, 5–13, 5–14
AUTOMATIC attribute and statement, 5–20

to 5–23
attributes compatible with, 5–5

Automatic objects
array as, 5–14
definition of, Glossary–4
in character declarations, 5–10

Automatic variables, 5–20

B
B edit descriptor, 11–12 to 11–13
BACK keyword

in intrinsics, 9–4
Backslash character (\)

as edit descriptor, 11–40

Backslash editing, 11–40
BACKSPACE statements, 12–2 to 12–3

See also REWIND statement
Base of model

function returning, 9–114
Batch process

temporarily suspending, 7–33
Big endian

definition of, Glossary–5
BIG_ENDIAN value

for INQUIRE (CONVERT), 12–12
for OPEN (CONVERT), 12–31

Binary constants, 3–30 to 3–31
assigning with DATA statement, 5–28
data type assignments of, 3–33 to 3–35
examples of, 3–30

Binary digits
See Bits

Binary operations, 4–3
Binary operators

definition of, 4–3
form of, 8–56

Binary patterns
functions that shift, 9–19

Binary transfer of data
function performing, 9–136

Binary values
transferring, 11–12

Bit constant
definition of, Glossary–5

Bit constants, 3–30
Bit fields

function to extract, 9–66
functions operating on, 9–19
operating on general, 9–19
references to, 9–19
subroutine to copy, 9–103

Bit functions, 9–18 to 9–21
categories of, 9–6

Bit model, D–4
Bit patterns

function performing circular shift on,
9–77

function performing logical shift on, 9–77

Index–7

Bit position ranges
for 1-bit fields, 9–19

Bit representation
of integers, 9–6

Bit size
determining, 9–6

Bit subfields
referencing, 9–18

BITEST function, 9–36
Bits

function arithmetically shifting left or
right, 9–75

function clearing to zero, 9–65
function logically shifting left or right,

9–78
function performing exclusive OR on,

9–69
function performing inclusive OR on,

9–74
function performing logical AND on, 9–63
function returning number of, 9–35
function reversing value of, 9–65
function rotating left or right, 9–76
function setting to 1, 9–67
function to extract sequences of, 9–66
function to test, 9–36
model for data, D–4

BIT_SIZE function, 9–9, 9–35
BJTEST function, 9–36
BKTEST function, 9–36
Blank characters

effect in character expressions, 4–8
effect in statement label fields, 2–9
in fixed and tab source form, 2–12
in free source form, 2–9

Blank common blocks, 5–23
See also Common blocks

Blank editing (BN,BZ), 11–36 to 11–37
BN, 11–37
BZ, 11–37

BLANK specifier
in INQUIRE statements, 12–10
in OPEN statements, 11–3, 12–28

Block data program unit, 2–2, 8–1, 8–11 to
8–12

declaring external, 5–42
effect of using DATA statement in, 8–12
forcing linker to search libraries, 5–42
in EXTERNAL statement, 8–12

BLOCK DATA statement, 8–11 to 8–12
example of, 8–12

Block DO construct, 7–16
Block IF statement

See IF construct
Blocks

contained in constructs, 7–2
definition of, Glossary–5
DO loops in, 7–2
interface, 8–52 to 8–58

BLOCKSIZE specifier
in INQUIRE statements, 12–11
in OPEN statements, 12–29
interaction with BUFFERCOUNT, 12–29

BN edit descriptor, 11–37
Bounds

function returning lower, 9–80
function returning upper, 9–138
in an array, 3–38

Branch specifiers
in data transfer, 10–11

Branch statements, 7–2 to 7–7
Branch target statements

definition of, 7–2
in data transfer, 10–11

Branching
statements, 7–2 to 7–7
to END IF statement, 7–28
to SELECT CASE statement, 7–14

BTEST function, 9–9, 9–19, 9–36
BUFFERCOUNT specifier

in OPEN statements, 12–29
BUFFERED specifier

in INQUIRE statements, 12–11
in OPEN statements, 12–30

Built-in functions
See also HP Fortran for OpenVMS User

Manual
See also Intrinsic procedures

Index–8

Built-in functions (cont’d)
defaults for, 8–49
%DESCR, 8–48
%LOC, 8–50
%REF, 8–48
%VAL, 8–48

BYTE
data type, 3–3
in type declaration statements, 5–3, 5–7

BZ edit descriptor, 11–37

C
C character

as comment line indicator, 2–12
C keyword

for ATTRIBUTES directive, 14–7
C strings, 3–18
CABS function, 9–22
CALL statement, 7–7 to 7–9

See also HP Fortran for OpenVMS User
Manual

examples of, 7–9
using to invoke a function, 7–8

Carriage control
characters, 11–45
editing, 11–45

CARRIAGECONTROL specifier
in INQUIRE statements, 12–11
in OPEN statements, 12–30

CASE constructs, 7–10 to 7–14
flow of control in, 7–12

CASE DEFAULT statement, 7–11
Case index, 7–10

determining a match, 7–11
Case sensitivity, 2–6

See also HP Fortran for OpenVMS User
Manual

Case values
range of, 7–10

CCOS function, 9–40
CDABS function, 9–22
CDCOS function, 9–40

CDD
pathnames

types of, 13–2
CDD (Common Data Dictionary)

See also DICTIONARY statement
definitions

including, 13–1
cDEC$ ALIAS directive, 14–3 to 14–4
cDEC$ ATTRIBUTES directive, 14–4 to

14–10
ADDRESS64 keyword, 14–6
ALIAS keyword, 14–6
ALLOW_NULL keyword, 14–7
C keyword, 14–7
DECORATE keyword, 14–8
DEFAULT keyword, 14–8
DESCRIPTOR keyword, 14–8
DESCRIPTOR32 keyword, 14–8
DESCRIPTOR64 keyword, 14–8
EXTERN keyword, 14–9
IGNORE_LOC keyword, 14–9
NOMIXED_STR_LEN_ARG keyword,

14–9
NO_ARG_CHECK keyword, 14–9
REFERENCE keyword, 14–9
REFERENCE32 keyword, 14–10
REFERENCE64 keyword, 14–10
STDCALL keyword, 14–7
VALUE keyword, 14–9
VARYING keyword, 14–10

cDEC$ DECLARE directive, 14–11
cDEC$ DEFINE directive, 14–11 to 14–12
cDEC$ ELSE directive, 14–14
cDEC$ ELSEIF directive, 14–14
cDEC$ ENDIF directive, 14–14
cDEC$ FIXEDFORMLINESIZE directive,

14–12 to 14–13
cDEC$ FREEFORM directive, 14–13
cDEC$ IDENT directive, 14–14
cDEC$ IF DEFINED directive, 14–14
cDEC$ IF directive, 14–14 to 14–16
cDEC$ INTEGER directive, 14–16 to 14–17
cDEC$ IVDEP directive, 14–17 to 14–19

Index–9

cDEC$ MESSAGE directive, 14–19
cDEC$ NODECLARE directive, 14–11
cDEC$ NOFREEFORM directive, 14–13
cDEC$ NOSTRICT directive, 14–30 to

14–31
cDEC$ OBJCOMMENT directive, 14–20 to

14–21
cDEC$ OPTIONS directive, 14–21 to 14–24
cDEC$ PACK directive, 14–24 to 14–25
cDEC$ PSECT directive, 14–25 to 14–28
cDEC$ REAL directive, 14–28 to 14–29
cDEC$ STRICT directive, 14–30 to 14–31
cDEC$ SUBTITLE directive, 14–31
cDEC$ TITLE directive, 14–31
cDEC$ UNDEFINE directive, 14–11 to

14–12
cDEC$ UNROLL directive, 14–32
CDEXP function, 9–59
CDLOG function, 9–86
CDSIN function, 9–126
CDSQRT function, 9–129
CEILING function, 9–9, 9–37
CEXP function, 9–59
CHAR function, 9–9, 9–37
Character

See also Lowercase letters
See also Uppercase letters
arguments

passed length of, 3–37
expressions

in relational expressions, 4–8, 4–9
function returning, 9–37
function returning position of, 9–22,

9–62, 9–68
operations, 4–8
printable, 2–6
substrings

making equivalent, 5–37 to 5–39
CHARACTER

in type declaration statements, 5–3, 5–9
Character arguments

assumed length, 8–40

Character assignment statements, 4–21 to
4–22

examples of, 4–22
Character constants, 3–16 to 3–17

See also HP Fortran for OpenVMS User
Manual

as arguments, 8–41
as edit descriptors, 11–42
assigned with DATA statements, 5–29
C strings in, 3–18
default, Glossary–10
delimiters in, 3–16
examples of, 3–17
length of, 3–17
uppercase and lowercase letters in, 2–6

Character count
editing, 11–41
specifier, 10–13

Character data type, 3–16
CHARACTER data type

definition of, 3–3
storage requirements, 15–15

Character editing, 11–28 to 11–30
Character expressions, 4–8

as format specifications, 11–5
function returning length of, 9–81
operator in, 4–8

Character functions
categories of, 9–6
definition of conversion, 9–6
definition of string-handling, 9–6

Character operands
comparing, 4–9

Character set
ASCII, C–1
DEC Multinational, C–4
extensions to Fortran 95, E–2
Fortran 95/90, 2–5

CHARACTER statement, 5–9 to 5–11
Character storage unit, 15–14
Character string edit descriptors, 11–42 to

11–43
Character strings

as edit descriptors, 11–42
directive specifying for output, 14–19

Index–10

Character strings (cont’d)
function adjusting to left, 9–24
function adjusting to right, 9–24
function returning length minus trailing

blanks, 9–82
function to check for all characters in,

9–140
function to concatenate copies of, 9–119
function to scan for characters in, 9–121
function to trim blanks from, 9–137
of different lengths, 3–37
without delimiters, 10–21, 10–24, 10–35

Character substrings, 3–19 to 3–20
effect of assigning values to, 4–21
examples of, 3–20
positions within parent string, 3–20

Character type declaration statements, 5–9
to 5–11

automatic objects in, 5–10
Character type functions, 8–20
Character values

transferring, 11–28
Character-oriented I/O, 10–12
CHECK

OPTIONS statement option, 13–5
Circular shift

function performing, 9–77
of arrays

function performing, 9–44
CLOG function, 9–86
CLOSE statements, 12–3 to 12–4

defaults for, 12–3
CMPLX function, 9–9, 9–38
Colon character (:)

as edit descriptor, 11–40
in array specification, 3–46, 3–50, 5–16,

5–18
Colon editing, 11–40
Column positions

in fixed source form, 2–13
Columns

for fields in fixed source form, 2–13
position of comment indicator, 2–12
position of debugging indicator, 2–13

Combining arrays, 9–95
Comma character (,)

as a field separator, 11–31
Comment indicators, 2–7

in fixed and tab source form, 2–12
in free source form, 2–10

Comments, 2–7
allowable characters in, 2–6
in continued statements, 2–7
in namelist input, 10–25

Common block association, 5–23
Common blocks, 5–23 to 5–26

agreement of data types in, 5–25
arrays in, 5–24
blank, 5–23
data types of variables in, 5–24
directive modifying alignment of data in,

14–21
directive modifying characteristics of,

14–25
effect of including in SAVE statement,

5–61
effect of sharing names in, 5–25
EQUIVALENCE interaction in, 5–39 to

5–41
establishing and initializing values in,

8–11 to 8–12
example of, 5–26
extending, 5–39
named, 5–23, 5–25, 8–11
pointers in, 5–24
variables in, 5–24
volatile, 5–64

Common Data Dictionary
See CDD (Common Data Dictionary)

COMMON statement, 5–23 to 5–26
example of, 5–26
interaction with EQUIVALENCE, 5–39

to 5–41
using record structure names in, B–21
using to define storage areas, 5–23

Comparison character functions, 9–6
Compatibility

See also HP Fortran for OpenVMS User
Manual

Index–11

Compatibility (cont’d)
features for language version, B–1 to

B–25
summary of language, 1–2

Compilation control statements, 13–1 to
13–6

Compiler directives
See also General compiler directives
general, 14–1 to 14–32

syntax of, 14–2
Compiler limits

See Compiler in HP Fortran for OpenVMS
User Manual

Compiler options
See also Command line in HP Fortran for

OpenVMS User Manual
overriding with OPTIONS statements,

13–5 to 13–6
COMPLEX

data type, 3–3
in type declaration statements, 5–3, 5–7

Complex constants, 3–12 to 3–15
See also COMPLEX(16)
See also COMPLEX(4)
See also COMPLEX(8)
default, Glossary–10

Complex data types, 3–11 to 3–15
Complex editing, 11–16, 11–26 to 11–27
Complex expressions

using relational operators in, 4–9
Complex numbers

function determining imaginary part of,
9–25

function resulting in conjugate of, 9–39
Complex operands

comparing, 4–9
Complex values

transferring, 11–16, 11–26
COMPLEX(16)

constants, 3–14 to 3–15
data type, 3–11

See also HP Fortran for OpenVMS
User Manual

function converting to, 9–112

COMPLEX(16) (cont’d)
storage requirements, 15–15

COMPLEX(4)
See also COMPLEX
constants, 3–12 to 3–13
data type, 3–11

See also HP Fortran for OpenVMS
User Manual

storage requirements, 15–15
COMPLEX(8)

See also DOUBLE COMPLEX
constants, 3–13 to 3–14
data type, 3–11

See also HP Fortran for OpenVMS
User Manual

storage requirements, 15–15
COMPLEX*16 constants

See COMPLEX(8)
COMPLEX*32 constants

See COMPLEX(16)
COMPLEX*8 constants

See COMPLEX(4)
Component selector, 3–25
Components

arrays as derived-type, 3–23
derived-type, 3–21, 3–22

referencing, 3–25 to 3–28
of array structures, 3–41

Computation functions
definition of, 9–5

Computed GO TO statement, 7–3 to 7–4
alternative for, A–2

Concatenation of strings
function performing, 9–119

Concatenation operator (//)
See also the HP Fortran for OpenVMS

User Manual
order of precedence of, 4–12
using in expressions, 4–8
using in long character constants, 2–12

Conditional compilation
general directive creating symbol for,

14–11
general directive specifying, 14–14

Index–12

Conditional DO statement, 7–24
Conformable arrays, 3–39
CONJG function, 9–9, 9–39
Conjugate

function calculating, 9–39
Conjunction

logical, 4–10
Connecting files, 12–21
Constant expressions, 4–13
Constants

array, 3–48
binary

See Binary constants
character

See Character constants
complex

See Complex constants
definition of, 3–1
hexadecimal

See Hexadecimal constants
Hollerith

See Hollerith constants
integer

See Integer constants
literal, 3–2
logical

See Logical constants
named, 3–2, 5–53
nondecimal numeric

See Nondecimal numeric constants
octal

See Octal constants
ranges for

See HP Fortran for OpenVMS User
Manual

real
See Real constants

Constructors
array, 3–48
structure, 3–29

Constructs
CASE, 7–10 to 7–14
DO, 7–15 to 7–26

Constructs (cont’d)
FORALL, 4–29 to 4–32
IF, 7–27 to 7–32
named, 7–1
nested

See Nested constructs
WHERE, 4–26 to 4–29

CONTAINS statement, 8–4, 8–30, 8–59
in main programs, 8–3

Continuation indicator, 2–7
in fixed and tab source form, 2–12
in free source form, 2–10

Continuation line
in debugging statements, 2–13
number allowed, 2–7
restriction in included files, 13–3
statement label field of, 2–12

CONTINUE statement, 7–15, 7–16
Control characters

in printing, 11–45
Control constructs

blocks in, 7–2
named, 7–1

CASE, 7–10
DO, 7–16
IF, 7–27

Control edit descriptors, 11–33 to 11–41
for blanks, 11–36 to 11–37
forms for, 11–33
positional, 11–34 to 11–35
repeating, 11–34
sign, 11–36

Control lists
I/O, 10–3 to 10–13

See also I/O control list
Control statements, 7–1 to 7–36

extensions, E–3
Control transfer

statements allowing, 7–1 to 7–36
with arithmetic IF statement, 7–6
with branch statements, 7–2 to 7–7
with CALL statement, 7–7
with CASE construct, 7–10
with DO construct, 7–15
with DO WHILE statement, 7–24

Index–13

Control transfer (cont’d)
with END statement, 7–26
with GO TO statement

assigned, 7–5
computed, 7–3
unconditional, 7–3

with IF construct, 7–27
with logical IF statement, 7–33
with RETURN statement, 7–34

Control-list specifiers
defining variable for character count,

10–13
for advancing or nonadvancing I/O, 10–12
for transfer of control, 10–11
identifying the I/O status, 10–10
identifying the key field, 10–7
identifying the key-field index, 10–9
identifying the record number, 10–6
identifying the unit, 10–4
indicating the format, 10–5
indicating the namelist group, 10–6
keywords for, 10–4

Conversion
function performing logical, 9–87
function performing real, 9–118
function resulting in complex type, 9–38
function resulting in COMPLEX(16) type,

9–112
function resulting in double complex type,

9–50
function resulting in double precision

type, 9–50, 9–53
function resulting in double-precision

type, 9–48
function resulting in integer type, 9–71
function resulting in quad precision type,

9–112, 9–113
function resulting in REAL(16) type,

9–114
rules for numeric assignments, 4–19
to higher precision, 4–7
to nearest integer, 9–37, 9–60

Conversion character functions, 9–6

Conversion of data
character to numeric using internal read,

10–35
rules for, 4–19
using FORMAT statements, 11–1 to

11–49
CONVERT

OPTIONS statement option, 13–5
CONVERT specifier

in INQUIRE statements, 12–12
in OPEN statements, 12–31 to 12–32

Converting unformatted numeric files,
12–12, 12–31

COS function, 9–9, 9–40
COSD function, 9–9, 9–40
COSH function, 9–9, 9–41
Cosine

function returning hyperbolic, 9–41
function with argument in degrees, 9–40
function with argument in radians, 9–40
intrinsic functions for, 8–44

COTAN function, 9–9, 9–41
COTAND function, 9–9, 9–42
Cotangent

function with argument in degrees, 9–42
function with argument in radians, 9–41

COUNT function, 9–9, 9–42
CPU_TIME subroutine, 9–18, 9–44
CQABS function, 9–22
CQCOS function, 9–40
CQEXP function, 9–59
CQLOG function, 9–86
CQSIN function, 9–126
CQSQRT function, 9–129
CRAY value

for INQUIRE (CONVERT), 12–12
for OPEN (CONVERT), 12–31

CRAY-style pointers
See Integer pointers

Critical sections of code
function to tune, 9–30

CSHIFT function, 9–10, 9–44
CSIN function, 9–126

Index–14

CSQRT function, 9–129
Current date

subroutines returning, 9–46, 9–68
Current record

for REWRITE statements, 10–50
Cycle

beginning new one in DO constructs,
7–25

CYCLE statement, 7–15, 7–25

D
D character

as debugging statement indicator, 2–13
D edit descriptor, 11–18 to 11–20
DABS function, 9–22
DACOS function, 9–23
DACOSD function, 9–23
DASIN function, 9–29
DASIND function, 9–29
DASM function, 9–30
Data

See also HP Fortran for OpenVMS User
Manual

conversion using FORMAT statements,
11–1 to 11–49

formatted and unformatted, 10–1
Data abstraction

example of, 8–10
Data edit descriptors, 11–7 to 11–32

default field widths for, 11–30 to 11–31
forms for, 11–7
integer, 11–10 to 11–15
real, 11–16 to 11–27
rules for numeric, 11–9

Data editing
specifying format for, 10–5

Data files
See HP Fortran for OpenVMS User

Manual
Data objects

See also Data in HP Fortran for OpenVMS
User Manual

assigning initial values to, 5–27
associating with group name, 5–49

Data objects (cont’d)
in common block

defining storage of, 5–23
providing initial values for, 8–11
retaining properties of, 5–60 to 5–61
specifying as pointers, 5–55
storage association of, 5–33
unpredictable values of, 5–63

Data objects, directive specifying properties
of, 14–4

Data representation
model for real, D–2 to D–3
models, D–1 to D–4
models for bit, D–4
models for integer, D–1 to D–2

DATA statement, 5–27 to 5–30
See also HP Fortran for OpenVMS User

Manual
effect in block data program unit, 8–12
examples of, 5–29
implied-do list in, 5–27
list of constants in, 5–27
unsubscripted array name in, 5–28
using to define arrays, 15–17

Data transfer
from direct-access files

input, 10–29 to 10–31
output, 10–43 to 10–45

from internal files
input, 10–34 to 10–35
output, 10–47 to 10–48

from keyed-access files
input, 10–31 to 10–34
output, 10–45 to 10–47

from sequential files
input, 10–18 to 10–29
output, 10–37 to 10–43

function for binary, 9–136
Data transfer statements

ADVANCE specifier in, 10–12
branch specifiers in, 10–11
components of, 10–2
control list in, 10–3
control specifiers in, 10–2
FMT specifier in, 10–5

Index–15

Data transfer statements (cont’d)
I/O list in, 10–13 to 10–17
implied-do lists in, 10–16
input, 10–17 to 10–37

ACCEPT, 10–36
READ, 10–17 to 10–35

IOSTAT specifier in, 10–10
KEYID specifier in, 10–9
KEY[con] specifier in, 10–7
list items in, 10–14
NML specifier in, 10–6
output, 10–37 to 10–51

PRINT and TYPE, 10–48 to 10–49
REWRITE, 10–50 to 10–51
WRITE, 10–37 to 10–48

REC specifier in, 10–6
SIZE specifier in, 10–13
UNIT specifier in, 10–4

Data translation
direct-access statements

READ, 10–30
REWRITE, 10–50
WRITE, 10–44

internal statements
READ, 10–34
WRITE, 10–47

sequential statements
ACCEPT, 10–36
PRINT and TYPE, 10–48
READ, 10–19
WRITE, 10–39

Data type declaration statements
See Type declaration statements

Data types
See also HP Fortran for OpenVMS User

Manual
character

conversion rules with DATA
statement, 5–29

complex
kind type parameters for, 3–11

conventions for determining
in numeric expressions, 4–6

conversion in numeric assignment
statements, 4–19

Data types (cont’d)
conversion of character to numeric in

internal reads, 10–35
derived, 3–21 to 3–30

defining, 3–21 to 3–24
determining for expressions, 4–6 to 4–7
determining in numeric expressions, 4–6

to 4–7
examples of assigning, 3–6
implicit, 3–37
integer

kind parameters for, 3–4
intrinsic, 3–2 to 3–20
logical

kind parameters for, 3–15
kind type parameters for, 3–16

mixed
restrictions with DATA statement,

5–29
numeric

conversion rules with DATA
statement, 5–28

of named constants, 5–53
overriding default for names, 5–43
ranking in numeric expressions, 4–6
real

kind parameters for, 3–7
resulting from logical operations, 4–10
specifying explicit, 3–36
specifying for variables, 3–36
storage requirements for, 15–14

DATAN function, 9–33
DATAN2 function, 9–34
DATAN2D function, 9–35
DATAND function, 9–33
Date

subroutines to return current, 9–46,
9–47, 9–68

Date and time
subroutine returning, 9–47

DATE subroutine, 9–18, 9–46
DATE_AND_TIME subroutine, 9–18, 9–47
DBLE function, 9–10, 9–48

Index–16

DBLEQ function, 9–48
DCMPLX function, 9–10, 9–50
DCONJG function, 9–39
DCOS function, 9–40
DCOSD function, 9–40
DCOSH function, 9–41
DCOTAN function, 9–41
DCOTAND function, 9–42
DDIM function, 9–51
DEALLOCATE statement, 6–5
Deallocation

of allocatable arrays, 6–5, 6–6
of pointer targets, 6–5, 6–7

Debug statements, 2–13
Debugging

directive specifying string for, 14–19
DEC Multinational

character set, C–4
Decimal exponent

function returning range of, 9–117
Decimal point

moving in real and complex values, 11–37
Decimal precision

function returning, 9–109
Declaration statements, 5–1 to 5–64

See also Type declaration statements
Declarations, 5–1 to 5–64

array, 5–12 to 5–18
character type, 5–9 to 5–11
derived-type, 5–11 to 5–12
numeric and logical type, 5–7 to 5–9
record structure, B–14

nesting, B–14
record substructure, B–14, B–18
union, B–19

DECLARE directive, 14–11
DECODE statement, B–3 to B–4

example of, B–4
DECORATE keyword

for ATTRIBUTES directive, 14–8
DEFAULT

keyword
for ATTRIBUTES directive, 14–8

Default initialization
of derived-type components, 3–24

DEFAULTFILE specifier
in INQUIRE statements, 12–8
in OPEN statements, 12–33
interaction with OPEN (FILE), 12–33

Defaults
for %VAL, %REF, and %DESCR, 8–49
for accessibility of modules, 5–57
for character constants, Glossary–10
for complex constants, Glossary–10
for integer constants, Glossary–10
for interpretation of blanks, 11–9
for list-directed output, 10–39
for logical constants, Glossary–11
for names

overriding, 5–44
for OPEN statement specifiers, 12–21
for real constants, Glossary–11
implicit typing, 3–37
widths for data edit descriptors, 11–30 to

11–31
Deferred-shape arrays, 5–18
DEFINE directive, 14–11 to 14–12
DEFINE FILE statement, B–1 to B–2

compared to OPEN statement, B–1
Defined assignments, 4–24

intent of dummy arguments in, 5–46
scope of, 15–4

Defined operations, 4–11, 8–56
binary, 4–11
unary, 4–11

Defined operators, 4–12
intent of dummy arguments in, 5–46
scope of, 15–4

Defined variables, 3–35
DELETE statements, 12–4 to 12–5

alternative form for relative files, B–10
DELETE value

for CLOSE statements, 12–3
for OPEN (DISPOSE), 12–34

DELIM specifier
in INQUIRE statements, 12–12
in OPEN statements, 12–33

Index–17

Denormalized numbers
definition of, Glossary–12

Dependence analysis
directive assisting, 14–17

Derived data types, 3–21 to 3–30
arrays as components of, 3–29
assignment statements, 4–22 to 4–23
default initialization of, 3–23, 3–24
defining, 3–21 to 3–24
in formatted and unformatted I/O

statements, 10–14
in I/O lists, 10–14
pointers as components of, 3–29
referencing, 4–2
scope of component, 3–23
scope of type, 3–23
sequence, 3–23
volatile objects of, 5–64

Derived types
See Derived data types

Derived-type assignment statements, 4–22
to 4–23

Derived-type components, 3–21, 3–22
arrays as, 3–23
referencing, 3–25 to 3–28

Derived-type declaration statements, 5–11
to 5–12

Derived-type definitions, 3–21 to 3–24
default initialization in, 3–23, 3–24
examples of, 3–26

Derived-type items
directive specifying starting address of,

14–24
Descending keys

values for, 10–7
%DESCR function, 8–48 to 8–49

See also HP Fortran for OpenVMS User
Manual

DESCRIPTOR keyword
for ATTRIBUTES directive, 14–8

DESCRIPTOR32 keyword
for ATTRIBUTES directive, 14–8

DESCRIPTOR64 keyword
for ATTRIBUTES directive, 14–8

Designator, Glossary–12
DEXP function, 9–59
DFLOAT function, 9–10, 9–50
DFLOTI function, 9–50
DFLOTJ function, 9–50
DFLOTK function, 9–50
DICTIONARY statement, 13–1 to 13–2
DIGITS function, 9–10, 9–51
DIM function, 9–10, 9–51
DIM keyword

in intrinsics, 9–4
DIMAG function, 9–25
Dimension

bounds in, 3–38
definition of, 3–38

DIMENSION attribute and statement, 5–30
to 5–32

attributes compatible with, 5–5
DIMENSION statement

using record structure names in, B–21
DINT function, 9–25
Direct access

See also HP Fortran for OpenVMS User
Manual

definition of, 10–2
READ statements, 10–29 to 10–31

forms of, 10–29
records

deleting, 12–4
specifying, 12–27
WRITE statements, 10–43 to 10–45

forms of, 10–43
DIRECT specifier

in INQUIRE statements, 12–13
DIRECT value

for INQUIRE (ACCESS), 12–10
for OPEN (ACCESS), 12–27

Disassociation
of pointers, 6–9

Disconnecting files, 12–3
Disjunction

logical, 4–10

Index–18

DISPOSE specifier
in OPEN statements, 12–34

Division operator (/), 4–3 to 4–4
See also Slash character
order of precedence of, 4–12

DLOG function, 9–86
DLOG10 function, 9–87
DMAX1 function, 9–89
DMIN1 function, 9–96
DMOD function, 9–101
DNINT function, 9–27
DO constructs, 7–15 to 7–26

block form of, 7–16
execution of, 7–18
extended range for, 7–22
forms of, 7–16
immediate termination of, 7–25
interrupting, 7–25
iteration control in, 7–18
nested, 7–20 to 7–22

control transfers in, 7–22
nonblock form of, 7–16
range of, 7–18
terminal statement for labeled, 7–15
WHILE, 7–24

DO loops, 7–15
directive specifying number of unrolls for,

14–32
skipping, 7–25
transferring control, 7–22

DO WHILE statement, 7–15, 7–16, 7–18,
7–24

example of, 7–24
terminating, 7–24

Documentation
sending comments to HP, xxiv

Dollar sign character ($)
as edit descriptor, 11–40
in names, 2–4

Dollar sign editing, 11–40
Dot-product multiplication

function performing, 9–52
DOT_PRODUCT function, 9–10, 9–52

Double colon separator (::), 5–4
DOUBLE COMPLEX

See also COMPLEX(8)
in type declaration statements, 5–3, 5–7

DOUBLE COMPLEX constants, 3–13 to
3–14

See also COMPLEX(8)
DOUBLE COMPLEX data type, 3–3
Double complex type

function converting to, 9–50
DOUBLE PRECISION

See also REAL(8)
constants, 3–7, 3–9 to 3–10
data type, 3–3, 3–7

See also HP Fortran for OpenVMS
User Manual

in type declaration statements, 5–3, 5–7
Double-precision product

function producing, 9–53
Double-precision type

function converting to, 9–50, 9–53
DPROD function, 9–17, 9–53
DREAL function, 9–17, 9–53
DSIGN function, 9–125
DSIN function, 9–126
DSIND function, 9–126
DSINH function, 9–127
DSQRT function, 9–129
DTAN function, 9–133
DTAND function, 9–133
DTANH function, 9–134
Dummy argument arrays, 5–14
Dummy arguments, 8–31, 8–42

See also HP Fortran for OpenVMS User
Manual

definition of, 8–31
optional, 5–51, 8–33
specifying intended use of, 5–45
using aggregate field references as, B–23

Dummy procedures, 8–42
definition of, 8–2
interfaces for, 8–42
using as actual arguments, 5–42 to 5–43

Index–19

Dynamic allocation
of allocatable arrays, 6–2, 6–3
of pointer targets, 6–2, 6–5

Dynamic deallocation
of allocatable arrays, 6–5, 6–6
of pointer targets, 6–5, 6–7

Dynamic disassociation of pointers, 6–9
Dynamic memory management, 6–1 to 6–9
Dynamic objects

automatic array as, 5–14
in character declarations, 5–10
pointers and allocatable arrays as, 6–1

E
E edit descriptor, 11–18 to 11–20
Edit descriptors

character string, 11–42 to 11–43
control, 11–33 to 11–41

forms for, 11–33
data, 11–7 to 11–32

forms for, 11–7
rules for numeric, 11–9

summary of, 11–3
Editing

general rules for numeric, 11–9
integer, 11–10

Elapsed time
function for calculating in seconds, 9–121

Element array assignment statements
(FORALL), 4–29 to 4–32

Elemental intrinsic procedures
definition of, 9–1
references to, 8–47

ELEMENTAL prefix, 8–18
in FUNCTION statements, 8–19
in SUBROUTINE statements, 8–25

Elemental user-defined procedures, 8–18
functions as, 8–19
subroutines as, 8–25

Elements
See Array elements

ELSE directive, 14–14

ELSE IF directive, 14–14
ELSE IF statement, 7–27

branching to, 7–28
ELSE statement, 7–27

branching to, 7–28
ELSEWHERE statement, 4–26
EN edit descriptor, 11–20 to 11–22
ENCODE statement, B–3 to B–4

example of, B–4
END branch specifier, 10–11
END DO statement, 7–16, 7–24
END IF directive, 14–14
END IF statement, 7–27

branching to, 7–28
END statement, 7–26

retaining data after execution of, 5–60
End-of-file condition, 10–11

function to check, 9–54
I/O specifier for, 10–11

End-of-file records
writing to a file, 12–6

End-of-record condition, 10–12
I/O specifier for, 10–11

End-off shift
on arrays

function performing, 9–55
ENDFILE statements, 12–6 to 12–7

producing an end-of-file condition, 10–11
Engineering notation

descriptor for (EN), 11–20
Entry names

referencing, 8–60
Entry points

for function subprograms, 8–61
for subprograms, 8–59 to 8–63
for subroutine subprograms, 8–62

ENTRY statement, 8–59 to 8–63
See also HP Fortran for OpenVMS User

Manual
data types of names in, 8–61
in function subprograms, 8–61
in subroutine subprograms, 8–62
RESULT keyword in, 8–59
using with FUNCTION statement, 8–21

Index–20

ENTRY statement (cont’d)
using with SUBROUTINE statement,

8–26
Environment variables

See HP Fortran for OpenVMS User
Manual

EOF function, 9–17, 9–54
EOR branch specifier, 10–11
EOSHIFT function, 9–10, 9–55
EPSILON function, 9–10, 9–57
.EQ.

See also HP Fortran for OpenVMS User
Manual

See Relational operators
Equivalence

association, 5–32
logical, 4–10
set, 5–32

EQUIVALENCE statement, 5–32 to 5–41
See also HP Fortran for OpenVMS User

Manual
compared to union declaration, B–20
examples of, 5–34
interaction with COMMON, 5–39 to 5–41
using with arrays, 5–35 to 5–37
using with substrings, 5–37 to 5–39

.EQV.
See Logical operators

ERR branch specifier, 10–11
Error conditions

I/O specifier for, 10–11
subroutine returning information on,

9–57
Errors

See HP Fortran for OpenVMS User
Manual

ERRSNS subroutine, 9–18, 9–57
ES edit descriptor, 11–22 to 11–24
Escape sequences

C-style, 3–18
Exclamation point character (!)

as comment indicator, 2–10, 2–12

Exclusive OR, 4–10
function performing, 9–69

Executable constructs
named, 7–1

Executable statements, 2–2
disallowed in main programs, 8–3

Executing
DO loops, 7–18
programs

See Program execution
EXIST specifier

in INQUIRE statements, 12–13
EXIT statement, 7–15, 7–25
EXIT subroutine, 9–18, 9–58
EXP function, 9–10, 9–59
Explicit format, 11–1, 11–2 to 11–49

using character expressions, 11–5
Explicit interfaces, 8–50

defining, 8–52
of dummy procedures, 8–42
when required, 8–51

Explicit-shape arguments, 8–38
Explicit-shape arrays, 5–13 to 5–15

adjustable, 5–14
automatic, 5–14

EXPONENT function, 9–10, 9–59
Exponential operator (**), 4–3 to 4–4

order of precedence of, 4–12
Exponential values

function returning, 9–59
Exponents

function returning range of decimal,
9–117

Expressions, 4–1 to 4–11
See also Character expressions
See also Logical expressions
See also Numeric expressions
See also Relational expressions
character, 4–8
determining data type of, 4–6 to 4–7
element array, 4–29
initialization, 4–13 to 4–15
length

Index–21

Expressions
length (cont’d)

effect on character assignments,
4–21

logical, 4–10 to 4–11
masked array, 4–26
numeric, 4–3

effects of parentheses within, 4–4
operator precedence in, 4–3
order of evaluation in, 4–3

relational, 4–8 to 4–9
specification, 4–15 to 4–17
variable format, 11–44 to 11–45
with arrays as operands, 4–2
with pointers as operands, 4–2

Extended intrinsic operators
properties of, 8–56

Extended ranges
for DO constructs, 7–22

Extending arrays, 9–119, 9–129
EXTENDSIZE specifier

effect on INITIALSIZE, 12–36
in OPEN statements, 12–35

EXTEND_SOURCE
OPTIONS statement option, 13–5

Extent
definition of, 3–38
function returning, 9–127

EXTERN keyword
for ATTRIBUTES directive, 14–9

EXTERNAL attribute and statement, 5–42
to 5–43

attributes compatible with, 5–5
External field separators, 11–3, 11–9

comma as, 11–31
External fields

separating, 11–31
External files

connecting to units, 12–21
definition of, 10–2

External procedures, 8–1, 8–29
See also Functions
See also Subroutines
compared to internal procedures, 8–30
declaring, 5–42 to 5–43

External procedures (cont’d)
definition of, 8–2
invoking with CALL, 7–7
using as actual arguments, 5–42
with the same name as intrinsic

procedures, 5–42
External procedures, directive specifying

alternate name for, 14–3
External records

transferring
direct-access input, 10–29
direct-access output, 10–43, 10–50
sequential access input, 10–18,

10–36
sequential access output, 10–37,

10–48
EXTERNAL statement

block data program unit in, 8–12
FORTRAN-66 implementation of, B–6 to

B–7
example, B–6

names in, 5–42
using with intrinsic procedures, 8–44

External subprograms, 2–1
providing entry points within, 8–59

F
F edit descriptor, 11–16 to 11–18
F77 OPTIONS statement option, 13–5
F95 or F90 command (DCL)

See also HP Fortran for OpenVMS User
Manual

overriding, 13–5 to 13–6
statements affecting, 13–1 to 13–6

f95 or f90 command (shell)
See also HP Fortran for OpenVMS User

Manual
overriding, 13–5 to 13–6
statements affecting, 13–1 to 13–6

FALSE value
for INQUIRE (EXIST), 12–13
for INQUIRE (NAMED), 12–15
for INQUIRE (OPENED), 12–16

Index–22

FASM function, 9–30
FDX value

for INQUIRE (CONVERT), 12–12
for OPEN (CONVERT), 12–31

Feedback on documentation
sending comments to HP, xxiv

FGX value
for INQUIRE (CONVERT), 12–12
for OPEN (CONVERT), 12–31

Field
See also HP Fortran for OpenVMS User

Manual
definition of external, 11–7
in fixed source form, 2–13
in tab source form, 2–14

Field descriptors
See Data edit descriptors

Field namelist
in structure declarations, B–14

Field names
typing in record structures, B–18

Field width
definition of, 11–7

File connection statements
CLOSE, 12–3 to 12–4
OPEN, 12–21 to 12–46

File connections
creating, 12–21

File inquiry statement (INQUIRE), 12–7 to
12–21

File name
in INQUIRE statements, 12–8
in OPEN statements, 12–21, 12–35
specifying default in INQUIRE, 12–8

File organization
See HP Fortran for OpenVMS User

Manual
File position statements

BACKSPACE, 12–2 to 12–3
ENDFILE, 12–6 to 12–7
REWIND, 12–46 to 12–47

File properties
inquiring about, 12–7

File specification
See also HP Fortran for OpenVMS User

Manual
See File name

FILE specifier
effect on DEFAULTFILE, 12–33
in INQUIRE statements, 12–8
in OPEN statements, 12–21, 12–35

Files
access methods for, 10–2
accessing with INCLUDE, 13–2 to 13–4
combining at compilation, 13–2 to 13–4
directive specifying a subtitle for listing

header, 14–31
directive specifying a title for listing

header, 14–31
disconnecting, 12–3
inquiring about properties of, 12–7
internal

See Internal files
opening, 12–21
types of, 10–2

%FILL built-in function
using in record structure, B–18

FIND statement, B–5
compared to READ statement, B–5
examples of, B–5

FIPS standard, 1–1
Fixed source form, 2–11 to 2–15

blank characters in, 2–12
comment indicator in, 2–12
continuation indicator in, 2–12
debugging statement indicator in, 2–13
directive setting line length for, 14–12
fields in, 2–13
labels in, 2–9
sequence number field in, 2–14
sequence number field restriction, 2–14
short source lines in, 2–12
statement field in, 2–14
statement separator in, 2–7

FIXED value
for INQUIRE (RECORDTYPE), 12–19
for OPEN (RECORDTYPE), 12–43

Index–23

FIXEDFORMLINESIZE directive, 14–12 to
14–13

Flags
See Compiler options

FLOAT
OPTIONS statement option, 13–5

FLOAT function, 9–10, 9–118
FLOATI function, 9–118
Floating-point data types, 3–7 to 3–15

See also HP Fortran for OpenVMS User
Manual

FLOATJ function, 9–118
FLOATK function, 9–118
FLOOR function, 9–10, 9–60
Flow of control

in CASE construct, 7–12
in IF construct, 7–28

FMT specifier, 10–5
FORALL construct and statement, 4–29 to

4–32
evaluation of, 4–30
pure procedures in, 4–31

FORM specifier
in INQUIRE statements, 12–14
in OPEN statements, 12–36

Format
See also Format specifications
control, 11–46 to 11–49
explicit, 11–1, 11–2 to 11–49
implicit, 11–1

list-directed input, 10–20
list-directed output, 10–39
namelist input, 10–23
namelist output, 10–41

reversion, 11–47
rules for numeric, 11–9
specifier, 10–5
using character string edit descriptors,

11–42 to 11–43
using control edit descriptors, 11–33 to

11–41
using data edit descriptors, 11–7 to 11–32
zero-length numeric, 11–10

Format specifications
See also Format
blanks in, 11–3
character, 11–5
definition of, 11–2
extensions in, E–3
group repeat specifications in, 11–43
nested specifications in, 11–43
omitting a comma in, 11–2
output characters in, 11–3
repeat specifications in, 11–2
summary of edit descriptors, 11–3

FORMAT statements, 11–2 to 11–5
See also Format
See also Format specifications
See also HP Fortran for OpenVMS User

Manual
field width

output size for D descriptor, 11–19
output size for E descriptor, 11–19
output size for EN descriptor, 11–21
output size for ES descriptor, 11–23
output size for F descriptor, 11–17
output size for G descriptor, 11–25

format reversion with I/O lists, 11–47
I/O lists

interaction with, 11–46 to 11–49
interpretation of blanks in, 11–3
variable format expressions in, 11–44

Formatted I/O statements
ACCEPT, 10–36
establishing labels for, 7–4 to 7–5
PRINT and TYPE, 10–48
READ

direct access, 10–29, 10–30
indexed, 10–31, 10–32 to 10–33
internal, 10–34
sequential, 10–18, 10–19

REWRITE, 10–50
using aggregate field references in, B–23
WRITE

direct access, 10–43, 10–44
indexed, 10–45, 10–46
internal, 10–47
sequential, 10–37, 10–39

Index–24

Formatted records
definition of, 10–1
printing, 11–45

FORMATTED specifier
in INQUIRE statements, 12–14

FORMATTED value
for INQUIRE (FORM), 12–14
for OPEN (FORM), 12–36

Forms
for source code, 2–6 to 2–16

FORTRAN 77 standard, 1–1
Fortran 90 standard, 1–1

directive disabling features not found in,
14–30

Fortran 95 character set
extensions to, E–2

Fortran 95 standard, 1–1
Fortran 95/90 character set, 2–5
FORTRAN value

for INQUIRE (CARRIAGECONTROL),
12–11

for OPEN (CARRIAGECONTROL),
12–30

FORTRAN-66 semantics
effect on EXTERNAL, B–6

FP_CLASS function, 9–10, 9–60
FRACTION function, 9–10, 9–61
Free source form, 2–9 to 2–11

blank characters in, 2–9 to 2–10
comment indicator in, 2–10
continuation character in, 2–10 to 2–11
directive indicating, 14–13
labels in, 2–9
number of characters in a line, 2–9
statement separator in, 2–7

FREE subroutine, 9–18, 9–61
FREEFORM directive, 14–13
Function references, 8–13, 8–23

elemental intrinsic, 8–47
to external names, 5–43

FUNCTION statement, 8–19
prefixes in, 8–19
RESULT keyword in, 8–23
using with ENTRY statement, 8–21

Function subprograms, 8–12
See also Functions
See also Subprograms

Functions, 8–19 to 8–24
character type

See Character type functions
containing OPERATOR specifier, 4–11,

8–56
declaring external, 5–42
declaring intrinsic, 5–48
defining, 8–19
definition of, 8–2
elemental intrinsic, 9–1
elemental user-defined, 8–18
ENTRY statements in, 8–61
general rules for, 8–13
generic, 9–2
global intrinsic, 8–45
inquiry, 9–1
invoking, 8–23
invoking in a CALL statement, 8–21
local intrinsic, 8–45
prefixes in, 8–19
pure, 8–15
recursion in, 8–14
referencing, 8–23
result variable in, 8–23
specific, 9–2
statements excluded from, 8–21
that apply to arrays, 9–2
that apply to scalar and array arguments,

9–1
that depend on the properties of an

argument, 9–1
transformational, 9–2

G
G edit descriptor, 11–24 to 11–26
.GE.

See also HP Fortran for OpenVMS User
Manual

See Relational operators

Index–25

General compiler directives, 14–1 to 14–32
ALIAS, 14–3
ATTRIBUTES, 14–4
DECLARE, 14–11
DEFINE, 14–11
ELSE, 14–14
ELSEIF, 14–14
ENDIF, 14–14
FIXEDFORMLINESIZE, 14–12
FREEFORM, 14–13
IDENT, 14–14
IF, 14–14
IF DEFINED, 14–14
INTEGER, 14–16
IVDEP, 14–17
MESSAGE, 14–19
NODECLARE, 14–11
NOFREEFORM, 14–13
NOSTRICT, 14–30
OBJCOMMENT, 14–20
OPTIONS, 14–21
PACK, 14–24
PSECT, 14–25
REAL, 14–28
STRICT, 14–30
SUBTITLE, 14–31
syntax of, 14–2
TITLE, 14–31
UNDEFINE, 14–11
UNROLL, 14–32

Generalized editing (G), 11–24
Generic assignment, 4–24

for procedures, 8–57
Generic identifier, 8–9, 8–50, 8–52
Generic interfaces

in scoping units, 8–9
Generic names

for procedures, 8–55
of intrinsics, 9–2

Generic operators
for procedures, 8–56

Generic procedures
references to, 8–43
references to intrinsic, 8–44

Generic references
example of, 8–45

Global properties
of intrinsic functions, 8–45

Global scope
names having, 15–2

GO TO statements
assigned, 7–5 to 7–6
computed, 7–3 to 7–4
establishing labels for assigned, 7–4 to

7–5
unconditional, 7–3

Group repeat format specifications, 11–43
.GT.

See also HP Fortran for OpenVMS User
Manual

See Relational operators
G_FLOATING

OPTIONS statement option, 13–5

H
H edit descriptor

alternative for, A–4
H editing, 11–42
Hexadecimal constants, 3–31 to 3–32

alternative syntax for, B–9
assigning with DATA statement, 5–28
data type assignments of, 3–33 to 3–35
examples of, 3–32

Hexadecimal values
transferring, 11–14

HFIX function, 9–71
Hollerith constants, 3–32

See also HP Fortran for OpenVMS User
Manual

as arguments, 8–41
assigned with DATA statements, 5–29
data type assignments of, 3–33 to 3–35
examples of, 3–32
uppercase and lowercase letters in, 2–6

Hollerith values
transferring, 11–28

Index–26

Home page
URL of HP Fortran, xxiv

Host, 2–2
association, 8–5, 15–11

HP Fortran
web site for, xxiv

HUGE function, 9–10, 9–62
Hyperbolic cosine

function returning, 9–41
Hyperbolic sine

function returning, 9–127
Hyperbolic tangent

function returning, 9–134
H_floating data implementation, 3–10

I
I edit descriptor, 11–10 to 11–11
I/O

See also HP Fortran for OpenVMS User
Manual

advancing and nonadvancing, 10–12
I/O control list, 10–3 to 10–13

advance specifier in, 10–12
branch specifiers in, 10–11
character count specifier in, 10–13
format specifier in, 10–5
key-field-value specifier, 10–7
key-of-reference specifier in, 10–9
namelist specifier in, 10–6
record specifier in, 10–6
specifiers in, 10–3
status specifier in, 10–10
unit specifier in, 10–4

I/O data transfer
formatted direct access

READ, 10–30
REWRITE, 10–50
WRITE, 10–44

formatted indexed
READ, 10–32
WRITE, 10–46

formatted sequential
ACCEPT, 10–36
PRINT and TYPE, 10–48

I/O data transfer
formatted sequential (cont’d)

READ, 10–19
WRITE, 10–39

internal
READ, 10–34
WRITE, 10–47

unformatted direct access
READ, 10–31
REWRITE, 10–50
WRITE, 10–45

unformatted indexed
READ, 10–33
WRITE, 10–47

unformatted sequential
READ, 10–28
WRITE, 10–43

I/O lists, 10–13 to 10–17
derived-type items in, 10–14
general rules for, 10–13
implied-do lists in, 10–16
interaction with FORMAT statements,

11–46 to 11–49
items in, 10–14

I/O statements
ACCEPT, 10–36 to 10–37
auxiliary, 12–1 to 12–48
BACKSPACE, 12–2 to 12–3
CLOSE, 12–3 to 12–4
DELETE, 12–4 to 12–5
ENDFILE, 12–6 to 12–7
extensions in, E–4
file operation extensions, E–5
for data transfer, 10–1 to 10–51
for operations on files, 12–1 to 12–48
formatting, 11–1 to 11–49
INQUIRE, 12–7 to 12–21
list-directed

input, 10–20 to 10–22
output, 10–39 to 10–41

namelist, 5–50
input, 10–23 to 10–28
output, 10–41 to 10–43

OPEN, 12–21 to 12–46
PRINT and TYPE, 10–48 to 10–49

Index–27

I/O statements (cont’d)
READ, 10–17 to 10–35
REWIND, 12–46 to 12–47
REWRITE, 10–50 to 10–51
UNLOCK, 12–47 to 12–48
WRITE, 10–37 to 10–48

I/O status specifier, 10–10
I/O units

associating with files, B–1 to B–2
definition of, 10–4
inquiring about properties of, 12–7
scope of, 15–4

I4
OPTIONS statement option, 13–5

IABS function, 9–22
IACHAR function, 9–11, 9–62
IAND function, 9–11, 9–19, 9–63
IARGCOUNT function, 9–64

example of use, 8–36
IARGPTR function, 9–64
IBCHNG function, 9–11, 9–65
IBCLR function, 9–11, 9–19, 9–65
IBITS function, 9–11, 9–19, 9–66
IBM value

for INQUIRE (CONVERT), 12–12
for OPEN (CONVERT), 12–31

IBSET function, 9–11, 9–19, 9–67
ICHAR function, 9–11, 9–68
IDATE subroutine, 9–18, 9–68
IDENT directive, 14–14
IDIM function, 9–51
IDINT function, 9–71
IDNINT function, 9–104
IEEE values

See also IEEE in HP Fortran for
OpenVMS User Manual

function testing for NaN, 9–79
IEOR function, 9–11, 9–19, 9–69
IF constructs, 7–27 to 7–32

branching in, 7–28
examples of, 7–30
flow of control in, 7–28
nested, 7–29

IF DEFINED directive, 14–14 to 14–16
IF directive, 14–14 to 14–16
IF loops

flow of control in, 7–28
IF statements, 7–32 to 7–33

arithmetic, 7–6 to 7–7
examples of, 7–33

IF THEN statement, 7–27
IFIX function, 9–11, 9–71
IGNORE_LOC keyword

for ATTRIBUTES directive, 14–9
IIABS function, 9–22
IIAND function, 9–63
IIBCLR function, 9–65
IIBITS function, 9–66
IIBSET function, 9–67
IIDIM function, 9–51
IIDINT function, 9–71
IIDNNT function, 9–104
IIEOR function, 9–69
IIFIX function, 9–71
IINT function, 9–71
IIOR function, 9–74
IIQINT function, 9–71
IIQNNT function, 9–104
IISHFT function, 9–77
IISHFTC function, 9–77
IISIGN function, 9–125
ILEN function, 9–11, 9–70
IMAG function, 9–11, 9–25
IMAX0 function, 9–89
IMAX1 function, 9–89
IMIN0 function, 9–96
IMIN1 function, 9–96
IMOD function, 9–101
Implicit data typing

overriding default, 5–43
Implicit format, 11–1

list-directed input, 10–20
list-directed output, 10–39
namelist input, 10–23
namelist output, 10–41

Implicit interfaces, 8–50
of dummy procedures, 8–42

Index–28

IMPLICIT NONE statement, 5–44
See also HP Fortran for OpenVMS User

Manual
alternative for, 5–44

IMPLICIT statement, 5–43 to 5–45
examples of, 5–45
restriction with intrinsic procedures,

5–44
using to type variables, 3–36
using with intrinsic procedures, 8–45

Implied-do lists
in DATA statements, 5–27
in I/O lists, 10–3, 10–16

Implied-do loops
in array constructors, 3–48

Implied-do variables
initializing with DATA statement, 5–27

IMVBITS subroutine, 9–103
INCLUDE statements, 13–2 to 13–4

See also HP Fortran for OpenVMS User
Manual

Including files during compilation, 13–2
Inclusive OR, 4–10

function performing, 9–74
Indefinite DO statement, 7–24
Index

case, 7–10
INDEX function, 9–11, 9–70
Indexed DO statement

See Block DO construct
Indexed files

access keys specified in OPEN statement,
12–37

deleting records from (DELETE), 12–4
Indexed I/O statements

READ, 10–31 to 10–34
WRITE, 10–45 to 10–47

Indexed READ statements, 10–31 to 10–34
INDEXED value

for OPEN (ORGANIZATION), 12–39
in INQUIRE (ORGANIZATION), 12–17

Indexed WRITE statements, 10–45 to 10–47

Inequivalence
logical, 4–10

ININT function, 9–104
Initialization expressions, 4–13 to 4–15

examples of, 4–15
for derived-type components, 3–23, 3–24
in type declaration statements, 5–5
inquiry functions allowed in, 4–14
invoking inquiry functions in, 4–14
simplest form of, 4–13
transformational functions allowed in,

4–14
INITIALSIZE specifier

in OPEN statements, 12–36
INOT function, 9–105
Input data

terminating short fields of, 11–31
Input statements, 10–17 to 10–37

ACCEPT, 10–36
READ, 10–17 to 10–35

INQUIRE statements, 12–7 to 12–21
ACCESS specifier in, 12–9
ACTION specifier in, 12–10
BLANK specifier in, 12–10
BLOCKSIZE specifier in, 12–11
BUFFERED specifier in, 12–11
CARRIAGECONTROL specifier in, 12–11
CONVERT specifier in, 12–12
DELIM specifier in, 12–12
DIRECT specifier in, 12–13
EXIST specifier in, 12–13
FORM specifier in, 12–14
FORMATTED specifier in, 12–14
general description of, 12–7
KEYED specifier in, 12–14
NAME specifier in, 12–15
NAMED specifier in, 12–15
NEXTREC specifier in, 12–16
NUMBER specifier in, 12–16
OPENED specifier in, 12–16
ORGANIZATION specifier in, 12–17
PAD specifier in, 12–17
POSITION specifier in, 12–17
READ specifier in, 12–18
READWRITE specifier in, 12–18

Index–29

INQUIRE statements (cont’d)
RECL specifier in, 12–19
RECORDTYPE specifier in, 12–19
SEQUENTIAL specifier in, 12–20
UNFORMATTED specifier in, 12–20
WRITE specifier in, 12–20

Inquiry
bit function, 9–6
functions for numeric, 9–5

Inquiry functions
ALLOCATED, 9–27
allowed in initialization expressions,

4–14
allowed in specification expressions, 4–16
ASSOCIATED, 9–31
BIT_SIZE, 9–35
definition of, 9–1
DIGITS, 9–51
EOF, 9–54
EPSILON, 9–57
for argument presence, 9–110
for arrays, 9–27, 9–80, 9–124, 9–127,

9–138
for bit size, 9–35
for character length, 9–81
for identifying number of processor,

9–104
for number of processors, 9–107
for numeric models, 9–51, 9–57, 9–62,

9–91, 9–97, 9–109, 9–114, 9–117,
9–135

for pointers, 9–31
for processors shape, 9–110
HUGE, 9–62
IARGCOUNT, 9–64
IARGPTR, 9–64
INT_PTR_KIND, 9–73
invoking in initialization expressions,

4–14
KIND, 9–80
LBOUND, 9–80
LEN, 9–81
LOC, 9–85
MAXEXPONENT, 9–91
MINEXPONENT, 9–97

Inquiry functions (cont’d)
MY_PROCESSOR, 9–104
NUMBER_OF_PROCESSORS, 9–107
NWORKERS, 9–107
PRECISION, 9–109
PRESENT, 9–110
PROCESSORS_SHAPE, 9–110
RADIX, 9–114
RANGE, 9–117
SHAPE, 9–124
SIZE, 9–127
SIZEOF, 9–128
TINY, 9–135
UBOUND, 9–138

INT function, 9–11, 9–71
INT1 function, 9–71
INT2 function, 9–71
INT4 function, 9–71
INT8 function, 9–71
INTEGER

See also INTEGER(4)
in type declaration statements, 5–3, 5–7

Integer data
model sets for, D–1

Integer data types, 3–2, 3–4
See also HP Fortran for OpenVMS User

Manual
function converting to, 9–71

INTEGER directive, 14–16 to 14–17
Integer editing (I,B,O,Z), 11–10 to 11–15

B, 11–12 to 11–13
I, 11–10 to 11–11
O, 11–13 to 11–14
Z, 11–14 to 11–15

INTEGER KIND for address
function returning, 9–73

Integer models, D–1 to D–2
function returning largest number in,

9–62
Integer pointers, B–11
Integer values

transferring, 11–10
Integer variables

assigning labels to, 7–4

Index–30

INTEGER(1)
constants, 3–4
storage requirements, 15–15

INTEGER(2)
constants, 3–4
storage requirements, 15–15

INTEGER(4)
constants, 3–4
data type

See also INTEGER
storage requirements, 15–15

INTEGER(8)
constants, 3–4
storage requirements, 15–15

INTEGER*1 constants
See INTEGER(1)

INTEGER*2 constants
See INTEGER(2)

INTEGER*4 constants
See INTEGER(4)

INTEGER*8 constants
See INTEGER(8)

Integers
bit representation of, 9–6
constants, 3–4 to 3–6

default, Glossary–10
in COMPLEX constants, 3–12
using to assign values, 3–6

directive specifying default kind, 14–16
function multiplying two 64-bit unsigned,

9–102
function returning difference between,

9–51
function returning leading zero bits in,

9–81
function returning number of 1 bits in,

9–109
function returning parity of, 9–109
function returning trailing zero bits in,

9–135
function returning two’s complement

length of, 9–70
logical operations on, 4–10
models for data, D–1 to D–2

Integers (cont’d)
range for

See Integer data type in HP Fortran
for OpenVMS User Manual

Intent
of arguments, 5–45

INTENT attribute and statement, 5–45 to
5–47

attributes compatible with, 5–5
Interactive process

temporarily suspending, 7–33
Interface blocks, 8–2, 8–51, 8–52 to 8–58

for generic assignment, 8–57
for generic names, 8–55
for generic operators, 8–56

Interface body
definition of, Glossary–20

INTERFACE statement, 8–52
defining generic assignment, 8–57
defining generic name, 8–55
defining generic operators, 8–56
generic identifier in, 8–52

Interfaces, 8–50 to 8–58
defining explicit, 8–52
for dummy procedures, 8–42
generic

See Generic interfaces
of external procedures, 8–29
of internal procedures, 8–30
procedures requiring explicit, 8–51

Internal address
function returning, 9–85

Internal files
definition of, 10–2
position of, 10–5
storage of, 10–5

Internal I/O statements
ENCODE and DECODE, B–3 to B–4
READ, 10–34
WRITE, 10–47 to 10–48

Internal procedures, 8–30 to 8–31
compared to external procedures, 8–30
definition of, 8–2

Index–31

Internal READ statement, 10–34 to 10–35
Internal subprograms, 2–2, 8–30

introducing in program unit, 8–59
Internal WRITE statement, 10–47 to 10–48
Internet information, xxiv
Interrupting

DO constructs, 7–25
Intrinsic assignments, 4–18 to 4–23

See also Assignment statements
array, 4–23
character, 4–21 to 4–22
derived-type, 4–22 to 4–23
logical, 4–21
numeric, 4–19 to 4–21
scope of, 15–4
types of, 4–18

INTRINSIC attribute and statement, 5–47
to 5–49

attributes compatible with, 5–5
Intrinsic data types, 3–2 to 3–20

character, 3–16
complex, 3–11 to 3–15
integer, 3–4
Logical, 3–15
numeric nondecimal constants, 3–30
real, 3–7 to 3–11
storage requirements for, 15–14

Intrinsic functions
See also Functions
See also Intrinsic procedures
alphabetical descriptions of all, 9–21 to

9–142
categories of, 9–5 to 9–17
example of using as arguments, 8–45
references to generic, 8–44
specified as INTRINSIC, 5–48
using external procedures of same name

as, 5–42
Intrinsic operators

properties of extended, 8–56
scope of, 15–4

Intrinsic procedures, 9–1 to 9–142, E–7
See also Elemental intrinsic procedures
alphabetical descriptions of all, 9–21 to

9–142

Intrinsic procedures (cont’d)
bit functions, 9–18 to 9–21
categories of array, 9–6
categories of bit, 9–6
categories of character, 9–6
categories of numeric, 9–5
classes of, 9–1
definition of, 8–2
definition of mathematical functions, 9–5
functions

See Intrinsic functions
generic names

rules limiting use, 8–44
inquiry functions

See Inquiry functions
keywords for, 9–4
kind functions, 9–5
names of, 9–2
references to elemental, 8–47
references to generic, 8–44
scope of name, 8–44
subroutines

See Intrinsic subroutines
transformational functions

See Transformational functions
using as actual arguments, 5–47 to 5–49
using with EXTERNAL statement, 8–44
using with IMPLICIT statement, 8–45

INTRINSIC statement
example of, 5–48
names in, 5–48

Intrinsic subroutines, 9–2, 9–17 to 9–18
See also Intrinsic procedures
See also Subroutines
alphabetical descriptions of all, 9–21 to

9–142
Intrinsic types

See Intrinsic data types
INT_PTR_KIND function, 9–73
Inverse cosine

function returning degrees of, 9–23
function returning radians of, 9–23

Index–32

Inverse sine
function returning degrees of, 9–29
function returning radians of, 9–29

Inverse tangent
function returning degrees of, 9–33
function returning radians of, 9–33

IOR function, 9–11, 9–19, 9–74
IOSTAT specifier, 10–10
IQINT function, 9–71
IQNINT function, 9–104
ISHA function, 9–11, 9–75
ISHC function, 9–11, 9–12, 9–76
ISHFT function, 9–11, 9–20, 9–77
ISHFTC function, 9–12, 9–77
ISHL function, 9–78
ISIGN function, 9–125
ISNAN function, 9–12, 9–79
ISO standards, 1–1
Iteration count, 7–18

and loop control, 7–18
Iterative DO loop, 7–18
IVDEP directive, 14–17 to 14–19
IZEXT function, 9–140

J
JFIX function, 9–71
JIABS function, 9–22
JIAND function, 9–63
JIBCLR function, 9–65
JIBITS function, 9–66
JIBSET function, 9–67
JIDIM function, 9–51
JIDINT function, 9–71
JIDNNT function, 9–104
JIEOR function, 9–69
JIFIX function, 9–71
JINT function, 9–71
JIOR function, 9–74
JIQINT function, 9–71
JIQNNT function, 9–104
JISHFT function, 9–77
JISHFTC function, 9–77

JISIGN function, 9–125
JMAX0 function, 9–89
JMAX1 function, 9–89
JMIN0 function, 9–96
JMIN1 function, 9–96
JMOD function, 9–101
JMVBITS subroutine, 9–103
JNINT function, 9–104
JNOT function, 9–105
JZEXT function, 9–140

K
KEEP value

for CLOSE statements, 12–3
for OPEN (DISPOSE), 12–34

Key comparison, 10–7
Key field

identifying, 10–7
identifying index for, 10–9

KEY specifier
See KEY[con] specifiers
in OPEN statements, 12–37

Key-field-value specifier, 10–7 to 10–9
components of, 10–7
examples of, 10–33
selection process in, 10–8

Key-of-reference specifier, 10–9
KEYED

INQUIRE statement specifier, 12–14
value for INQUIRE (ACCESS), 12–10

Keyed access
See also HP Fortran for OpenVMS User

Manual
definition of, 10–2

KEYED value
for OPEN (ACCESS), 12–27

KEYEQ specifier, 10–7
See also KEY[con] specifiers

KEYGE specifier, 10–7
See also KEY[con] specifiers

KEYGT specifier, 10–7
See also KEY[con] specifiers

Index–33

KEYID specifier, 10–9
KEYLE specifier, 10–7

See also KEY[con] specifiers
KEYLT specifier, 10–7

See also KEY[con] specifiers
KEYNXT specifier, 10–7

See also KEY[con] specifiers
KEYNXTNE specifier, 10–7

See also KEY[con] specifiers
Keys

access
specified in OPEN statement, 12–37

ascending and descending, 10–7
defining primary and alternate, 12–37
specifying and referencing, 12–38

Keyword arguments
See Argument keywords

Keywords
See also Argument keywords
for control-list specifiers, 10–4

KEY[con] specifiers, 10–7 to 10–9
components of, 10–7
examples of, 10–33
selection process in, 10–8

KIABS function, 9–22
KIAND function, 9–63
KIBCLR function, 9–65
KIBITS function, 9–66
KIBSET function, 9–67
KIDIM function, 9–51
KIDINT function, 9–71
KIDNNT function, 9–104
KIEOR function, 9–69
KIFIX function, 9–71
KIND

function, 9–12, 9–80
keyword

in intrinsics, 9–4
Kind functions

definition of, 9–5
Kind parameters

See Kind type parameter

Kind selector, 5–3
Kind type parameter

definition of, Glossary–22
for character constants, 3–3, 3–16
for complex constants, 3–11
for integer constants, 3–4
for logical constants, 3–15
for real constants, 3–7
function returning value of, 9–80
function selecting logical, 9–87
functions to determine, 9–5
of integer data

function returning, 9–122
of real data

function returning, 9–123
restriction for real constants, 3–8
selector for, 5–3

KINT function, 9–71
KIOR function, 9–74
KIQINT function, 9–71
KIQNNT function, 9–104
KISHFT function, 9–77
KISHFTC function, 9–77
KISIGN function, 9–125
KMAX0 function, 9–89
KMAX1 function, 9–89
KMIN0 function, 9–96
KMIN1 function, 9–96
KMOD function, 9–101
KMVBITS subroutine, 9–103
KNINT function, 9–104
KNOT function, 9–105
KZEXT function, 9–140

L
L edit descriptor, 11–27 to 11–28
Labels

assigning, 7–4 to 7–5
in block DO constructs, 7–16
in formatted I/O statements, 7–4 to 7–5
in nonblock DO constructs, 7–17
in source form, 2–9
scope of, 15–4

Index–34

Language compatibility
See also HP Fortran for OpenVMS User

Manual
features for, B–1
summary of, 1–2

Language extensions
directive disabling, 14–30
from HP Fortran, E–1 to E–8
summary of, E–1 to E–8

Language features
deleted in Fortran 95, A–1
for compatibility with older versions, B–1

to B–25
obsolescent in Fortran 90, A–3
obsolescent in Fortran 95, A–2

Language interface
See HP Fortran for OpenVMS User

Manual
LBOUND function, 9–12, 9–80

in pointer assignment, 5–18
.LE.

See also HP Fortran for OpenVMS User
Manual

See Relational operators
LEADZ function, 9–12, 9–81
Left shift

function performing arithmetic, 9–75
function performing circular, 9–76
function performing logical, 9–78

LEN
in character type declaration statements,

5–9
LEN function, 9–12, 9–81
Length specifier

in character type declaration statements,
5–9

LEN_TRIM function, 9–12, 9–82
Lexical string comparisons, 9–6

function determining <, 9–85
function determining <=, 9–84
function determining >, 9–83
function determining >=, 9–83

Lexical token
definition of, Glossary–22

LGE function, 9–12, 9–83
LGT function, 9–12, 9–83
Limits

compiler
See Compiler in HP Fortran for

OpenVMS User Manual
List items

I/O, 10–14
LIST option

in DICTIONARY statement, 13–1
in INCLUDE statement, 13–3

LIST value
for INQUIRE (CARRIAGECONTROL),

12–11
for OPEN (CARRIAGECONTROL),

12–30
List-directed formatting, 10–5

defaults for output, 10–39
for READ statements

internal, 10–34
sequential, 10–20

for WRITE statements
internal, 10–47
sequential, 10–39

input, 10–20 to 10–22
output, 10–39 to 10–41

List-directed statements
ACCEPT, 10–36
PRINT and TYPE, 10–48
READ, 10–18, 10–20 to 10–22
WRITE, 10–37, 10–39 to 10–41

Listing
See also HP Fortran for OpenVMS User

Manual
See Source listing

Listing header
directive specifying subtitle for, 14–31
directive specifying title for, 14–31

Lists
I/O control, 10–3
implied-do

in DATA statements, 5–27

Index–35

Lists (cont’d)
items in I/O, 10–13

Literal constant, 3–2
Little endian

definition of, Glossary–23
LITTLE_ENDIAN value

for INQUIRE (CONVERT), 12–12
for OPEN (CONVERT), 12–31

LLE function, 9–12, 9–84
LLT function, 9–12, 9–85
LOC function, 9–12, 9–85

using with integer pointers, B–12
%LOC function, 8–50

See also HP Fortran for OpenVMS User
Manual

Local properties
of intrinsic functions, 8–45

Local scope
names having, 15–2

Locked records
freeing, 12–47

LOG function, 4–28, 9–12, 9–86
LOG10 function, 9–12, 9–87
Logarithm

function returning common, 9–87
function returning natural, 9–86

Logical
I/O units

See I/O units
operands

See Logical expressions
operations

data types resulting from, 4–10
LOGICAL

See also LOGICAL(4)
data type, 3–3, 3–15
in type declaration statements, 5–3, 5–7

Logical AND
function performing, 9–63

Logical assignment statements, 4–21
Logical complement

function returning, 9–105
Logical constants, 3–15 to 3–16

See also HP Fortran for OpenVMS User
Manual

Logical constants (cont’d)
default, Glossary–11
range for

See Logical data type in HP Fortran
for OpenVMS User Manual

Logical conversion
function performing, 9–87

Logical data types, 3–15
Logical editing, 11–27 to 11–28
Logical expressions, 4–10 to 4–11

evaluation of subexpressions in, 4–11
extensions to, E–2
order of evaluation in, 4–11

LOGICAL function, 9–12, 9–87
Logical I/O units

See I/O units
Logical IF statement

See IF statement
Logical operations, 4–10

functions performing, 9–18
Logical operators, 4–10
Logical shift

function performing, 9–77
Logical unit

definition of, Glossary–24
Logical values

transferring, 11–27
LOGICAL(1)

storage requirements, 15–15
LOGICAL(2)

storage requirements, 15–15
LOGICAL(4)

data type
See also LOGICAL

storage requirements, 15–15
LOGICAL(8)

storage requirements, 15–15
Longword

definition of, Glossary–24
Loop control, 7–15 to 7–26

DO WHILE, 7–18
iteration, 7–18
iteration count, 7–18
simple, 7–18

Index–36

Loop iteration, 7–15, 7–18
Loops, 7–15

DO
nested, 7–20 to 7–22
skipping, 7–25
terminating, 7–25

IF
flow of control in, 7–28

Lower bounds
function returning, 9–80

Lowercase letters
in character set, 2–5
treatment on compiler, 2–6

LSHIFT function, 9–77
.LT.

See also HP Fortran for OpenVMS User
Manual

See Relational operators

M
Main program, 8–1, 8–3

as a program unit, 2–1
MALLOC function, 9–17, 9–88

using with integer pointers, B–12
Manipulation

functions for array, 9–6
functions for bit, 9–6
functions for numeric, 9–5

Mantissa in real model, D–2
Many-one array sections, 3–47, 4–23
Map declarations, B–19
MAP statement, B–19
MASK

See also Mask expressions
keyword

in intrinsics, 9–4
Mask expressions

function to combine arrays using, 9–95
function to count true elements using,

9–42
function to determine all true using, 9–26
function to determine any true using,

9–28

Mask expressions (cont’d)
function to find location of maximum

value using, 9–91
function to find location of minimum value

using, 9–97
function to pack array using, 9–108
function to return maximum value of

elements using, 9–93
function to return minimum value of

elements using, 9–99
function to return product of elements

using, 9–111
function to return sum of elements using,

9–130
function to unpack array using, 9–139
in ELSEWHERE, 4–26
in FORALL, 4–29
in intrinsics, 9–4
in WHERE, 4–26

Masked-array assignment statements
(WHERE), 4–26 to 4–29

generalization of (FORALL), 4–29
Mathematical functions, 9–5
MATMUL function, 9–13, 9–88
Matrix multiplication

function performing, 9–88
MAX function, 9–13, 9–89
MAX0 function, 9–89
MAX1 function, 9–13, 9–89
MAXEXPONENT function, 9–13, 9–91
Maximum exponent

function returning, 9–91
Maximum value

function returning, 9–89
function returning location of, 9–91
of array elements

function returning, 9–93
MAXLOC function, 9–13, 9–91
MAXREC specifier

in OPEN statements, 12–38
MAXVAL function, 9–13, 9–93
Memory

function allocating, 9–88
subroutine freeing allocated, 9–61

Index–37

MERGE function, 9–13, 9–95
MESSAGE directive, 14–19
Messages

See HP Fortran for OpenVMS User
Manual

Metacommands
See General compiler directives

MIL standard, 1–1
MIN function, 9–13, 9–96
MIN0 function, 9–96
MIN1 function, 9–13, 9–96
MINEXPONENT function, 9–13, 9–97
Minimum exponent

function returning, 9–97
Minimum value

function returning, 9–96
function returning location of, 9–97
of array elements

function returning, 9–99
MINLOC function, 9–13, 9–97
Minus operator (–), 4–3 to 4–4

order of precedence of, 4–12
MINVAL function, 9–13, 9–99
Mixed-mode expressions, 4–6, 4–9
MOD function, 9–13, 9–101
Models for data representation, D–1 to D–4

bit, D–4
integer, D–1 to D–2
real, D–2 to D–3

MODULE PROCEDURE statement, 8–53
Module procedures, 8–4, 8–53

definition of, 8–2
in interface blocks, 8–53

Module references, 8–8
MODULE statement, 8–4
Module subprograms

introducing in program unit, 8–59
providing entry points within, 8–59

Modules, 2–1, 8–1, 8–4 to 8–11
See also HP Fortran for OpenVMS User

Manual
accessibility of entities in, 5–57, 8–8
containing interface blocks, 8–6
references to, 8–8
selecting entities in (USE), 8–8

Modules (cont’d)
specification part of, 8–5
terminating, 7–26

Modulo
function returning, 9–101

MODULO function, 9–13, 9–101
Multidimensional arrays

constructing, 3–49, 3–50, 9–119
conversion between vectors and, 9–108,

9–139
declaring adjustable, 5–15
storage of, 3–42

Multiplication operator (*), 4–3 to 4–4
order of precedence of, 4–12

MULT_HIGH function, 9–17, 9–102
MVBITS subroutine, 9–18, 9–19, 9–103
MY_PROCESSOR function, 9–17, 9–104

N
NAME specifier

in INQUIRE statements, 12–15
in OPEN statements, 12–38
interaction with OPEN (FILE), 12–15

Named common blocks
See also Common blocks
agreement of data types in, 5–25
establishing and initializing values in,

8–11 to 8–12
Named constants, 5–53

definition of, 3–2
Named control constructs, 7–1

CASE, 7–10
DO, 7–16
IF, 7–27

NAMED specifier
in INQUIRE statements, 12–15

Namelist external records
alternative form for, B–10

Namelist formatting, 10–6
for READ statements, 10–23
for WRITE statements, 10–41
input, 10–23 to 10–28
output, 10–41 to 10–43

Index–38

Namelist group, 5–49 to 5–51
accessibility of, 5–50
example of, 5–51
prompting for information about, 10–25
variables in, 5–50

Namelist input
comments in, 10–25

Namelist specifier, 10–6
NAMELIST statement, 5–49 to 5–51

example of, 5–51
Namelist statements

ACCEPT, 10–36
PRINT and TYPE, 10–48
READ, 10–18, 10–23 to 10–28
WRITE, 10–37, 10–41 to 10–43

Names, 2–4 to 2–5
See also HP Fortran for OpenVMS User

Manual
associating with constant value, 5–53
associating with group, 5–49
association of, 15–10
association of arguments, 15–11
association of use and host, 15–11
constants with, 3–2
containing dollar sign, 2–4
examples of, 2–5
explicit typing of variable, 3–36
extension to characters in, E–1
extension to length of, E–1
implicit type if first character is $, 3–37
implicit typing of variable, 3–37
in FORTRAN-66 EXTERNAL statement,

B–6
in PARAMETER statement, 5–53
length allowed, 2–4
of external and dummy procedures as

actual arguments, 5–42 to 5–43
of intrinsic procedures as actual

arguments, 5–47 to 5–49
of procedures

established as generic, 15–6
established as specific, 15–8
nonestablished, 15–9

overriding default data typing of, 5–43 to
5–45

Names (cont’d)
rules for constants with, 5–53
scope of, 15–2 to 15–5
uniqueness within programs, 2–4
with global scope, 15–2
with local scope, 15–2
with statement scope, 15–2

NaN values
See also HP Fortran for OpenVMS User

Manual
function testing for, 9–79

NATIVE value
for INQUIRE (CONVERT), 12–12
for OPEN (CONVERT), 12–31

.NE.
See also HP Fortran for OpenVMS User

Manual
See Relational operators

Nearest different number
function returning, 9–104

NEAREST function, 9–13, 9–104
Nearest integer

function returning, 9–104
Negation

logical, 4–10
.NEQV.

See Logical operators
Nested constructs

DO, 7–20 to 7–22
IF, 7–29

Nested DO construct
control transfers in, 7–22

Nested DO loops, 7–20 to 7–22
Nested format specifications, 11–43
Nested IF constructs, 7–29
Nested implied-do lists

in I/O lists, 10–16
NEW value

for OPEN (STATUS), 12–44
NEXTREC specifier

in INQUIRE statements, 12–16
NINT function, 9–13, 9–104
NML specifier, 10–6

Index–39

NOALIGN
OPTIONS directive option, 14–21

NOCHECK
OPTIONS statement option, 13–5

NODECLARE directive, 14–11
Nodes

function returning available number of,
9–107

NOEXTEND_SOURCE
OPTIONS statement option, 13–5

NOF77
OPTIONS statement option, 13–5

NOFREEFORM directive, 14–13
NOG_FLOATING

OPTIONS statement option, 13–5
NOI4

OPTIONS statement option, 13–5
NOLIST option

in DICTIONARY statement, 13–1
in INCLUDE statement, 13–3

NOMIXED_STR_LEN_ARG keyword
for ATTRIBUTES directive, 14–9

Non-Fortran procedures
argument list functions for, 8–48 to 8–49
in argument list

defaults for, 8–49
references to, 8–48

See also HP Fortran for OpenVMS
User Manual

referencing with %DESCR function, 8–48
referencing with %LOC function, 8–50
referencing with %REF function, 8–48
referencing with %VAL function, 8–48

Nonadvancing I/O, 10–12
See also HP Fortran for OpenVMS User

Manual
Nonblock DO construct, 7–16
Nondecimal numeric constants, 3–30

data type of, 3–33
Nonelemental intrinsic procedures, 9–2
Nonexecutable statements, 2–2
Nonnative floating-point formats, 12–12,

12–31

NOSPANBLOCKS specifier
in OPEN statements, 12–38

NOSTRICT directive, 14–30 to 14–31
NOT function, 9–13, 9–19, 9–105
.NOT.

See also HP Fortran for OpenVMS User
Manual

See Logical operators
NO_ARG_CHECK keyword

for ATTRIBUTES directive, 14–9
NULL function, 9–14, 9–106
NULL value

for INQUIRE (BLANK), 12–10
for OPEN (BLANK), 12–28

NULLIFY statement, 6–9
Number of processes

function returning, 9–107
NUMBER specifier

in INQUIRE statements, 12–16
NUMBER_OF_PROCESSORS function,

9–17, 9–107
Numerals

in character set, 2–5
Numeric and logical type declaration

statements, 5–7 to 5–9
Numeric assignment statements, 4–19 to

4–21
Numeric constants

complex, 3–12
integer, 3–4
nondecimal, 3–30
real, 3–7

Numeric editing
general rules for, 11–9

Numeric expressions, 4–3 to 4–7
effects of parentheses within, 4–4
in relational expressions, 4–8, 4–9
operator precedence in, 4–3 to 4–4
order of evaluation in, 4–3 to 4–4
ranking of data types in, 4–6
rules for typing of, 4–6 to 4–7
using in FORMAT statements, 11–44

Numeric functions
categories of, 9–5
models defining, D–1

Index–40

Numeric models
integer, D–1
querying parameters in, 9–62, 9–109,

9–135
real, D–2

Numeric nondecimal constants, 3–30
data type of, 3–33

Numeric operators
in expressions, 4–3 to 4–4

Numeric storage unit, 15–14
Numeric values

size limits for A editing, 11–30
NWORKERS function, 9–17, 9–107

O
O edit descriptor, 11–13 to 11–14
OBJCOMMENT directive, 14–20 to 14–21
Object

See Data objects
Object file

See also HP Fortran for OpenVMS User
Manual

See Object module
directive specifying library search path

for, 14–20
Object libraries

searching for block data program units in,
8–12

Object module
identifying with compiler directives,

14–14
Obsolescent features

in Fortran 90, A–3
in Fortran 95, A–2

Octal constants, 3–31
alternative syntax for, B–9
assigning with DATA statement, 5–28
data type assignments of, 3–33 to 3–35
examples of, 3–31

Octal values
transferring, 11–13

OLD value
for OPEN (STATUS), 12–44

ONLY keyword
in USE statement, 8–8 to 8–10

OPEN statements, 12–21 to 12–46
ACCESS specifier in, 12–27
ACTION specifier in, 12–27
ASSOCIATEVARIABLE specifier in,

12–28
BLANK specifier in, 12–28
BLOCKSIZE specifier in, 12–29
BUFFERCOUNT specifier in, 12–29
BUFFERED specifier in, 12–30
CARRIAGECONTROL specifier in, 12–30
CONVERT specifier in, 12–31
DEFAULTFILE specifier in, 12–33
defaults for specifiers, 12–21
DELIM specifier in, 12–33
DISPOSE specifier in, 12–34
EXTENDSIZE specifier in, 12–35
FILE specifier in, 12–21, 12–35
FORM specifier in, 12–36
general description of, 12–21
KEY specifier in, 12–37
MAXREC specifier in, 12–38
NAME specifier in, 12–38
NOSPANBLOCKS specifier in, 12–38
ORGANIZATION specifier in, 12–39
PAD specifier in, 12–39
POSITION specifier in, 12–40
READONLY specifier in, 12–40
RECL specifier in, 12–41
RECORDSIZE specifier in, 12–43
RECORDTYPE specifier in, 12–43
SHARED specifier in, 12–44
STATUS specifier in, 12–44
TYPE specifier in, 12–45
USEROPEN specifier in, 12–45

OPENED specifier
in INQUIRE statements, 12–16

Operands, 4–1
and binary operators, 4–3
and unary operators, 4–3
operating on pair of operands, 4–3
operating on single operand, 4–3

Index–41

Operations
character, 4–8
complex, 4–7
conversion to higher precision, 4–7
defined, 4–11, 8–56
integer

conventions for determining, 4–6
numeric, 4–3 to 4–7
real

conventions for determining, 4–7
relational, 4–8

OPERATOR interface specifier
for functions, 4–11, 8–52, 8–56

Operators, 4–1
character, 4–8
defined, 4–12
extended intrinsic

properties of, 8–56
logical, 4–10
numeric, 4–3
operating on pair of operands, 4–3
operating on single operand, 4–3
precedence in

logical expressions, 4–12
numeric expressions, 4–3 to 4–4
relational expressions, 4–8

scope of, 15–4
Optimization

See also HP Fortran for OpenVMS User
Manual

preventing with VOLATILE statement,
5–63

Optional arguments, 8–33
function returning presence of, 9–110

OPTIONAL attribute and statement, 5–51
to 5–53, 8–33

attributes compatible with, 5–5
OPTIONS directive, 14–21 to 14–24
OPTIONS statements, 13–5 to 13–6

position in program unit, 13–6
OR function, 9–74
.OR.

See Logical operators

Order of
elements in an array, 3–42
statements, 2–2
subscript progression, 3–42

ORGANIZATION specifier
in INQUIRE statements, 12–17
in OPEN statements, 12–39

Output statements, 10–37 to 10–51
PRINT and TYPE, 10–48 to 10–49
REWRITE, 10–50 to 10–51
WRITE, 10–37 to 10–48

P
P edit descriptor, 11–37
PACK directive, 14–24 to 14–25
PACK function, 9–14, 9–108
Packed array

function to create, 9–108
PAD specifier

in INQUIRE statements, 12–17
in OPEN statements, 12–39

PARAMETER attribute and statement,
5–53 to 5–54

attributes compatible with, 5–5
PARAMETER statement

alternate form of, B–8 to B–9
examples, B–9

using in record structure declarations,
B–15

Parentheses
effect in

character expressions, 4–8
logical expression, 4–11
numeric expressions, 4–4 to 4–5

using to force an argument to be an
expression, 4–5

Partial storage association, 15–16
Passed-length character arguments

See Assumed-length character arguments
PAUSE statement, 7–33 to 7–34

alternative for, A–4
default message and prompt, 7–34
effect on batch process, 7–34
effect on interactive process, 7–34

Index–42

PAUSE statement (cont’d)
examples of, 7–34

PDP-11 FORTRAN 77
source program compatibility, 1–2

Performance
See HP Fortran for OpenVMS User

Manual
Plus operator (+), 4–3 to 4–4

order of precedence of, 4–12
Pointer arguments, 8–39

requiring explicit interface, 8–51
Pointer assignment statements, 4–25 to

4–26
examples of, 4–26

Pointer association, 15–13
Pointer association function, 9–31
POINTER attribute and statement, 5–55 to

5–56
attributes compatible with, 5–5

POINTER statement
different form of, B–11 to B–13

Pointer targets, 5–62
See also Targets
dynamically allocating and deallocating,

6–1
Pointers

allocation of targets, 6–2, 6–5
array, 5–18
as arguments, 8–39
as automatic or static variables, 5–22
as variables, 4–18
assigning values to targets of, 4–18
assignment of, 4–25
associating with targets, 5–62
association of, 4–25, 8–39
association status of, 15–13
association with targets, 4–18
CRAY-style

See Integer pointers
deallocation of targets, 6–5, 6–7
disassociating from targets, 4–26, 6–1
Fortran 95/90, 5–55 to 5–56
function returning association status of,

9–31
function returning disassociated, 9–106

Pointers (cont’d)
HP Fortran, B–11
initializing, 9–106
integer, B–11
nullifying, 4–26, 6–9
referencing, 5–56
volatile, 5–64

POPCNT function, 9–14, 9–109
POPPAR function, 9–14, 9–109
Portability

features for older Fortran programs, B–1
to B–25

POSITION specifier
in INQUIRE statements, 12–17
in OPEN statements, 12–40

Positional editing (T,TL,TR,X), 11–34 to
11–35

T, 11–34
TL, 11–35
TR, 11–35
X, 11–35

Precedence of operators
effect of parentheses on, 4–4 to 4–5
in logical expressions, 4–11, 4–12
in numeric expressions, 4–3 to 4–4
in relational expressions, 4–8

Precision
function querying, 9–109

PRECISION function, 9–14, 9–109
Predefined typing rules

for variables, 3–36
Preprocessors

See HP Fortran for OpenVMS User
Manual

PRESENT function, 5–52, 9–14, 9–110
example of use, 8–34

Pretested DO statement, 7–24
Primary, 4–1

in initialization expressions, 4–13
in specification expressions, 4–15

PRINT statements, 10–48 to 10–49
PRINT value

for CLOSE statements, 12–3
for OPEN (DISPOSE), 12–34

Index–43

PRINT/DELETE value
for CLOSE statements, 12–3
for OPEN (DISPOSE), 12–34

Printable characters, 2–6
PRIVATE attribute and statement, 5–57 to

5–59, 8–8
attributes compatible with, 5–5

PRIVATE statement, 3–21
Procedure arguments, 8–31 to 8–50

See also Arguments
defaults for %VAL, %REF, and %DESCR

functions, 8–48 to 8–49
Procedure interface, 8–50 to 8–58

See also HP Fortran for OpenVMS User
Manual

blocks, 8–52
defining generic assignment, 8–57
defining generic names, 8–55
defining generic operators, 8–56
definition of, 8–2
modules containing, 8–6
when explicit is required, 8–51

Procedure references
requiring procedures with explicit

interface, 8–51
resolving, 15–6 to 15–9
resolving established

generic, 15–6
specific, 15–8

resolving nonestablished, 15–9
unambiguous, 15–6

Procedures
See also Functions
See also Subroutines
arguments in, 8–31 to 8–50
declaring external, 5–42 to 5–43
declaring intrinsic, 5–47 to 5–49
defining generic assignment for, 8–57
defining generic names for, 8–55
defining generic operators for, 8–56
dummy

See Dummy procedures
elemental user-defined, 8–18
established as generic, 15–6

Procedures (cont’d)
established as specific, 15–8
external, 8–29
external and dummy

using as actual arguments, 5–42
interfaces in, 8–50 to 8–58
internal, 8–30 to 8–31
intrinsic

using as actual arguments, 5–47
kinds of, 8–2
module, 8–4, 8–53
non-Fortran

argument list functions for, 8–48 to
8–49

%LOC function for, 8–50
nonestablished, 15–9
pure, 8–15 to 8–17
recursive, 8–14
references to non-Fortran, 8–48
requiring explicit interface, 8–51

Procedures, directive specifying properties of,
14–4

Processes
background

See Background process
batch

See Batch process
foreground

See Foreground process
interactive

See Interactive process
Processor

function returning identifying number of,
9–104

Processor time
subroutine returning, 9–44

Processors
function returning number of, 9–107
function returning shape of, 9–110

PROCESSORS_SHAPE function, 9–17,
9–110

PRODUCT function, 9–14, 9–111

Index–44

Product of array elements
function returning, 9–111

Program execution
stopping, 7–36
subroutine terminating, 9–58
temporary suspension of, 7–33 to 7–34

PROGRAM statement, 8–3
Program structure

overview of, 2–1 to 2–2
Program unit

block data, 2–2, 8–11
effect of using DATA statement in,

8–12
common blocks in, 5–23
definition of, 2–1
effect of EQUIVALENCE statement on,

5–32
external subprograms, 8–12, 8–29
kinds of, 8–1
main, 8–3
modules, 8–4
order of statements in, 2–2
scoping

See Scoping units
terminating, 7–26

Prompting
for namelist group information, 10–25

PSECT directive, 14–25 to 14–28
Pseudorandom number generator

routines, 9–114, 9–115, 9–116
Pseudorandom numbers

function returning next in sequence of,
9–114

subroutine computing single-precision,
9–116

subroutine returning, 9–115
subroutine to change or query generator

of, 9–115
PUBLIC attribute and statement, 5–57 to

5–59, 8–8
attributes compatible with, 5–5

PURE prefix, 8–15
in FUNCTION statements, 8–19
in SUBROUTINE statements, 8–25

Pure procedures, 8–15 to 8–17
functions as, 8–19
in FORALLs, 4–31
in interface blocks, 8–54
subroutines as, 8–25

Q
Q editing, 11–41
QABS function, 9–22
QACOS function, 9–23
QACOSD function, 9–23
QASIN function, 9–29
QASIND function, 9–29
QATAN function, 9–33
QATAN2 function, 9–34
QATAN2D function, 9–35
QATAND function, 9–33
QCMPLX function, 9–14, 9–112
QCONJG function, 9–39
QCOS function, 9–40
QCOSD function, 9–40
QCOSH function, 9–41
QCOTAN function, 9–41
QCOTAND function, 9–42
QDIM function, 9–51
QEXP function, 9–59
QEXT function, 9–14, 9–112
QEXTD function, 9–112
QFLOAT function, 9–14, 9–113
QIMAG function, 9–25
QINT function, 9–25
QLOG function, 9–86
QLOG10 function, 9–87
QMAX1 function, 9–89
QMIN1 function, 9–96
QMOD function, 9–101
QNINT function, 9–27
QREAL function, 9–17, 9–114
QSIGN function, 9–125
QSIN function, 9–126
QSIND function, 9–126
QSINH function, 9–127

Index–45

QSQRT function, 9–129
QTAN function, 9–133
QTAND function, 9–133
QTANH function, 9–134
Quad-precision product

function producing, 9–53
Quadword

definition of, Glossary–30
Qualification

of variable names in record structures,
B–23

Qualifiers
See Compiler options

Question mark character (?)
as namelist prompt, 10–25

Quotation mark character (")
See also Character constants
See also Character strings
as delimiter for character strings, 3–16

QUOTE value
for INQUIRE (DELIM), 12–13
for OPEN (DELIM), 12–34

R
Radix

function returning, 9–114
in integer model, D–2
in real model, D–2

RADIX function, 9–14, 9–114
RAN function, 9–17, 9–114
Random number

subroutine returning, 9–115
Random number generator

routines, 9–114, 9–115, 9–116
Random numbers

function returning next in sequence of,
9–114

RANDOM_NUMBER subroutine, 9–18,
9–115

See also RANDOM_SEED subroutine
RANDOM_SEED subroutine, 9–18, 9–115

See also RANDOM_NUMBER subroutine

RANDU subroutine, 9–18, 9–116
Range

for character length, 3–17
for H editing, 11–43
for intrinsic type constants

See HP Fortran for OpenVMS User
Manual

for parameter in control edit descriptors,
11–33

for parameters in data edit descriptors,
11–7

for repeat specifications, 11–7
for scale factor, 11–37
of case values, 7–10, 7–11

RANGE function, 9–14, 9–117
Rank

definition of, 3–38
Ranking

of data types, 4–6
READ specifier

in INQUIRE statements, 12–18
READ statements, 10–17 to 10–35

compared to DECODE statement, B–3
compared to FIND statement, B–5
direct access, 10–29 to 10–31

formatted, 10–29, 10–30
forms of, 10–29
unformatted, 10–29, 10–31

indexed, 10–31 to 10–34
formatted, 10–31, 10–32 to 10–33
unformatted, 10–31, 10–33 to 10–34

internal, 10–34 to 10–35
form of, 10–34

list-directed, 10–18, 10–20 to 10–22
namelist, 10–18, 10–23 to 10–28
sequential, 10–18 to 10–29

formatted, 10–18, 10–19
forms of, 10–18
unformatted, 10–18, 10–28

READ value
for INQUIRE (ACTION), 12–10
for OPEN (ACTION), 12–27

READONLY specifier
in OPEN statements, 12–40

Index–46

READWRITE specifier
in INQUIRE statements, 12–18

READWRITE value
for INQUIRE (ACTION), 12–10
for OPEN (ACTION), 12–27

Real
See also REAL
See also Real constants
data types, 3–2, 3–7
directive specifying default kind, 14–28
model for data, D–2 to D–3

REAL
data type, 3–2, 3–7

See also HP Fortran for OpenVMS
User Manual

in type declaration statements, 5–3, 5–7
Real constants, 3–7 to 3–11

decimal point in, 3–8
default, Glossary–11
range for

See Floating-point data types in
HP Fortran for OpenVMS User
Manual

REAL(16) type, 3–10 to 3–11
REAL(4) type, 3–8 to 3–9
REAL(8) type, 3–9 to 3–10

Real conversion
function performing, 9–118

Real data
model set for, D–2

Real data types, 3–7 to 3–11
REAL directive, 14–28 to 14–29
Real DO control

alternative for, A–4
Real editing (F,E,EN,ES,D,G), 11–16 to

11–27
D, 11–18 to 11–20
E, 11–18 to 11–20
EN, 11–20 to 11–22
ES, 11–22 to 11–24
F, 11–16 to 11–18
G, 11–24 to 11–26
scale factor in, 11–37

REAL function, 9–14, 9–118
Real model, D–2 to D–3

function returning exponent part in, 9–59
function returning fractional part in,

9–61
function returning largest number in,

9–62
function returning smallest number in,

9–135
function returning the difference between

1.0 and the next larger model
number, 9–57

Real numbers
See also REAL
See also Real constants
function returning absolute spacing of,

9–128
function returning ceiling of, 9–37
function returning class of IEEE, 9–60
function returning difference between,

9–51
function returning floor of, 9–60
function returning fractional part for

model of, 9–123
function returning scale of model for,

9–120
function to determine nearest whole

number, 9–27
function to truncate, 9–25

Real type
converting to higher precision, 4–7
function converting to double precision,

9–48
function converting to quad precision,

9–112, 9–113, 9–114
function converting to single precision,

9–118
Real values

transferring, 11–16 to 11–26
REAL(16)

constants, 3–10 to 3–11
storage requirements, 15–15

REAL(4)
constants, 3–7, 3–8 to 3–9
storage requirements, 15–15

Index–47

REAL(8)
See also DOUBLE PRECISION constants
constants, 3–7, 3–9 to 3–10
storage requirements, 15–15

REAL*16 constants
See REAL(16)

REAL*4 constants
See REAL(4)

REAL*8 constants
See REAL(8)

Real-time clock
subroutine returning data from, 9–132
subroutine returning data on, 9–47

REC specifier, 10–6
Reciprocal

function returning, 9–120
RECL specifier

default record lengths for, 12–42
in INQUIRE statements, 12–19
in OPEN statements, 12–41
maximum record lengths for, 12–42

Record access mode
See HP Fortran for OpenVMS User

Manual
Record I/O

See HP Fortran for OpenVMS User
Manual

Record number
identifying for data transfer, 10–6

Record specifier, 10–6
alternate form of, B–9

RECORD statement, B–21
Record structure items

directive specifying starting address of,
14–24

Record structures, B–13
declarations in, B–14 to B–21
directive modifying alignment of fields in,

14–21
examples of, B–23
passing as arguments, B–14
qualifying variable names in, B–23
references to fields in, B–22
rules in using scalar field reference, B–22

Record structures (cont’d)
statements that can use names of, B–21
type declarations for, B–18
typing of field names in, B–18
using %FILL in, B–18

Record type
See HP Fortran for OpenVMS User

Manual
Record-oriented I/O, 10–12
Records

default length for OPEN(RECL), 12–42
default types upon file connection, 12–43
definition of, Glossary–31
deleting from relative files, 12–4
external

See External records
freeing locked (UNLOCK), 12–47
kinds of, 10–1
maximum length for OPEN(RECL),

12–42
RECORDSIZE specifier

See also RECL
in OPEN statements, 12–43

RECORDTYPE specifier
defaults for, 12–43
in INQUIRE statements, 12–19
in OPEN statements, 12–43

Recursion, 8–2, 8–14
See also HP Fortran for OpenVMS User

Manual
in functions, 8–19
in subroutines, 8–25
with automatic variables, 5–21

RECURSIVE keyword
in FUNCTION statements, 8–19
in OPTIONS statements, 13–5
in subprograms, 8–14
in subroutine statements, 8–25

Recursive procedures, 8–14
%REF function, 8–48 to 8–49

See also HP Fortran for OpenVMS User
Manual

Index–48

REFERENCE keyword
for ATTRIBUTES directive, 14–9

REFERENCE32 keyword
for ATTRIBUTES directive, 14–10

REFERENCE64 keyword
for ATTRIBUTES directive, 14–10

References
See also Function references
See also Subroutine references
module, 8–8
to elemental intrinsic procedures, 8–47
to generic intrinsic procedures, 8–44
to generic procedures, 8–43
to non-Fortran procedures, 8–48

Relational expressions, 4–8 to 4–9
precedence of operators in, 4–8

Relational operators, 4–8
avoiding use as field names, B–23

Relative files
associating with logical unit numbers,

B–1
defining size and structure of, B–1 to B–2
deleting records from, 12–4

Relative spacing
function returning reciprocal of, 9–120

RELATIVE value
for INQUIRE (ORGANIZATION), 12–17
for OPEN (ORGANIZATION), 12–39

Remainder
function returning, 9–101

REPEAT function, 9–14, 9–119
Repeat specification

for data edit descriptors, 11–2, 11–7, 11–8
for groups of descriptors, 11–43
for slash edit descriptor, 11–33, 11–39
for string edit descriptors, 11–42
in DATA statements, 5–27

Repeated execution
See Loops

REPLACE value
for OPEN (STATUS), 12–44

Replicated arrays
function creating, 9–129

RESHAPE function, 3–50, 9–14, 9–119
Resolving references

generic, 15–6
nonestablished, 15–9
specific, 15–8

Restricted expressions
See also Specification expressions
definition of, 4–15

RESULT keyword
in ENTRY statements, 8–59, 8–61
in FUNCTION statements, 8–19, 8–23

Result variables
in ENTRY statements, 8–59
in FUNCTION statements, 8–19, 8–23

value of, 8–21
requiring explicit interface, 8–51

RETURN statement, 7–34 to 7–35
effect in subprograms, 7–35
retaining data after execution of, 5–60

Reversion
format, 11–47

REWIND statements, 12–46 to 12–47
REWIND value

for INQUIRE (POSITION), 12–17
for OPEN (POSITION), 12–40

REWRITE statements, 10–50 to 10–51
current record in, 10–50

Right shift
function performing arithmetic, 9–75
function performing circular, 9–76
function performing logical, 9–78

RRSPACING function, 9–14, 9–120
RSHIFT function, 9–77
Run-time formats, 11–5

S
S edit descriptor, 11–36
SAVE attribute and statement, 5–60 to 5–61

attributes compatible with, 5–5
SAVE statement

effect of including common block in, 5–61
SAVE value

for CLOSE statements, 12–3
for OPEN (DISPOSE), 12–34

Index–49

Scalar expressions
assigning to array variables, 4–23

Scalars
as variables, 3–35
explicit typing of, 3–36
implicit typing of, 3–37

Scale factor editing, 11–37
SCALE function, 9–14, 9–120
SCAN function, 9–15, 9–121
Scientific notation

descriptor for (ES), 11–22
Scope, 15–2 to 15–9

of assignment symbol, 15–4
of I/O unit numbers, 15–4
of intrinsic procedure names, 8–44
of labels, 15–4
of names, 15–2 to 15–5
of operators, 15–4
of unambiguous procedure references,

15–6
Scoping unit

definition of, 15–2
rules for multiple USE statements in,

8–9
statements not allowed in, 2–2

Scratch files
See also HP Fortran for OpenVMS User

Manual
establishing with OPEN (STATUS),

12–44
SCRATCH value

for OPEN (STATUS), 12–44
SECNDS function, 9–17, 9–121
Section subscript list, 3–44
Sections

of arrays, 3–44
Segmented record

definition of, 12–43
SEGMENTED value

for INQUIRE (RECORDTYPE), 12–19
for OPEN (RECORDTYPE), 12–43

SELECT CASE statement, 7–10 to 7–14
branching to, 7–14

SELECTED_INT_KIND function, 9–15,
9–122

SELECTED_REAL_KIND function, 9–15,
9–123

Semicolon character (;)
as source form statement separator, 2–7

Separating
external fields, 11–31
statements in source form, 2–7

Sequence number field, 2–14
restriction in fixed-format lines, 2–14
restriction in tab-format lines, 2–15

SEQUENCE statement, 3–21, 3–23
Sequence types, 3–23

storage of, 15–16
Sequential access

definition of, 10–2
specifying, 12–27

Sequential access mode
See HP Fortran for OpenVMS User

Manual
Sequential files

positioning
after an end-of-file record, 12–6
at beginning of preceding record,

12–2
Sequential I/O statements

READ, 10–18 to 10–29
forms of, 10–18

WRITE, 10–37 to 10–43
forms of, 10–37

SEQUENTIAL specifier
in INQUIRE statements, 12–20

SEQUENTIAL value
for INQUIRE (ACCESS), 12–10
for INQUIRE (ORGANIZATION), 12–17
for OPEN (ACCESS), 12–27
for OPEN (ORGANIZATION), 12–39

SET_EXPONENT function, 9–15, 9–123
Shape

function returning, 9–124
function to construct array of new, 9–119
of an array, 3–38

statement defining, 5–30
of processor

Index–50

Shape
of processor (cont’d)

function returning, 9–110
SHAPE function, 9–15, 9–124
Shared DO termination

alternative for, A–4
Shared library

See HP Fortran for OpenVMS User
Manual

SHARED specifier
in OPEN statements, 12–44

Shift operations
functions performing, 9–18

Short field termination, 11–31
Short source lines

in fixed and tab source form, 2–12
Sign editing (S,SP,SS), 11–36

S, 11–36
SP, 11–36
SS, 11–36

SIGN function, 9–15, 9–125
Signals

See HP Fortran for OpenVMS User
Manual

Significant digits
function returning number of, 9–51

Simple list items
in I/O lists, 10–14

SIN function, 9–15, 9–126
SIND function, 9–15, 9–126
Sine

function returning hyperbolic, 9–127
function with argument in degrees, 9–126
function with argument in radians, 9–126

Single-bit processing
functions performing, 9–18

SINH function, 9–15, 9–127
Size

function returning, 9–127
of an array, 3–38

SIZE function, 9–15, 9–127
SIZE specifier

for nonadvancing READs, 10–13

SIZEOF function, 9–17, 9–128
Slash character (/)

See also Division operator (/)
as division operator, 4–3 to 4–4

order of precedence of, 4–12
as edit descriptor, 11–39
denoting common block, 5–23
preceding OPTIONS option, 13–5

Slash editing, 11–39
SNGL function, 9–15, 9–118
SNGLQ function, 9–118
Source code

See also Fixed source form
See also Free source form
See also HP Fortran for OpenVMS User

Manual
See also Source program
See also Tab source form
allowable characters in, 2–5
debugging statements in, 2–13
fixed form of, 2–11 to 2–15
forms of, 2–6 to 2–16
free form of, 2–9 to 2–11
labels in, 2–9
tab form of, 2–11 to 2–15
useable in all forms, 2–16

Source forms, 2–6 to 2–16
See also Fixed source form
See also Free source form
See also Tab source form
coding that works in all, 2–16
differences between fixed and tab, 2–14
extensions to rules for, E–1
fixed, 2–11 to 2–15
free, 2–9 to 2–11
indicators in, 2–7
tab, 2–11 to 2–15

Source listing
See also HP Fortran for OpenVMS User

Manual
directive specifying subtitle for header in,

14–31
directive specifying title for header in,

14–31

Index–51

Source listing (cont’d)
of CDD records, 13–1
of included files, 13–3

Source program
See also Source code
names in, 2–4 to 2–5
program unit in, 2–1
statement order in, 2–2
using D in, 2–13

SP edit descriptor, 11–36
Space

See also Storage
allocating for arrays and pointer targets,

6–2
deallocating for arrays and pointer

targets, 6–5
disassociating for pointers, 6–9

Space characters
See Blank characters

SPACING function, 9–15, 9–128
Special characters

in character set, 2–5
Specific names of intrinsics, 9–2
Specification expressions, 4–13, 4–15 to

4–17
inquiry functions allowed in, 4–16
simplest form of, 4–15

Specification statements, 5–1 to 5–64
disallowed in main programs, 8–3
disallowed in modules, 8–5
extensions, E–2

SPREAD function, 9–15, 9–129
SQRT function, 9–15, 9–129
Square root

function returning, 9–129
SS edit descriptor, 11–36
Stack storage

allocating a variable to, 5–21
Standards

See ANSI standard
See FIPS standard
See FORTRAN 77 standard
See Fortran 90 standard
See Fortran 95 standard
See ISO standard

Standards (cont’d)
See MIL standard

Statement functions, 8–27 to 8–29
See also HP Fortran for OpenVMS User

Manual
alternative for, A–3
definition of, 8–2, 8–27

Statement labels
See Labels

Statement numbers
See Labels

Statement order
in program units, 2–2
of OPTIONS statement, 13–6

Statement scope
names having, 15–2

Statement separator
in source form, 2–7

Statements
ACCEPT, 10–36
ALLOCATABLE, 5–19
ALLOCATE, 6–2
array declaration, 5–12 to 5–18
ASSIGN, 7–4
assignment, 4–17 to 4–32

defined, 4–24
intrinsic, 4–18
pointer, 4–25

AUTOMATIC, 5–20
BACKSPACE, 12–2
BLOCK DATA, 8–11
branch, 7–2
CALL, 7–7
CASE, 7–10
CASE DEFAULT, 7–10
character type declaration, 5–9 to 5–11
CLOSE, 12–3
COMMON, 5–23
CONTAINS, 8–59
CONTINUE, 7–15
continuing in fixed and tab source form,

2–12
continuing in free source form, 2–10
control, 7–1 to 7–36
CYCLE, 7–25

Index–52

Statements (cont’d)
DATA, 5–27
DEALLOCATE, 6–5
DECODE, B–3
DEFINE FILE, B–1
DELETE, 12–4
derived-type, 3–21
derived-type declaration, 5–11 to 5–12
DIMENSION, 5–30
DO, 7–16
DO WHILE, 7–24
ELSE, 7–27
ELSE IF, 7–27
ELSEWHERE, 4–26
ENCODE, B–3
END, 7–26
ENDFILE, 12–6
ENTRY, 8–59
EQUIVALENCE, 5–32
executable and nonexecutable, 2–2 to 2–4
EXIT, 7–25
EXTERNAL, 5–42
FIND, B–5
for compatibility between language

versions, B–1 to B–25
FORALL, 4–29
FORMAT, 11–2
formatting, 11–1 to 11–49
FUNCTION, 8–19
GO TO

assigned, 7–5
computed, 7–3
unconditional, 7–3

I/O
for data transfer, 10–1 to 10–51
for file operations, 12–1 to 12–48

IF
arithmetic, 7–6
block, 7–27
logical, 7–32

IMPLICIT, 5–43
IMPLICIT NONE, 5–44
INCLUDE, 13–2
INQUIRE, 12–7
INTENT, 5–45
INTERFACE

Statements
INTERFACE (cont’d)

ASSIGNMENT, 8–57
generic, 8–55
OPERATOR, 8–56

INTRINSIC, 5–47
labels for, 2–9
MAP, B–19
MODULE, 8–4
MODULE PROCEDURE, 8–53
NAMELIST, 5–49
NULLIFY, 6–9
numeric and logical type declaration, 5–7

to 5–9
OPEN, 12–21
OPTIONAL, 5–51
OPTIONS, 13–5
overview of, 2–2 to 2–4
PARAMETER, 5–53
PAUSE, 7–33
POINTER

Fortran 95/90, 5–55
HP Fortran, B–11

PRINT, 10–48
PRIVATE, 5–57
PROGRAM, 8–3
PUBLIC, 5–57
READ, 10–17
RECORD, B–21
required order of, 2–2
restricted from scoping units, 2–2
RETURN, 7–34
REWIND, 12–46
REWRITE, 10–50
SAVE, 5–60
SELECT CASE, 7–10
separating in source form, 2–7
SEQUENCE, 3–23
specification, 5–1 to 5–64
statement function, 8–27
STATIC, 5–20
STOP, 7–36
STRUCTURE, B–14
SUBROUTINE, 8–25
TARGET, 5–62
terminal

Index–53

Statements
terminal (cont’d)

See Terminal statements
type declaration, 5–3
TYPE definition, 3–21
TYPE I/O, 10–48
UNION, B–19
UNLOCK, 12–47
USE, 8–8
VIRTUAL, B–9
VOLATILE, 5–63
WHERE, 4–26
WRITE, 10–37

STATIC attribute and statement, 5–20 to
5–23

attributes compatible with, 5–5
Static storage

allocating a variable to, 5–21
Static variables, 5–20
STATUS specifier

in CLOSE statements, 12–45
in OPEN statements, 12–44

STDCALL keyword
for ATTRIBUTES directive, 14–7

STOP statement, 7–36
examples of, 7–36

Storage
association, 5–32, 15–14

full, 15–16
partial, 15–16

attributes affecting allocation of, 5–20
defining blocks of, 5–23
function returning byte-size of, 9–128
of arrays, 3–42
requirements for intrinsic types, 15–14
sequence, 15–14
sharing areas of, 5–32
units, 15–14

Storage allocation
specifying using OPEN (EXTENDSIZE),

12–35
specifying using OPEN (INITIALSIZE),

12–36

Storage units
types of, 15–14

Stream records
See HP Fortran for OpenVMS User

Manual
STREAM value

for INQUIRE (RECORDTYPE), 12–19
for OPEN (RECORDTYPE), 12–43

STREAM_CR value
for INQUIRE (RECORDTYPE), 12–19
for OPEN (RECORDTYPE), 12–43

STREAM_LF value
for INQUIRE (RECORDTYPE), 12–19
for OPEN (RECORDTYPE), 12–43

STRICT directive, 14–30 to 14–31
Stride

in FORALL triplet specifications, 4–30
in subscript triplets, 3–45

String edit descriptors
See Character string edit descriptors

String-handling character functions, 9–6
Structure

program
See Program structure

Structure components, 3–25 to 3–28, 5–30
arrays as, 3–27
in pointer assignment, 4–25

Structure constructors, 3–21, 3–29 to 3–30
examples of, 3–29

Structure declarations
derived type, 3–21 to 3–24, 5–11
record, B–14 to B–21

nesting, B–14
type declarations for, B–18
using %FILL in, B–18

STRUCTURE statement, B–14 to B–21
using to initialize record fields, B–22

Structures
array, 3–37 to 3–50
derived-type, 3–21 to 3–30

array as component of, 3–23
components of, 3–21, 3–22

referencing, 3–25 to 3–28
record, B–13

Index–54

Subexpressions
in logical expressions, 4–11

SUBMIT value
for CLOSE statements, 12–3
for OPEN (DISPOSE), 12–34

SUBMIT/DELETE value
for CLOSE statements, 12–3
for OPEN (DISPOSE), 12–34

Subobject designator, Glossary–12
Subobjects, 3–35
Subprogram arguments

associating arrays with, 15–16
using aggregate field references as, B–23

Subprogram subroutines
ENTRY statements in, 8–62

Subprograms
See also Functions
See also Internal subprograms
See also Module subprograms
See also Subroutines
automatic and static variables in, 5–20
effect of RETURN statement in, 7–34 to

7–35
external, 2–1
internal, 2–2
module, 2–1
terminating, 7–26
using as actual arguments, 5–42 to 5–43,

5–47 to 5–49
using as arguments to other subprograms,

B–6
using assumed-length character

arguments in, 3–37
using AUTOMATIC or STATIC in called,

5–20
Subroutine arguments

See Procedure arguments
Subroutine references, 7–7, 8–26

elemental intrinsic, 8–47
to external names, 5–43

SUBROUTINE statement, 8–25
prefixes in, 8–25
using with ENTRY statement, 8–26

Subroutine subprograms, 8–12
See also Subprograms
See also Subroutines

Subroutines, 8–25 to 8–27
containing ASSIGNMENT specifier,

4–24, 8–57
declaring external, 5–42
declaring intrinsic, 5–48
defining, 8–25
definition of, 8–2
elemental user-defined, 8–18
general rules for, 8–13
intrinsic, 9–2, 9–17 to 9–18
invoking, 8–26
prefixes in, 8–25
pure, 8–15
recursion in, 8–14
referencing, 7–7
statements excluded from, 8–26
transferring control to, 7–7

Subscript list, 3–38
referencing array elements, 3–41

Subscript progression
order of, 3–42

Subscript triplets, 3–45
Subscripts

order of progression, 3–42
vector, 3–47

Substrings
See also HP Fortran for OpenVMS User

Manual
character

See Character substrings
making equivalent, 5–37 to 5–39
starting position

function returning, 9–70
Substructure declarations, B–14, B–18
SUBTITLE directive, 14–31
Subtraction operator (–), 4–3 to 4–4

See also Unary operators
SUM function, 4–29, 9–15, 9–130
Sum of array elements

function returning, 9–130

Index–55

System errors
subroutine returning information on,

9–57
System subprograms

CPU_TIME, 9–44
DATE, 9–46
DATE_AND_TIME, 9–47
EXIT, 9–58
IDATE, 9–68
NUMBER_OF_PROCESSORS, 9–107
NWORKERS, 9–107
PROCESSORS_SHAPE, 9–110
SECNDS, 9–121
SYSTEM_CLOCK, 9–132
TIME, 9–134

System time
function for calculating in seconds, 9–121
subroutine returning, 9–134

SYSTEM_CLOCK subroutine, 9–18, 9–132

T
T edit descriptor, 11–34
Tab source form, 2–11 to 2–15

blank characters in, 2–12
comment indicator in, 2–12
continuation indicator in, 2–12
debugging statement indicator in, 2–13
fields in, 2–14
labels in, 2–9
sequence number field restriction, 2–15
short source lines in, 2–12
statement field in, 2–14
statement separator in, 2–7

TAN function, 9–15, 9–133
TAND function, 9–15, 9–133
Tangent

function returning hyperbolic, 9–134
function with argument in degrees, 9–133
function with argument in radians, 9–133

TANH function, 9–16, 9–134
TARGET attribute and statement, 5–62 to

5–63
attributes compatible with, 5–5

Target statements
branch

See Branch target statements
Targets

allocation of, 6–2, 6–5
as variables, 4–25
assigning values to, 4–18
associating with pointers, 5–62
association with pointers, 4–18, 4–25
deallocation of, 6–5, 6–7
declaration of, 5–62 to 5–63
disassociating from pointers, 6–1
dynamically allocating and deallocating,

6–1
requiring explicit interface, 8–51

Temporary suspension
of program execution, 7–33

Terminal statements
for block DO constructs, 7–16
for nested DO constructs, 7–20
for nonblock DO constructs, 7–17

Termination
immediate

of DO constructs, 7–25
of innermost (or named) DO, 7–25
of program execution before end, 7–36
of short fields, 11–31

Text file libraries
accessing, 13–2 to 13–4

Time
function to return current in seconds,

9–121
subroutines to return current, 9–47,

9–134
TIME subroutine, 9–18, 9–134
TINY function, 9–16, 9–135
TITLE directive, 14–31
TL edit descriptor, 11–35
TR edit descriptor, 11–35
TRAILZ function, 9–16, 9–135
TRANSFER function, 9–16, 9–136
Transfer of data

See Data transfer statements

Index–56

Transformational functions
allowed in initialization expressions,

4–14
array

ALL, 9–26
ANY, 9–28
COUNT, 9–42
CSHIFT, 9–44
EOSHIFT, 9–55
MAXLOC, 9–91
MAXVAL, 9–93
MINLOC, 9–97
MINVAL, 9–99
PACK, 9–108
PRODUCT, 9–111
RESHAPE, 9–119
SPREAD, 9–129
SUM, 9–130
TRANSPOSE, 9–137
UNPACK, 9–139

character
REPEAT, 9–119
TRIM, 9–137

data transfer, 9–136
definition of, 9–2
numeric, 9–5

DOT_PRODUCT, 9–52
MATMUL, 9–88
SELECTED_INT_KIND, 9–122
SELECTED_REAL_KIND, 9–123

pointer
NULL, 9–106

Translation
of I/O data

See Data translation
TRANSPOSE function, 9–16, 9–137
Transposed arrays

function producing, 9–137
TRIM function, 9–16, 9–137
TRUE value

for INQUIRE (EXIST), 12–13
for INQUIRE (NAMED), 12–15
for INQUIRE (OPENED), 12–16

Truncation of assigned values, 4–18
Two’s complement

function returning length in, 9–70
TYPE

I/O statements, 10–48 to 10–49
keyword in derived type statements,

3–21, 3–23
specifier in OPEN statements, 12–45

Type declaration statements, 3–36, 5–3 to
5–18

array, 5–12 to 5–18
arrays in, 5–3
attributes in, 5–3

See also Attributes
character, 3–36, 5–9 to 5–11
constants in, 5–4
derived-type, 5–11 to 5–12
double colon separator in, 5–4
initialization expressions in, 5–5
kind parameters in, 5–7
kind selector in, 5–3
limits within block data program unit,

8–11
numeric and logical, 5–7 to 5–9
specifiers in, 5–3
using to explicitly type variables, 3–36

Type parameter
definition of, Glossary–39

Types
data

See Data types

U
UBOUND function, 9–16, 9–138

in pointer assignment, 5–18
ULTRIX f77

source program compatibility, 1–2
Unambiguous generic references, 15–6
Unary operations, 4–3
Unary operators (+ and –), 4–3 to 4–4

definition of, 4–3
form of, 8–56
order of precedence of, 4–12

Index–57

Unconditional
DO statement, 7–16
GO TO statement, 7–3

Undeclared names
See Names

UNDEFINE directive, 14–11 to 14–12
Undefined variables, 3–35
Underscore character (_)

in names, 2–4
Unformatted data

specifying nonnative numeric format for,
12–12, 12–31

Unformatted I/O statements
READ

direct access, 10–29, 10–31
indexed, 10–31, 10–33 to 10–34
sequential, 10–18, 10–28

REWRITE, 10–50
using aggregate field references in, B–23
WRITE

direct access, 10–44, 10–45
indexed, 10–45, 10–47
sequential, 10–37, 10–43

Unformatted records
definition of, 10–1

UNFORMATTED specifier
in INQUIRE statements, 12–20

UNFORMATTED value
for INQUIRE (FORM), 12–14
for OPEN (FORM), 12–36

Union declarations, B–19
compared to EQUIVALENCE statement,

B–20
initializing data in, B–20
size of shared area, B–20

UNION statement, B–19
Unit number

assignment of, 10–5
UNIT specifier, 10–4
Units

See also Scoping units
See Program units

UNKNOWN value
for OPEN (STATUS), 12–44

UNLOCK statements, 12–47 to 12–48
Unlocking records, 12–47
UNPACK function, 9–16, 9–139
Unpacked array

function to create, 9–139
UNROLL directive, 14–32
Unspecified storage unit, 15–14
Upper bounds

function returning, 9–138
Uppercase letters

in character set, 2–5
treatment on compiler, 2–6

Use association, 8–8, 15–11
USE statement, 8–8 to 8–11

ONLY keyword in, 8–8
User-defined

data types
See Derived data types

elemental procedures, 8–18
pure procedures, 8–15

User-written subprograms
types of, 8–12

USEROPEN specifier
in OPEN statements, 12–45

V
%VAL function, 8–48 to 8–49

See also HP Fortran for OpenVMS User
Manual

VALUE keyword
for ATTRIBUTES directive, 14–9

Variable format expressions, 11–44 to 11–45
See also HP Fortran for OpenVMS User

Manual
VARIABLE value

for INQUIRE (RECORDTYPE), 12–19
for OPEN (RECORDTYPE), 12–43

Variables, 3–35
See also HP Fortran for OpenVMS User

Manual
allocating to stack or static storage, 5–21
assigning labels to, 7–4
assigning values to, 4–18
associating with group name, 5–49

Index–58

Variables (cont’d)
automatic and static, 5–20
controlling storage allocation and initial

value of, 5–20
defining and undefining, 3–35, 4–17 to

4–32
directive creating symbolic, 14–11
directive generating warnings for

undeclared, 14–11
DO, 7–19
explicit typing of scalar, 3–36
implicit typing of scalar, 3–37
initializing, 5–28

in DATA statement, 5–27
length

effect on character assignments,
4–21

of name, 2–4
pointers as, 4–18
public, 8–8
referencing, 4–2
saving values of, 5–60
targets as, 4–25
truncation of values assigned to, 4–18
warnings for undeclared, 5–44

VARYING keyword
for ATTRIBUTES directive, 14–10

VAX FORTRAN 77
source program compatibility, 1–2

VAXD value
for INQUIRE (CONVERT), 12–12
for OPEN (CONVERT), 12–31

VAXG value
for INQUIRE (CONVERT), 12–12
for OPEN (CONVERT), 12–31

Vector subscripts, 3–47, 4–23
Vectors

function performing dot-product
multiplication of, 9–52

VERIFY function, 9–16, 9–140
Virtual memory

using allocatable arrays, 6–4
VIRTUAL statement, B–9

See also DIMENSION attribute and
statement

VOLATILE attribute and statement, 5–63
to 5–64

See also HP Fortran for OpenVMS User
Manual

attributes compatible with, 5–5

W
WARN=[NO]ALIGNMENT

OPTIONS directive option, 14–21
Warning messages

See HP Fortran for OpenVMS User
Manual

Warnings
directive generating for undeclared

variables, 14–11
Warnings about data alignment

directive modifying, 14–21
Web site

URL of HP Fortran, xxiv
WHERE construct and statement, 4–26 to

4–29, 4–31
as branch target, 4–27
ELSEWHERE, 4–26
execution of, 4–28

WHILE statement
See DO WHILE statement

Whole arrays, 3–40
WRITE specifier

in INQUIRE statements, 12–20
WRITE statements, 10–37 to 10–48

compared to ENCODE statement, B–3
direct access, 10–43 to 10–45

formatted, 10–43, 10–44
forms of, 10–43
unformatted, 10–44, 10–45

indexed, 10–45 to 10–47
formatted, 10–45, 10–46
unformatted, 10–45, 10–47

internal, 10–47 to 10–48
form of, 10–47

list-directed, 10–37, 10–39 to 10–41
namelist, 10–37, 10–41 to 10–43
sequential, 10–37 to 10–43

formatted, 10–37, 10–39

Index–59

WRITE statements
sequential (cont’d)

forms of, 10–37
unformatted, 10–37, 10–43

WRITE value
for INQUIRE (ACTION), 12–10
for OPEN (ACTION), 12–27

X
X edit descriptor, 11–35
XOR function, 9–69
.XOR.

See Logical operators

Z
Z edit descriptor, 11–14 to 11–15
ZABS function, 9–22
ZCOS function, 9–40
Zero character

effect in statement label fields, 2–9
ZERO value

for INQUIRE (BLANK), 12–10
for OPEN (BLANK), 12–28

Zero-extend function, 9–140
Zero-length format, 11–10
Zero-size array, 3–38, 5–13

section, 3–44
ZEXP function, 9–59
ZEXT function, 9–16, 9–140
ZLOG function, 9–86
ZSIN function, 9–126
ZSQRT function, 9–129

Index–60

