
Creating an OpenVMS Alpha
Device Driver from an OpenVMS
VAX Device Driver
Order Number: AA–R0Y8A–TE

November 1996

This manual describes how to convert an OpenVMS VAX device driver to
run on an OpenVMS Alpha system.

Revision/Update Information: This manual supersedes the Creating
an OpenVMS AXP Step 2 Device Driver
from an OpenVMS VAX Device Driver,
Version 6.1.

Software Version: OpenVMS Alpha Version 7.1
OpenVMS VAX Version 7.1

Digital Equipment Corporation
Maynard, Massachusetts

November 1996

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

© Digital Equipment Corporation 1996. All rights reserved.

The following are trademarks of Digital Equipment Corporation: Bookreader, DECdirect,
DECnet, DECwindows, Digital, HCS, MASSBUS, OpenVMS, OpenVMS Cluster, Q–bus, Q22–bus,
TURBOchannel, UNIBUS, VAX, VAX DOCUMENT, VAXcluster, VMS, and the DIGITAL logo.

The following are third-party trademarks:

Futurebus/Plus is a registered trademark of Force Computers GMBH, Federal Republic of Germany.

Internet is a registered trademark of Internet, Inc.

OSF is a registered trademark of the Open Software Foundation, Inc.

Windows NT is a registered trademark of Microsoft Corporation.

All other trademarks and registered trademarks are the property of their respective holders.

ZK6362

The OpenVMS documentation set is available on CD–ROM.

Contents

Preface . xv

1 Introduction

1.1 Overview of OpenVMS Alpha Driver Changes . 1–1
1.2 Overview of OpenVMS VAX and OpenVMS Alpha Driver Similarities . . . 1–3
1.3 OpenVMS Alpha Driver Routine Naming Conventions 1–3
1.4 Converting OpenVMS VAX Drivers Written in BLISS 1–4
1.5 Writing OpenVMS Alpha Drivers in C . 1–4
1.6 Using Common Source Code for OpenVMS VAX and OpenVMS Alpha

Drivers . 1–4

2 Accessing Device Interface Registers

2.1 Mapping I/O Device Registers . 2–2
2.2 Platform Independent I/O Bus Mapping . 2–2
2.2.1 Using the IOC$MAP_IO Routine . 2–3
2.2.2 Platform Independent I/O Access Routines . 2–3
2.3 Accessing Registers Directly . 2–4
2.4 Accessing Registers Using CRAMS . 2–4
2.5 Allocating CRAMs . 2–4
2.5.1 Preallocating CRAMs to a Device Unit or Device Controller 2–5
2.5.2 Calling IOC$ALLOCATE_CRAM to Obtain a CRAM 2–5
2.6 Constructing a Mailbox Command Within a CRAM 2–6
2.6.1 Register Data Byte Lane Alignment . 2–7
2.7 Initiating a Mailbox Transaction . 2–7
2.8 I/O Device Register Access Summary . 2–7

3 Suspending Driver Execution

3.1 Using the Simple Fork Process Mechanism . 3–2
3.1.1 EXE_STD$PRIMITIVE_FORK, EXE_STD$PRIMITIVE_FORK_WAIT,

and Associated Macros . 3–3
3.1.1.1 Common Usage of the FORK and IOFORK Macros 3–4
3.1.1.2 Forks with Nonstandard Returns and Nonstandard Fork Routine

Addresses . 3–5
3.1.2 IOC_STD$PRIMITIVE_REQCHANH,

IOC_STD$PRIMITIVE_REQCHANL, and the REQCHAN
Macro . 3–7

3.1.3 IOC_STD$PRIMITIVE_WFIKPCH,
IOC_STD$$PRIMITIVE_WFIRLCH, and Associated
Macros . 3–8

3.2 Using the OpenVMS Kernel Process Services . 3–10
3.2.1 Kernel Process Routines . 3–12

iii

3.2.2 Creating a Driver Kernel Process . 3–14
3.2.3 Suspending a Kernel Process . 3–15
3.2.4 Terminating a Kernel Process Thread . 3–16
3.2.5 Exchanging Data Between a Kernel Process and Its Creator 3–16
3.2.6 Synchronizing the Actions of a Kernel Process and Its Initiator 3–17
3.2.7 Example of Driver Kernel Process . 3–17
3.2.7.1 Driver Kernel Process Startup . 3–18
3.2.7.2 Resumption of a Driver Kernel Process by a Device Interrupt 3–21
3.2.7.3 Resumption of a Driver Kernel Process by a Fork Interrupt 3–23
3.3 Mixing Fork and Kernel Processes . 3–25

4 Allocating Map Registers and Other Counted Resources

4.1 Allocating a Counted Resource Context Block . 4–2
4.2 Allocating Counted Resource Items . 4–3
4.3 Loading Map Registers . 4–5
4.4 Deallocating a Number of Counted Resources . 4–6
4.5 Deallocating a Counted Resource Context Block . 4–6

5 Synchronization Requirements for OpenVMS Alpha Device Drivers

5.1 Producing a Multiprocessing-Ready Driver . 5–1
5.2 Enforcing the Order of Reads and Writes . 5–2
5.3 Ensuring Synchronized Access of Data Items . 5–3
5.4 Using Instruction Memory Barriers . 5–5

6 Conversion Guidelines

6.1 OpenVMS Alpha Device Driver Program Sections 6–1
6.2 DPTAB Changes . 6–2
6.3 DDTAB Changes . 6–2
6.3.1 DDTAB Routine Name Changes . 6–2
6.3.2 Specifying Controller and Unit Initialization Routines 6–2
6.3.3 Simple Fork Mechanism—JSB-Based Fork Routines 6–3
6.3.4 Kernel Process Mechanism . 6–3
6.4 Specifying an Interrupt Service Routine . 6–3
6.5 Interrupt Service Routine Entry Points . 6–4
6.6 Start I/O and Alternate Start I/O Entry Points . 6–4
6.7 Using the Driver Entry Point Routine Call Interfaces 6–5
6.8 Returning Status from Controller and Unit Initialization Routines 6–6
6.9 FUNCTAB Macro Changes . 6–6
6.10 FDT Routine Changes . 6–8
6.10.1 Upper-Level Routine Entry Point Changes . 6–9
6.10.2 FDT Exit Routine Changes . 6–10
6.10.3 OpenVMS-Supplied FDT Support Routine Changes 6–11
6.10.4 Driver-Supplied FDT Support Routine Changes 6–12
6.10.5 Returning from Upper-Level Routines . 6–13
6.11 Adding .JSB_ENTRY Directives . 6–13
6.12 Common OpenVMS-Supplied EXEC Routines . 6–14
6.13 New, Changed, and Unsupported OpenVMS Driver Macros 6–17
6.14 New, Changed, and Unsupported OpenVMS System Routines 6–22
6.15 Data Structure Field Changes . 6–26
6.16 Incorporating Timed Waits and Delays . 6–26
6.17 Porting Terminal Port Drivers . 6–27

iv

6.18 Initializing Devices with Programmable Interrupt Vectors 6–27
6.19 Floating-Point Instructions Forbidden in Drivers 6–28
6.20 Replacing Unsupported Coding Practices . 6–28
6.20.1 Stack Usage . 6–28
6.20.1.1 References Outside the Current Stack Frame 6–28
6.20.1.2 Nonaligned Stack References . 6–28
6.20.2 Branches from JSB Routines into CALL Routines 6–29
6.20.3 Modifying the Return Address . 6–30
6.20.3.1 Pushing an Address onto the Stack . 6–30
6.20.3.2 Removing the Return Address from the Stack 6–30
6.20.3.3 Modifying the Return Address . 6–31
6.20.3.4 Coroutines . 6–32
6.21 Compiling an OpenVMS Alpha Driver . 6–34
6.21.1 Using the /OPTIMIZE=NOREFERENCES Option 6–34

7 Handling Complex Conversions Situations

7.1 Composite FDT Routines . 7–1
7.2 Error Routine Callback Changes . 7–3
7.3 Converting Driver-Supplied FDT Support Routines to Call Interfaces 7–3
7.4 Converting the Start I/O Code Path to Call Interfaces 7–4
7.4.1 Start I/O Call Interface Conversion Procedure 7–4
7.4.2 Simple Fork Macro Differences . 7–6
7.4.2.1 Fork Routine End Instruction . 7–6
7.4.2.2 Scratch Registers . 7–6
7.4.2.3 Fork Routine Entry Point . 7–7
7.5 Device Interrupt Timeouts . 7–8
7.6 Obsolete Data Structure Cells . 7–8
7.7 Optimizing OpenVMS Alpha Drivers . 7–9
7.7.1 Using JSB-Replacement Macros . 7–9
7.7.2 Avoid Fetching Unused Parameters . 7–10
7.7.3 Minimizing Register Preserve Lists . 7–10
7.7.4 Branching Between Local Routines . 7–11

8 Device Driver Entry Points

Alternate Start-I/O Routine . 8–2
Cancel-I/O Routine . 8–4
Cancel Selective Routine . 8–7
Channel Assign Routine . 8–9
Cloned UCB Routine . 8–11
Controller Initialization Routine . 8–14
Driver Channel Grant Fork Routine Entry . 8–17
Driver Device Timeout Routine Entry . 8–18
Driver Resume from Interrupt Routine Entry . 8–19
Start I/O Routine (Simple Fork, JSB Environment) 8–20
Driver Unloading Routine . 8–21
FDT Upper-Level Action Routine . 8–22
FDT Error-Handling Callback Routine . 8–25
Interrupt Service Routine . 8–28
Mount Verification Routine . 8–31
Register Dumping Routine . 8–33

v

Start-I/O Routine (Simple Fork, Call Environment) 8–35
Start-I/O Routine (Kernel Process) . 8–38
Timeout Handling Code (Traditional) . 8–40
Timeout Handling Code (Kernel Process) . 8–42
Unit Delivery Routine . 8–44
Unit Initialization Routine . 8–46

9 System Routines

ACP_STD$ACCESS . 9–6
ACP_STD$ACCESSNET . 9–8
ACP_STD$DEACCESS . 9–10
ACP_STD$MODIFY . 9–12
ACP_STD$MOUNT . 9–14
ACP_STD$READBLK . 9–16
ACP_STD$WRITEBLK . 9–18
COM_STD$DELATTNAST . 9–20
COM_STD$DELATTNASTP . 9–22
COM_STD$DELCTRLAST . 9–24
COM_STD$DELCTRLASTP . 9–26
COM_STD$DRVDEALMEM . 9–28
COM_STD$FLUSHATTNS . 9–30
COM_STD$FLUSHCTRLS . 9–32
COM_STD$POST, COM_STD$POST_NOCNT . 9–34
COM_STD$SETATTNAST . 9–36
COM_STD$SETCTRLAST . 9–39
ERL_STD$ALLOCEMB . 9–42
ERL_STD$DEVICEATTN, ERL_STD$DEVICERR,
ERL_STD$DEVICTMO . 9–44
ERL_STD$RELEASEMB . 9–47
EXE$BUS_DELAY . 9–48
EXE$DELAY . 9–50
EXE$KP_ALLOCATE_KPB . 9–51
EXE$KP_DEALLOCATE_KPB . 9–54
EXE$KP_END . 9–56
EXE$KP_FORK . 9–58
EXE$KP_FORK_WAIT . 9–60
EXE$KP_RESTART . 9–62
EXE$KP_STALL_GENERAL . 9–64
EXE$KP_START . 9–67
EXE$KP_STARTIO . 9–70
EXE$TIMEDWAIT_COMPLETE . 9–72
EXE$TIMEDWAIT_SETUP, EXE$TIMEDWAIT_SETUP_10US 9–74
EXE_STD$ABORTIO . 9–76
EXE_STD$ALLOCBUF, EXE_STD$ALLOCIRP . 9–79
EXE_STD$ALTQUEPKT . 9–82
EXE_STD$CARRIAGE . 9–84

vi

EXE_STD$CHKxxxACCES . 9–85
EXE_STD$FINISHIO . 9–87
EXE$ILLIOFUNC . 9–90
EXE_STD$INSERT_IRP . 9–92
EXE_STD$INSIOQ, EXE_STD$INSIOQC . 9–94
EXE_STD$IORSNWAIT . 9–96
EXE_STD$LCLDSKVALID . 9–98
EXE_STD$MNTVERSIO . 9–101
EXE_STD$MODIFY . 9–103
EXE_STD$MODIFYLOCK . 9–107
EXE_STD$MOUNT_VER . 9–112
EXE_STD$ONEPARM . 9–114
EXE_STD$PRIMITIVE_FORK . 9–116
EXE_STD$PRIMITIVE_FORK_WAIT . 9–118
EXE_STD$QIOACPPKT . 9–120
EXE_STD$QIODRVPKT . 9–122
EXE_STD$QXQPPKT . 9–125
EXE_STD$READ . 9–127
EXE_STD$READCHK . 9–131
EXE_STD$READLOCK . 9–135
EXE_STD$SENSEMODE . 9–141
EXE_STD$SETCHAR, EXE_STD$SETMODE . 9–143
EXE_STD$SNDEVMSG . 9–146
EXE_STD$WRITE . 9–148
EXE_STD$WRITECHK . 9–152
EXE_STD$WRITELOCK . 9–156
EXE_STD$WRTMAILBOX . 9–162
EXE_STD$ZEROPARM . 9–164
IOC$ALOALTMAP, IOC$ALOALTMAPN, IOC$ALOALTMAPSP 9–166
IOC$ALOUBAMAP, IOC$ALOUBAMAPN . 9–167
IOC$ALLOC_CNT_RES . 9–168
IOC$ALLOC_CRAB . 9–172
IOC$ALLOC_CRCTX . 9–174
IOC$ALLOCATE_CRAM . 9–176
IOC$CANCEL_CNT_RES . 9–178
IOC$CRAM_CMD . 9–180
IOC$CRAM_IO . 9–183
IOC$CRAM_QUEUE . 9–185
IOC$CRAM_WAIT . 9–187
IOC$DEALLOC_CNT_RES . 9–189
IOC$DEALLOC_CRAB . 9–191
IOC$DEALLOC_CRCTX . 9–192
IOC$DEALLOCATE_CRAM . 9–193
IOC$KP_REQCHAN . 9–194
IOC$KP_WFIKPCH, IOC$KP_WFIRLCH . 9–196
IOC$LOAD_MAP . 9–198
IOC$MAP_IO . 9–200

vii

IOC$NODE_FUNCTION . 9–202
IOC$READ_IO . 9–205
IOC$UNMAP_IO . 9–207
IOC$WRITE_IO . 9–208
IOC_STD$ALTREQCOM . 9–209
IOC_STD$BROADCAST . 9–211
IOC_STD$CANCELIO . 9–213
IOC_STD$CLONE_UCB . 9–215
IOC_STD$COPY_UCB . 9–217
IOC_STD$CREDIT_UCB . 9–219
IOC_STD$CVT_DEVNAM . 9–220
IOC_STD$CVTLOGPHY . 9–222
IOC_STD$DELETE_UCB . 9–224
IOC_STD$DIAGBUFILL . 9–225
IOC_STD$FILSPT . 9–227
IOC_STD$GETBYTE . 9–229
IOC_STD$INITBUFWIND . 9–231
IOC_STD$INITIATE . 9–233
IOC_STD$LINK_UCB . 9–236
IOC_STD$MAPVBLK . 9–238
IOC_STD$MNTVER . 9–240
IOC_STD$MOVFRUSER, IOC_STD$MOVFRUSER2 9–241
IOC_STD$MOVTOUSER, IOC_STD$MOVTOUSER2 9–244
IOC_STD$PARSDEVNAM . 9–247
IOC_STD$POST_IRP . 9–249
IOC_STD$PTETOPFN . 9–250
IOC_STD$QNXTSEG1 . 9–252
IOC_STD$PRIMITIVE_REQCHANH,
IOC_STD$PRIMITIVE_REQCHANL . 9–254
IOC_STD$PRIMITIVE_WFIKPCH,
IOC_STD$PRIMITIVE_WFIRLCH . 9–257
IOC_STD$RELCHAN . 9–260
IOC_STD$REQCOM . 9–262
IOC_STD$SEARCHDEV . 9–265
IOC_STD$SEARCHINT . 9–267
IOC_STD$SENSEDISK . 9–269
IOC_STD$SEVER_UCB . 9–271
IOC_STD$SIMREQCOM . 9–272
IOC_STD$THREADCRB . 9–274
MMG_STD$IOLOCK . 9–276
MMG_STD$UNLOCK . 9–278
MT_STD$CHECK_ACCESS . 9–280
SCH_STD$IOLOCKR . 9–282
SCH_STD$IOLOCKW . 9–284
SCH_STD$IOUNLOCK . 9–286

viii

10 Data Structures

10.1 ADP (Adapter Control Block) . 10–3
10.1.1 BUSARRAY (Bus Array) . 10–9
10.2 CCB (Channel Control Block) . 10–11
10.3 CRAM (Controller Register Access Mailbox) . 10–12
10.4 CRB (Channel Request Block) . 10–16
10.5 VEC (Interrupt Transfer Vector Block) . 10–18
10.6 DDB (Device Data Block) . 10–19
10.7 DDT (Driver Dispatch Table) . 10–20
10.8 DPT (Driver Prologue Table) . 10–24
10.9 IDB (Interrupt Dispatch Block) . 10–29
10.10 IRP (I/O Request Packet) . 10–31
10.11 IRPE (I/O Request Packet Extension) . 10–37
10.12 KPB (Kernel Process Block) . 10–38
10.13 ORB (Object Rights Block) . 10–45
10.14 UCB (Unit Control Block) . 10–46
10.15 VLE (Vector List Extension) . 10–67

11 MACRO-32 Driver Macros

CALL_ABORTIO . 11–7
CALL_ALLOCBUF, CALL_ALLOCIRP . 11–8
CALL_ALLOCEMB . 11–9
CALL_ALTQUEPKT . 11–10
CALL_ALTREQCOM . 11–11
CALL_BROADCAST . 11–12
CALL_CANCELIO . 11–13
CALL_CARRIAGE . 11–14
CALL_CHKxxxACCES . 11–15
CALL_CLONE_UCB . 11–16
CALL_COPY_UCB . 11–17
CALL_CREDIT_UCB . 11–18
CALL_CVTLOGPHY . 11–19
CALL_CVT_DEVNAM . 11–20
CALL_DELATTNAST . 11–21
CALL_DELATTNASTP . 11–22
CALL_DELCTRLAST . 11–23
CALL_DELCTRLASTP . 11–24
CALL_DELETE_UCB . 11–25
CALL_DEVICEATTN, CALL_DEVICERR, CALL_DEVICTMO 11–26
CALL_DIAGBUFILL . 11–27
CALL_DRVDEALMEM . 11–28
CALL_FILSPT . 11–29
CALL_FINISHIO, CALL_FINISHIOC, CALL_FINISHIO_NOIOST 11–30
CALL_FLUSHATTNS . 11–31
CALL_FLUSHCTRLS . 11–32
CALL_GETBYTE . 11–33
CALL_INITBUFWIND . 11–34
CALL_INITIATE . 11–35

ix

CALL_INSERT_IRP . 11–36
CALL_IOLOCK . 11–37
CALL_IOLOCKR . 11–38
CALL_IOLOCKW . 11–39
CALL_IORSNWAIT . 11–40
CALL_IOUNLOCK . 11–41
CALL_LINK_UCB . 11–42
CALL_MAPVBLK . 11–43
CALL_MNTVER . 11–44
CALL_MNTVERSIO . 11–45
CALL_MODIFYLOCK, CALL_MODIFYLOCK_ERR 11–46
CALL_MOUNT_VER . 11–47
CALL_MOVFRUSER, CALL_MOVFRUSER2 . 11–48
CALL_MOVTOUSER, CALL_MOVTOUSER2 . 11–49
CALL_PARSDEVNAM . 11–50
CALL_POST, CALL_POST_NOCNT . 11–51
CALL_POST_IRP . 11–52
CALL_PTETOPFN . 11–53
CALL_QIOACPPKT . 11–54
CALL_QIODRVPKT . 11–55
CALL_QNXTSEG1 . 11–56
CALL_QXQPPKT . 11–57
CALL_READCHK, CALL_READCHKR . 11–58
CALL_READLOCK, CALL_READLOCK_ERR . 11–59
CALL_RELCHAN . 11–60
CALL_RELEASEMB . 11–61
CALL_REQCOM . 11–62
CALL_SEARCHDEV . 11–63
CALL_SEARCHINT . 11–64
CALL_SETATTNAST . 11–65
CALL_SETCTRLAST . 11–66
CALL_SEVER_UCB . 11–67
CALL_SIMREQCOM . 11–68
CALL_SNDEVMSG . 11–69
CALL_THREADCRB . 11–70
CALL_UNLOCK . 11–71
CALL_WRITECHK, CALL_WRITECHKR . 11–72
CALL_WRITELOCK, CALL_WRITELOCK_ERR 11–73
CALL_WRTMAILBOX . 11–74
CLASS_UNIT_INIT . 11–75
CPUDISP . 11–77
CRAM_ALLOC . 11–78
CRAM_CMD . 11–79
CRAM_DEALLOC . 11–81
CRAM_IO . 11–82
CRAM_QUEUE . 11–83
CRAM_WAIT . 11–84

x

DDTAB . 11–85
DEVICELOCK . 11–89
DPTAB . 11–91
DPT_STORE . 11–96
DPT_STORE_ISR . 11–99
$DRIVER_ALTSTART_ENTRY . 11–100
$DRIVER_CANCEL_ENTRY . 11–101
$DRIVER_CANCEL_SELECTIVE . 11–102
$DRIVER_CHANNEL_ASSIGN . 11–103
$DRIVER_CLONEDUCB . 11–104
DRIVER_CODE . 11–105
$DRIVER_CRTLINIT . 11–106
$DRIVER_DELIVER_ENTRY . 11–107
$DRIVER_ERRRTN . 11–108
$DRIVER_FDT_ENTRY . 11–109
$DRIVER_MNTVER . 11–110
$DRIVER_REGDUMP . 11–111
$DRIVER_START_ENTRY . 11–112
$DRIVER_UNITINIT . 11–113
DRIVER_DATA . 11–114
$FDTARGDEF . 11–115
FDT_ACT . 11–116
FDT_BUF . 11–118
FDT_INI . 11–119
FORK . 11–120
FORK_ROUTINE . 11–122
FORK_WAIT . 11–123
FORKLOCK . 11–125
IOFORK . 11–127
IFNORD, IFNOWRT, IFRD, IFWRT . 11–129
KP_ALLOCATE_KPB . 11–132
KP_DEALLOCATE_KPB . 11–133
KP_END . 11–134
KP_RESTART . 11–135
KP_REQCOM . 11–136
KP_STALL_FORK, KP_STALL_IOFORK . 11–137
KP_STALL_FORK_WAIT . 11–138
KP_STALL_GENERAL . 11–139
KP_STALL_REQCHAN . 11–140
KP_STALL_WFIKPCH, KP_STALL_WFIRLCH . 11–141
KP_START . 11–142
KP_SWITCH_TO_KP_STACK . 11–143
LOCK . 11–144
RELCHAN . 11–146
REQCHAN . 11–147
REQCOM . 11–149
REQPCHAN . 11–150

xi

SYSDISP . 11–151
TBI_ALL . 11–152
TBI_DATA_64 . 11–153
TBI_SINGLE . 11–154
TBI_SINGLE_64 . 11–155
TIMEDWAIT . 11–156
WFIKPCH, WFIRLCH . 11–159

Index

Examples

3–1 Simple Start I/O Routine . 3–17
3–2 Simple Start I/O Routine That Uses the Kernel Process Mechanism

. 3–18
3–3 Expansion of the KP_STALL_WFIKPCH Macro 3–20

Figures

3–1 Kernel Process Private Stack . 3–12
3–2 Driver Kernel Process Startup . 3–19
3–3 Device Interrupt Resumes Driver Kernel Process 3–22
3–4 Fork Interrupt Resumes Driver Kernel Process 3–24
10–1 I/O Database . 10–3
10–2 Composition of Extended Unit Control Blocks 10–48

Tables

2–1 OpenVMS Macros and System Routines That Manage I/O Mailbox
Operations . 2–4

2–2 Mailbox Command Indices Defined by $CRAMDEF 2–6
3–1 OpenVMS VAX Macros and System Routines That Suspend Driver

Execution . 3–1
3–2 Macros That Suspend OpenVMS Alpha Driver Execution 3–2
3–3 System Routines That Suspend OpenVMS Alpha Driver Execution . . . 3–3
3–4 System Routines and Macros That Create and Manage Kernel

Processes . 3–13
3–5 Comparison of Simple Fork Process and Kernel Process Suspension

Macros . 3–15
6–1 OpenVMS Alpha Upper-Level FDT Action Routines 6–7
6–2 FDT Completion Routines and Macros . 6–11
6–3 System-Supplied FDT Support Routines . 6–12
6–4 Replacement Macros for JSB System Routines 6–14
6–5 New, Changed, and Unsupported OpenVMS Driver Macros 6–17
6–6 New, Changed, and Unsupported OpenVMS System Routines 6–22
7–1 Fork Routine End Instruction . 7–6
7–2 Registers Scratched in Caller’s Fork Thread . 7–7
7–3 Fork Routine Entry Points . 7–8

xii

7–4 Obsolete Data Structure Cells . 7–9
9–1 New, Changed, and Unsupported OpenVMS System Routines 9–1
9–2 Kernel Process Stall Jacket Routines and Scheduling Stall

Routines . 9–65
10–1 Contents of Adapter Control Block . 10–5
10–2 Contents of Bus Array . 10–9
10–3 Contents of Bus Array . 10–10
10–4 Contents of Channel Control Block . 10–11
10–5 Contents of Controller Register Access Mailbox 10–12
10–6 Contents of Channel Request Block . 10–16
10–7 Contents of Interrupt Transfer Vector Block (VEC) 10–19
10–8 Contents of Device Data Block . 10–19
10–9 Contents of Driver Dispatch Table . 10–21
10–10 Contents of Driver Prologue Table . 10–24
10–11 Contents of Interrupt Dispatch Block . 10–29
10–12 Contents of I/O Request Packet (IRP) . 10–32
10–13 Contents of I/O Request Packet Extension (IRPE) 10–37
10–14 Contents of Kernel Process Block (KPB) . 10–39
10–15 Contents of KPB Debug Area . 10–45
10–16 Contents of Object Rights Block . 10–45
10–17 UCB Extensions and Sizes Defined in $UCBDEF 10–47
10–18 Contents of Unit Control Block . 10–49
10–19 Contents of UCB Error Log Extension . 10–59
10–20 Contents of UCB Local Tape Extension . 10–60
10–21 Contents of UCB Local Disk Extension . 10–60
10–22 Contents of UCB Terminal Extension . 10–61
10–23 Contents of the Vector List Extension . 10–68
11–1 New, Changed, and Unsupported OpenVMS Driver Macros 11–1

xiii

Preface

This manual describes how to convert an OpenVMS VAX device driver to an
OpenVMS Alpha device driver. It explains how you must change OpenVMS VAX
driver code to prepare the driver to be compiled, linked, loaded, and run as an
OpenVMS Alpha device driver. This manual identifies specific changes that you
must make to driver routines and tables, and indicates how OpenVMS VAX data
structures, macros, and executive routines upon which drivers rely have been
modified for the OpenVMS Alpha operating system.

Intended Audience
Creating an OpenVMS Alpha Device Driver from an OpenVMS VAX Device Driver
is intended for software engineers who must prepare an OpenVMS VAX device
driver to run on the OpenVMS Alpha operating system.

This manual assumes that its reader is familiar with the components of
OpenVMS VAX device drivers. It also relies on a familiarity with the software
interfaces within the OpenVMS operating system that support device drivers.

Document Structure
This manual contains the following sections:

• Chapter 1 presents an overview of OpenVMS Alpha device driver interfaces.

• Chapter 2 describes how to access device interface registers using hardware
I/O mailboxes by means of the controller register access mailbox (CRAM)
structure defined by the OpenVMS Alpha operating system.

• Chapter 3 discusses the suspension mechanisms OpenVMS Alpha device
drivers can use, including simple fork semantics and the OpenVMS kernel
process services.

• Chapter 4 describes how you request and allocate a counted resource, such as
a set of map registers.

• Chapter 5 focuses on the special synchronization needs of OpenVMS Alpha
device drivers.

• Chapter 6 contains basic guidelines for converting an OpenVMS VAX device
driver to an OpenVMS Alpha device driver.

• Chapter 7 provides tips for converting complex or unusual drivers.

• Chapter 8 provides specific information about how each driver entry point is
defined and accessed in an OpenVMS Alpha driver.

• Chapter 9 includes OpenVMS system routines that support OpenVMS Alpha
drivers.

• Chapter 10 describes the data structures in the I/O database.

xv

• Chapter 11 documents the OpenVMS macros that have been changed or
augmented to support OpenVMS Alpha drivers. It also introduces new
macros these drivers may use.

Related Documents
Creating an OpenVMS Alpha Device Driver from an OpenVMS VAX Device Driver
focuses on the changes that must be made to an existing OpenVMS VAX device
driver to produce an equivalent OpenVMS Alpha device driver.

For information about writing new OpenVMS Alpha device drivers, refer to
Writing OpenVMS Alpha Device Drivers in C.

Because Creating an OpenVMS Alpha Device Driver from an OpenVMS VAX
Device Driver only addresses the porting to OpenVMS Alpha of VAX MACRO
coding practices that are typically found in device drivers, readers who need
additional information on porting MACRO code, or a detailed description of the
MACRO-32 compiler for OpenVMS Alpha, should see Porting VAX MACRO Code
to OpenVMS Alpha.

Several manuals are available that describe the internals of the OpenVMS Alpha
operating system and the processes for investigating the types of system failures
caused by device drivers. These manuals include:

• OpenVMS Alpha System Dump Analyzer Utility Manual

• OpenVMS Delta/XDelta Debugger Manual

• OpenVMS for Alpha Platforms: Internals and Data Structures

For additional information on the Open Systems Software Group (OSSG)
products and services, access the Digital OpenVMS World Wide Web site. Use the
following URL:

http://www.openvms.digital.com

Reader’s Comments
Digital welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@zko.mts.dec.com

Fax 603 881-0120, Attention: OSSG Documentation, ZKO3-4/U08

Mail OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

xvi

Telephone and Direct Mail Orders

DTN: 264−4446

approved distributor

Fax: 603−884−3960

800−267−6215

U.S. Software Supply Business

809−781−0505

Digital Equipment Corporation

Digital Equipment of Canada, Ltd.
Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

8 Cotton Road

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Nashua, NH 03063−1260

Digital Equipment Caribbean, Inc.

DECdirect

Puerto Rico

800−DIGITAL

3 Digital Plaza, 1st Street, Suite 200

800−344−4825

International

P.O. Box 11038
Metro Office Park

Location

Internal Orders

San Juan, Puerto Rico 00910−2138

603−884−4446

Write

Fax: 613−592−1946

Fax

Canada

Call

Fax: 809−749−8300

Local Digital subsidiary or

U.S.A.

ZK−7654A−GE

Fax: 800−234−2298

Conventions
The name of the OpenVMS AXP operating system has been changed to the
OpenVMS Alpha operating system. Any references to OpenVMS AXP or AXP are
synonymous with OpenVMS Alpha or Alpha.

In this manual, every use of DECwindows and DECwindows Motif refers to
DECwindows Motif for OpenVMS software.

The following conventions are also in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x or
GOLD x

A sequence such as PF1 x or GOLD x indicates that you must
first press and release the key labeled PF1 or GOLD and then
press and release another key or a pointing device button.

GOLD key sequences can also have a slash (/), dash (–), or
underscore (_) as a delimiter in EVE commands.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

xvii

. . . Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

[] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

{ } In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed.

text style This text style represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

This style is also used to show user input in Bookreader
versions of the manual.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where device-name contains up to five alphanumeric
characters).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace type Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xviii

1
Introduction

OpenVMS Alpha Version 6.1 introduced formal support for user-written device
drivers and a new device driver interface known as the Step 2 driver interface.
If you have an existing OpenVMS VAX device driver that you want to run on
an Alpha system, and you have not made the changes required for OpenVMS
Alpha Version 6.1, you must make the driver interface changes described in this
manual.

Note

For OpenVMS Alpha releases prior to OpenVMS Alpha Version 7.1,
OpenVMS Alpha device drivers were referred to as Step 2 drivers. For
OpenVMS Alpha Version 7.1—unless Step 2 is explicitly required in
driver code—references to these drivers are synonymous with OpenVMS
Alpha drivers.

1.1 Overview of OpenVMS Alpha Driver Changes
OpenVMS Alpha device drivers differ from OpenVMS VAX device drivers in the
following ways:

• You must identify OpenVMS Alpha device drivers as Step 2 drivers. See
Chapter 6.

• You must explicitly identify driver code and data by using new macros. See
Section 6.1.

• An OpenVMS Alpha device driver must use multiprocessing synchronization
mechanisms, regardless of whether it will operate in an OpenVMS Alpha
multiprocessing environment. See Section 5.1.

• An OpenVMS Alpha device driver should access device control and status
registers (CSRs) using the operating system routines described in Chapter 2.

• You must examine existing driver suspension mechanisms (such as fork or
fork and wait) to determine whether you need to replace them with the new
kernel process services or with the new simple fork mechanism. This decision
is made based on whether a driver routine relies on context from a previously
called routine on the stack. See Chapter 3.

• The OpenVMS Alpha operating system, unlike the OpenVMS VAX operating
system, does not manage map registers within fields of the Adapter Control
Block (ADP). Rather, it manages map register allocation in the more generic
manner described in Chapter 4.

Introduction 1–1

Introduction
1.1 Overview of OpenVMS Alpha Driver Changes

• To produce the object file for an OpenVMS Alpha device driver, you must
compile the source module or modules with the MACRO-32 compiler for
OpenVMS Alpha. The compiler relies on the placement of entry point
directives for JSB entry points. It also identifies, where possible, coding
practices that are illegal on OpenVMS Alpha systems (such as coroutine calls
and return to caller’s caller). See Chapter 6.

• You must declare the entry points of the controller and unit initialization
routines using arguments to the DPTAB macro. See Section 6.3.2.

• You must declare the entry point of any interrupt service routine using the
new DPT_STORE_ISR macro. See Section 6.4.

• In some cases, changes to driver macros and system routines may require
changes to driver code.

• Data structures have been greatly overhauled. Fields have been deleted,
expanded, and added. Many field aliases have been removed. If your driver
uses fields that have been removed from the unit control block (UCB) for
OpenVMS Alpha, Digital recommends using the $DEFINI, $DEF, $DEFEND,
and associated macros to create the needed fields in a UCB extension.

• OpenVMS Alpha drivers are loadable executive images and loaded by the
executive loader, which affects how drivers are linked and loaded.

• The driver-loading procedure requires driver controller and unit initialization
routines to return a status value in R0. See Section 6.8.

• FDT routines cannot access the $QIO function-dependent parameters by
using AP offsets. Instead, you must use the new IRP$L_QIO_Pn cells.

• Drivers must not use floating-point instructions. See Section 6.19 for a full
explanation.

• OpenVMS Alpha drivers require standard call interfaces for the following
driver-supplied routines:

Cancel I/O routine

Cancel selective routine

Channel assign routine

Cloned UCB routine

Controller initialization routine

Function decision table (FDT) routines

Interrupt service routine

Mount verification routine

Register dumping routine

Unit delivery routine

Unit initialization routine

• Standard call interfaces are optional for the following driver-supplied
routines:

Alternate start I/O routine

Start I/O routine

1–2 Introduction

Introduction
1.1 Overview of OpenVMS Alpha Driver Changes

Driver fork routines

• Additional OpenVMS Alpha driver changes include the following:

Function decision table (FDT) processing does not rely on the RET under
JSB mechanism.

The layout of the FDT is significantly different.

Standard call interfaces are available for most OpenVMS support
routines.

A small number of OpenVMS support routines with JSB interfaces are no
longer available.

For detailed information about these changes, see Chapter 6.

Special guidelines apply to terminal port drivers (see Section 6.17) and drivers for
devices with programmable interrupt vectors (see Section 6.18).

1.2 Overview of OpenVMS VAX and OpenVMS Alpha Driver
Similarities

OpenVMS Alpha drivers are similar to OpenVMS VAX drivers in the following
ways:

• The overall structure of a device driver is unchanged.

• JSB interfaces continue to be available for most OpenVMS support routines
used by drivers.

• Although call interfaces are required for many routines, you can continue
to use JSB interfaces for the start I/O to REQCOM code path, OpenVMS
support routines, and internal driver routines.

1.3 OpenVMS Alpha Driver Routine Naming Conventions
Some OpenVMS Alpha driver routine names are different from the OpenVMS
VAX routine names. If a routine interface changed because of the Alpha
architecture, the routine name changed. OpenVMS Alpha also includes new
call-based system routines. The following naming conventions apply to the new
OpenVMS Alpha call-based system routines:

• The call-based system routine has a different name than its JSB-based
counterpart. If x$y is the name of the JSB-based system routine, its call-
based counterpart is named x_STD$y. For example, EXE_STD$FINISHIO is
the call-based routine that replaces the JSB-based EXE$FINISHIO.

• If a JSB-replacement macro exists for x$y, it is named CALL_Y.

For example, you can replace a JSB to EXE$FINISHIO with the CALL_
FINISHIO macro. CALL_FINISHIO issues a standard call to EXE_
STD$FINISHIO after loading the standard call argument registers from
the general registers used in the traditional JSB to EXE$FINISHIO.

• When using the call-based system routine directly, note that its interface may
differ from the traditional JSB-based routine.

Input parameters are usually listed first, specified in the order that
corresponds to the register order of the JSB interface input parameters.

Output parameters are usually listed last, specified in the order that
corresponds to the register order of the JSB interface output parameters.

Introduction 1–3

Introduction
1.3 OpenVMS Alpha Driver Routine Naming Conventions

If a register parameter is both an input and an output parameter to the
JSB interface, then it contributes both an input parameter and an output
parameter to the new call-based interface.

These conventions serve only as guidelines. In some cases, parameters are
dropped or the register order rule is waived if an alternate parameter ordering is
more natural.

1.4 Converting OpenVMS VAX Drivers Written in BLISS
This manual focuses on converting existing OpenVMS VAX device drivers, written
in VAX MACRO, to OpenVMS Alpha device drivers. However, the call interfaces
described are equally available to OpenVMS VAX drivers written in BLISS. To
convert an OpenVMS VAX BLISS driver, remove the JSB linkages from routine
declarations and verify the specified parameter order for any given routine
against that listed in the system routines chapter.

Existing BLISS drivers are likely to have an associated VAX MACRO module that
contains the DPTAB, DDTAB, and FUNCTAB declarations, and some routines
that were written in VAX MACRO. You must convert these VAX MACRO modules
as described in this manual. Alternatively, you can now use new BLISS macros
that allow you to code the DPT, DDT, and FDT declarations in BLISS. For more
information about these macros, see the macros chapter.

1.5 Writing OpenVMS Alpha Drivers in C
OpenVMS Alpha provides the support necessary to write a device driver in the C
programming language. For information about writing OpenVMS Alpha device
drivers in C or another high-level language, see the Writing OpenVMS Alpha
Device Drivers in C manual.

1.6 Using Common Source Code for OpenVMS VAX and OpenVMS
Alpha Drivers

The OpenVMS Alpha driver interface has increased the differences between
OpenVMS Alpha and OpenVMS VAX device drivers. A key difference is that
while OpenVMS Alpha drivers can be written in the C programming language,
there is no formal support for writing OpenVMS VAX device drivers in C. For
example, OpenVMS VAX does not provide .h files for internal OpenVMS data
structures.

Device driver source files written in MACRO-32 or BLISS can be kept common
between OpenVMS Alpha and OpenVMS VAX through the use of conditional
compilation and user-written macros. The advisability of this approach depends
greatly on the nature of the individual driver. It is likely that in future versions
of OpenVMS Alpha, the I/O subsystem will continue to evolve in directions that
will have an impact on device drivers. This could increase the differences between
OpenVMS Alpha and OpenVMS VAX device drivers and add more complexity
to common driver sources. For this reason, a fully common driver source file
approach might not be advisable for the long term. However, depending on the
individual driver, it may be advisable to divide the driver into a common module
and an architecture-specific one. For example, if you were writing a device driver
that does disk compression, then the compression algorithm could be isolated
into an architecture independent module. You could also avoid operating-system-
specific data structures in such common modules with the intent of having
some common modules across various types of operating systems; for example,
OpenVMS, Windows NT, and OSF.

1–4 Introduction

2
Accessing Device Interface Registers

A hardware interface register is the place where software interfaces with a
hardware component. Every hardware component on an OpenVMS Alpha system,
including CPU and memory, has a set of interface registers.

The portion of a processor’s physical address space through which it accesses
hardware interface registers is known as its I/O space.

In the VAX architecture, a hardware implementation usually defines a physical
address boundary between memory space and I/O space. I/O space physical
addresses are mapped into the processors’ virtual address space and are accessed
using VAX load and store instructions (for example, MOV, BIS, and others).

For Alpha systems, there are no rules governing how hardware implementations
allow access to I/O space. Some Alpha platforms allow VAX-style I/O space
access. Other platforms provide access to I/O space through hardware I/O
mailboxes. Some platforms implement both styles of I/O register access.

The challenge presented by the Alpha architecture is to create software
abstractions that hide the hardware mechanisms for I/O space access from
the programmer. These software abstractions contribute to driver portability.
The Alpha architecture also defines no byte or word length load and store
instructions. Because some I/O buses and adapters require byte or word
register access granularity for correct adapter operation, Alpha system hardware
designers invented the following mechanisms that provide byte and word access
granularity for I/O adapter register access:

• Sparse space addressing, which means the device address space is
expanded by a factor of two to allow for inclusion of a byte mask in the write
data.

• Swizzle space addressing, which means where upper order bits in the
processor physical address map to an I/O bus address, while lower order
bits are used to implement I/O bus byte enable signals. This causes a large
amount of processor physical address space to represent the I/O bus address
space.

• Hardware I/O mailboxes, which are 64-byte, naturally-aligned, physically-
contiguous data structures (defined by the Alpha architecture) built in system
memory and accessed by special I/O subsystem hardware. Drivers can use
hardware I/O mailboxes to deliver commands and write data to the interface
registers of a device residing on an I/O bus.

A significant part of I/O bus support in the OpenVMS Alpha operating system
is to provide standard ways to access I/O device registers. OpenVMS Alpha
provides a set of data structures and routines that can be used for register access
on any system, regardless of the underlying I/O hardware. Bus support provides
two ways. One way is the CRAM data structure. The other way is the platform
independent access routines IOC$READ_IO and IOC$WRITE_IO.

Accessing Device Interface Registers 2–1

Accessing Device Interface Registers

Note

In register access discussions, the term control and status register
(CSR) is sometimes used instead of the generic term interface register.
In this manual, the terms are equivalent.

2.1 Mapping I/O Device Registers
Unlike OpenVMS VAX systems (where the operating system maps registers)
before you access device registers on OpenVMS Alpha systems, you must map the
registers into the processor’s virtual address space. OpenVMS Alpha provides the
IOC$MAP_IO routine, which allows a caller to request mapping based on device
characteristics without regard to the platform hardware implementation of I/O
space access.

Note

Register mapping is not required on XMI devices on Laser, and
IOC$READ_IO and IOC$WRITE_IO are not supported. If you are
porting an OpenVMS VAX XMI device driver to an OpenVMS Alpha
system, you must use CRAMs.

Once your device is mapped, you can access it using a CRAM data structure and
associated routines, or the IOC$READ_IO and IOC$WRITE_IO routines.

2.2 Platform Independent I/O Bus Mapping
The platform independent I/O bus mapping routine is called IOC$MAP_IO. This
routine maps I/O bus physical address space into an address region accessible
by the processor. The caller of this routine can express the mapping request in
terms of the bus address space without regard to address swizzling, dense space,
sparse space, and so on.

IOC$MAP_IO is supported on PCI, EISA, Turbochannel, and Futurebus+. It is
not supported on XMI.

The following new platform independent mapping and access routines exist:

• IOC$MAP_IO

• IOC$READ_IO

• IOC$WRITE_IO

• IOC$UNMAP_IO

The IOC$MAP_IO routine maps I/O bus physical address space into an address
region accessible by the processor. The IOC$UNMAP_IO routine is provided to
unmap a previously mapped space, returning the IOHANDLE and the PTEs to
the system. IOC$READ_IO and IOC$WRITE_IO are platform independent I/O
access routines that provide a platform independent way to read and write I/O
space without the overhead of CRAM allocation and initialization. These routines
require that the I/O space that is to be accessed have been previously mapped by
a call to IOC$MAP_IO.

2–2 Accessing Device Interface Registers

Accessing Device Interface Registers
2.2 Platform Independent I/O Bus Mapping

2.2.1 Using the IOC$MAP_IO Routine
Drivers that need to use the IOC$MAP_IO routine must call that routine under
specific spinlock restrictions. The driver cannot be holding any spinlocks that
prohibit IOC$MAP_IO from taking out the MMG spinlock.

Most drivers want to call IOC$MAP_IO immediately after they are loaded.
Traditionally, the correct place for a driver to call IOC$MAP_IO would be its
controller or unit initialization routine. However, because the controller and unit
initialization routines are called at IPL$_POWER, IOC$MAP_IO cannot take out
the MMG spinlock in this environment.

The new driver support feature for calling IOC$MAP_IO has two elements. First,
the driver may request preallocated space for any number of I/O Handles (the
output of IOC$MAP_IO). Second, the driver may name a routine that will be
called in an environment suitable for calls to IOC$MAP_IO.

Drivers can specify the number of I/O Handles they need to store using the
IOHANDLES parameter on the DPTAB macro. The default parameter value is
zero. The maximum permitted value is 65,535.

When the IOHANDLES parameter is zero or one, the driver loader does NOT
allocate any additional space for I/O Handles. For these two values, the driver is
expected to store the I/O Handle it needs directly in the IDB$Q_CSR field.

When the IOHANDLES parameter is greater than one, an MCJ data structure
is allocated. The base address of the MCJ is stored in the low-order longword
of IDB$Q_CSR and the IDB$V_MCJ flag is set in IDB$L_FLAGS. MCJ$Q_
ENTRIES is the base address in the MCJ of an array of quadword I/O Handle
slots. The number of slots in the array is exactly the number specified by the
IOHANDLES DPTAB parameter.

Drivers specify a CSR Mapping routine using the CSR_MAPPING parameter
on the DDTAB macro. The driver loading procedure calls the CSR_MAPPING
routine holding the IOLOCK8 spinlock before it calls the controller or unit
initialization routines. In this context, the driver can make all its needed calls to
IOC$MAP_IO and other bus support routines with similar calling requirements.

Note

The CSR mapping routine is not called on power fail recovery.

2.2.2 Platform Independent I/O Access Routines
The platform independent I/O access routines are ioc$read_io and ioc$write_io.
These provide a platform independent way to read and write I/O space without
the overhead of CRAM allocation and initialization. These routines require that
the I/O space that is to be accessed has been previously mapped by a call to
ioc$map_io.

With the new mapping and access routines, we have the following basic model of
I/O bus access:

• Map the device into the processor address space: Do the mapping yourself
based on knowledge of a specific platform and bus OR use the new routine
IOC$MAP_IO.

• Access the device: Do it yourself based on platform details, use CRAMS, or
using the new platform independent access routines.

Accessing Device Interface Registers 2–3

Accessing Device Interface Registers
2.2 Platform Independent I/O Bus Mapping

IOC$READ_IO and IOC$WRITE_IO are supported on PCI, EISA, Turbochannel,
and Futurebus+. These routines are not supported on XMI.

2.3 Accessing Registers Directly
Registers that are mapped into the processors’ virtual address space and
accessed with load and store instructions are said to be accessed directly. This
is similar to VAX-style I/O register access. On an Alpha system, registers
that are implemented on hardware directly connected to the processor-memory
interconnect are usually accessed in this manner. Sparse space and swizzle space
register access are examples of direct I/O device register access.

2.4 Accessing Registers Using CRAMS
Hardware I/O mailboxes exist only on DEC4000 Series and DEC7000/DEC10000
Series computers. The CRAM data structure and associated routines and
IOC$READIO and IOC$WRITE_IO hide the underlying hardware mechanism
(swizzle space, sparse space, or hardware I/O mailbox) from the programmer.

In addition to the CRAM data structure, OpenVMS Alpha provides a set of
system routines and corresponding macros that, on behalf of a device driver,
allocate and initialize CRAMs. Table 2–1 lists these routines and macros. For
more information about each system routine and macro, see the appropriate
chapter in this manual.

Table 2–1 OpenVMS Macros and System Routines That Manage I/O Mailbox Operations

Routine Macro Description

IOC$ALLOCATE_
CRAM

DPTAB idb_crams,
ucb_crams
CRAM_ALLOC

Allocates and initializes a CRAM

IOC$CRAM_CMD CRAM_CMD Generates values for the command, mask, and
remote I/O interconnect address (RBADR) fields of a
CRAM

IOC$CRAM_IO CRAM_IO Issues the I/O space transaction defined by the
CRAM.

IOC$DEALLOCATE_
CRAM

CRAM_DEALLOC Deallocates a CRAM

2.5 Allocating CRAMs
A driver can use the following basic CRAM allocation strategies:

• Allocate a CRAM for every register the driver ever needs to access.

• Allocate a CRAM and reuse it.

• A driver can preallocate CRAMs at driver loading, or in a driver controller or
unit initialization routine, linking them to a list connected to a UCB, IDB, or
some driver-specific structure. This strategy is optimal for drivers that use
CRAMs in performance-sensitive code.

• A driver can reuse and rebuild CRAMs as needed. Although fewer CRAMs
suffice for the purposes of such a driver, this strategy is best suited for access
to registers that are not in a performance sensitive code path. drivers that
are less performance-sensitive.

2–4 Accessing Device Interface Registers

Accessing Device Interface Registers
2.5 Allocating CRAMs

Even though a driver can reuse CRAMs, a driver should not reuse a CRAM until
it has checked the return status from IOC$CRAM_IO.

2.5.1 Preallocating CRAMs to a Device Unit or Device Controller
An OpenVMS Alpha device driver can preallocate CRAMs and store them
in a linked list associated with some data structure. It accomplishes this
by repeatedly calling IOC$ALLOCATE_CRAM and inserting the address of
the CRAM returned by this routine in the CRAM list. Or, CRAMS can be
automatically preloaded by driver loading as described here.

Drivers often preallocate CRAMs to perform I/O operations on device unit
registers or device controller registers. To facilitate the allocation of CRAMs for
these purposes, the OpenVMS Alpha driver loading procedure examines two fields
in the DPT, DPT$W_IDB_CRAMS and DPT$W_UCB_CRAMS, for an indication
of how many CRAMs the driver plans on using. Although the default value of
both fields is zero, you can insert the number of CRAMs a driver requires to
address device unit registers and device controller registers by specifying the
idb_crams and ucb_crams arguments in the driver’s DPTAB macro invocation.
IDB CRAMs are available for use by a controller or unit initialization routine;
UCB CRAMs are available for use by a unit initialization routine.

The driver loading procedure calls IOC$ALLOCATE_CRAM for each requested
CRAM and inserts it in either of two singly linked lists: UCB$PS_CRAM as the
header of a list of device unit CRAMs, and IDB$PS_CRAM as the header of a list
of device controller CRAMs.

2.5.2 Calling IOC$ALLOCATE_CRAM to Obtain a CRAM
To allocate a single CRAM, a driver makes a standard call to IOC$ALLOCATE_
CRAM, specifying a location to receive the address of the allocated CRAM and,
optionally, the addresses of the IDB, UCB, or ADP.

IOC$ALLOCATE_CRAM allocates the CRAM and initializes it as follows:

CRAM$W_SIZE Size of CRAM structure in bytes

CRAM$B_TYPE Structure type (DYN$C_MISC)

CRAM$B_SUBTYPE Structure type (DYN$C_CRAM)

CRAM$Q_RBADR Address of remote I/O interconnect location (from IDB$Q_
CSR)

CRAM$B_HOSE Remote I/O interconnect number (from ADP$B_HOSE_
NUM)

CRAM$L_IDB IDB address

CRAM$L_UCB UCB address

Normally, an OpenVMS Alpha device driver can use the DPTAB macro to allocate
CRAMs and associate them with a UCB or IDB; drivers that need to associate
CRAMs with other structures may elect to allocate them from within a suitable
fork thread.

IOC$ALLOCATE_CRAM cannot be called from above IPL$_SYNCH. Therefore,
controller and unit initialization routines (which are called by the driver-loading
procedure at IPL$_POWER) cannot allocate CRAMs. For CRAMS needed in or
managed by controller or unit initialization routines, Digital recommends the
DPTAB parameters as the means for CRAM allocation.

Accessing Device Interface Registers 2–5

Accessing Device Interface Registers
2.6 Constructing a Mailbox Command Within a CRAM

2.6 Constructing a Mailbox Command Within a CRAM
Once it has allocated CRAMs for its operations on device registers, an OpenVMS
Alpha device driver initializes each CRAM, so that it can use the CRAM in a
transaction to a device interface register.

A driver initializes a CRAM by issuing a standard call to IOC$CRAM_CMD,
specifying the cmd_index, byte_offset, and adp_ptr, and cram_ptr iohandle
arguments. IOC$CRAM_CMD uses the input parameters supplied in the call to
generate values for the command, mask, and I/O bus address fields of the CRAM
that are specific to the bus that is the target of the mailbox operation.

Use the cmd_index argument to indicate the size and type of the register
operation the mailbox describes. Although the $CRAMDEF macro (in
SYS$LIBRARY:LIB.MLB) defines the command indices listed in Table 2–2,
the actual commands supported under a given processor–I/O subsystem
configuration vary from configuration to configuration. (Your specification of
the adp argument allows IOC$CRAM_CMD to find the location of the command
table that corresponds to a given I/O interconnect.) If you specify a command
index that does not correspond to a supported command on the current system,
IOC$CRAM_CMD returns SS$_BADPARAM status.

Table 2–2 Mailbox Command Indices Defined by $CRAMDEF

Command Index Description

CRAMCMD$K_RDQUAD32 Quadword read in 32-bit space

CRAMCMD$K_RDLONG32 Longword read in 32-bit space

CRAMCMD$K_RDWORD32 Word read in 32-bit space

CRAMCMD$K_RDBYTE32 Byte read in 32-bit space

CRAMCMD$K_WTQUAD32 Quadword write in 32-bit space

CRAMCMD$K_WTLONG32 Longword write in 32-bit space

CRAMCMD$K_WTWORD32 Word write in 32-bit space

CRAMCMD$K_WTBYTE32 Byte write in 32-bit space

CRAMCMD$K_RDQUAD64 Quadword read in 64 bit space

CRAMCMD$K_RDLONG64 Longword read in 64 bit space

CRAMCMD$K_RDWORD64 Word read in 64 bit space

CRAMCMD$K_RDBYTE64 Byte read in 64 bit space

CRAMCMD$K_WTQUAD64 Quadword write in 64 bit space

CRAMCMD$K_WTLONG64 Longword write in 64 bit space

CRAMCMD$K_WTWORD64 Word write in 64 bit space

CRAMCMD$K_WTBYTE64 Byte write in 64 bit space

Use the byte_offset argument to specify the location of the device register that
is the object of the mailbox command. Include the cram argument to identify
the CRAM that contains the hardware I/O mailbox fields IOC$CRAM_CMD is to
initialize.

Before using the hardware I/O mailbox in a write transaction to a device interface
register, the driver must insert the data to be written to the register into
CRAM$Q_WDATA.

2–6 Accessing Device Interface Registers

Accessing Device Interface Registers
2.6 Constructing a Mailbox Command Within a CRAM

2.6.1 Register Data Byte Lane Alignment
The CRAM routines supplied by OpenVMS Alpha enforce a longword oriented
view of I/O adapter register space, which means that adapter register space is
viewed as if register bytes occupy a 32 bit data path, as follows:

Adapter Register space

31 24 23 16 15 8 7 0 offset

byte 3 byte 2 byte 1 byte 0 0
byte 7 byte 6 byte 5 byte 4 4

etc

Write example: To write a byte to register byte 2, specify IOC$CRAM_CMD
parameters as follows:

command_index = cramcmd$k_wtbyte32

byte_offset = 2
adp_address = adp address
cram_address = cram address

The data to be written must be positioned in bits 23:16 of the write data field
(CRAM$Q_WDATA).

Read example: To read a byte from register byte 2, specify IOC$CRAM_CMD
parameters as above except use cramcmd$k_rdbyte32 as the command_index.

The data from register byte 2 will be returned in bits 23:16 of the CRAM read
data field (CRAM$Q_RDATA).

The programmer must perform the proper byte lane alignment of data for register
writes. On register reads, the data is returned in its natural byte lane without
any shifting. Note that this way of looking at adapter register space maps
directly to the semantics of most I/O buses, but is distinctly diferent from VAX
behavior.

2.7 Initiating a Mailbox Transaction
An OpenVMS Alpha device driver initiates to a device register by issuing a
standard call to IOC$CRAM_IO.

2.8 I/O Device Register Access Summary
This chapter explains the difference between direct register access and mailbox
register access, and described the OpenVMS Alpha routines and data structures
that support register access. It should be noted again that the CRAM data
structures and routines exist for all platforms and buses, regardless of whether
or not the I/O subsystem hardware actually supports hardware mailboxes.
The CRAM should be viewed simply as a data structure that describes an
I/O register reference. The use of CRAM data structures and routines for I/O
register accesses contributes to driver portability, as most platform and bus
implementation differences can be hidden from the driver writer.

Accessing Device Interface Registers 2–7

3
Suspending Driver Execution

An OpenVMS VAX device driver can explicitly or indirectly cause itself to be
suspended by invoking a VAX MACRO macro or by calling one of the OpenVMS
system routines listed in Table 3–1. An OpenVMS driver fork process typically is
suspended to accomplish one of the following tasks:

• To wait to obtain a system resource, such as a controller channel

• To wait for a device interrupt or timeout

• To resume its execution at a lower interrupt priority level (IPL), that is, to
fork

Table 3–1 OpenVMS VAX Macros and System Routines That Suspend Driver Execution

Routine Macro Description

IOC$REQPCHANH,
IOC$REQPCHANL

REQPCHAN Requests a controller’s primary data channel

IOC$WFIKPCH,
IOC$WFIRLCH

WFIKPCH, WFIRLCH Suspends a driver fork thread and folds its context
into a fork block in anticipation of a device interrupt
or timeout

EXE$FORK,
EXE$IOFORK

FORK, IOFORK Creates a fork process

EXE$FORK_WAIT FORK_WAIT Inserts a fork block on the fork-and-wait queue

An OpenVMS VAX system routine accomplishes the suspension by removing
the fork routine address from 4(SP) and placing it (with the current contents of
R3 and R4) into the fork block. The system routine then returns to its caller’s
caller at the address provided at 8(SP). In compliance with the OpenVMS
calling standard, the MACRO-32 compiler for OpenVMS Alpha, like other Alpha
compilers, cannot allow such absolute control over the stack. A typical routine
written in VAX MACRO, and compiled for execution on an OpenVMS Alpha
system, begins with compiler-generated register saves and ends with register
restores. To ensure that saved registers and the state of the stack are restored,
a routine must execute this return code. Explicit control of the stack and the
caller’s caller form of return are not possible on OpenVMS Alpha systems.

Consequently, in creating an OpenVMS Alpha device driver, you must inspect the
occasions in which the driver uses the VAX MACRO macros and routines listed in
Table 3–1 to determine to which of the following categories they belong:

• Simple fork process

The driver and its fork thread share only the context currently preserved
across the suspension by the OpenVMS VAX routine or macro; namely, the
fork routine address and the contents of R3 and R4.

• Kernel process

Suspending Driver Execution 3–1

Suspending Driver Execution

The driver and its fork thread save and restore stack regions that might
contain routine return addresses. Typically such a driver executes subroutine
calls (by means of a JSB instruction), saves the return address in a data
structure, and calls an OpenVMS suspension routine. Drivers based on the
class/port structure generally must use the OpenVMS kernel process services.

The kernel process mechanism enables a system context thread of execution
to run on its own private stack. While a kernel process is stalled, it can
leave its execution state on the stack, such as nested stack frames and saved
registers. This ability to save execution state across a stall is the primary
motivation for kernel processes. It simplifies driver algorithms that are
naturally expressed as nested subroutine calls and that would otherwise
require complex state descriptions. See Section 3.2 for a discussion of the
OpenVMS kernel process mechanism.

3.1 Using the Simple Fork Process Mechanism
An OpenVMS Alpha driver uses the OpenVMS simple fork process mechanism
when it and its fork thread share only the context currently preserved across
the suspension by the OpenVMS VAX routine or macro; namely, the fork routine
address and the contents of R3 and R4. The caller of the OpenVMS suspension
routine and the fork routine must not share stack regions or store routine return
addresses in data structures.

To employ the simple fork process mechanism, an OpenVMS Alpha driver uses
the macros listed in Table 3–2. New parameters have been added to the FORK,
IOFORK, FORK_WAIT, WFIKPCH, and WFIRLCH macros to minimize the need
to make explicit calls to the Alpha system-specific suspension routines.

OpenVMS Alpha supports JSB-based fork routines as well as standard call-based
fork routines. The new ENVIRONMENT parameter specifies if the macro is
being invoked from within a JSB or CALL interface routine. The default value
of the environment parameter is JSB because this supports usage that is most
similar to OpenVMS VAX use of these macros. The remainder of Section 3.1
focuses on the differences between the OpenVMS simple fork mechanism and
the OpenVMS Alpha simple fork mechanism for the JSB environment. See
Section 7.4 for a discussion of the additional differences that apply when the
simple fork mechanism is used in a CALL environment.

Table 3–2 Macros That Suspend OpenVMS Alpha Driver Execution

OpenVMS VAX Macro OpenVMS Alpha Macro Function

FORK FORK [routine] [,continue]
[,environment=JSB]

Calls EXE$PRIMITIVE_FORK or
EXE_STD$PRIMITIVE_FORK to
create a simple fork process on the
current processor

FORK_WAIT FORK_WAIT [routine] [,continue]
[,environment=JSB]

Calls EXE$PRIMITIVE_FORK_
WAIT or EXE_STD$PRIMITIVE_
FORK_WAIT to insert a fork block
on the system fork-and-wait queue

(continued on next page)

3–2 Suspending Driver Execution

Suspending Driver Execution
3.1 Using the Simple Fork Process Mechanism

Table 3–2 (Cont.) Macros That Suspend OpenVMS Alpha Driver Execution

OpenVMS VAX Macro OpenVMS Alpha Macro Function

IOFORK IOFORK [routine] [,continue]
[,environment=JSB]

Disables timeouts from the
associated device and calls
EXE$PRIMITIVE_FORK or EXE_
STD$PRIMITIVE_FORK to create
a fork process

REQPCHAN [pri=LOW] REQCHAN [pri=LOW]
[,environment=JSB]

Calls IOC_STD$PRIMITIVE_
REQCHANH or IOC_
STD$PRIMITIVE_REQCHANL
to obtain a controller’s data channel

WFIKPCH excpt [,time=65536]
WFIRLCH excpt [,time=65536]

WFIKPCH excpt [,time=65536]
[,newipl][,environment=JSB]
WFIRLCH excpt [,time=65536]
[,newipl][,environment=JSB]

Calls IOC_STD$PRIMITIVE_
WFIKPCH or IOC_
STD$PRIMITIVE_WFIRLCH to
suspend a driver fork thread and
folds its context into a fork block in
anticipation of a device interrupt or
timeout

Table 3–3 lists the system routines that an OpenVMS Alpha driver uses to
suspend execution.

Table 3–3 System Routines That Suspend OpenVMS Alpha Driver Execution

OpenVMS VAX Routine OpenVMS Alpha Routine Function

EXE$FORK EXE$PRIMITIVE_FORK and
EXE_STD$PRIMITIVE_FORK

Creates a simple fork
process on the current
processor

EXE$FORK_WAIT EXE$PRIMITIVE_FORK_WAIT
and EXE_STD$PRIMITIVE_
FORK_WAIT

Inserts a fork block on the
system fork-and-wait queue

EXE$IOFORK EXE$PRIMITIVE_FORK and
EXE_STD$PRIMITIVE_FORK

Creates a simple fork
process on the local
processor

IOC$REQPCHANH
IOC$REQPCHANL

IOC_STD$PRIMITIVE_
REQCHANH
IOC_STD$PRIMITIVE_
REQCHANL

Obtains a controller’s data
channel

IOC$WFIKPCH
IOC$WFIRLCH

IOC_STD$PRIMITIVE_
WFIKPCH
IOC_STD$PRIMITIVE_
WFIRLCH

Suspends a driver fork
thread and folds its
context into a fork block
in anticipation of a device
interrupt or timeout

3.1.1 EXE_STD$PRIMITIVE_FORK, EXE_STD$PRIMITIVE_FORK_WAIT, and
Associated Macros

EXE$PRIMITIVE_FORK and EXE_STD$PRIMITIVE_FORK are the OpenVMS
Alpha counterpart to the OpenVMS VAX system routines EXE$FORK and
EXE$IOFORK. EXE_STD$PRIMITIVE_FORK_WAIT is the OpenVMS Alpha
counterpart to the OpenVMS VAX EXE$FORK_WAIT routine.

Suspending Driver Execution 3–3

Suspending Driver Execution
3.1 Using the Simple Fork Process Mechanism

Use of the simple fork process mechanism in an OpenVMS Alpha device
driver requires that you alter each instance of EXE$FORK, EXE$IOFORK,
or EXE$FORK_WAIT in driver code by:

• Replacing each explicit JSB to EXE$FORK with either an invocation
of the FORK macro or a JSB to EXE$PRIMITIVE_FORK. (Note that
EXE$PRIMITIVE_FORK requires different inputs than EXE$FORK.)

• Replacing each explicit JSB to EXE$IOFORK with either an invocation of the
IOFORK macro or with an instruction that clears UCB$V_TIM in UCB$L_
STS followed by a JSB to EXE$PRIMITIVE_FORK.

• Replacing each explicit JSB to EXE$FORK_WAIT with either an invocation
of the FORK_WAIT macro or a JSB to EXE$PRIMITIVE_FORK_WAIT.
(Note that EXE$PRIMITIVE_FORK_WAIT requires different inputs than
EXE$FORK_WAIT.)

For information about the calling conventions for EXE$PRIMITIVE_FORK and
EXE$PRIMITIVE_FORK_WAIT see the system routines chapter.

The OpenVMS Alpha versions of the FORK, IOFORK, and FORK_WAIT macros
have been designed to conceal many of the differences between the behavior of
the OpenVMS VAX and the OpenVMS Alpha routines for most device drivers.
The following sections provide some examples of how an OpenVMS Alpha device
driver may use these macros.

3.1.1.1 Common Usage of the FORK and IOFORK Macros
Drivers most commonly use the FORK and IOFORK macros in situations where
execution is to be resumed at the caller’s caller when the fork block is queued,
and where the fork routine’s entry point immediately follows the invocation of
the macro. A FORK or IOFORK macro invocation of this type needs no change to
work properly in an OpenVMS Alpha device driver.

Consider the following OpenVMS driver source:

r: code_a
iofork
code_b
rsb

It has the following expansion on an OpenVMS VAX system:1

r: code_a
JSB G^EXE$IOFORK
code_b
rsb

The effect is that the first instruction of code_b is queued as a fork routine and
that EXE$IOFORK returns directly to the caller of routine r.

It has the following expansion on an OpenVMS Alpha system:

r: code_a
BICL #UCBM_TIM,UCBL_STS(R5)
MOVAB F,FKB$L_FPC(R5)
JSB G^EXE$PRIMITIVE_FORK
RSB

F: .JSB_ENTRY INPUT=<R3,R4,R5>,SCRATCH=<R0,R1,R2,R3,R4>
code_b
rsb

1 Original source is shown in lowercase and the results of macro expansion are shown in
uppercase.

3–4 Suspending Driver Execution

Suspending Driver Execution
3.1 Using the Simple Fork Process Mechanism

The effect is the same as the OpenVMS VAX expansion. The fork routine is
defined to begin with the first instruction of code_b; F is the generated label for
the fork routine. Control is returned to the caller of r by means of the explicit
RSB that is generated after the JSB to EXE$PRIMITIVE_FORK.

Note

On OpenVMS Alpha systems, any branch between code_a and code_b
must obey the restrictions of cross-routine branches, as described in
Chapter 6. Meeting these restrictions may require source changes. For
more information, see Porting VAX MACRO Code to OpenVMS Alpha.

3.1.1.2 Forks with Nonstandard Returns and Nonstandard Fork Routine Addresses
Some direct calls to EXE$FORK or EXE$IOFORK require either a nonstandard
continue label, nonstandard fork routine address, or both.

The OpenVMS Alpha versions of the FORK and IOFORK macros provide two
optional arguments that allow drivers to specify these items and avoid a direct
call to EXE$PRIMITIVE_FORK:

• The continue argument specifies the label where execution continues after
the fork block has been inserted on the fork queue. If you omit this argument,
control returns to the caller of the routine that invoked the FORK or IOFORK
macro.

• The routine argument specifies the name of the routine to be executed in
fork context. If you omit this argument, the macro assumes that the fork
routine immediately follows the FORK or IOFORK macro invocation.

Example of Nonstandard Return from Fork Operation
In the following example, the OpenVMS VAX driver that is calling EXE$IOFORK
wants to queue the fork thread and return control back to itself (that is, to label l
in routine r) and not the caller’s caller:

r: code_a1
l: code_a2

pushab l
jsb g^exe$iofork
code_b
rsb

In an OpenVMS Alpha device driver, this code would be rendered as:

r: code_a1
l: code_a2

iofork continue=l
code_b
rsb

The expansion of this IOFORK macro invocation on an OpenVMS Alpha system
would be as follows:

Suspending Driver Execution 3–5

Suspending Driver Execution
3.1 Using the Simple Fork Process Mechanism

r: code_a1
l: code_a2

BICL #UCBM_TIM,UCBL_STS(R5)
MOVAB F,FKB$L_FPC(R5)
JSB G^EXE$PRIMITIVE_FORK
BRW l

F: .JSB_ENTRY INPUT=<R3,R4,R5>,SCRATCH=<R0,R1,R2,R3,R4>
code_b
rsb

Example of Nonstandard Fork Routine Address
The following code excerpt from an OpenVMS VAX device driver illustrates the
case where the fork routine (that is, fr) is not located in the source immediately
after the call to EXE$IOFORK:

r: code_a1
pushab fr
jmp g^exe$iofork
.
.
.

fr: code_b
rsb

In an OpenVMS Alpha device driver, this code would be as follows:

r: code_a1
iofork routine=fr
.
.
.

fr: fork_routine
code_b
rsb

Note that, because the IOFORK macro cannot automatically add the entry point
directive at the start of a fork routine that may be located anywhere, you must
manually add the new FORK_ROUTINE macro to the source.

The expansion of the FORK_ROUTINE macro would be as follows:

.JSB_ENTRY INPUT=<R3,R4,R5>,SCRATCH=<R0,R1,R2,R3,R4>

The expansion of the IOFORK macro invocation on an OpenVMS Alpha system
would be as follows:

r: code_a1
BICL #UCBM_TIM,UCBL_STS(R5)
MOVAB fr,FKB$L_FPC(R5)
JSB G^EXE$PRIMITIVE_FORK
RSB
.
.
.

fr: fork_routine
code_b
rsb

3–6 Suspending Driver Execution

Suspending Driver Execution
3.1 Using the Simple Fork Process Mechanism

3.1.2 IOC_STD$PRIMITIVE_REQCHANH, IOC_STD$PRIMITIVE_REQCHANL,
and the REQCHAN Macro

IOC_STD$PRIMITIVE_REQCHANH and IOC_STD$PRIMITIVE_REQCHANL
are the OpenVMS Alpha counterparts to the OpenVMS VAX system routines
IOC$REQPCHANH and IOC$REQPCHANL.

Use of the simple fork process mechanism in an OpenVMS Alpha device
driver requires that you replace each explicit JSB to IOC$REQPCHANH or
IOC$REQPCHANL with an invocation of the REQPCHAN2 or REQCHAN macro.

Note

IOC$REQSCHANH and IOC$REQSCHANL are not supported in
OpenVMS Alpha systems because the concept of primary and secondary
controller channels is not meaningful in the I/O subsystem.

For more information about the calling conventions for IOC_STD$PRIMITIVE_
REQCHANH and IOC_STD$PRIMITIVE_REQCHANL, see the system routines
chapter.

The OpenVMS Alpha versions of the REQPCHAN and REQCHAN macros have
been designed to conceal many of the differences between the behavior of the
OpenVMS VAX and the OpenVMS Alpha routines for most device drivers.

Consider the following OpenVMS driver source:

r: code_a
reqpchan
code_b
rsb

This code example expands in the following way on an OpenVMS Alpha system:

r: code_a
MOVAB F,FKB$L_FPC(R5)
SUBL #4,SP
PUSHAB (SP)
PUSHL R5
PUSHL R3
CALLS #3,G^IOC_STD$PRIMITIVE_REQCHANL
POPL R4
BLBS R0,L
RSB

F: .JSB_ENTRY INPUT=<R3,R4,R5>,SCRATCH=<R0,R1,R2,R3,R4>
L: code_b

rsb

The effect of the resulting code is the same as the OpenVMS VAX expansion.
The fork routine is defined to begin with the first instruction of code_b; F is the
generated label for the fork routine. If the channel is immediately assigned to
the driver, execution continues at the generated label L at the first instruction of
code_b. Otherwise, control is returned to the caller of r by means of the explicit
RSB that is generated after the CALL to IOC_STD$PRIMITIVE_REQCHANL.
When the channel is eventually assigned to the driver, IOC_STD$RELCHAN
calls fork routine F.

2 The REQPCHAN macro is provided for compatibility with OpenVMS VAX; use of the
REQCHAN macro is preferred with OpenVMS Alpha.

Suspending Driver Execution 3–7

Suspending Driver Execution
3.1 Using the Simple Fork Process Mechanism

Note

Any branches between code_a and code_b must obey the restrictions
of crossroutine branches, as described in Chapter 6. Meeting these
restrictions may require source changes. Also, the macro contains a
branch between code_a and code_b.

See the macros chapter for additional information on the use and operation of the
REQCHAN macro.

3.1.3 IOC_STD$PRIMITIVE_WFIKPCH, IOC_STD$$PRIMITIVE_WFIRLCH, and
Associated Macros

IOC_STD$PRIMITIVE_WFIKPCH and IOC_STD$PRIMITIVE_WFIRLCH
are the OpenVMS Alpha counterparts to the OpenVMS VAX system routines
IOC$WFIKPCH and IOC$WFIRLCH. For more information about the calling
conventions for IOC_STD$PRIMITIVE_WFIKPCH and IOC_STD$PRIMITIVE_
WFIRLCH, see the system routines chapter.

The OpenVMS Alpha versions of the WFIKPCH and WFIRLCH macros have
been designed to conceal many of the differences between the behavior of the
OpenVMS VAX and the OpenVMS Alpha routines for most device drivers.

• The excpt argument specifies the label of the timeout handling code
within the driver. On an OpenVMS VAX system, EXE$TIMEOUT calls a
driver’s timeout handling routine directly by means of a VAX MACRO JSB
instruction. On an OpenVMS Alpha system, EXE$TIMEOUT calls the driver
time out routine (at UCB$PS_TOUTROUT) with UCB$V_TIMOUT set. If the
TOUTROUT parameter is blank, then the WFIKPCH and WFIRLCH macros
use the fork routine for the timeout routine as well.

These macros automatically insert an instruction at the beginning of the fork
routine that tests UCB$V_TIMOUT in UCB$L_STS and branches to the label
of the timeout code if it is set.

• The WFIKPCH and WFIRLCH macros automatically place the procedure
value of the fork routine (at the instruction following the macro invocation) in
UCB$L_FPC.

• The time argument expresses the timeout interval in seconds as on OpenVMS
VAX systems.

• The newipl argument specifies the IPL to which the wait-for-interrupt
routine should lower before the wait-for-interrupt macro returns to its caller.
Typically this is the fork IPL associated with device processing that was
pushed on the stack by a prior invocation of the DEVICELOCK macro. If you
omit this argument, the macro considers the value on the top of the stack
as the return IPL. This default allows an OpenVMS Alpha driver to use the
macro in the same way as an OpenVMS VAX driver does.

• The toutrout argument specifies a timeout routine address.

3–8 Suspending Driver Execution

Suspending Driver Execution
3.1 Using the Simple Fork Process Mechanism

Example of WFIKPCH with Default newipl Argument
The following code example illustrates how a standard invocation of the
WFIKPCH macro in an existing OpenVMS driver needs no change to work
properly in an OpenVMS Alpha device driver.

r: code_a1
devicelock -

lockaddr=ucb$l_dlck(r5),-
savipl=-(sp)

code_a2
wfikpch tmo_label,#tmo
code_b
rsb

On an OpenVMS Alpha system, this code example expands as follows:

r: code_a1
devicelock -

lockaddr=ucb$l_dlck(r5),-
savipl=-(sp)

code_a2
MOVL #tmo,R1
MOVL (SP)+,R2
MOVAB F,UCB$L_FPC(R5)
MOVAB F,UCB$PS_TOUTROUT(R5)
PUSHL R2
PUSHL R1
PUSHL R5
PUSHL R4
PUSHL R3
CALLS #5,IOC_STD$PRIMITIVE_WFIKPCH
RSB

F: .JSB_ENTRY INPUT=<R3,R4,R5>,SCRATCH=<R0,R1,R2,R3,R4>
BITL #UCBM_TIMOUT,UCBL_STS(R5)
BNEQ tmo_label
code_b
rsb

Example of WFIKPCH Specifying newipl Argument
The following code example has the same effect as the first. It accomplishes this
by saving the original IPL directly into R2 using the DEVICELOCK macro, and
later specifying R2 as the newipl argument to WFIKPCH.

r: code_a1
devicelock -

lockaddr=ucb$l_dlck(r5),-
savipl=r2

code_a2
wfikpch tmo_label,#tmo,newipl=r2
code_b
rsb

On an OpenVMS Alpha system, this code has the following expansion:

Suspending Driver Execution 3–9

Suspending Driver Execution
3.1 Using the Simple Fork Process Mechanism

r: code_a1
devicelock -

lockaddr=ucb$l_dlck(r5),-
savipl=r2

code_a2
MOVL #tmo,R1
MOVAB F,UCB$L_FPC(R5)
MOVAB F,UCB$PS_TOUTROUT(R5)
PUSHL R2
PUSHL R1
PUSHL R5
PUSHL R4
PUSHL R3
CALLS #5,IOC_STD$PRIMITIVE_WFIKPCH
RSB

F: .JSB_ENTRY INPUT=<R3,R4,R5>,SCRATCH=<R0,R1,R2,R3,R4>
BITL #UCBM_TIMOUT,UCBL_STS(R5)
BNEQ tmo_label
code_b
rsb

See the macros chapter for further details on the use and operation of the
WFIKPCH and WFIRLCH macros.

3.2 Using the OpenVMS Kernel Process Services
The OpenVMS kernel process services enable a system context thread of
execution to run on its own private stack. This thread of execution is known as
a kernel process. Prior to suspending itself (to fork or to wait for an interrupt
or controller channel), a kernel process stores its execution state (such as register
contents) on its private stack (which may include the nested stack frames of
previous procedure calls within the kernel process). When it is resumed, a kernel
process has access to the data that has previously been stored on its private
stack.

The ability to save some execution state on a stack across a stall is the primary
motivation for kernel processes. It simplifies driver algorithms that are naturally
expressed as nested subroutine calls and that would otherwise require complex
state descriptions. Also, this ability is a prerequisite to supporting device drivers
written in a high level language.

Two data structures describe a kernel process. Typically, an OpenVMS Alpha
device driver calls a system routine to create these data structures when it
initiates a kernel process and calls another routine to delete them when the
kernel process has completed.

• A kernel process block (KPB) that describes the context and state of a
kernel process

• A stack that records the current state of execution of the kernel process

The KPB consists of the following areas:

• Base area

The base area includes the standard OpenVMS data structure header fields,
describes the kernel process private stack, contains masks that describe the
KPB itself and its register saveset, stores the context of a suspended KPB,
and provides pointers to the other KPB areas. The KPB base area ends with
offset KPB$IS_PRM_LENGTH.

• Scheduling area

3–10 Suspending Driver Execution

Suspending Driver Execution
3.2 Using the OpenVMS Kernel Process Services

The scheduling area contains the procedure values of the routines that
execute to suspend a kernel process and to resume its execution. The
scheduling area can contain either a fork block or a timer queue entry. The
scheduling area ends with offset KPB$Q_FR4.

• OpenVMS special parameters area

The OpenVMS special parameters area stores information required by
OpenVMS device drivers, such as pointers to I/O database structures, data
facilitating the selection and operation of driver macros, and driver-specific
data. The OpenVMS special parameters area ends with offset KPB$PS_
DLCK.

• Spin lock area

The spin lock area is unused at present and reserved to Digital. It ends with
offset KPB$PS_SPL_RESTRT_RTN.

• Debugging area

The debugging area stores information used in the debugging of a kernel
process. The KPB debugging area follows either the scheduling or spin lock
area.

• Parameter area

The parameter area is a variably-sized area that is specified by the kernel
process creator in the call to EXE$KP_ALLOCATE_KPB. The kernel process
creator and the kernel process use this area to exchange data.

The KPB can be used in one of two general types: the OpenVMS executive
software type (VEST) and the fully general type (FGT). OpenVMS software
always uses the VEST form of the KPB.

In a VEST KPB, the base, scheduling, OpenVMS special parameters, and spin
lock areas have a fixed position relative to the starting address of the KPB. This
allows you to access all fields in these areas as offsets from a single register that
points to the KPB’s starting address.

Entry into and exit from a kernel process always involves a stack switch. During
execution as a kernel process, a system context thread of execution, such as a
process fork, calls a set of OpenVMS provided routines that preserve register
context and switch stacks:

• At initiation, a switch from the current kernel stack to that of the kernel
process

• At a stall, a switch from the kernel process private stack to the one current
when the kernel process was entered

• At restart, a switch from the current kernel stack to that of the kernel process

• At termination, a switch from the kernel process private stack to the one
current when the kernel process was most recently entered

As shown in Figure 3–1 KPBIS_STACK_SIZE, KPBPS_STACK_BASE, and
KPB$PS_STACK_SP describe the kernel process stack. KPB$PS_SAVED_SP
contains the stack pointer on the stack current when the kernel process was
initiated or restarted. That pointer is restored when the kernel process stalls or
terminates.

Suspending Driver Execution 3–11

Suspending Driver Execution
3.2 Using the OpenVMS Kernel Process Services

A kernel process private stack occupies one or more pages of system space
allocated for that purpose when the kernel process is created. The stack has a
no-access guard page at each end so that stack underflow and overflow can be
detected immediately.

Figure 3–1 shows the stack and the fields in the KPB related to it.

Figure 3–1 Kernel Process Private Stack

STACK_SIZE

SAVED_SP

STACK_BASE

STACK_SP

STACK_SIZE
 (bytes)

Stack in Use

Stack in Use

Previous Kernel Stack

KPB

Kernel Process Stack

Growth of Stack
in Use

3.2.1 Kernel Process Routines
The routines (and associated macros) listed in Table 3–4 create a kernel process
and its associated structures, and maintain the kernel process environment. A
driver that specifies in its DDT EXE_STD$KP_STARTIO as its start-I/O routine
creates a kernel process in which its own start-I/O routine runs. (Alternatively,
the driver can make successive calls to EXE$KP_ALLOCATE_KPB and EXE$KP_
START to accomplish the same result.)

Once executing as a kernel process, in order to stall, the thread must call a
routine that can switch stacks and then save the thread’s state in such a way
that it can restart when the stall ends. The kernel process can call any of the
supplied scheduling stall routines (EXE$KP_STALL_GENERAL, EXE$KP_FORK,
EXEKP_FORK_WAIT, IOCKP_REQCHAN, IOC$KP_WFIKPCH, and IOC$KP_
WFIRLCH), or invoke any of the corresponding macros, to safely suspend its
execution. When the condition implied in the stall request is met (for instance, a
device interrupt or the grant of a controller channel), OpenVMS calls EXE$KP_
RESTART to resume execution of the kernel process.

If a driver kernel process was created by EXE_STD$KP_STARTIO, it requests
its own termination as part of request completion, by invoking the KP_REQCOM
macro.

3–12 Suspending Driver Execution

Suspending Driver Execution
3.2 Using the OpenVMS Kernel Process Services

Table 3–4 System Routines and Macros That Create and Manage Kernel Processes

System Routine Driver Macro Function

EXE_STD$KP_STARTIO DDTAB (start=EXE_STD$KP_
STARTIO, kp_startio=driver-
start-IO-routine)

Allocates and sets up a KPB and
a kernel process private stack, and
starts up the execution of a kernel
process used by a device driver

EXE$KP_ALLOCATE_KPB KP_ALLOCATE_KPB
DDTAB (start=EXE_STD$KP_
STARTIO, kp_startio=driver-
start-IO-routine)

Allocates a KPB and its kernel
process private stack

EXE$KP_START KP_START
DDTAB (start=EXE_STD$KP_
STARTIO, kp_startio=driver-
start-IO-routine)

Starts the execution of a kernel
process

EXE$KP_STALL_GENERAL KP_STALL_GENERAL
KP_STALL_FORK
KP_STALL_FORK_WAIT
KP_STALL_IOFORK
KP_STALL_REQCHAN
KP_STALL_WFIKPCH
KP_STALL_WFIRLCH

Stalls the execution of a kernel
process

EXE$KP_FORK KP_STALL_FORK
KP_STALL_IOFORK

Stalls a kernel process in such a
manner that it can be resumed by
the OpenVMS fork dispatcher

EXE$KP_FORK_WAIT KP_STALL_FORK_WAIT Stalls a kernel process in such a
manner that it can be resumed
by the software timer interrupt
service routine’s examination of the
fork-and-wait queue

IOC$KP_REQCHAN KP_STALL_REQCHAN Stalls a kernel process in such a
manner that it can be resumed by
the granting of a device controller
channel

IOC$KP_WFIKPCH
IOC$KP_WFIRLCH

KP_STALL_WFIKPCH
KP_STALL_WFIRLCH

Stalls a kernel process in such a
manner that it can be resumed by
device interrupt processing

EXE$KP_RESTART KP_RESTART Resumes the execution of a kernel
process

EXE$KP_END KP_END Terminates the execution of a
kernel process

EXE$KP_DEALLOCATE_KPB KP_DEALLOCATE_KPB Deallocates a KPB and its kernel
process private stack

Because the kernel process routines (and macros) operate on subroutine call
semantics, all return status in R0. For the routines (and macros) that manipulate
kernel process structures, such as EXE$KP_ALLOCATE_KPB and EXE$KP_
START, a driver should inspect the status value and take appropriate action.

The sections that follow describe the operations required to set up and use a
driver kernel process. For further information on a specific kernel process macro
or routine, macro or system routines chapter.

Suspending Driver Execution 3–13

Suspending Driver Execution
3.2 Using the OpenVMS Kernel Process Services

3.2.2 Creating a Driver Kernel Process
A driver typically creates a kernel process by specifying EXE_STD$KP_STARTIO
in the start argument to the DDTAB macro. EXE_STD$KP_STARTIO allocates
and initializes a VEST KPB and allocates a kernel process private stack, and
then places the driver kernel process into execution, at the address indicated by
the kp_startio argument to the DDTAB macro.

EXE_STD$KP_STARTIO customizes the kernel process environment specifically
for driver kernel processes, facilitating the conversion of OpenVMS VAX drivers
that use the simple fork process mechanism to OpenVMS Alpha drivers. To this
end, EXE_STD$KP_STARTIO performs the following tasks:

• Specifies to EXE$KP_ALLOCATE_KPB the size of the kernel process private
stack in bytes. EXE_STD$KP_STARTIO supplies the minimum value of
DDT$IS_STACK_BCNT or KPB$K_MIN_IO_STACK (currently 8KB). A
driver contributes a value to DDT$IS_STACK_BCNT by specifying the kp_
stack_size argument to the DDTAB macro.

• Specifies IRP$PS_KPB to EXE$KP_ALLOCATE_KPB as the target location of
the KPB address.

• Specifies to EXE$KP_ALLOCATE_KPB a VEST-type KPB with scheduling
and spin lock sections and indicates that the KPB should be deleted when the
kernel process is terminated.

• Issues a standard call to EXE$KP_ALLOCATE_KPB.

• Inserts the address of the IRP in KPB$PS_IRP and the address of the UCB in
KPB$PS_UCB.

• Specifies to EXE$KP_START a mask indicating which registers must be
preserved across context switches between the private kernel process private
stack and the kernel stack. This mask allows any registers that the kernel
process uses, other than those calling standard defines as ‘‘scratch’’ to be
saved across its suspension and resumption.

This mask is the logical-OR of the value of DDT$IS_REG_MASK and the
value of KPREG$K_MIN_IO_REG_MASK (which specifies R2 through R5,
R12 through R15, and R26, R27, and R29). A driver contributes a value
to DDT$IS_REG_MASK by specifying the kp_reg_mask argument to the
DDTAB macro. EXE_STD$KP_STARTIO excludes any registers that are
illegal in a kernel process register save mask: R0, R1, R16 through R25, R27,
R28, R30, and R31 (KPREG$K_ERR_REG_MASK).

• Specifies to EXE$KP_START the value of DDT$PS_KP_STARTIO as the
procedure value of the routine to be placed into execution in the driver kernel
process. A driver contributes a value to DDT$PS_KP_STARTIO by specifying
the kp_startio argument to the DDTAB macro.

For drivers ported from OpenVMS VAX, the following invocation of the DDTAB
macro is sufficient to create a kernel process for most drivers and start execution
of the driver’s start-I/O routine as a kernel process thread:

DDTAB -
START=EXE_STD$KP_STARTIO,-
KP_STARTIO=xx_STARTIO,-
.
.
.

3–14 Suspending Driver Execution

Suspending Driver Execution
3.2 Using the OpenVMS Kernel Process Services

The driver’s start I/O routine, xx_STARTIO in the preceding example, gains
control as a result of the call from EXE$KP_START and receives one parameter,
the address of the KPB. It obtains the addresses of the UCB and IRP from
KPB$PS_UCB and KPB$PS_IRP, respectively:

xx_STARTIO:
.CALL_ENTRY <R2,R3,R4,R5>
MOVL 4(AP),R0 ; Get KPB address
MOVL KPB$PS_UCB(R0),R5 ; Get UCB address
MOVL KPB$PS_IRP(R0),R3 ; Get IRP address

Note that the preceding code example essentially discards the KPB address, by
placing it in a scratch register, R0. EXE_STD$KP_STARTIO stores the KPB
address in IRP$PS_KPB so that the KPB address can always be found there at
anytime at any depth of subroutine call.

Note

The VEST KPB created by EXE$KP_ALLOCATE_KPB in response to
the call from EXE_STD$KP_STARTIO may not be sufficient for a driver
kernel process that must exchange a lot of data with its creator. VEST
KPBs do not include the debugging or parameter areas. If a driver
requires either of these areas in a VEST KPB, it should not specify
EXE_STD$KP_STARTIO in the start argument of the DDTAB macro.
Rather it must make explicit calls to EXE$KP_ALLOCATE_KPB and
EXE$KP_START, as well as initialize the kernel process environment in a
manner similar to that used by EXE_STD$KP_STARTIO.

See Section 3.2.5 for additional information on using the KPB parameter
area.

3.2.3 Suspending a Kernel Process
Once a kernel process thread has been initiated, all functions that cause
suspension of that thread of driver execution must use kernel process stalling
semantics. For existing OpenVMS device drivers, written in VAX MACRO, that
employ simple fork process semantics, this generally means adding the phrase
‘‘KP_STALL_’’ to the beginning of a standard driver stall macro (for instance,
WFIKPCH becomes KP_STALL_WFIKPCH).

Table 3–5 contrasts the simple fork process and the kernel process suspension
macros:

Table 3–5 Comparison of Simple Fork Process and Kernel Process Suspension Macros

Simple Fork Process
Suspension Macro

Kernel Process Suspension
Macro When called

FORK KP_STALL_FORK When creating a fork thread

FORK_WAIT KP_STALL_FORK_WAIT When creating a short fork wait thread

IOFORK KP_STALL_IOFORK When creating a I/O fork thread

(continued on next page)

Suspending Driver Execution 3–15

Suspending Driver Execution
3.2 Using the OpenVMS Kernel Process Services

Table 3–5 (Cont.) Comparison of Simple Fork Process and Kernel Process Suspension Macros

Simple Fork Process
Suspension Macro

Kernel Process Suspension
Macro When called

REQCHAN1 KP_STALL_REQCHAN When requesting an I/O device channel

WFIKPCH KP_STALL_WFIKPCH When waiting for an interrupt or timeout

WFIRLCH KP_STALL_WFIRLCH When waiting for an interrupt or timeout

REQCOM2 KP_REQCOM When completing an I/O request

1The KP_STALL_ macros provide no replacement for the REQPCHAN macro. When a driver uses kernel processes,
REQPCHAN should be replaced with KP_STALL_REQCHAN.
2Replacing REQCOM with KP_REQCOM has no bearing on how a driver thread is stalled. It does provide for correct
termination and cleanup of a driver kernel process thread upon completion of an I/O request. See Section 3.2.4.

The kernel process suspension macros all require as input the address of a KPB.
For macros that replace traditional suspension macros in existing OpenVMS
drivers, the R0 status is typically SS$_NORMAL, and thus not very interesting.
However, newly written drivers should be coded to check return status values.

For further information on a specific kernel process suspension macro, see the
macro chapter.

3.2.4 Terminating a Kernel Process Thread
A driver kernel process initiated by EXE_STD$KP_STARTIO (in which the start-
I/O routine is the top-level thread) is terminated properly by the KP_REQCOM
macro (which includes a VAX MACRO RET instruction).

To ensure that the terminated KPB is released for future reuse, the flag KPB$V_
DEALLOC_AT_END must be set in the KPB$IS_FLAGS field. If you are
allocating a KPB via some mechanism other than EXE_STD$KP_STARTIO,
you should ensure that this flag is set. EXE_STD$KP_STARTIO sets KPB$V_
DEALLOC_AT_END.

3.2.5 Exchanging Data Between a Kernel Process and Its Creator
In the unlikely event that a driver kernel process requires more data than it can
obtain from the KPB address (its sole input parameter), its creator can establish
a parameter area in the KPB.

A driver creates a KPB with a parameter area by specifying the param argument
to a KP_ALLOCATE_KPB macro invocation (or the param_size parameter to a
call to EXE$KP_ALLOCATE_KPB).

The following example shows a simple exchange of data residing in the KPB
parameter area between a kernel process and its creator:

KP_ALLOCATE_KPB kpb=R2, param=#32 ;32-byte parameter area
MOVL KPB$PS_PRM_PTR(R2),R1 ;Obtain pointer to parameter area
MOVL R3,(R1) ;Save R3
MOVL R4,4(R1) ;Save R4
KP_SWITCH_TO_KP_STACK ;Switch to KP stack
MOVL KPB$PS_PRM_PTR(R6),R1 ;Obtain pointer to parameter area
MOVL (R1),R3 ;Obtain saved R3
MOVL 4(R1),R4 ;Obtain saved R4

3–16 Suspending Driver Execution

Suspending Driver Execution
3.2 Using the OpenVMS Kernel Process Services

3.2.6 Synchronizing the Actions of a Kernel Process and Its Initiator
Neither the initiator of the kernel process (that is, the caller of EXE$KP_START
or EXE$KP_RESTART) nor the kernel process itself can assume that there is any
relationship between them unless they mutually establish one. The initiator and
the kernel process must establish explicit synchronization between themselves for
operations that require it.

The kernel process cannot assume that its initiator is not running in parallel.
Neither can it depend on inheriting the synchronization capabilities of its caller
(for instance, its spin locks and IPL). The initiator of the kernel process thread
cannot assume that the kernel process has already executed when EXE$KP_
START returns control.

3.2.7 Example of Driver Kernel Process
Example 3–2 shows an OpenVMS VAX simple driver start I/O routine of
Example 3–1, modified to use the OpenVMS kernel process services.

Example 3–1 Simple Start I/O Routine

STARTIO:
.
.

; Initiate device activity by informing controller
; of required action

.

.

.
WFIKPCH DEVTMO,#6 ;Wait for interrupt or timeout
. ;Execution resumes here upon
. ; interrupt
.
IOFORK ;Request to defer further
. ; processing to a lower IPL
.
.
REQCOM ;Initiate I/O request completion

; processing

To use the kernel process mechanism, a VAX MACRO device driver must adopt
the following conventions. The numbers in the following list represent the
contents of Example 3–2.

1 The DDTAB macro invocation must identify EXE_STD$KP_STARTIO as the
start argument and the start-I/O routine within the driver as the kp_startio
argument.

2 The start-I/O routine within the driver must be a standard-conforming
procedure. Here, the start-I/O routine specifies the .CALL_ENTRY MACRO
compiler directive with a typical driver register preserve mask (R2 through
R5).

3 The start I/O procedure must retrieve the addresses of the IRP and UCB from
the kernel process block (KPB) associated with the kernel process.

Suspending Driver Execution 3–17

Suspending Driver Execution
3.2 Using the OpenVMS Kernel Process Services

Example 3–2 Simple Start I/O Routine That Uses the Kernel Process
Mechanism

.

.

.
DDTAB -

START=EXE_STD$KP_STARTIO,- 1
KP_STARTIO=STARTIO,- ;Miscellaneous other required

; changes ignored
.
.
.

STARTIO: .CALL_ENTRY <R2,R3,R4,R5> 2
MOVL 4(AP),R0 ;Get KPB address
MOVL KPB$PS_UCB(R0),R5 ;Get UCB address 3
MOVL KPB$PS_IRP(R0),R3 ;Get IRP address
.
.
.
KP_STALL_WFIKPCH DEVTMO,#6 ;Wait for interrupt 4
. ; or timeout
.
.
KP_STALL_IOFORK ;Wait until IPL drops
. ; to fork IPL
.
.
KP_REQCOM ;Complete request

4 The start I/O procedure must use the KP_STALL_xxx or KP_xxx macros
instead of the equivalent OpenVMS VAX macros.

The following is a brief description of the control flow of an I/O operation
through the start-I/O routine shown in Example 3–2. Although the details of
interaction between the start-I/O routine and the OpenVMS operating system are
different from that which transpires between a driver simple fork process and the
OpenVMS operating system, the overall structure of a driver that uses the kernel
process mechanism is much the same as one that uses the simple fork process
mechanism.

In Figures 3–2, 3–3, and 3–4, two barred lines appear in the rightmost column.
Each represents the current stack of execution: either the kernel process private
stack or a kernel stack.

3.2.7.1 Driver Kernel Process Startup
Figure 3–2 illustrates the flow of an I/O operation involving a driver kernel
process from the creation of the kernel process to execute the start-I/O routine to
the suspension of the kernel process to wait for a device interrupt. At the start
of the process shown in the illustration, IOC$INITIATE has located the driver’s
start I/O routine and invokes it; in this example, it has issued a CALL to EXE_
STD$KP_STARTIO, the routine identified by the DDTAB macro start argument.

Note that the numbers in Figure 3–2 refer to the numbers in the following
description.

3–18 Suspending Driver Execution

Suspending Driver Execution
3.2 Using the OpenVMS Kernel Process Services

Figure 3–2 Driver Kernel Process Startup

OpenVMS Executive Device DriverTime

Call EXE_STD$KP_START

Save return address
Switch to kernel process stack

Call STARTIO

Call IOC$KP_WFIKPCH

Call EXE$KP_STALL_GENERAL

Save kernel process registers
Switch to original stack
Restore EXE$KP_START registers

Call

...

@KPB$PS_SCH_STALL_RTN(R5)

IOC_STD$PRIMITIVE_WFIKPCH

RET

RET

RET

EXE_STD$KP_STARTIO

EXE$KP_START

IOC$KP_WFIKPCH

EXE$KP_STALL_GENERAL

STALL_WFIxxCH

EXE$KP_STALL_GENERAL (continued)

STALL_WFIxxCH (continued)

4

4d

7

7c

7d

8

KernelOther
Kernel
Stack

Process
Stack

Allocate KPB1

...

...

Save EXE_STD$KP_START registers

STARTIO
...

6

...

...

...

IOC_STD$PRIMITIVE_WFIKPCH

Save fork context in UCB
RET

EXE$KP_STARTIO (continued)

ZK−7175A−GE

Call

EXE_STD$KP_STARTIO performs the following steps to create a kernel process
thread of execution running the driver’s start-I/O routine (STARTIO).

1. It computes the kernel process required stack size as the larger of
KPB$K_MIN_IO_STACK and DDT$IS_STACK_BCNT and calls EXE$KP_
ALLOCATE_KPB to allocate a KPB and that much stack.

2. When EXE$KP_ALLOCATE_KPB returns a success status, it places the IRP
and UCB addresses in KPB$PS_IRP and KPB$PS_UCB, respectively.

Suspending Driver Execution 3–19

Suspending Driver Execution
3.2 Using the OpenVMS Kernel Process Services

3. It performs a logical-OR of the value of DDT$IS_REG_MASK and the value
of KPREG$K_MIN_IO_REG_MASK (which specifies R2 through R5, R12
through R15, and R26, R27, and R29), and excludes any registers that are
illegal in a kernel process register save mask: R0, R1, R16 through R25, R27,
R28, R30, and R31 (KPREG$K_ERR_REG_MASK). The result is a mask that
includes only those registers that the kernel process support routines must
save.

4. It calls EXE$KP_START. EXE$KP_START starts a driver kernel process
thread of execution by taking the steps summarized in the following list:

a. It saves the registers specified in the kernel process register save mask on
the current stack.

b. It saves the current stack pointer in KPB$PS_SAVED_SP.

c. It switches to the kernel process private stack by loading SP from
KPB$PS_STACK_BASE.

d. It calls STARTIO, the procedure whose procedure value is in DDT$PS_
KP_STARTIO, with the KPB address as the single argument.

5. STARTIO loads R3 and R5 from the IRP and UCB addresses in the KPB. It
then acquires the device lock and initiates device activity.

6. After initiating device activity, STARTIO invokes the macro KP_STALL_
WFIKPCH, which, for the given example, expands as shown in Example 3–3.

Example 3–3 Expansion of the KP_STALL_WFIKPCH Macro

;Expansion of KP_STALL_WFIKPCH DEVTMO,#6

;Assume top of stack contains IPL to
; be restored after wait has been
; set up

PUSHL #6 ;Timeout value
PUSHL KPB ;KPB address
CALLS #3,IOC$KP_WFIKPCH ;
BLBC R0,DEVTMO ;If operation timed out,

; enter timeout routine

7. IOC$KP_WFIKPCH validates its arguments and copies them to the KPB. It
records the procedure value of STALL_WFIXXCH in KPB$PS_SCH_STALL_
RTN and calls EXE$KP_STALL_GENERAL to stall the kernel process.

EXE$KP_STALL_GENERAL performs the following steps:

a. It saves the kernel process context on the kernel process private stack.

b. It restores the stack and register context that were current when the
kernel process was entered.

c. It calls STALL_WFIXXCH (the routine whose procedure value is in
KPB$PS_SCH_STALL_RTN).

STALL_WFIXXCH invokes the WFIKPCH macro, specifying the
ENVIRONMENT=CALL parameter. The WFIKPCH macro invocation
generates a standard call entry point in STALL_WFIXXCH and stores its
procedure value in UCB$L_FPC. It then invokes IOC_STD$PRIMITIVE_

3–20 Suspending Driver Execution

Suspending Driver Execution
3.2 Using the OpenVMS Kernel Process Services

WFIKPCH, which records the fork context of the driver kernel process,
releases the device lock (restoring the IPL specified in the KP_STALL_
WFIKPCH macro invocation), and returns to STALL_WFIXXCH. STALL_
WFIXXCH returns to EXE$KP_STALL_GENERAL.

d. EXE$KP_STALL_GENERAL loads the success status SS$_NORMAL in
R0 and returns to the routine whose return address was saved on the
kernel stack, which, for this example, is EXE_STD$KP_STARTIO.

8. When control returns from EXE$KP_STALL_GENERAL, EXE_STD$KP_
STARTIO tests the status in R0. If R0 contains a success status, EXE_
STD$KP_STARTIO returns to its invoker, which, in this example, is
IOC$INITIATE. If R0 contains an error, EXE$KP_START was unable to start
the kernel process for some reason and EXE_STD$KP_STARTIO generates
the fatal bugcheck INCONSTATE.

The control flow from IOC$INITIATE back to the $QIO requestor is the same as
that for a driver that uses the simple fork process mechanism.

3.2.7.2 Resumption of a Driver Kernel Process by a Device Interrupt
Figure 3–3 illustrates the control flow from the time when the device activity
completion interrupt resumes the driver kernel process to the time the driver
completes servicing the interrupt.

Note that the numbers in Figure 3–3 refer to the numbers in the following
description.

1. When the device interrupts, Alpha Alpha Initiate Exception or Interrupt (IEI)
Privileged Architecture Library code (PALcode) invokes IO_INTERRUPT.

2. IO_INTERRUPT calls the device’s interrupt service routine (ISR).

3. At step 7c in Section 3.2.7.1, STALL_WFIXXCH invoked the WFIKPCH
macro. The WFIKPCH macro invocation generated an entry point in STALL_
WFIXXCH, and stored its procedure value in UCB$L_FPC. The device’s
interrupt service routine obtains the device lock and resumes STALL_
WFIXXCH at this entry point by the following:

PUSHL R5 ;Param3 = UCB address
PUSHL UCB$Q_FR4(R5) ;Param2 = FR4 value
PUSHL UCB$Q_FR3(R5) ;Param1 = FR3 value
CALLS #3,@UCB$L_FPC(R5)

4. STALL_WFIXXCH calls EXE$KP_RESTART.

Note

A device driver can bypass this step and the overhead of an extra
procedure call in its interrupt service routine if it can obtain the KPB
address and call EXE$KP_RESTART directly as described in the previous
step (Step 3).

5. EXE$KP_RESTART saves the register context of its caller, switches to the
kernel process private stack, and restores the kernel process registers. The
most recent call frame on the kernel process private stack was left there
when the driver kernel process earlier called IOC$KP_WFIKPCH. EXE$KP_

Suspending Driver Execution 3–21

Suspending Driver Execution
3.2 Using the OpenVMS Kernel Process Services

Figure 3–3 Device Interrupt Resumes Driver Kernel Process

OpenVMS Executive Device Driver

Time

Resume driver kernel process

Save STALL_WFlxxCH registers
Switch to kenel process stack
Restore kernel process registers

Call EXE$KP_FORK

IO_INTERRUPT

STALL_WFIxxCH (continued)

EXE$KP_IOFORK

EXE$KP_FORK

9

16

KernelOther
Kernel
Stack

Process
Stack

Save registers
2 Call device ISR

Call EXE$KP_RESTART

STARTIO (continued)

...

3

RET

ZK−7176A−GE

EXE$KP_RESTART

Save kernel process registers
Switch to original stack
Restore STALL_WFlxxCH registers
Call STALL_FORK
STALL_FORK

MOVAB COMMON_FORK_RTN,−
KPB$PS_FPC(R4)

Call EXE_STD$PRIMITIVE_FORK

EXE_STD$PRIMITIVE_FORK
Save fork registers
INSQUE fork block
SOFTINT ipl
RET

STALL_FORK (continued)
RET

EXE$KP_STALL_GENERAL (continued)
RET

STALL_WFIxxCH (continued)

RET

IO_INTERRUPT
Restore registers
REI

ISR

Call EXE$KP_IOFORK

ISR (continued)

Call EXE$KP_STALL_GENERAL
EXE$KP_STALL_GENERAL

14

13

12

11

10

15 RET

8

7

5

4

1

...

6

Device
Interrupt

RESTART returns to the STARTIO procedure from its call to IOC$KP_
WFIKPCH.

3–22 Suspending Driver Execution

Suspending Driver Execution
3.2 Using the OpenVMS Kernel Process Services

6. The STARTIO procedure performs device-specific status checks of the I/O
operation that just completed. It performs only the steps that must be
performed at device IPL, before invoking the KP_STALL_IOFORK macro to
resume the kernel process at the lower fork IPL. The KP_STALL_IOFORK
macro expands as follows:

PUSHL IRP$PS_KPB(R3)
CALLS #1,EXE$KP_IOFORK

7. EXE$KP_IOFORK clears UCB$V_TIM in UCB$L_STS to indicate that the
device is no longer being timed for I/O and calls EXE$KP_FORK.

8. EXE$KP_FORK saves the kernel process fork context in the UCB fork block.
It places the procedure value of STALL_FORK into KPB$PS_SCH_STALL_
RTN and calls EXE$KP_STALL_GENERAL.

9. EXE$KP_STALL_GENERAL saves the kernel process register context in the
KPB, switches to the original kernel stack and restores the registers that
were saved in step 5, when the kernel process was resumed. It then calls
STALL_FORK, the procedure whose procedure value is in KPB$PS_SCH_
STALL_RTN.

10. STALL_FORK stores the procedure value of COMMON_FORK_RTN in
KPB$PS_FPC, and invokes EXE_STD$PRIMITIVE_FORK.

11. EXE_STD$PRIMITIVE_FORK saves the fork parameters (which contain
values previously in registers R3 and R4) in the UCB fork block, inserts the
UCB fork block into the appropriate fork queue, requests a fork IPL interrupt
if appropriate, and returns to STALL_FORK.

12. STALL_FORK returns to its caller, EXE$KP_STALL_GENERAL.

13. At this point, the most recent call frame on the original kernel stack is the
one left there by STALL_WFIXXCH when it called EXE$KP_RESTART.
EXE$KP_STALL_GENERAL returns to STALL_WFIXXCH.

14. STALL_WFIXXCH returns to the driver’s interrupt service routine.

15. The interrupt service routine releases the device lock and returns to IO_
INTERRUPT.

16. IO_INTERRUPT restores the registers it saved and dismisses the interrupt
with a CALL_PAL REI instruction.

3.2.7.3 Resumption of a Driver Kernel Process by a Fork Interrupt
Figure 3–4 shows the control flow when the fork IPL software interrupt resumes
the driver kernel process.

Note that the numbers in Figure 3–4 refer to the numbers in the following
description.

1. When processor IPL drops below the fork IPL, the fork IPL software interrupt
is granted. The fork dispatcher interrupt service routine, EXE$FRKIPLxDSP
[where x is 6, 8, 9, 10, or 11, one of the fork IPLs] is entered. This example
assumes a fork IPL of 8.

2. EXE$FRKIPL8DSP obtains the offset to the IPL 8 fork queue listhead and
enters EXE$FORKDSPTH.

Suspending Driver Execution 3–23

Suspending Driver Execution
3.2 Using the OpenVMS Kernel Process Services

Figure 3–4 Fork Interrupt Resumes Driver Kernel Process

OpenVMS Executive Device Driver

Time

REMQUE fork block
LOCK FKB$B_FLCK(R5)
Call @FKB$L_FPC(R5)

Call EXE$KP_RESTART

EXE$FRKIPL8DSP

EXE$FORKDSPTH

COMMON_FORK_RTN

EXE$KP_RESTART

9

KernelOther
Kernel
Stack

Process
Stack

Get address of fork queue2

STARTIO (continued)

ZK−7177A−GE

Save registers
Switch to kernel process stack
Restore kernel process registers
RET

EXE$KP_FORK (continued)
RET
EXE$KP_IOFORK (continued)

RET

IOC_STD$REQCOM

RET

EXE$KP_START (continued)
Call EXE$KP_END

EXE$KP_END

COMMON_FORK_RTN (continued)

Call IOC_STD$REQCOM

13

12

1110

8

7

5

3a

1

...

6

Fork
Interrupt

Switch to original stack
Restore registers
RET

RET

EXE$FORKDSPTH (continued)
UNLOCK FKB$B_FLCK(R5)

REI

...

...

RET

3. EXE$FORKDSPTH is a common entry point used by all fork IPL interrupt
service routines. It resumes pending fork processes by performing the
following steps:

a. It removes a fork block from the fork queue. If no fork block was removed,
it dismisses the fork IPL interrupt using the CALL_PAL REI instruction.

b. It acquires the fork lock whose index is in FKB$B_FLCK.

3–24 Suspending Driver Execution

Suspending Driver Execution
3.2 Using the OpenVMS Kernel Process Services

c. It resumes the fork process.

4. The fork process invokes COMMON_FORK_RTN.

5. COMMON_FORK_RTN calls EXE$KP_RESTART.

6. EXE$KP_RESTART saves the fork process register context on the current
stack. R4 contains the KPB address of the kernel process that must be
resumed. EXE$KP_RESTART switches to the kernel process private stack,
restores the kernel process registers, and resumes the kernel process by
executing the VAX MACRO instruction RET.

The most recent call frame on the kernel process private stack is one left by
EXE$KP_FORK when it earlier called EXE$KP_STALL_GENERAL. Thus the
RET instruction resumes EXE$KP_FORK.

7. EXE$KP_FORK returns to its caller, EXE$KP_IOFORK.

8. EXE$KP_IOFORK returns to its caller, the STARTIO procedure.

9. The STARTIO procedure completes device-specific I/O postprocessing and
invokes the KP_REQCOM macro. The KP_REQCOM macro expands to the
following VAX MACRO instructions:

PUSHL R5
PUSHL R1
PUSHL R6
CALLS #3, IOC_STD$REQCOM

10. After IOC_STD$REQCOM performs the actions detailed in the system
routines chapter, it returns to the STARTIO procedure.

11. At this point, the most recent call frame on the kernel process private stack
is the one left there by EXE$KP_START when it earlier started up the
driver kernel process and called the STARTIO procedure (see step 6d in
Section 3.2.7.1. STARTIO returns to EXE$KP_START. EXE$KP_START calls
EXE$KP_END to end the kernel process. If KPB$V_DEALLOC_AT_END is
set in KPBIS_FLAGS, EXEKP_END calls EXE$KP_DEALLOCATE_KPB.
EXE$KP_DEALLOCATE_KPB returns to EXE$KP_END.

12. At this point, the most recent call frame on the original kernel stack is the
one left there by COMMON_FORK_RTN when it earlier called EXE$KP_
RESTART. EXE$KP_END switches to the original kernel stack, restores
registers that were saved by EXE$KP_RESTART, and returns to COMMON_
FORK_RTN.

13. COMMON_FORK_RTN returns to EXE$FORKDSPTH, which releases the
fork lock and proceeds to step 3a.

3.3 Mixing Fork and Kernel Processes
Ordinarily, a driver should use either the simple fork process or kernel process
suspension mechanism exclusively. Doing so greatly simplifies comprehension of
driver flow and maintenance of driver code.

It is possible for a driver to use the simple fork process mechanism for one
execution thread and the kernel process mechanism for a different execution
thread. Or, a single execution thread can use the simple fork process mechanism
for certain tasks and later use the kernel process mechanism for others.

Suspending Driver Execution 3–25

Suspending Driver Execution
3.3 Mixing Fork and Kernel Processes

However, once a given driver thread has initiated a kernel process, the thread
cannot use the simple fork mechanism until the kernel process has been
terminated.

Warning

Attempting to perform a simple fork operation on a kernel process private
stack will produce unpredictable if not disastrous results.

3–26 Suspending Driver Execution

4
Allocating Map Registers and Other Counted

Resources

Because Alpha systems do not support the UNIBUS, Q22–bus, and MASSBUS
adapters, the OpenVMS Alpha operating system does not provide the following
adapter-specific routines and macros that allocate and manage adapter map
registers:

• IOC$ALOALTMAP, IOC$ALOALTMAPN, and IOC$ALOALTMAPSP

• IOC$ALOUBAMAP and IOC$ALOUBAMAPN

• IOC$LOADALTMAP (LOADALT macro)

• IOC$LOADMBAMAP (LOADMBA macro)

• IOC$LOADUBAMAP and IOC$LOADUBAMAPA (LOADUBA macro)

• IOC$RELALTMAP (RELALT macro)

• IOC$RELMAPREG (RELMPR macro)

• IOC$REQALTMAP (REQALT macro)

• IOC$REQMAPREG (REQMPR macro)

Instead, for Alpha I/O subsystems that provide map registers, such as the
TURBOchannel I/O processor for DEC 3000 Alpha Model 500 systems, OpenVMS
Alpha provides a set of a routines that can manage the allocation of any resource
that shares the following attributes of a set of map registers:

• The resource consists of an ordered set of items.

• The allocator can request one or more items. When requesting multiple
items, the requester expects to receive a contiguous set of items. Thus,
allocated items can be described by a starting number and a count.

• Allocation and deallocation of the resource are common operations and, thus,
must be efficient and quick.

• A single deallocation may allow zero or more stalled allocation requests to
proceed.

OpenVMS VAX systems record information relating to the availability and use of
map registers in a set of arrays and fields within the adapter control block (ADP).
OpenVMS Alpha employs two new data structures for this purpose:

• A counted resource allocation block (CRAB), created by the OpenVMS
adapter initialization routine, that describes a specific counted resource. The
routine stores the address of the CRAB associated with a given adapter in
ADP$L_CRAB.

Allocating Map Registers and Other Counted Resources 4–1

Allocating Map Registers and Other Counted Resources

Note

Code that needs to manage items of a private counted resource can use
the system routines IOC$ALLOC_CRAB and IOC$DEALLOC_CRAB to
create a CRAB for that resource.

The number of resource items managed by a given CRAB is included in one
of its fields. Resource items must be allocated in a numerically ordered, or
contiguous series. A CRAB contains an array of quadword descriptors that
record the location and length of a set of contiguous resource items that are
free. Another CRAB field contains a value that is applied as a rounding
factor to requests for resources to compute the actual number of items to be
granted.

• A counted resource context block (CRCTX) that describes a specific
request for a counted resource. The driver and the counted resource
allocation routine exchange information in the CRCTX. A driver allocates
a CRCTX before calling the counted resource allocation routine to obtain a
certain number of items of the resource.

Despite the new structures and new routines, an OpenVMS Alpha device driver
performs most of the same tasks as an OpenVMS VAX device driver when setting
up and completing a direct memory access (DMA) transfer. An OpenVMS Alpha
device driver:

1. Calls IOC$ALLOC_CRCTX to obtain a CRCTX that describes a request for
map registers

2. Loads the request count into the CRCTX$L_ITEM_CNT field

3. Calls IOC$ALLOC_CNT_RES to request the map registers

4. Calls IOC$LOAD_MAP to load the map registers granted in the allocation
request

5. Prepares device registers for the transfer and activates the device

6. Calls IOC$DEALLOC_CNT_RES to free the registers for use by other
requesters

7. Calls IOC$DEALLOC_CRCTX to deallocate the CRCTX

The following sections describe these steps.

4.1 Allocating a Counted Resource Context Block
A driver calls IOC$ALLOC_CRCTX to allocate and initialize a counted resource
context block (CRCTX). The CRCTX describes a specific request for a given
counted resource, such as a set of map registers. The driver subsequently uses
the CRCTX as input to IOC$ALLOC_CNT_RES to allocate a set of the items
managed as a counted resource.

IOC$ALLOC_CRCTX requires as input the address of the CRAB that describes
the counted resource. For adapters that provide a counted resource, such as a set
of map registers, ADP$L_CRAB contains this address.

The following example illustrates a call to IOC$ALLOC_CRCTX that returns the
address of the allocated CRCTX to UCB$L_CRCTX, a field in an extended UCB:

4–2 Allocating Map Registers and Other Counted Resources

Allocating Map Registers and Other Counted Resources
4.1 Allocating a Counted Resource Context Block

70$: PUSHAL UCB$L_CRCTX(R5) ; Pass cell to receive CRCTX address
PUSHL ADP$L_CRAB(R1) ; Pass CRAB as argument
CALLS #2,IOC$ALLOC_CRCTX ; Initialize the CRCTX
BLBC R0,200$; Branch if failure status returned

To avoid the overhead of allocating (and deallocating) a CRCTX for each DMA
transfer, drivers often obtain multiple CRCTXs in their controller or unit
initialization routines, linking them from a data structure such as the UCB so
that they will be available for later use.

4.2 Allocating Counted Resource Items
A driver calls IOC$ALLOC_CNT_RES to allocate a requested number of items
from a counted resource. IOC$ALLOC_CNT_RES requires the addresses of
both the CRAB and the CRCTX as input parameters. The resource request is
described in the CRCTX structure; the counted resource itself is described in the
CRAB.

A driver typically initializes the following fields of the CRCTX before calling
IOC$ALLOC_CNT_RES.

Field Description

CRCTX$L_ITEM_CNT Number of items to be allocated. When requesting map
registers, this value in this field should include two extra
map registers to be allocated and loaded as a guard page
to prevent runaway transfers. There may be additional
bus-specific requirements.

CRCTX$L_CALLBACK Procedure value of the callback routine to be called when
the deallocation of resource items allows a stalled resource
request to be granted.

A value of 0 in this field indicates that, on an allocation
failure, control should return to the caller immediately
without queuing the CRCTX to the CRAM’s wait queue.

A caller can also specify the upper and lower bounds of the search for allocatable
resource items by supplying values for CRCTX$L_LOW_BOUND and CRCTX$L_
UP_BOUND.

IOC$ALLOC_CNT_RES always returns to its caller immediately, whether the
allocation request is granted immediately, is stalled, or is unsuccessful. If the
request is granted immediately, or when a stalled request is eventually granted,
IOC$ALLOC_CNT_RES returns the number of the first item granted to the
caller in CRCTX$L_ITEM_NUM and sets CRCTX$V_ITEM_VALID in CRCTX$L_
FLAGS.

If there are waiters for the counted resource, or if there are insufficient resource
items to satisfy the request, IOC$ALLOC_CNT_RES saves the current values of
R3, R4, and R5 in the CRCTX fork block. IOC$ALLOC_CNT_RES writes a –1
to CRCTX$L_ITEM_NUM, and inserts the CRCTX in the resource-wait queue
(headed by CRAB$L_WQFL). It then returns SS$_INSFMAPREG status to its
caller.

Note

If a counted resource request does not specify a callback routine
(CRCTX$L_CALLBACK), IOC$ALLOC_CNT_RES does not insert

Allocating Map Registers and Other Counted Resources 4–3

Allocating Map Registers and Other Counted Resources
4.2 Allocating Counted Resource Items

its CRCTX in the resource-wait queue. Rather, it returns SS$_
INSFMAPREG status to its caller.

A driver must not deallocate the CRCTX while the resource request it describes
is stalled by IOC$ALLOC_CNT_RES. (If the driver must cancel the allocation
request, it should call IOC$CANCEL_CNT_RES.)

When a counted resource deallocation occurs, the first CRCTX is removed from
the resource-wait queue and the allocation is attempted again. If IOC$ALLOC_
CNT_RES is now able to grant the requested number of resource items, it issues
a JSB to the callback routine (CRCTX$L_CALLBACK), passing it the following
values:

Location Contents

R0 SS$_NORMAL

R1 Address of CRAB

R2 Address of CRCTX

R3 Contents of R3 at the time of the original allocation
request (CRCTX$Q_FR3)

R4 Contents of R4 at the time of the original allocation
request (CRCTX$Q_FR4)

R5 Contents of R5 at the time of the original allocation
request (CRCTX$Q_FR5)

Other registers Destroyed

The callback routine checks R0 to determine whether it has been called with
SS$_NORMAL or SS$_CANCEL status (from IOC$CANCEL_CNT_RES). If the
former, the routine typically proceeds to loads the map registers that have been
allocated. The callback routine must preserve all registers it uses other than R0
through R5 and exit with an RSB instruction.

The following example illustrates a call to IOC$ALLOC_CNT_RES:

4–4 Allocating Map Registers and Other Counted Resources

Allocating Map Registers and Other Counted Resources
4.2 Allocating Counted Resource Items

40$: MOVL SCDRP$L_BOFF(R5),R0 ; Get byte offset
ADDL SCDRP$L_BCNT(R5),R0 ; Add in byte count
ADDL G^MMG$GL_BWP_MASK,R0 ; Round up to number of pages
ADDL G^MMG$GL_PAGE_SIZE,R0 ; Add extra "no access" page
ASHL G^MMG$GL_VA_TO_VPN,R0,- ; Get number of pages involved

CRCTX$L_ITEM_CNT(R2) ; Pass as number of contiguous
; registers to allocate

MOVAB G^SCS$MAP_RETRY,- ; SCS$MAP_RETRY is callback routine
CRCTX$L_CALLBACK(R2)

PUSHL R2 ; Push CRCTX as argument
PUSHL ADP$L_CRAB(R4) ; Push CRAB as argument
CALLS #2,IOC$ALLOC_CNT_RES ; Allocate the map registers
BLBC R0,110$; If allocation is not successful,

; branch; otherwise proceed
; to load map registers

.

.

.
110$: CMPL #SS$_INSFMAPREG,R0 ; INSFMAPREG means request queued

BNEQ 120$; Other status means error; branch
MOVL #_C_MAP_ALLOC_WAIT_STATE,- ; Record wait state in

CDRP$L_WAIT_STATE(R5) ; CDRP
MOVL #SS$_INSFMAP,R0 ; Return status to caller of this

; driver routine
RSB

120$: ; Process returned errors (other than SS$_INSFMAPREG)

The OpenVMS Alpha operating system allows you to indicate that a counted
resource request should take precedence over any waiting request by setting
the CRCTX$V_HIGH_PRIO bit in CRCTX$L_FLAGS. A driver employs a high-
priority counted resource request to preempt normal I/O activity and service
some exception condition from the device. (For instance, during a multivolume
backup, a tape driver might make a high-priority request, when it encounters
the end-of-tape (EOT) marker, to get a subsequent tape loaded before normal I/O
activity to the tape can resume. A disk driver might issue a high-priority request
to service a disk offline condition.)

IOC$ALLOC_CNT_RES never stalls a high-priority counted resource request
or places its CRCTX in a resource-wait queue. Rather, it attempts to allocate
the requested number of resource items immediately. If IOC$ALLOC_CNT_RES
cannot grant the requested number of items, it returns SS$_INSFMAPREG
status to its caller.

4.3 Loading Map Registers
A driver calls IOC$LOAD_MAP to load a set of adapter-specific map registers.
The driver must have previously allocated the map registers (including an extra
two to serve as a guard page) in calls to IOC$ALLOC_CRCTX and IOC$ALLOC_
CNT_RES.

IOC$LOAD_MAP requires the following as input:

• the address of the ADP of the adapter that provides the map registers

• the address of the CRCTX that describes the map register allocation

• the system virtual address of the page table entry (PTE) for the first page to
be used in the DMA transfer

• the Byte offset into the first page of the transfer

IOC$LOAD_MAP returns a specified location a port-specific address of a DMA
buffer.

Allocating Map Registers and Other Counted Resources 4–5

Allocating Map Registers and Other Counted Resources
4.3 Loading Map Registers

The following example illustrates a call to IOC$LOAD_MAP:

100$: PUSHAL UCB$L_ARG(R4) ; Cell for returned DMA address
MOVZWL BD$W_PAGE_OFFSET(R3),-(SP) ; Pass starting buffer offset
PUSHL BD$L_SVAPTE(R3) ; Pass SVAPTE as argument
PUSHL R2 ; Pass CRCTX as argument
PUSHL PDT$L_ADP(R4) ; Pass ADP as argument
CALLS #5,IOC$LOAD_MAP ; Load the allocated map registers

Having loaded the map registers for a DMA transfer, a driver typically performs
some of the following steps to initiate the transfer:

• Loads the port-specific DMA address into a device DMA address register.
Some manipulation of the address value might be needed, depending upon
the hardware. (For instance, a DEC 3000 Alpha Model 500 driver must clear
the two low bits before writing to the register.)

• Computes the transfer length and loads a device transfer count register.
Typically a driver derives the transfer length from a field such as UCB$L_
BCNT.

• Sets to GO byte in the device CSR (possibly indicating the direction of the
transfer as well) by writing a mask to the CSR.

4.4 Deallocating a Number of Counted Resources
A driver calls IOC$DEALLOC_CNT_RES to deallocate a requested number
of items of a counted resource. IOC$DEALLOC_CNT_RES requires the
addresses of both the CRAB and CRCTX as input. After deallocating the items,
IOC$DEALLOC_CNT_RES attempts to restart any waiters for the resource.

The following example illustrates a call to IOC$DEALLOC_CNT_RES:

PUSHL R2 ; Push CRCTX as argument
PUSHL ADP$L_CRAB(R4) ; Push CRAB as argument
CALLS #2,IOC$DEALLOC_CNT_RES ; Deallocate the map registers

4.5 Deallocating a Counted Resource Context Block
A driver calls IOC$DEALLOC_CRCTX to deallocate a CRCTX. IOC$DEALLOC_
CRCTX requires only the address of the CRCTX as input.

A driver must not deallocate a CRCTX that describes a request that has been
stalled waiting for sufficient resource items to be made available (that is, a
CRCTX that is in a given CRAB wait queue). Prior to deallocating such a
CRCTX, a driver should call IOC$CANCEL_CNT_RES to cancel the resource
request.

The following example illustrates a call to IOC$DEALLOC_CRCTX:

PUSHL R2 ; Pass CRCTX as argument
CALLS #1,IOC$DEALLOC_CRCTX ; Deallocate the CRCTX

4–6 Allocating Map Registers and Other Counted Resources

5
Synchronization Requirements for OpenVMS

Alpha Device Drivers

This chapter discusses special synchronization requirements for OpenVMS Alpha
device drivers beyond the basic synchronization requirements for OpenVMS
Alpha device drivers. It focuses on the following areas:

• Section 5.1 describes why and how you must use OpenVMS driver
multiprocessing synchronization semantics when creating an OpenVMS
Alpha device driver.

• Section 5.2 discusses why it is important to identify driver operations that
depend on the exact ordering of reads and writes to memory and shows how
to enforce this ordering.

• Section 5.3 explains how VAX systems and Alpha systems differ in their
ability to access, without interruption, byte-, word-, and longword-sized data
items, and suggests ways of overcoming these differences to synchronize
access to such items.

• Section 5.4 describes how to synchronize different instruction streams on an
OpenVMS Alpha system.

5.1 Producing a Multiprocessing-Ready Driver
All OpenVMS Alpha device drivers must adhere to the rules for OpenVMS
multiprocessing device drivers.

The following is a general summary of those rules for OpenVMS Alpha device
drivers:

• Specify smp=YES in the DPTAB macro invocation.

• Use the following spin lock synchronization macros instead of macros that
simply raise and lower IPL:

FORKLOCK/FORKUNLOCK

DEVICELOCK/DEVICEUNLOCK

LOCK/UNLOCK

Note that the lockipl argument of these macros is ignored on OpenVMS
Alpha systems. The operating system automatically obtains the lock’s IPL
from the spin lock or fork lock data structure, or from the spin lock IPL
vector.

• Initialize field FKB$B_FLCK of each fork block with the index of the fork
lock that synchronizes access to the structure in which the fork block resides.
Typically, drivers initialize the UCB fork block by issuing a DPT_STORE
macro within a DPTAB macro invocation.

Synchronization Requirements for OpenVMS Alpha Device Drivers 5–1

Synchronization Requirements for OpenVMS Alpha Device Drivers
5.1 Producing a Multiprocessing-Ready Driver

Note that you can no longer store a fork IPL in this field; the field’s alias,
UCB$B_FIPL, has been deleted.

5.2 Enforcing the Order of Reads and Writes
VAX multiprocessing systems have traditionally been designed so that if one
processor in the multiprocessing system writes multiple pieces of data, these
pieces become visible to all other processors in the same order in which they were
written. For example, if CPU A writes a data buffer and then writes a flag, CPU
B can determine that the data buffer has changed by examining the value of the
flag.

OpenVMS Alpha systems may reorder read and write operations to memory
to benefit overall memory subsystem performance. Processes that execute on
a single processor can rely on write operations from that processor becoming
readable in the order in which they are issued. However, multiprocessor
applications cannot rely on the order in which writes to memory become visible
throughout the system. In other words, write operations performed by CPU A
may become visible to CPU B in an order different from that in which they were
written.

Device driver threads that share data in multiprocessing environments or with
DMA I/O devices must be careful to insert an Alpha Alpha Memory Barrier (MB)
instruction as appropriate, before and after data references. The MB instruction
guarantees that all subsequent loads or stores will not access memory until
after all previous loads and stores have accessed memory, as observed by other
processors.

For traditional, common device driver operations, you can rely on OpenVMS
system routines that initiate DMA device operations to memory or that acquire
spin locks that protect specific system databases in a multiprocessing system
to insert the required memory barriers. The following are some examples of
how OpenVMS Alpha provides memory barriers transparently when needed to
properly order memory operations involving device drivers:

• When a driver is writing a buffer to a disk (involving a device that performs
a DMA read operation to memory), an MB instruction must be issued before
the driver initiates the write transaction and the device must issue an MB
instruction after receiving the start signal but before starting the DMA read.
A driver normally calls the system routine IOC$CRAM_IO (or IOC$CRAM_
QUEUE and IOC$CRAM_WAIT) to deliver data and the start command to
the DMA device’s registers. Because these routines issue the appropriate MB
instructions on behalf of the driver, the driver need not include an explicit
memory barrier.

• When a DMA I/O device has written data to memory (for instance, paging
in a page from disk), the DMA device must issue an MB instruction before
posting a completion interrupt, and the OpenVMS I/O interrupt dispatcher
(IO_INTERRUPT) issues an MB instruction to guarantee that the data is
visible to the interrupted processor before invoking the driver’s interrupt
service routine.

• All routines and macros that acquire spin locks, fork locks, and device locks
to synchronize access to a specific database in a multiprocessing system issue
an MB instruction prior to obtaining the lock.

5–2 Synchronization Requirements for OpenVMS Alpha Device Drivers

Synchronization Requirements for OpenVMS Alpha Device Drivers
5.2 Enforcing the Order of Reads and Writes

Note

The uniprocessing versions of the spin lock routines and macros do not
provide memory barriers.

There are two ways to generate an MB instruction from VAX MACRO code:

• The MACRO-32 compiler for OpenVMS Alpha generates an implicit memory
barrier when processing any of the VAX interlocked instructions (such as
BBSSI, BBCCI, and ADAWI) and interlocked queue instructions.

• The MACRO-32 compiler provides the EVAX_MB built-in to generate an
explicit memory barrier.

There are certain instances when a driver must include an explicit memory
barrier. For instance, if a driver and a device controller exchange data and
effect transactions by means of some in-memory structure, such as a command
buffer and a doorbell register, a driver ordinarily does not use IOC$CRAM_IO
or IOC$CRAM_QUEUE after setting up device registers with the appropriate
memory addresses. In such a case, a driver must take care to explicitly order the
writes to the command buffer and the write to the doorbell register to enforce
the order of reads and writes involving the buffer. The MACRO-32 compiler for
OpenVMS Alpha provides an EVAX_MB built-in to allow you to insert a memory
barrier prior to the latter write, as in the following example:

; Set up the SCSI base register with command ring’s physical address
;-

MOVL SPDT$PS_CMD_RING(R4),R2 ; Get the SVA of command ring
BSBW GET_PHY_ADDR ; Convert it to physical address
DEVICELOCK - ; Get device lock and raise IPL

LOCKADDR=SPDT$L_DLCK(R4),-
LOCKIPL=SPDT$B_DIPL(R4),-
SAVIPL=-(SP),-
PRESERVE=NO

MOVL SPDT$PS_SCSI_BASE(R4),R0 ; Get address of SCSI base register
EVAX_STQ R1,(R0) ; Write cmd ring addr. to SCSI base register
EVAX_MB ; Do memory barrier for correct instr. sequence
MOVL SPDT$PS_SCSI_DB(R4),R0 ; Get address of SCSI doorbell register
EVAX_STQ R1,(R0) ; Ring the SCSI doorbell register

5.3 Ensuring Synchronized Access of Data Items
The VAX architecture supports instructions that can read or write byte- and
word- sized data in a single noninterruptible operation. The Alpha Alpha
architecture supports instructions that read or write longword- and quadword-
sized data uninterruptedly. Because the Alpha instruction sequence simplythat
accomplishes byte- and word-sized reads is interruptible, operations on byte and
word data that are automatic on VAX systems, are no longer atomic on Alpha
systems.

In addition, this difference in the granularity of memory access can also affect the
definition of which data is shared. On VAX systems, a byte- or word-sized item
that is shared can be manipulated without regard to neighboring data. On Alpha
systems, the entire longword or quadword that contains the byte- or word-sized
item must be manipulated. If a word-sized (or longword-sized) item crosses a
longword- or quadword-address boundary, two longwords or quadwords may be
manipulated. Thus, because of its proximity to an explicitly shared data item,
neighboring data may become unintentionally shared.

Synchronization Requirements for OpenVMS Alpha Device Drivers 5–3

Synchronization Requirements for OpenVMS Alpha Device Drivers
5.3 Ensuring Synchronized Access of Data Items

A device driver must take steps beyond those required in traditional interrupt
priority level (IPL) and spin lock synchronization to ensure that bytes, words, and
longwords are accessed without interference. Although interlocked instructions
(BBSSI, BBCCI, and ADAWI) generate memory barriers and interlocked
OpenVMS Alpha code sequences, they assume a byte granularity environment.
Where the data segment on which these and other instructions operate may be
concurrently written by different threads, you may need to impose additional
synchronization as follows:

• Align data structures on natural address boundaries in memory. That is,
align all fields on a natural boundary: bytes at any byte address, words
at any address that is a multiple of 2, longwords at any address that is a
multiple of 4, and quadwords at any address that is a multiple of 8.

• Inspect shared fields and fields around them for intralongword or
intraquadword granularity problems. For instance, identify word and
byte fields that are shared between threads running at different IPLs—for
instance, a UCB bitmask where bits are accessed at device IPL and fork IPL
or a UCB quadword that consists of a longword accessed at IPL$_ASTDEL
and a word accessed at fork IPL.

Resolve intralongword and intraquadword granularity problems by padding
the bytes, words, or longwords involved, or promoting them to longword
or quadword fields. A bit that is changed by BBSSI or BBCCI, or a word
modified by ADAWI, should reside in a longword where the other portions of
the longword are not modified by an independent and concurrent instruction
thread. A longword bitmask should contain bits accessed only at fork IPL or
at device IPL, not at both.

• Identify base structure alignment to the MACRO-32 compiler, so that the
MACRO compiler can generate the most optimal and safest instruction
sequence to access its fields. For instance, if you know that the base
alignment of a structure is at a longword boundary, use the following:

.SYMBOL_ALIGNMENT LONG

.SYMBOL_ALIGNMENT QUAD

Whenever the MACRO-32 compiler encounters a reference in which a symbol
that is defined in the context of one of these directives is used as an offset
from a register, it generates Alpha Alpha instructions reflecting the specified
symbol alignment and its own register alignment assumptions. Note that,
when you use one of these directives, you must insert the following directive
in the data declarations when the specified symbol alignment is no longer in
effect:

.SYMBOL_ALIGNMENT NONE

Note

The .SYMBOL_ALIGNMENT directive does not work in the context of the
$DEFINI, $DEF, _VIELD, and $DEFEND macros.

See Porting VAX MACRO Code to OpenVMS Alpha for additional information
on MACRO-32 compiler alignment assumptions and instructions for using the
.SYMBOL_ALIGNMENT directive.

5–4 Synchronization Requirements for OpenVMS Alpha Device Drivers

Synchronization Requirements for OpenVMS Alpha Device Drivers
5.4 Using Instruction Memory Barriers

5.4 Using Instruction Memory Barriers
Code that modifies the instruction stream must be changed to properly
synchronize the old and new instructions streams. Use of an RET instruction to
accomplish this will not work on OpenVMS Alpha systems.

If a driver code sequence changes the expected instruction stream, it must issue
an Instruction Memory Barrier (IMB) instruction after changing the instruction
stream and before the time the change is executed. For example, if a driver
stores an instruction sequence in an extension to the unit control block (UCB)
and then transfers control there, it must issue an IMB instruction after storing
the data in the UCB but before transferring control to the UCB data.

The MACRO-32 compiler for OpenVMS Alpha provides the EVAX_IMB built-in to
explicitly insert an IMB instruction in the instruction stream.

Synchronization Requirements for OpenVMS Alpha Device Drivers 5–5

6
Conversion Guidelines

This chapter describes the tasks required to convert an OpenVMS VAX device
driver to an OpenVMS Alpha device driver. For more details about the macros,
system routines, and entry points listed in this chapter, see the appropriate
chapter in this manual. For more details about porting VAX MACRO code to
OpenVMS Alpha, see Porting VAX MACRO Code to OpenVMS Alpha.

6.1 OpenVMS Alpha Device Driver Program Sections
An OpenVMS Alpha device driver consists of three distinct program sections, or
psects:

• $$$105_PROLOGUE, which contains the DPT and is defined automatically by
the DPTAB macro.

• $$$110_DATA, which contains driver data such as the driver dispatch table
(DDT) and the function decision table (FDT)

• $$$115_DRIVER, which contains driver code

Because OpenVMS Alpha compiler technology does not allow code and data to
reside together in the same psect, you must keep code and data in the proper
psects of an OpenVMS Alpha driver. Moreover, because OpenVMS Alpha drivers
are loadable executive images, you must ensure that the psect attributes are
correctly and consistently defined so as to allow the image to be linked properly.

The following are guidelines for psect declaration:

• Add an invocation of the DRIVER_CODE macro prior to the first line of
executable code in the driver. By default, the DRIVER_CODE macro declares
the psect $$$115_DRIVER. However, you can specify any alternative psect
name consistent with the naming and linking conventions of the OpenVMS
VAX driver you are porting to OpenVMS Alpha.

Unlike its behavior in OpenVMS VAX device drivers, the DDTAB macro does
not define the $$$115_DRIVER psect for OpenVMS Alpha device drivers.
Rather it defines the data psect ($110_DATA) in which the DDT resides.

• OpenVMS macros that construct data, such as DDTAB and FUNCTAB,
automatically invoke the DRIVER_DATA macro prior to creating the data. By
default, the DRIVER_DATA macro declares the psect $$$110_DATA.

• You must move all driver-specific data structures currently defined within
the body of the code (in psect $$$115_DRIVER) to a data psect. Although the
DRIVER_DATA macro declares the psect $$$110_DATA by default, you can
specify any alternative psect name consistent with the naming and linking
conventions of the OpenVMS VAX driver you are porting to OpenVMS Alpha.

Conversion Guidelines 6–1

Conversion Guidelines
6.1 OpenVMS Alpha Device Driver Program Sections

• If the driver consists of multiple source modules, you should replace each
explicit setting of the $$$115_DRIVER psect with an invocation of the
DRIVER_CODE macro to ensure that the correct standard psect for driver
code sections is always used.

6.2 DPTAB Changes
The driver prologue table (DPT) must declare that the driver is a Step 2 driver.
To identify an OpenVMS Alpha Step 2 driver, specify step=2 when invoking the
DPTAB macro. The macro creates the constant DPT$K_STEP_2 and inserts it
into the DPT$IW_STEP field of the driver prologue table (DPT). The macro also
inserts the value DPT$K_STEP2_V2 in the DPT$IW_STEPVER field.

If you do not make this change, compilation errors will result. OpenVMS
Alpha uses the value in DPT$IW_STEP to detect driver sources that have not
been modified to conform to the currently supported OpenVMS Alpha driver
implementation. OpenVMS Alpha uses the value in DPT$IW_STEPVER to
enforce the most recent driver loading procedure requirements.

In an OpenVMS VAX driver, the DPT must be at the very beginning of the driver
image. In an OpenVMS Alpha driver, the DPT can be in any read/write image
section of the driver.

See the driver macros chapter for more information about the DPT and the
DPTAB macro.

6.3 DDTAB Changes
The following sections summarize DDTAB macro changes you must make when
converting an OpenVMS VAX driver to an OpenVMS Alpha driver.

6.3.1 DDTAB Routine Name Changes
The routines pointed to by the driver dispatch table (DDT) must conform to
OpenVMS Alpha requirements. You must add entry point declarations for driver-
specific routines, but the names may remain unchanged. Change any OpenVMS
routine name referenced in the driver’s DDTAB macro invocation as follows:

1. Replace cancel=IOC$CANCELIO with cancel=IOC_STD$CANCELIO.

2. Replace mntver=IOC$MNTVER with mntver=IOC_STD$MNTVER.

See macros chapter for more information about the driver dispatch table (DDT)
and the DDTAB macro.

6.3.2 Specifying Controller and Unit Initialization Routines
An OpenVMS VAX device driver specifies the location of its controller
initialization routine by issuing a DPT_STORE macro of the following form:

DPT_STORE CRB, CRB$L_INTD+VEC$L_INITIAL, D, XX_CTRL_INIT

Similarly, an OpenVMS VAX driver may specify the location of its unit
initialization routine using the following:

DPT_STORE CRB, CRB$L_INTD+VEC$L_UNITINIT, D, XX_UNIT_INIT

6–2 Conversion Guidelines

Conversion Guidelines
6.3 DDTAB Changes

An OpenVMS Alpha device driver must use the ctrlinit and unitinit arguments
to the DDTAB macro to specify the controller initialization routine address:

DDTAB -
ctrlinit=XX_CTRL_INIT,-
unitinit=XX_UNIT_INIT,-
.
.
.

6.3.3 Simple Fork Mechanism—JSB-Based Fork Routines
Chapter 3 describes alternatives available to OpenVMS Alpha device drivers for
suspension of execution. If you want to continue using the simple fork mechanism
with JSB-based fork routines for the code path from start I/O through request
complete, you must use the DDTAB JSB_START parameter to identify your start
I/O routine:

DDTAB -
JSB_START = driver_startio_routine

instead of:

DDTAB -
START = driver_startio_routine

By doing so, the IOC$START_C2J CALL-to-JSB jacket routine is actually used as
the start I/O entry. The IOC$START_C2J routine invokes the routine specified by
the JSB_START parameter. A similar approach can also be used for the alternate
start I/O entry point. The DDTAB JSB_ALTSTART parameter is used to specify
the alternate start I/O entry:

DDTAB -
JSB_ALTSTART = driver_altstart_routine

instead of:

DDTAB -
ALTSTART = driver_altstart_routine

The performance cost of this approach is one additional level of routine call to
dispatch an IRP to the driver’s start I/O routine or alternate start I/O routine.

6.3.4 Kernel Process Mechanism
If you want to use the kernel process mechanism, you must use the DDTAB
KP_STARTIO parameter to identify your start I/O routine as follows:

DDTAB -
START = EXE_STD$KP_STARTIO,-
KP_STARTIO = driver_startio_routine

6.4 Specifying an Interrupt Service Routine
An OpenVMS VAX device driver specifies the location of an interrupt service
routine by issuing a DPT_STORE macro of the following form:

DPT_STORE CRB, CRB$L_INTD+VEC$L_ISR, D, XX_ISR

Conversion Guidelines 6–3

Conversion Guidelines
6.4 Specifying an Interrupt Service Routine

An OpenVMS Alpha device driver specifies the location of an interrupt service
routine by issuing the new DPT_STORE_ISR macro, as follows:

DPT_STORE_ISR CRB$L_INTD, XX_ISR

6.5 Interrupt Service Routine Entry Points
The interrupt service routine in an OpenVMS Alpha device driver is a standard
call interface routine. The interrupt service routine is invoked by the system
service dispatcher with two parameters: the address of the IDB and the SCB
vector offset.

The .CALL_ENTRY or .ENTRY directives must be used to identify the entry
point of an OpenVMS Alpha device driver. The interrupt service routine should
save and restore any non-scratch register that it uses and it must transfer control
back to the interrupt dispatcher via a RET instruction. For example:

MY_ISR: .CALL_ENTRY PRESERVE=<R2,R3,R4,R5>
MOVL 4(AP),R4 ; retrieve IDB address
.
.
.
RET ; return back to interrupt dispatch

In contrast, an OpenVMS VAX interrupt service routine is not a standard call
procedure. It exits and dismisses the interrupt via an REI instruction.

6.6 Start I/O and Alternate Start I/O Entry Points
Section 3.2 describes the use of the kernel process services for the code path from
start I/O through request complete. The entry point of a kernel process start I/O
routine should be identified using either the .CALL_ENTRY or .ENTRY directives
as follows:

MY_STARTIO:
.CALL_ENTRY

Section 3.2.2 describes the complete requirements for a kernel process start I/O
routine.

If you choose to continue to use the simple fork mechanism, you must choose
between using a JSB-based fork routine environment that is very similar to the
OpenVMS VAX fork environment and a standard call based fork environment.
Section 3.1 describes the differences between the OpenVMS VAX and OpenVMS
Alpha fork mechanisms.

The code path from start I/O through request complete in some existing drivers
written in MACRO-32 may be difficult and error prone to convert to the standard
call fork interfaces. This can apply to complex drivers that make extensive use
of branches between routines within the same module. If you choose to continue
to use the JSB-based environment, you should place the following entry point
directives at the beginning of your start I/O and alternate start I/O routines:

MY_STARTIO:
.JSB_ENTRY INPUT=<R3,R5>,SCRATCH=<R0,R1,R2,R3,R4>

If you choose to convert your start I/O code path to the new standard call
interface, you should use the $DRIVER_START_ENTRY and $DRIVER_
ALTSTART_ENTRY macros to identify the entry points of your start I/O and
alternate start I/O routines:

6–4 Conversion Guidelines

Conversion Guidelines
6.6 Start I/O and Alternate Start I/O Entry Points

MY_STARTIO:
$DRIVER_START_ENTRY

For information about additional requirements and guidelines for using the
standard call environment for fork routines, see Section 7.4.

6.7 Using the Driver Entry Point Routine Call Interfaces
To use the call interfaces required for OpenVMS Alpha driver-supplied routines,
perform the following tasks:

1. Use the appropriate macro to identify entry points in your driver. OpenVMS
Alpha driver entry point macros include the following:

• $DRIVER_CANCEL_ENTRY

• $DRIVER_CANCEL_SELECTIVE_ENTRY

• $DRIVER_CHANNEL_ASSIGN_ENTRY

• $DRIVER_CLONEDUCB_ENTRY

• $DRIVER_CTRLINIT_ENTRY

• $DRIVER_ERRRTN_ENTRY

• $DRIVER_FDT_ENTRY

• $DRIVER_MNTVER_ENTRY

• $DRIVER_REGDUMP_ENTRY

• $DRIVER_DELIVER_ENTRY

• $DRIVER_UNITINIT_ENTRY

2. Use the default F ETCH=YES parameter value.

This value causes the standard interface parameters to be fetched and copied
to their OpenVMS VAX JSB interface registers, for example:

$DRIVER_UNITINIT_ENTRY FETCH=YES

results in

MOVL #SS$_NORMAL,R0
MOVL UNITARG$_IDB(AP),R4
MOVL UNITARG$_UCB(AP),R5

3. Use the default PRESERVE parameter value.

The default is the set of registers that was allowed to be scratched by the
OpenVMS VAX JSB interface routine, for example:

$DRIVER_UNITINIT_ENTRY

results in

PRESERVE=<R2>

This set of registers is augmented by the MACRO-32 compiler register
autopreservation feature. Use the .SET_REGISTERS WRITTEN=<Rn>
directive to augment this set of registers manually.

4. Make sure that each OpenVMS Alpha driver routine returns control to the
operating system with a RET instruction, instead of an RSB instruction.

Conversion Guidelines 6–5

Conversion Guidelines
6.8 Returning Status from Controller and Unit Initialization Routines

6.8 Returning Status from Controller and Unit Initialization
Routines

An OpenVMS Alpha device driver’s controller initialization routine and unit
initialization routine must return status in R0. If the status returned is not
successful, the initialization of your driver is terminated.

6.9 FUNCTAB Macro Changes
An OpenVMS VAX driver contains three or more FUNCTAB macro invocations.
For OpenVMS Alpha drivers, the function decision table (FDT) format is
significantly different. OpenVMS Alpha driver changes include the following:

• The FUNCTAB macro is obsolete.

• The FDT structure consists of a 64-bit mask specifying the buffered functions
and a 64-entry vector pointing to the upper-level FDT action routine that
corresponds to each of the I/O function codes. There is no bit mask of legal
functions.

• Three new macros are used to build the FDT:

FDT_INI initializes an FDT structure
FDT_BUF declares the buffered I/O functions
FDT_ACT declares an upper-level FDT action routine for a set of I/O
functions

You must make the following changes:

1. Delete the first FUNCTAB macro, the one that identifies valid I/O function
codes, and the FDT label. In their place, insert an FDT_INI macro. The
single argument to FDT_INI is the label for the FDT. The label should match
the name supplied to the functb argument of the DDTAB macro.

2. Replace the second FUNCTAB macro, the one that identifies buffered I/O
functions, with an FDT_BUF macro. Replace the word ‘‘FUNCTAB’’ with the
word ‘‘FDT_BUF’’ and remove the first null argument.

3. Replace each subsequent FUNCTAB macro with an FDT_ACT macro.

For example:

OpenVMS VAX FDT Declaration

MY_FUNCTBL:

FUNCTAB ,- ;legal func
<SENSEMODE,SENSECHAR,-
WRITELBLK,WRITEPBLK>

FUNCTAB ,- ;buffered func
<SENSEMODE,SENSECHAR>

FUNCTAB EXE$SENSE_MODE,-
<SENSEMODE,SENSECHAR>

FUNCTAB MY_FDT_WRITE,-
<WRITELBLK,WRITEPBLK>

6–6 Conversion Guidelines

Conversion Guidelines
6.9 FUNCTAB Macro Changes

Step 2 FDT Declaration

FDT_INI MY_FUNCTBL

FDT_BUF <SENSEMODE,SENSECHAR>

FDT_ACT EXE_STD$SENSE_MODE,-
<SENSEMODE,SENSECHAR>

FDT_ACT MY_FDT_WRITE,-
<WRITELBLK,WRITEPBLK>

Because OpenVMS Alpha driver support replaces all system-supplied upper-level
FDT action routines with new, callable routines, you must also ensure that each
FDT_ACT invocation specifies the correct routine name. Generally, the string
‘‘_STD’’ follows the facility ID and precedes the dollar sign ($) in the routine
name. For example, replace the following code:

FUNCTAB EXE$SETMODE, -
<SETCHAR,-
SETMODE>

with:

FDT_ACT EXE_STD$SETMODE, -
<SETCHAR,-
SETMODE>

Table 6–1 identifies the new OpenVMS Alpha system-supplied upper-level FDT
action routines and the OpenVMS VAX routines they replace.

Table 6–1 OpenVMS Alpha Upper-Level FDT Action Routines

Obsolete OpenVMS VAX
Routine OpenVMS Alpha FDT Action Routine

ACP$ACCESS ACP_STD$ACCESS

ACP$ACCESSNET ACP_STD$ACCESSNET

ACP$DEACCESS ACP_STD$DEACCESS

ACP$MODIFY ACP_STD$MODIFY

ACP$MOUNT ACP_STD$MOUNT

ACP$READBLK ACP_STD$READBLK

ACP$WRITEBLK ACP_STD$WRITEBLK

New for OpenVMS Alpha EXE$ILLIOFUNC

EXE$LCLDSKVALID EXE_STD$LCLDSKVALID

EXE$MODIFY EXE_STD$MODIFY

EXE$ONEPARM EXE_STD$ONEPARM

EXE$READ EXE_STD$READ

EXE$SENSEMODE EXE_STD$SENSEMODE

EXE$SETCHAR EXE_STD$SETCHAR

EXE$SETMODE EXE_STD$SETMODE

EXE$WRITE EXE_STD$WRITE

EXE$ZEROPARM EXE_STD$ZEROPARM

(continued on next page)

Conversion Guidelines 6–7

Conversion Guidelines
6.9 FUNCTAB Macro Changes

Table 6–1 (Cont.) OpenVMS Alpha Upper-Level FDT Action Routines

Obsolete OpenVMS VAX
Routine OpenVMS Alpha FDT Action Routine

MT$CHECK_ACCESS1 MT_STD$CHECK_ACCESS

1For information about changes in routine behavior, see system routines chapter.

Warning

OpenVMS Alpha device drivers support only a single upper-level FDT
action routine per I/O function code. For those functions that require
processing by more than one upper-level FDT action routine, you should
provide a new composite FDT function, which sequentially calls each of
the required FDT routines as long as the returned status is successful.
For more information about composite routines, see Chapter 7.

6.10 FDT Routine Changes
The OpenVMS Alpha FDT routine changes you need to make depend on the type
of FDT routine your driver includes. This section names and describes types of
FDT routines, summarizes the differences between OpenVMS VAX and OpenVMS
Alpha FDT processing, and specifies the required OpenVMS Alpha FDT routine
changes.

An upper-level FDT action routine is a routine listed in a driver’s function
decision table (FDT) as a result of the driver’s invocation of the FDT_ACT macro.
FDT dispatching code in the $QIO system service calls an upper-level FDT action
routine, passing to it the addresses of the I/O request packet (IRP), process
control block (PCB), unit control block (UCB), and channel control block (CCB).
An upper-level FDT action routine must return SS$_FDT_COMPL status to the
$QIO system service.

OpenVMS provides a set of upper-level FDT action routines, but drivers can
also define their own driver-specific upper-level FDT action routines. EXE_
STD$READ is an example of a OpenVMS Alpha upper-level FDT action routine.

An FDT exit routine is a routine used by an OpenVMS VAX driver to
terminate FDT processing and exit from the $QIO system service. For example,
EXE$QIODRVPKT is an FDT exit routine. FDT exit routines use the RET-
under-JSB mechanism to exit from the $QIO system service. The RET under
JSB mechanism is the technique of using a RET instruction to return from a
JSB interface routine. This RET instruction causes control to return from the
most recent CALL interface routine on the current call tree. This technique
unwinds any intervening JSB interface routines without returning to their callers
and without restoring any register values that were saved by the unwound JSB
routines. In an OpenVMS Alpha driver, FDT exit routines have been replaced by
FDT completion routines.

FDT completion routines are the OpenVMS Alpha replacements for OpenVMS
VAX FDT exit routines. Like FDT exit routines, completion routines complete
FDT processing by queuing the I/O request to the appropriate next stage of
processing. Unlike FDT exit routines, FDT completion routines return back
to their callers and do not rely on the RET-under-JSB mechanism. EXE_
STD$QIODRKPT is an example of an OpenVMS Alpha FDT exit routine.

6–8 Conversion Guidelines

Conversion Guidelines
6.10 FDT Routine Changes

FDT support routines are routines that are called during FDT processing, but
they are not upper-level FDT action routines. They have code paths that call
FDT completion routines, but they do not complete FDT processing themselves.
OpenVMS VAX FDT support routines must use a JSB interface. OpenVMS
provides a set of FDT support routines, but drivers can also include their own
support routines. EXE_STD$READCHK is an example of an OpenVMS Alpha
FDT support routine.

For OpenVMS VAX drivers:

• Upper-level FDT action routines are invoked via a JSB interface.

• A return from an upper-level FDT action routine via an RSB instruction
returns control back to the FDT dispatch loop.

• FDT support routines are all invoked via a JSB interface.

• Exit from OpenVMS VAX FDT processing, and the $QIO system service is
via a RET-under-JSB in an FDT exit routine; for example, EXE$ABORTIO,
EXE$QIODRVPKT, and so on.

• The $QIO function-dependent parameters are accessible using AP offsets from
within any FDT routine. The AP register points directly to the caller’s $QIO
parameter P1 value.

In contrast, for OpenVMS Alpha drivers:

• Upper-level FDT action routines are invoked via a new standard call
interface.

• Control is returned from an upper-level FDT action routine via a RET
instruction, which exits the FDT dispatcher and returns to the $QIO system
service.

• Driver-specific FDT support routines may continue to use JSB interfaces,
however OpenVMS-provided FDT support routines should be invoked using
the new CALL_x macros.

• FDT completion routines are used instead of FDT exit routines. FDT
completion routines return back to their callers with the SS$_FDT_COMPL
status. All upper-level FDT action routines must return this status back to
the $QIO system service.

• The $QIO function-dependent parameters are accessible only from the IRP
(offsets IRP$L_QIO_P1, and so on). The $QIO parameters cannot be accessed
using AP register offsets in any OpenVMS Alpha FDT routines.

6.10.1 Upper-Level Routine Entry Point Changes
If the OpenVMS VAX driver you are converting to OpenVMS Alpha includes a
device-specific upper-level FDT action routine, perform the following tasks:

1. Insert the $DRIVER_FDT_ENTRY macro at the entry points of all the upper-
level FDT routines that you define in your driver. This macro declares the
routine’s call entry point and ensures, by default, that all nonscratch registers
defined by the OpenVMS Calling Standard are preserved. This macro also
invokes the $FDTARGDEF macro, thus allowing the FDT routine to access its
arguments at their standard locations with respect to the AP.

Conversion Guidelines 6–9

Conversion Guidelines
6.10 FDT Routine Changes

2. Ensure that the routine does not read R7 to obtain the low-order 6 bits
of the $QIO function code parameter, or R8 to obtain the FDT table entry
address. It can instead obtain the function code from the IRP and the start
of the OpenVMS Alpha FDT structure from DDT$PS_FDT_2. Note that the
OpenVMS Alpha FDT format differs from the OpenVMS VAX format.

3. Use the default register PRESERVE list on $DRIVER_FDT_ENTRY macro.

4. Remove any definitions of the P1 through P6 offsets that OpenVMS VAX
drivers use to access the $QIO function-dependent parameters. For example,
remove the following local symbol definitions:

P1 = 0
P2 = 4
P3 = 8
P4 = 12
P5 = 16
P6 = 20

This will help you to find places where you must use the IRP$L_QIO_Pn
offsets instead.

5. Access the $QIO function-dependent parameters using the IRP$L_QIO_Pn
offsets instead of AP offsets. For example, you must use:

MOVL IRP$L_QIO_P1(R3),R0 ;Get caller’s buffer address (P1)

instead of:

MOVL P1(AP),R0

6.10.2 FDT Exit Routine Changes
Replace the JMP or JSB instructions to OpenVMS VAX FDT exit routines with
the OpenVMS Alpha macros (listed in Table 6–2) that call FDT completion
routines. Use the default value for the do_ret=YES parameter.

6–10 Conversion Guidelines

Conversion Guidelines
6.10 FDT Routine Changes

For example, replace:

JMP G^EXE$ABORTIO

with:

CALL_ABORTIO

Table 6–2 FDT Completion Routines and Macros

Obsolete OpenVMS VAX FDT
Exit Routine Macro FDT Completion Routine

EXE$ABORTIO CALL_ABORTIO EXE_STD$ABORTIO

EXE$ALTQUEPKT CALL_ALTQUEPKT1 EXE_STD$ALTQUEPKT

EXE$FINISHIO CALL_FINISHIO EXE_STD$FINISHIO

EXE$FINISHIOC CALL_FINISHIOC EXE_STD$FINISHIO

New for OpenVMS Alpha CALL_FINISHIO_NOIOST EXE_STD$FINISHIO

EXE$IORSNWAIT CALL_IORSNWAIT EXE_STD$IORSNWAIT

EXE$QIOACPPKT CALL_QIOACPPKT EXE_STD$QIOACPPKT

EXE$QIODRVPKT CALL_QIODRVPKT EXE_STD$QIODRVPKT

EXE$QIORETURN none none2

1The CALL_ALTQUEPKT macro does not provide the do_ret argument. An FDT routine that invokes CALL_
ALTQUEPKT must typically manage the dispatching of I/O requests to the driver’s alternate start-I/O entry point.
2If your driver issues a JSB or JMP instruction to EXE$QIORETURN, you must replace the JSB or JMP with code that:

a. Releases the device lock if held. EXE$QIORETURN contained code that unconditionally released the device lock.
b. Places SS$_FDT_COMPL status in R0 before returning to its caller. Because the final system service status in the

FDT_CONTEXT structure is SS$_NORMAL by default, your driver need do nothing special to deliver a success status
to the $QIO caller.

If you call an FDT completion routine directly (that is, not using a macro), you
should note that FDT completion routines:

• Always return to their caller and not to the system service dispatcher.

• Always return the warning status SS$_FDT_COMPL.

• Place the $QIO system service status in a new structure called the FDT_
CONTEXT structure.

6.10.3 OpenVMS-Supplied FDT Support Routine Changes
For OpenVMS Alpha drivers, replace any JSB instruction to an OpenVMS
supplied FDT support routine with the appropriate JSB-replacement macro. (See
Table 6–3.) The macros do the following:

• Use the input registers for the corresponding OpenVMS VAX FDT support
routine as implicit inputs.

• Call the new OpenVMS Alpha support routine passing the register values in
the correct OpenVMS Alpha parameter order.

• Restore the output values into the output registers for the corresponding
OpenVMS VAX routine.

Conversion Guidelines 6–11

Conversion Guidelines
6.10 FDT Routine Changes

• Generate code that checks the returned status and invokes a RET instruction
on an error. (Some OpenVMS VAX FDT support routines never returned to
their callers in the event of an error.)

Table 6–3 System-Supplied FDT Support Routines

Obsolete OpenVMS VAX FDT
Support Routine Macro FDT Support Routine

EXE$MODIFYLOCK CALL_MODIFYLOCK EXE_STD$MODIFYLOCK

EXE$MODIFYLOCK_ERR CALL_MODIFYLOCK_ERR EXE_STD$MODIFYLOCK

EXE$READCHK CALL_READCHK EXE_STD$READCHK

EXE$READCHKR CALL_READCHKR EXE_STD$READCHK

EXE$READLOCK CALL_READLOCK EXE_STD$READLOCK

EXE$READLOCK_ERR CALL_READLOCK_ERR EXE_STD$READLOCK

COM$SETATTNAST CALL_SETATTNAST COM_STD$SETATTNAST

COM$SETCTRLAST CALL_SETCTRLAST COM_STD$SETCTRLAST

EXE$WRITECHK CALL_WRITECHK EXE_STD$WRITECHK

EXE$WRITECHKR CALL_WRITECHKR EXE_STD$WRITECHK

EXE$WRITELOCK CALL_WRITELOCK EXE_STD$WRITELOCK

EXE$WRITELOCK_ERR CALL_WRITELOCK_ERR EXE_STD$WRITELOCK

6.10.4 Driver-Supplied FDT Support Routine Changes
It is easiest to use your current JSB interfaces for all driver-supplied FDT
support routines. In fact, the correct operation of the CALL_x macros depends on
keeping the JSB interfaces for your support routines.

To convert an OpenVMS VAX driver that contains driver-supplied FDT support
routines to the OpenVMS Alpha interface, do the following:

1. Use the $DRIVER_FDT_ENTRY macro for upper-level routines with the
default preserve list, regardless of the registers that are actually modified by
the upper-level FDT routine.

2. Use the FDT completion macros with DO_ RET=YES (the default) and the
FDT support routines in Table 6–3.

3. Keep the JSB interface for all driver-supplied FDT support routines.

This means that you must insert the .JSB_ENTRY directive at the entry
points of all the FDT support routines that you define. You must also identify
the appropriate register lists for the INPUT, OUTPUT, and SCRATCH
parameters on each of your .JSB_ENTRY directives. The correct register lists
are determined by the input and output registers that your routine provides.
It is crucial that you list the correct OUTPUT registers.

If you want to convert driver-supplied FDT support routines to CALL
interfaces, see Chapter 7. For additional information about the .JSB_ENTRY
directive, see Porting VAX MACRO Code to OpenVMS Alpha

6–12 Conversion Guidelines

Conversion Guidelines
6.10 FDT Routine Changes

4. Access the $QIO function-dependent parameters using the IRP$L_QIO_Pn
offsets instead of AP offsets. For example, you must use:

MOVL IRP$L_QIO_P2(R3),R1 ;Get caller’s P2 parameter

instead of:

MOVL P2(AP),R0

6.10.5 Returning from Upper-Level Routines
In most cases, upper-level FDT action routines end with a call to an FDT
completion macro that includes a RET instruction. However, if after following
the steps outlined in Section 6.10.1 through Section 6.10.4, you still have an RSB
instruction in your upper-level FDT action routine, you should change it to the
following:

MOVL #SS$_NORMAL,R0
RET

Encountering an RSB instruction in your upper-level FDT action routine indicates
that the upper-level FDT action routine, which you are converting, is one of
several upper-level routines called for a single I/O function. Because OpenVMS
Alpha drivers can have only one upper-level FDT action routine for each I/O
function, you must also make this FDT routine a composite FDT routine. For
information about composite FDT routines, see Section 7.1.

6.11 Adding .JSB_ENTRY Directives
Previous sections of this chapter describe the following topics:

• Guidelines for converting some JSB interface routines to call interfaces

• The required use of the new $DRIVER_xxx_ENTRY entry point macros

• The use of the .JSB_ENTRY directive to identify the entry points of some
routines that either can or must retain a JSB interface

After you follow these guidelines, you must identify the entry points of any
remaining JSB interface routines in your driver by using the .JSB_ENTRY
directive. You must also identify the appropriate register lists for the INPUT,
OUTPUT, and SCRATCH parameters on each of your .JSB_ENTRY directives.
The correct register lists are determined by the input and output registers that
your routine provides. It is crucial that you list the correct OUTPUT registers.
For more information about the .JSB_ENTRY directive, see Porting VAX MACRO
Code to OpenVMS Alpha.

Note

The FORK_ROUTINE macro is a convenient way to declare the entry
point of any fork routines that you define.

Conversion Guidelines 6–13

Conversion Guidelines
6.12 Common OpenVMS-Supplied EXEC Routines

6.12 Common OpenVMS-Supplied EXEC Routines
Replace any JSB to the routines listed in Table 6–4 with the appropriate macro.
If the interface provided by the JSB-replacement macro differs from the original
JSB interface, the macro generates a compile-time warning. The compile-time
warning identifies the register output that is not provided by the replacement
macro. After you have made sure that your code does not depend on this
output you can disable the warning by using the INTERFACE_WARNING=NO
parameter on the macro.

Certain macros ensure compatibility with the original JSB interface by saving
R0, R1, or both. These macros provide an argument that allows you to specify
that these registers not be saved.

Most of the JSB-based routines listed in Table 6–4 continue to be available to
OpenVMS Alpha drivers. However, in many cases, the new call-based interface
routine provides better performance than the JSB-based interfaces. If you intend
to call a call-based system routine directly (without using a macro), check the
‘‘Notes for Converting Step 1 Drivers’’ section of the routine’s description in
the system routines chapter to verify the routine interface. You can optimize
performance of the macro by following the recommendations listed in Chapter 7.

Table 6–4 Replacement Macros for JSB System Routines

JSB Routine Replacement Macro
Interface
Warning Save R0/R1

ACP$ACCESS1 CALL_ACCESS No No

ACP$ACCESSNET1 CALL_ACCESSNET No No

ACP$DEACCESS1 CALL_DEACCESS No No

ACP$MODIFY1 CALL_ACP_MODIFY No No

ACP$MOUNT1 CALL_MOUNT No No

ACP$READBLK1 CALL_READBLK No No

ACP$WRITEBLK1 CALL_WRITEBLK No No

COM$DELATTNAST CALL_DELATTNAST No No

COM$DELATTNASTP CALL_DELATTNASTP No No

COM$DELCTRLAST CALL_DELCTRLAST No No

COM$DELCTRLASTP CALL_DELCTRLASTP No No

COM$DRVDEALMEM CALL_DRVDEALMEM No No

COM$FLUSHATTNS CALL_FLUSHATTNS No No

COM$FLUSHCTRLS CALL_FLUSHCTRLS No No

COM$POST CALL_POST No No

COM$POST_NOCNT CALL_POST_NOCNT No No

COM$SETATTNAST1 CALL_SETATTNAST No No

COM$SETCTRLAST1 CALL_SETCTRLAST No No

ERL$ALLOCEMB CALL_ALLOCEMB No No

ERL$DEVICEATTN CALL_DEVICEATTN No No

1The JSB-based OpenVMS VAX routine is not supported by the OpenVMS Alpha operating system Version 6.1.

(continued on next page)

6–14 Conversion Guidelines

Conversion Guidelines
6.12 Common OpenVMS-Supplied EXEC Routines

Table 6–4 (Cont.) Replacement Macros for JSB System Routines

JSB Routine Replacement Macro
Interface
Warning Save R0/R1

ERL$DEVICERR CALL_DEVICERR No No

ERL$DEVICTMO CALL_DEVICTMO No No

ERL$RELEASEMB CALL_RELEASEMB No No

EXE$ABORTIO1 CALL_ABORTIO No No

EXE$ALLOCBUF CALL_ALLOCBUF No No

EXE$ALLOCIRP CALL_ALLOCIRP No No

EXE$ALTQUEPKT CALL_ALTQUEPKT No No

EXE$CARRIAGE CALL_CARRIAGE No No

EXE$CHKCREACCES CALL_CHKCREACCES No R1

EXE$CHKDELACCES CALL_CHKDELACCES No R1

EXE$CHKEXEACCES CALL_CHKEXEACCES No R1

EXE$CHKLOGACCES CALL_CHKLOGACCES No R1

EXE$CHKPHYACCES CALL_CHKPHYACCES No R1

EXE$CHKRDACCES CALL_CHKRDACCES No R1

EXE$CHKWRTACCES CALL_CHKWRTACCES No R1

EXE$FINISHIO1 CALL_FINISHIO No No

EXE$FINISHIOC1 CALL_FINISHIOC No No

EXE$INSERT_IRP CALL_INSERT_IRP No No

EXE$INSIOQ CALL_INSIOQ No No

EXE$INSIOQC CALL_INSIOQC No No

EXE$IORSNWAIT1 CALL_IORSNWAIT No No

EXE$LCLDSKVALID1 CALL_LCLDSKVALID No No

EXE$MNTVERSIO CALL_MNTVERSIO No No

EXE$MODIFY1 CALL_EXE_MODIFY No No

EXE$MODIFYLOCK1 CALL_MODIFYLOCK No No

EXE$MODIFYLOCK_ERR1 CALL_MODIFYLOCK_
ERR

Yes No

EXE$MOUNT_VER CALL_MOUNT_VER No R0 and R1

EXE$ONEPARM1 CALL_ONEPARM No No

EXE$PRIMITIVE_FORK FORK2 No No

EXE$PRIMITIVE_FORK_WAIT FORK_WAIT2 No No

EXE$QIOACPPKT1 CALL_QIOACPPKT No No

EXE$QIODRVPKT1 CALL_QIODRVPKT No No

EXE$QXQPPKT1 CALL_QXQPPKT No No

EXE$READCHK 1 CALL_READCHK No No

EXE$READCHKR1 CALL_READCHKR No No

1The JSB-based OpenVMS VAX routine is not supported by the OpenVMS Alpha operating system Version 6.1.
2The standard call interface version of the routine is used by the macro if the ENVIRONMENT=CALL parameter is
specified.

(continued on next page)

Conversion Guidelines 6–15

Conversion Guidelines
6.12 Common OpenVMS-Supplied EXEC Routines

Table 6–4 (Cont.) Replacement Macros for JSB System Routines

JSB Routine Replacement Macro
Interface
Warning Save R0/R1

EXE$READLOCK1 CALL_READLOCK No No

EXE$READLOCK_ERR1 CALL_READLOCK_
ERR

Yes No

EXE$SENSEMODE1 CALL_SENSEMODE No No

EXE$SETCHAR1 CALL_SETCHAR No No

EXE$SETMODE1 CALL_SETMODE No No

EXE$SNDEVMSG CALL_SNDEVMSG No No

EXE$WRITE1 CALL_WRITE No No

EXE$WRITECHK1 CALL_WRITECHK No No

EXE$WRITECHKR1 CALL_WRITECHKR No No

EXE$WRITELOCK1 CALL_WRITELOCK No No

EXE$WRITELOCK_ERR1 CALL_WRITELOCK_
ERR

Yes No

EXE$WRTMAILBOX CALL_WRTMAILBOX No No

EXE$ZEROPARM1 CALL_ZEROPARM No No

IOC$ALTREQCOM CALL_ALTREQCOM No No

IOC$BROADCAST CALL_BROADCAST No R1

IOC$CANCELIO CALL_CANCELIO No R0 and R1

IOC$CLONE_UCB1 CALL_CLONE_UCB Yes No

IOC$COPY_UCB CALL_COPY_UCB No No

IOC$CREDIT_UCB CALL_CREDIT_UCB No No

IOC$CVTLOGPHY CALL_CVTLOGPHY No No

IOC$CVT_DEVNAM CALL_CVT_DEVNAM No No

IOC$DELETE_UCB CALL_DELETE_UCB No No

IOC$DIAGBUFILL CALL_DIAGBUFILL No No

IOC$FILSPT CALL_FILSPT No No

IOC$GETBYTE CALL_GETBYTE No No

IOC$INITBUFWIND CALL_INITBUFWIND No No

IOC$INITIATE CALL_INITIATE No No

IOC$LINK_UCB1 CALL_LINK_UCB Yes No

IOC$MAPVBLK CALL_MAPVBLK No No

IOC$MNTVER CALL_MNTVER No No

IOC$MOVFRUSER CALL_MOVFRUSER No No

IOC$MOVFRUSER2 CALL_MOVFRUSER2 No No

IOC$MOVTOUSER CALL_MOVTOUSER No No

IOC$MOVTOUSER2 CALL_MOVTOUSER2 No No

IOC$PARSDEVNAM CALL_PARSDEVNAM No No

1The JSB-based OpenVMS VAX routine is not supported by the OpenVMS Alpha operating system Version 6.1.

(continued on next page)

6–16 Conversion Guidelines

Conversion Guidelines
6.12 Common OpenVMS-Supplied EXEC Routines

Table 6–4 (Cont.) Replacement Macros for JSB System Routines

JSB Routine Replacement Macro
Interface
Warning Save R0/R1

IOC$POST_IRP CALL_POST_IRP No No

IOC$PRIMITIVE_REQCHANH1 REQCHAN No No

IOC$PRIMITIVE_REQCHANL1 REQCHAN No No

IOC$PRIMITIVE_WFIKPCH WFIKPCH No No

IOC$PRIMITIVE_WFIRLCH WFIRLCH No No

IOC$PTETOPFN CALL_PTETOPFN No R0 and R1

IOC$QNXTSEG1 CALL_QNXTSEG1 No No

IOC$RELCHAN RELCHAN No No

IOC$REQCOM REQCOM No No

IOC$SEARCHDEV CALL_SEARCHDEV No No

IOC$SEARCHINT CALL_SEARCHINT No No

IOC$SEVER_UCB CALL_SEVER_UCB No No

IOC$SIMREQCOM CALL_SIMREQCOM No No

IOC$THREADCRB CALL_THREADCRB No R0

MMG$IOLOCK CALL_IOLOCK No No

MMG$UNLOCK CALL_UNLOCK No No

MT$CHECK_ACCESS1 CALL_CHECK_
ACCESS

Yes No

SCH$IOLOCKR CALL_IOLOCKR No R1

SCH$IOLOCKW CALL_IOLOCKW No No

SCH$IOUNLOCK CALL_IOUNLOCK No No

1The JSB-based OpenVMS VAX routine is not supported by the OpenVMS Alpha operating system Version 6.1.

6.13 New, Changed, and Unsupported OpenVMS Driver Macros
Table 6–5 contains a partial list of the OpenVMS driver macros that have
changed for OpenVMS Alpha.

Table 6–5 New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

ADPDISP Causes a branch to a specified address given the
existence of a selected adapter characteristic

Not supported

CLASS_UNIT_INIT Generates the common code that must be
executed by the unit initialization routine of
all terminal port drivers

Changed

CPUDISP Causes a branch to a specified address according
to the CPU type of the Alpha processor executing
the code generated by the macro expansion

Changed

CALL_ABORTIO Invokes FDT completion routine to abort an I/O
request. Replacement for JMP EXE$ABORTIO

New

(continued on next page)

Conversion Guidelines 6–17

Conversion Guidelines
6.13 New, Changed, and Unsupported OpenVMS Driver Macros

Table 6–5 (Cont.) New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

CALL_ALTQUEPKT Invokes FDT completion routine to queue an I/O
request to the driver’s alternate start I/O routine.
Replacement for JSB EXE$ALTQUEPKT

New

CALL_FINISHIO Invokes FDT completion routine to finish an I/O
request. Replacement for JMP EXE$FINISHIO

New

CALL_FINISHIOC Invokes FDT completion routine to finish an I/O
request. Replacement for JMP EXE$FINISHIOC

New

CALL_IORNSWAIT Invokes FDT completion routine to wait for a
resource that is required for this I/O request.
Replacement for JMP EXE$IORSNWAIT

New

CALL_MODIFYLOCK_
ERR

Check buffer for modify access and lock into
memory. An error routine is called on any
failure before the I/O request is aborted.
Replacement for JSB EXE$MODIFYLOCKR.
See also $DRIVER_ERRRTN_ENTRY

New

CALL_QIOACPPKT Invokes FDT completion routine to queue an I/O
request to the XQP or an ACP. Replacement for
JMP EXE$QIOACPPKT

New

CALL_QIODRVPKT Invokes FDT completion routine to queue an
I/O request to the driver’s start I/O routine.
Replacement for JMP EXE$QIODRVPKT

New

CALL_READLOCK_ERR Check buffer for read access and lock into
memory. An error routine is called on any failure
before the I/O request is aborted. Replacement
for JSB EXE$READLOCKR. See also $DRIVER_
ERRRTN_ENTRY

New

CALL_WRITELOCK_ERR Check buffer for read access and lock into
memory. An error routine is called on any
failure before the I/O request is aborted.
Replacement for JSB EXE$WRITELOCKR.
See also $DRIVER_ERRRTN_ENTRY

New

CRAM_ALLOC Allocates a controller register access mailbox New

CRAM_CMD Calculates the COMMAND, MASK, and RBADR
fields for a hardware I/O mailbox according to the
requirements of a specific I/O interconnect

New

CRAM_DEALLOC Deallocates a controller register access mailbox New

CRAM_IO Queues the hardware I/O mailbox defined within
a controller register access mailbox (CRAM) to
the mailbox pointer register (MBPR) and awaits
the completion of the mailbox transaction

New

CRAM_QUEUE Queues the hardware I/O mailbox defined within
a controller register access mailbox (CRAM) to
the mailbox pointer register (MBPR)

New

CRAM_WAIT Awaits the completion of a hardware I/O mailbox
transaction to a tightly coupled I/O interconnect

New

DDTAB Generates a driver dispatch table (DDT) labeled
devnam$DDT

Changed

(continued on next page)

6–18 Conversion Guidelines

Conversion Guidelines
6.13 New, Changed, and Unsupported OpenVMS Driver Macros

Table 6–5 (Cont.) New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

DEVICELOCK Achieves synchronized access to a device’s
database as appropriate to the processing
environment

Changed

DPTAB Generates a driver prologue table (DPT) in a
program section called $$$105_PROLOGUE

Changed

DPT_STORE In the context of a DPTAB macro invocation,
generates driver structure initialization and
reinitialization routines which the driver loading
and reloading procedures call to store values in a
table or data structure

Changed

DPT_STORE_ISR In the context of a DPTAB macro invocation,
generates the addresses of the code entry point
and procedure descriptor of an interrupt service
routine and stores them in the interrupt transfer
vector block (VEC)

New

DRIVER_CODE Declares the program section (psect) that
contains driver code

New

DRIVER_DATA Declares the program section (psect) that
contains driver data

New

$DRIVER_ALTSTART_
ENTRY

Defines the driver alternate start I/O routine
entry point for drivers that use the simple fork
mechanism and the CALL-based fork routine
environment

New

$DRIVER_CANCEL_
ENTRY

Defines the driver cancel routine entry point New

$DRIVER_CANCEL_
SELECTIVE_ENTRY

Defines the driver selective cancel routine entry
point

New

$DRIVER_CHANNEL_
ASSIGN_ENTRY

Defines the driver channel assign routine entry
point

New

$DRIVER_CLONEDUCB_
ENTRY

Defines the driver cloned UCB routine entry
point

New

$DRIVER_CTRLINIT_
ENTRY

Defines the driver controller initialization routine
entry point

New

$DRIVER_DELIVER_
ENTRY

Defines the driver unit delivery routine entry
point

New

$DRIVER_ERRRTN_
ENTRY

Defines a driver error routine entry point. Error
routines are used in conjunction with the CALL_
MODIFYLOCK_ERR, CALL_READLOCK_ERR,
and CALL_WRITELOCK_ERR macros

New

$DRIVER_CLONEDUCB_
ENTRY

Defines the driver cloned UCB routine entry
point

New

$DRIVER_FDT_ENTRY Defines a driver upper-level FDT routine entry
point

New

$DRIVER_MNTVER_
ENTRY

Defines the driver mount verification routine
entry point

New

$DRIVER_START_
ENTRY

Defines the driver start I/O routine entry point
for drivers that use the simple fork mechanism
and the CALL-based fork routine environment

New

(continued on next page)

Conversion Guidelines 6–19

Conversion Guidelines
6.13 New, Changed, and Unsupported OpenVMS Driver Macros

Table 6–5 (Cont.) New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

$DRIVER_UNITINIT_
ENTRY

Defines the driver unit initialization routine
entry point

New

FDT_ACT Specifies an FDT action routine for set of I/O
function codes

New

FDT_BUF Specifies the buffered functions for a function
decision table

New

FDT_INI Initializes the function decision table New

FORK Creates a simple fork process on the local
processor

Changed

FORK_ROUTINE Defines a fork routine entry point New

FORK_WAIT Inserts a fork block on the fork-and-wait queue Changed

FORKLOCK Achieves synchronized access to a device driver’s
fork database as appropriate to the processing
environment

Changed

FUNCTAB Builds a function decision table entry in an
OpenVMS VAX driver

Replaced by FDT_INI,
FDT_BUF, FDT_ACT

INVALIDATE_TB Allows a single page-table entry (PTE) to be
modified while any translation buffer entry that
maps it is invalidated, or invalidates the entire
translation buffer

Replaced by TBI_ALL,
TBI_DATA_64, TBI_
SINGLE, and TBI_
SINGLE_64 macros in
OpenVMS Alpha systems

IOFORK Creates a fork process on the local processor
for a device driver, disabling timeouts from the
associated device

Changed

IFNORD, IFNOWRT,
IFRD, IFWRT

Determines the read or write accessibility of a
range of memory locations

Changed

KP_ALLOCATE_KPB Creates a KPB and a kernel process stack, as
required by the kernel process services

New

KP_DEALLOCATE_KPB Deallocates a KPB and its associated kernel
process stack

New

KP_END Terminates the execution of a kernel process New

KP_RESTART Resumes the execution of a kernel process New

KP_REQCOM Invokes device-independent I/O postprocessing
from a kernel process

New

KP_STALL_FORK, KP_
STALL_IOFORK

Stall a kernel process in such a manner that it
can be resumed by the fork dispatcher

New

KP_STALL_FORK_WAIT Stalls a kernel process in such a manner that it
can be resumed by the software timer interrupt
service routine’s examination of the fork-and-wait
queue

New

KP_STALL_GENERAL Stalls the execution of a kernel process New

KP_STALL_REQCHAN Stalls a kernel process in such a manner that
it can be resumed by the granting of a device
controller channel

New

KP_STALL_WFIKPCH,
KP_STALL_WFIRLCH

Stalls a kernel process in such a manner that it
can be resumed by device interrupt processing

New

(continued on next page)

6–20 Conversion Guidelines

Conversion Guidelines
6.13 New, Changed, and Unsupported OpenVMS Driver Macros

Table 6–5 (Cont.) New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

KP_START Starts the execution of a kernel process New

KP_SWITCH_TO_KP_
STACK

Switches to kernel process context New

LOADALT Loads a set of Q22–bus alternate map registers Not supported

LOADMBA Loads MASSBUS map registers Not supported

LOADUBA Loads a set of UNIBUS map registers or a set of
the first 496 Q22–bus map registers

Not supported

LOCK Achieves synchronized access to a system
resource as appropriate to the processing
environment

Changed

RELALT Releases a set of Q22–bus alternate map registers
allocated to the driver

Not supported

RELDPR Releases a UNIBUS adapter data path register
allocated to the driver

Not supported

RELMPR Releases a set of UNIBUS map registers or a set
of the first 496 Q22–bus map registers allocated
to the driver

Not supported

RELSCHAN Releases all secondary channels allocated to the
driver

Not supported

REQALT Obtains a set of Q22–bus alternate map registers Not supported

REQCOM Invokes device-independent I/O postprocessing to
complete an I/O request

Changed

REQCHAN Obtains a controller’s data channel Not supported

REQDPR Requests a UNIBUS adapter buffered data path Not supported

REQMPR Obtains a set of UNIBUS map registers or a set
of the first 496 Q22–bus map registers

Not supported

REQPCHAN Obtains a controller’s data channel Not supported

REQSCHAN Obtains a secondary MASSBUS data channel Not supported

SYSDISP Causes a branch to a specified address according
to the type of Alpha system executing the code in
the macro expansion

New

TBI_ALL Invalidates the data and instruction translation
buffers in their entirety

New

TBI_DATA_64 Invalidates a single 64-bit virtual address in the
data translation buffer

New

TBI_SINGLE Flushes the cached contents of a single page-
table entry (PTE) from the data and instruction
translation buffers

New

TBI_SINGLE_64 Invalidates a single 64-bit virtual address in both
the data and instruction translation buffers

New

TIMEWAIT Waits for a specified bit to be cleared or set
within a specified length of time

Not supported

(continued on next page)

Conversion Guidelines 6–21

Conversion Guidelines
6.13 New, Changed, and Unsupported OpenVMS Driver Macros

Table 6–5 (Cont.) New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

TIMEDWAIT Waits a specified interval of time for an event or
condition to occur, optionally executing a series
of specified instructions that test for various exit
conditions

Changed

WFIKPCH, WFIRLCH Suspends a driver fork thread and folds its
context into a fork block in anticipation of a
device interrupt or timeout

Changed

6.14 New, Changed, and Unsupported OpenVMS System Routines
Table 6–6 contains a partial list of the OpenVMS system routines that have
changed for OpenVMS Alpha.

Table 6–6 New, Changed, and Unsupported OpenVMS System Routines

System Routine Description Notes

EXE$BUS_DELAY Allows a system-specific bus delay within
a timed wait

New

EXE$DELAY Provides a short-term simple delay New

ERL$DEVICERR,
ERL$DEVICTMO,
ERL$DEVICEATTN

Allocate an error message buffer and
record in it information concerning the
error

Changed

EXE$FORK Creates a fork process on the current
processor

Replaced by
EXE$PRIMITIVE_
FORK and EXE_
STD$PRIMITIVE_FORK

EXE$FORK_WAIT Inserts a fork block on the fork-and-wait
queue

Replaced by
EXE$PRIMITIVE_
FORK_WAIT and EXE_
STD$PRIMITIVE_FORK_
WAIT

EXE$INSERT_IRP Inserts an IRP into the specified queue of
IRPs according to the base priority of the
process that issued the I/O request

New

EXE$INSERTIRP Inserts an IRP into the specified queue of
IRPs according to the base priority of the
process that issued the I/O request

Replaced by
EXE$INSERT_IRP

EXE$IOFORK Creates a fork process on the current
processor for a device driver, disabling
timeouts from the associated device

Replaced by
EXE$PRIMITIVE_
FORK and EXE_
STD$PRIMITIVE_FORK

EXE$KP_ALLOCATE_KPB Creates a KPB and a kernel process
stack, as required by the kernel process
services

New

EXE$KP_DEALLOCATE_KPB Deallocates a KPB and its associated
kernel process stack

New

EXE$KP_END Terminates the execution of a kernel
process

New

(continued on next page)

6–22 Conversion Guidelines

Conversion Guidelines
6.14 New, Changed, and Unsupported OpenVMS System Routines

Table 6–6 (Cont.) New, Changed, and Unsupported OpenVMS System Routines

System Routine Description Notes

EXE$KP_FORK Stalls a kernel process in such a manner
that it can be resumed by the fork
dispatcher

New

EXE$KP_FORK_WAIT Stalls a kernel process in such a
manner that it can be resumed by the
software timer interrupt service routine’s
examination of the fork-and-wait queue

New

EXE$KP_RESTART Resumes the execution of a kernel
process

New

EXE$KP_STALL_GENERAL Stalls the execution of a kernel process New

EXE$KP_START Starts the execution of a kernel process New

EXE_STD$KP_STARTIO Sets up and starts a kernel process to be
used by a device driver

New

EXE$MODIFYLOCK Validate and prepare a user buffer for a
direct-I/O, DMA read/write operation.

Replaced by EXE_
STD$MODIFYLOCK and
CALL_MODIFYLOCK
macro

EXE$MODIFYLOCKR Validates and prepares a user buffer for
a direct-I/O, DMA modify operation.

Replaced by EXE_
STD$MODIFYLOCK and
CALL_MODIFYLOCK_
ERR macro

EXE$PRIMITIVE_FORK, EXE_
STD$PRIMITIVE_FORK

Creates a simple fork process on the
current processor

New

EXE$PRIMITIVE_FORK_WAIT,
EXE_STD$PRIMITIVE_FORK_
WAIT

Inserts a fork block on the fork-and-wait
queue

New

EXE$READLOCK Validate and prepare a user buffer for a
direct-I/O, DMA read operation.

Replaced by EXE_
STD$READLOCK and
CALL_READLOCK macro

EXE$READLOCKR Validates and prepares a user buffer for
a direct-I/O, DMA read operation

Replaced by EXE_
STD$READLOCK and
CALL_READLOCK_ERR
macro

EXE$TIMEDWAIT_COMPLETE Determines whether the time interval of
a timed wait has conclude

New

EXE$TIMEDWAIT_SETUP,
EXE$TIMEDWAIT_SETUP_
10US

Calculate and return the end-value
used by EXE$TIMEDWAIT_COMPLETE
to determine when a timed wait has
completed

New

EXE$WRITELOCK Validate and prepare a user buffer for a
direct-I/O, DMA write operation.

Replaced by EXE_
STD$WRITELOCK and
CALL_WRITELOCK macro

EXE$WRITELOCKR Validates and prepares a user buffer for
a direct-I/O, DMA write operation

Replaced by EXE_
STD$WRITELOCK and
CALL_WRITELOCK_ERR
macro

(continued on next page)

Conversion Guidelines 6–23

Conversion Guidelines
6.14 New, Changed, and Unsupported OpenVMS System Routines

Table 6–6 (Cont.) New, Changed, and Unsupported OpenVMS System Routines

System Routine Description Notes

IOC$ALOALTMAP,
IOC$ALOALTMAPN,
IOC$ALOALTMAPSP

Allocate a set of Q22–bus alternate map
registers

Not supported. See
the description of
IOC$ALLOC_CNT_RES.

IOC$ALOUBAMAP,
IOC$ALOUBAMAPN

Allocate a set of UNIBUS map registers
or a set of the first 496 Q22–bus map
registers

Not supported. See
the description of
IOC$ALLOC_CNT_RES.

IOC$ALLOC_CNT_RES Allocates the requested number of items
of a counted resource

New

IOC$ALLOC_CRAB Allocates and initializes a counted
resource allocation block (CRAB)

New

IOC$ALLOC_CRCTX Allocates and initializes a counted
resource context block (CRCTX)

New

IOC$ALLOCATE_CRAM Allocates a controller register access
mailbox

New

IOC$CANCEL_CNT_RES Cancels a thread that has been stalled
waiting for a counted resource

New

IOC$CRAM_CMD Generates values for the command,
mask, and remote I/O interconnect
address fields of the hardware I/O
mailbox that are specific to the
interconnect that is the target of the
mailbox operation, inserting these values
into the indicated mailbox, buffer, or both

New

IOC$CRAM_IO Queues the hardware I/O mailbox
defined within a controller register
access mailbox (CRAM) to the mailbox
pointer register (MBPR) and awaits the
completion of the mailbox transaction

New

IOC$CRAM_QUEUE Queues the hardware I/O mailbox
defined within a controller register
access mailbox (CRAM) to the mailbox
pointer register (MBPR)

New

IOC$CRAM_WAIT Awaits the completion of a hardware I/O
mailbox transaction to a tightly coupled
I/O interconnect

New

IOC$DEALLOC_CNT_RES Deallocates the requested number of
items of a counted resource

New

IOC$DEALLOC_CRAB Deallocates a counted resource allocation
block (CRAB)

New

IOC$DEALLOC_CRCTX Deallocates a counted resource context
block (CRCTX)

New

IOC$DEALLOCATE_CRAM Deallocates a controller register access
mailbox

New

IOC$DIAGBUFILL Fills a diagnostic buffer if the original
$QIO request specified such a buffer

Changed

IOC$KP_REQCHAN Stalls a kernel process in such a manner
that it can be resumed by the granting of
a device controller channel

New

(continued on next page)

6–24 Conversion Guidelines

Conversion Guidelines
6.14 New, Changed, and Unsupported OpenVMS System Routines

Table 6–6 (Cont.) New, Changed, and Unsupported OpenVMS System Routines

System Routine Description Notes

IOC$KP_WFIKPCH, IOC$KP_
WFIRLCH

Stall a kernel process in such a manner
that it can be resumed by device
interrupt processing

New

IOC$LOAD_MAP Loads a set of adapter-specific map
registers

New

IOC$LOADALTMAP Loads a set of alternate Q22–bus map
registers

Not supported; see
IOC$LOAD_MAP

IOC$LOADMBAMAP Loads MASSBUS map registers Not supported; see
IOC$LOAD_MAP

IOC$LOADUBAMAP,
IOC$LOADUBAMAPA

Load a set of UNIBUS map registers
or a set of the first 496 Q22–bus map
registers

Not supported; see
IOC$LOAD_MAP

IOC$MAP_IO Maps I/O bus physical address space
into an address region accessible by the
processor

New

IOC$NODE_FUNCTION Performs node-specific functions on
behalf of a driver, such as enabling or
disabling interrupts from a bus slot

New

IOC_STD$PRIMITIVE_
REQCHANH, IOC_
STD$PRIMITIVE_REQCHANL

Request a controller’s data channel and,
if unavailable, place process in channel
wait queue

New

IOC_STD$PRIMITIVE_
WFIKPCH, IOC_
STD$PRIMITIVE_WFIRLCH

Suspend a driver fork thread and fold its
context into a fork block in anticipation
of a device interrupt or timeout

New

IOC$READ_IO Reads a value from a previously mapped
location in I/O address space

New

IOC$RELALTMAP Releases a set of Q22–bus alternate map
registers

Not supported; see
IOC$DEALLOC_CNT_
RES

IOC$RELDATAP Releases a UNIBUS adapter’s buffered
data path.

Not supported

IOC$RELMAPREG Releases a set of UNIBUS map registers
or a set of the first 496 Q22–bus map
registers

Not supported; see
IOC$DEALLOC_CNT_
RES

IOC$REQALTMAP Allocates sufficient Q22–bus alternate
map registers to accommodate a DMA
transfer

Not supported; see
IOC$ALLOC_CNT_RES

IOC$REQDATAP,
IOC$REQDATAPNW

Request a UNIBUS adapter’s buffered
data path and, optionally, if no path is
available, place process in a data-path
wait queue

Not supported

IOC$REQMAPREG Allocates sufficient UNIBUS map
registers or a sufficient number of the
first 496 Q22–bus map registers to
accommodate a DMA transfer

Not supported; see
IOC$ALLOC_CNT_RES

(continued on next page)

Conversion Guidelines 6–25

Conversion Guidelines
6.14 New, Changed, and Unsupported OpenVMS System Routines

Table 6–6 (Cont.) New, Changed, and Unsupported OpenVMS System Routines

System Routine Description Notes

IOC$REQPCHANH,
IOC$REQPCHANL,
IOC$REQSCHANH,
IOC$REQSCHANL

Request a controller’s primary or
secondary data channel and, if
unavailable, place process in channel
wait queue

Not supported

IOC$WFIKPCH,
IOC$WFIRLCH

Suspend a driver fork thread and fold its
context into a fork block in anticipation
of a device interrupt or timeout

Replaced by IOC_
STD$PRIMITIVE_
WFIKPCH and IOC_
STD$PRIMITIVE_
WFIRLCH

IOC$WRITE_IO Writes a value to a previously mapped
location in I/O address space

New

IOC$UNMAP_IO Unmaps a previously mapped I/O
address space

New

6.15 Data Structure Field Changes
Various I/O data structure fields that were byte- and word-size on OpenVMS VAX
have been changed to a longword in size on OpenVMS Alpha. This change was
made because an aligned longword or quadword in memory can be much more
efficiently read and written on the Alpha architecture than a byte or a word.

If your driver image has undefined data structure offsets (usually discovered
at link-time), check the data structure for the same field with a different data
type tag. For example, if your OpenVMS VAX driver contained the following
references:

MOVZWL IRP$W_BOFF(R3),R0
MOVW R2,UCB$W_BCNT(R5)

you would need to change this to the following:

MOVL IRP$L_BOFF(R3),R0
MOVL R2,UCB$L_BCNT(R5)

It is insufficient to change the name of the data field offset. You must also change
the type of instruction used to match the width of the new field. In this example,
MOVZWL was changed to MOVL and MOVW was changed to MOVL.

If you cannot find a similarly named field in the same data structure, see
Section 7.6 for a list of obsolete data structure cells.

6.16 Incorporating Timed Waits and Delays
Drivers are significant consumers of the TIMEWAIT and TIMEDWAIT macros.
Additionally, some drivers implement shorter delays using instruction sequences
such as PUSHR, POPR, PUSHR, and POPR. The TIMEDWAIT macro provides
a delta time expressed in 10 microsecond units. (The TIMEWAIT macro is not
available on OpenVMS Alpha systems.)

An OpenVMS driver that requires a delay of less than 10 microseconds, using a
special VAX instruction sequence to accomplish it, must use the nsec argument
of the TIMEDWAIT macro to achieve this delay on OpenVMS Alpha.

A driver that must wait a fixed period of time without executing any special
instructions during the wait can use the EXE$DELAY system routine.

6–26 Conversion Guidelines

Conversion Guidelines
6.17 Porting Terminal Port Drivers

6.17 Porting Terminal Port Drivers
There are some special requirements for producing an OpenVMS Alpha terminal
port driver, as follows:

• Because an OpenVMS Alpha terminal port driver cannot share a single DDT
with the OpenVMS Alpha terminal class driver, the CLASS_UNIT_INIT
macro does not write the address of the class driver’s DDT into UCB$L_DDT.

• The terminal port driver must invoke the DDTAB macro specifying the
ctrlinit and unitinit arguments, thus creating its own DDT with entries
for its controller initialization routine (DDT$PS_CTRLINIT) and unit
initialization routine (DDT$L_UNITINIT). CLASS_UNIT_INIT further
initializes the port driver’s DDT (the address of which it obtains from UCB$L_
DDT) by copying to it from the class driver’s DDT the procedure values of the
class driver’s start-I/O routine, function-decision table, cancel-I/O routine, and
alternate start-I/O routine.

• OpenVMS VAX terminal port drivers have depended on the the last
instruction in routines such as CLASS_GETNXT to load UCB$B_TT_
OUTYPE. Therefore ports could successfully use instruction sequences such
as the following

JSB @CLASS_GETNXT(Rx)
BEQL no_output
BLSS string_output
.
.
.

OpenVMS Alpha terminal port drivers must explicitly check the contents of
UCB$B_TT_OUTYPE before a conditional branch, as follows:

TSTB UCB$B_TT_OUTYPE(R5)
BEQL no_output
BLSS string_output

• If CLASS_GETNXT returns a –1 to UCB$B_TT_OUTYPE, an OpenVMS
Alpha port driver should obtain the address and size of the output string
from UCB$L_TT_OUTADR and UCB$W_TT_OUTLEN respectively. Doing so,
rather than relying on this information being passed in registers, enhances
portability.

6.18 Initializing Devices with Programmable Interrupt Vectors
The driver loading mechanism, as directed by the System Management utility
(SYSMAN) command IO CONNECT connects a hardware device to one or
more interrupt vectors. Although most devices connected to VAX systems
utilize preassigned vector locations, many devices on Alpha systems employ
programmable interrupt vectors. It is the driver’s responsibility to initialize such
a device to use the vector or vectors to which it has been connected.

The driver loading mechanism passes this information to drivers in one of two
ways:

• For devices with a single interrupt vector, the cell IDB$L_VECTOR contains
the vector offset (into the SCB or the ADP vector table).

Conversion Guidelines 6–27

Conversion Guidelines
6.18 Initializing Devices with Programmable Interrupt Vectors

• For devices with multiple interrupt vectors, the cell IDB$L_VECTOR contains
a pointer to a vector data structure, called a vector list extension (VLE),
which contains a list of vectors for the device.

6.19 Floating-Point Instructions Forbidden in Drivers
On OpenVMS Alpha systems, usage of the floating-point registers is a per-process
attribute and recorded in the data structures that describe process context.

An OpenVMS Alpha device driver that executes in interrupt mode on the
per-process kernel stack of some random process cannot rely on floating-point
usage having been enabled in that process. A floating-point instruction issued in
interrupt context would have unpredictable and baleful results.

In addition, a driver FDT routine should not issue floating-point instructions
inasmuch as it would alter the current process’s context in an unanticipated
and adverse manner. A context switch for a process for which floating-point
usage is enabled is more expensive than one for a process that does not employ
the floating-point registers. If the driver enables floating-point usage within a
process, it will appear to be enabled randomly and the process will see random
performance.

6.20 Replacing Unsupported Coding Practices
This section describes some of the general VAX MACRO coding constructs that
you must change when porting VAX MACRO code to OpenVMS Alpha.

6.20.1 Stack Usage
The OpenVMS calling standard defines a stack frame format substantially
different from that defined by the VAX calling standard. Therefore, some changes
to your code are required.

6.20.1.1 References Outside the Current Stack Frame
By monitoring stack depth throughout a VAX MACRO module, the compiler
detects references in a routine to data pushed on the stack by its caller and flags
them as errors.

Recommended Change
You must eliminate references in a routine to data pushed on the stack by its
caller. Use the OpenVMS kernel process services discussed in Section 3.2.

6.20.1.2 Nonaligned Stack References
At routine calls, the compiler octaword-aligns the stack, if the stack is not already
octaword-aligned. Some code, when building structures on the stack, makes
unaligned stack references or causes the stack pointer to become unaligned. The
compiler flags both of these with information-level messages.

Recommended Change
Provide sufficient padding in data elements or structures pushed onto the stack,
or change data structure sizes. Because unaligned stack references also have
an impact on VAX performance, you should apply these fixes to code designed to
execute on both OpenVMS VAX systems and OpenVMS Alpha systems.

6–28 Conversion Guidelines

Conversion Guidelines
6.20 Replacing Unsupported Coding Practices

6.20.2 Branches from JSB Routines into CALL Routines
The compiler flags, with an information-level message, a call from a JSB routine
into a CALL routine, if the .JSB_ENTRY saves registers. The reason such a call
is flagged is because the procedure’s epilogue code to restore the saved registers
will not be executed. If the registers do not have to be restored, no change is
necessary.

Recommended Change
The .JSB_ENTRY entry routine is probably trying to execute a RET on behalf of
its caller. Change the common code in the .CALL_ENTRY to a .JSB_ENTRY that
can be invoked from both routines.

For example, consider the following code:

ROUT1: .CALL_ENTRY
.
.
.

X:
.
.
.
RET

ROUT2: .JSB_ENTRY INPUT=<R1,R2>, OUTPUT=<R4>, PRESERVE=<R3>
.
.
.
BRW X
.
.
.
RSB

To port such code to OpenVMS Alpha, break the .CALL_ENTRY routine into two
routines, as follows:

ROUT1: .CALL_ENTRY
.
.
.
JSB X
RET

X: .JSB_ENTRY INPUT=<R1,R2>, OUTPUT=<R4>, PRESERVE=<R3>
.
.
.
RSB

ROUT2: .JSB_ENTRY INPUT=<R1,R2>, OUTPUT=<R4>, PRESERVE=<R3>
.
.
.
JSB X
RET
.
.
.
RSB

Conversion Guidelines 6–29

Conversion Guidelines
6.20 Replacing Unsupported Coding Practices

6.20.3 Modifying the Return Address
There are several frequently used variations of modifying the return address on
the stack, from within a JSB routine, to change the flow of control. All must be
recoded.

6.20.3.1 Pushing an Address onto the Stack
The compiler detects any attempt to push an address onto the stack (for instance,
PUSHAB label) to cause a subsequent RSB to resume execution at that location
and flags this practice as an error. (The next RSB would return to the routine’s
caller.)

Recommended Change
Remove the PUSH of the address, and add an explicit JSB to the target label
before the current routine’s RSB. This will result in the same control flow.
Declare the target label as a .JSB_ENTRY point.

For example, the compiler flags the following code as requiring a source change:

ROUT: .JSB_ENTRY
.
.
.
PUSHAB continue_label
.
.
.
RSB

By adding an explicit JSB instruction, you could change the code as follows. Note
that you would place the JSB just before the RSB. In the previous version of the
code, it is the RSB instruction that transfers control to continue_label, regardless
of where the PUSHAB occurs. The PUSHAB is removed in the new version,
which follows:

ROUT: .JSB_ENTRY
.
.
.
JSB continue_label
RSB

6.20.3.2 Removing the Return Address from the Stack
The compiler detects the removal of a return address from the stack (for instance,
TSTL (SP)+) and flags this practice as an error. The removal of a return address
in VAX code allows a routine to return to its caller’s caller.

Recommended Change
Rewrite the routine such that it returns a status value to its caller that indicates
that the caller should return to its caller. Alternatively, the initial caller could
pass the address of a ‘‘continuation routine,’’ to which the lowest level routine can
return by means of a JSB instruction. When the continuation routine uses an
RSB instruction to transfer control back to the lowest level routine, the lowest
level routine must also RSB.

For example, the compiler would flag the following code as requiring a source
change:

6–30 Conversion Guidelines

Conversion Guidelines
6.20 Replacing Unsupported Coding Practices

ROUT1: .JSB_ENTRY
.
.
.
JSB ROUT2
.
.
.
RSB

ROUT2: .JSB_ENTRY
.
.
.
JSB ROUT3 ; May return directly to rout1
.
.
.
RSB

ROUT3: .JSB_ENTRY
.
.
.
TSTL (SP)+ ; Discard return address
RSB ; Return to caller’s caller

You could rewrite the code to return a status value, as follows:

ROUT2: .JSB_ENTRY
.
.
.
JSB ROUT3
BLBS R0,NO_RET ; Check ROUT3 status return
RSB ; Return immediately if 0

NO_RET:
.
.
.
RSB

ROUT3: .JSB_ENTRY
.
.
.
CLR R0 ; Specify immediate return from caller
RSB ; Return to caller’s caller

6.20.3.3 Modifying the Return Address
The compiler detects any attempt to modify the return address on the stack and
flags it as an error.

Recommended Change
Rewrite the code that modifies the return address on the stack to return a status
value to its caller instead. The status value causes the caller to either branch
to a given location or contains the address of a special .JSB_ENTRY routine the
caller should invoke. In the latter case, the caller should RSB immediately after
the issuing the JSB to special .JSB_ENTRY routine.

For example, the compiler would flag the following code as requiring a source
change:

Conversion Guidelines 6–31

Conversion Guidelines
6.20 Replacing Unsupported Coding Practices

ROUT1: .JSB_ENTRY
.
.
.
JSB ROUT2 ; Might not return
.
.
.
RSB

ROUT2: .JSB_ENTRY
.
.
.
MOVAB continue_label, (SP) ; Change return address
.
.
.
RSB

You could rewrite the code to incorporate a return value as follows:

ROUT1: .JSB_ENTRY
.
.
.
JSB ROUT2
TSTL R0 ; Check for alternate return
BEQL NO_RET ; Continue normally if 0
JSB (R0) ; Call specified routine
RSB ; and return

NO_RET:
.
.
.
RSB

ROUT2: .JSB_ENTRY
CLRL R0
.
.
.
MOVAB continue_label, R0 ; Specify alternate return
RSB

6.20.3.4 Coroutines
Coroutine calls between two routines are generally implemented as a set of JSB
instructions within each routine. Each JSB transfers control to a return address
on the stack, removing the return address in the process (for instance, by issuing
the instruction (JSB @(SP)+). The compiler detects coroutine calls and flags
them as errors.

Recommended Change
You must rewrite the routine that initiates the coroutine linkage to pass an
explicit callback routine address to the other routine. The coroutine initiator
should then invoke the other routine with a JSB instruction.

For example, consider the following coroutine linkage:

6–32 Conversion Guidelines

Conversion Guidelines
6.20 Replacing Unsupported Coding Practices

ROUT1: .JSB_ENTRY
.
.
.
JSB ROUT2 ; ROUT2 will call back as a coroutine
.
.
.
JSB @(SP)+ ; Coroutine back to ROUT2
.
.
.
RSB

ROUT2: .JSB_ENTRY
.
.
.
JSB @(SP)+ ; Coroutine back to ROUT1
.
.
.
RSB

You could change the routines participating in such a coroutine linkage to
exchange explicit callback routine addresses (here, in R6 and R7) as follows:

ROUT1: .JSB_ENTRY
.
.
.
MOVAB ROUT1_CALLBACK, R6
JSB ROUT2
RSB

ROUT1_CALLBACK:
.JSB_ENTRY
.
.
.
JSB (R7) ; Callback to ROUT2
.
.
.
RSB

ROUT2: .JSB_ENTRY
.
.
.
MOVAB ROUT2_CALLBACK, R7
JSB (R6) ; Callback to ROUT1
RSB

ROUT2_CALLBACK:
.JSB_ENTRY
.
.
.
RSB

To avoid consuming registers, the callback routine addresses could be pushed onto
the stack at routine entry. Then, "JSB @(SP)+" instructions could still be used
to perform direct JSBs to the callback routines. In the following example, the
callback routine addresses are passed in R0, but pushed immediately at routine
entry:

Conversion Guidelines 6–33

Conversion Guidelines
6.20 Replacing Unsupported Coding Practices

ROUT1: .JSB_ENTRY
.
.
.
MOVAB ROUT1_CALLBACK, R0
JSB ROUT2
RSB

ROUT1_CALLBACK:
.JSB_ENTRY
PUSHL R0 ; Push callback address received in R0
.
.
.
JSB @(SP)+ ; Callback to ROUT2
.
.
.
RSB

ROUT2: .JSB_ENTRY
PUSHL R0 ; Push callback address received in R0
.
.
.
MOVAB ROUT2_CALLBACK, R0
JSB @(SP)+ ; Callback to ROUT1
RSB

ROUT2_CALLBACK:
.JSB_ENTRY
.
.
.
RSB

6.21 Compiling an OpenVMS Alpha Driver
The following is an example of a command procedure used to compile driver
MYDRIVER.MAR on an OpenVMS Alpha system:

$ MACRO/MIGRATION/DEBUG MYDRIVER+ALPHA$LIBRARY:LIB.MLB/LIB

6.21.1 Using the /OPTIMIZE=NOREFERENCES Option
By default, the MACRO-32 compiler performs certain optimizations on generated
OpenVMS Alpha code. These optimizations are fully described in Porting
VAX MACRO Code to OpenVMS Alpha.

One such optimization (REFERENCES) allows the compiler to recognize that the
same data is referenced multiple times and, in certain situations, reduces these
references to a single reference. For instance:

MOVL 4(R5),R6
MOVL 4(R5),R7

generates:

LDL R20,4(R5)
MOV R20,R6
MOV R20,R7

instead of:

LDL R6,4(R5)
LDL R7,4(R5)

6–34 Conversion Guidelines

Conversion Guidelines
6.21 Compiling an OpenVMS Alpha Driver

Driver code that reads directly from or writes directly to device registers in local
I/O space (or does not use the hardware I/O mechanism described in Chapter 2)
may be sensitive to this type of optimization. For such code, Digital recommends
that you use the switch /OPTIMIZE=NOREFERENCES during compilation.

Conversion Guidelines 6–35

7
Handling Complex Conversions Situations

This chapter describes the OpenVMS Alpha conversion situations that might be
too unusual or too complex for the conversion guidelines in Chapter 6.

7.1 Composite FDT Routines
A composite FDT routine is required when a single I/O function code must be
processed by more than one upper-level FDT routine. OpenVMS Alpha FDT
dispatching only provides for a single upper-level routine for each I/O function
code. When this is not sufficient, the general solution is to write a new upper-
level FDT routine that sequentially calls each of the required upper-level FDT
routines (checking status on return from each call). Another possible solution
is to call the required second upper-level FDT routine at the appropriate point
in the first upper-level FDT routine. The need for a composite FDT routine is
automatically detected at compile time.

The following example shows an OpenVMS VAX FDT declaration.

FUNCTAB MY_FDT_ACPCONTROL,-
<ACPCONTROL>

FUNCTAB ACP$MODIFY,-
<ACPCONTROL,MODIFY>

Using the guidelines in Section 6.10, you can obtain the following OpenVMS
Alpha declaration:

FDT_ACT MY_FDT_ACPCONTROL,-
<ACPCONTROL>

FDT_ACT ACP_STD$MODIFY,-
<ACPCONTROL,MODIFY>

However, you will receive the following error message when you attempt to
compile the driver:

%AMAC-E-GENERROR, generated ERROR: 0 Multiple actions defined for function IO$_ACPCONTROL

To correct the source of the error, you must do the following:

1. Write a new upper-level FDT routine. This routine is a composite FDT
routine that should call all the upper-level FDT routines listed by the FDT_
ACT macros for the function that has multiple actions. For example, you
would write a routine like the following:

Handling Complex Conversions Situations 7–1

Handling Complex Conversions Situations
7.1 Composite FDT Routines

MY_FDT_ACPCONTROL_COMP:
$DRIVER_FDT_ENTRY

; First FDT routine for IO$_ACPCONTROL
PUSHL R6 ; P4 = CCB
PUSHL R5 ; P3 = UCB
PUSHL R4 ; P2 = PCB
PUSHL R3 ; P1 = IRP
CALLS #4,MY_FDT_ACPCONTROL
BLBC R0,900$; Quit if done

; Second FDT routine for IO$_ACPCONTROL
CALL_ACP_MODIFY

900$: RET ; Return status

2. Examine any of your driver-supplied upper-level FDT routines that you call
from a composite FDT routine. With the exception of the last routine called
in the composite routine, all the others will have at least one RSB exit path
in their OpenVMS VAX version. (See Section 6.10.5.) You must convert this
RSB as follows:

MOVL #SS$_NORMAL,R0
RET

In an OpenVMS VAX driver, the RSB would have returned control to the
FDT dispatching loop, so that the next upper-level FDT routine could be
invoked. In an OpenVMS Alpha driver, you must return a successful status,
so that your composite FDT routine continues. Remember that the SS$_FDT_
COMPL warning status will be returned by an upper-level FDT routine if
FDT processing has completed and should not be continued.

3. Remove the function with multiple actions from all FDT_ACT macros. Then
add a new FDT_ACT macro that invokes the new composite FDT routine for
the function. In this example, you would write:

FDT_ACT MY_FDT_ACPCONTROL_COMP, <ACPCONTROL>

FDT_ACT ACP_STD$MODIFY, <MODIFY>

In many cases, a simpler solution is also possible. If you have a function that
has multiple actions defined by FDT_ACT macros and the first FDT_ACT macro
that references that function does not also include other functions, then you could
convert your existing upper-level FDT routine into a composite FDT routine. You
can do this by inserting the calls for the remaining upper-level FDT routines
at the point where the first upper-level FDT routine would have returned to
the OpenVMS VAX FDT dispatcher via an RSB instruction. This is the case
in the previous example. Thus, if the OpenVMS VAX version of MY_FDT_
ACPCONTROL looks like the following:

MY_FDT_ACPCONTROL:
.JSB_ENTRY
... ;driver-specific processing
RSB ;return to FDT dispatcher

Then the OpenVMS Alpha composite version would look like the following:

MY_FDT_ACPCONTROL:
$DRIVER_FDT_ENTRY
... ;driver-specific processing
CALL_ACP_MODIFY
RET

7–2 Handling Complex Conversions Situations

Handling Complex Conversions Situations
7.2 Error Routine Callback Changes

7.2 Error Routine Callback Changes
If driver FDT processing involves specifying an error callback routine as input
to one of the OpenVMS VAX FDT support routines, EXE$READLOCK_ERR,
EXE$MODIFYLOCK_ERR, or EXE$WRITELOCK_ERR, do the following:

1. Convert the error callback routine to a standard callable routine by using the
following entry-point macro:

$DRIVER_ERRRTN_ENTRY [preserve=<>] [,fetch=YES]

If the error callback routine alters any nonscratch register as defined by
the calling standard, you must add it to the preserve list. You can do this
by using the .SET_REGISTERS directive or the preserve parameter on
the $DRIVER_ERRRTN_ENTRY macro. For example, many error routines
call EXE$DEANONPAGED or EXE$DEANONPGDSIZ, which destroy the
contents of R2. You should specify .SET_REGISTERS WRITTEN=<R2>.

2. Replace the RSB used by the error callback routine to return to its caller with
a RET instruction.

3. Replace the JSB to EXE$READLOCK_ERR, EXE$MODIFYLOCK_ERR,
or EXE$WRITELOCK_ERR with the corresponding JSB-replacement
macros: CALL_READLOCK_ERR, CALL_MODIFYLOCK_ERR, or CALL_
WRITELOCK_ERR.

7.3 Converting Driver-Supplied FDT Support Routines to Call
Interfaces

To convert driver-supplied FDT support routines to call interfaces, follow the
procedure described in this section. Note that although this method is more
efficient than the one described in Chapter 6, it requires that you make more
changes to your source code.

1. Decide what the calling convention is for each of your FDT support routines.

2. Replace .JSB_ENTRY with .CALL_ENTRY at support routine entry points.

3. Within your converted support routines, you must refer to the routine
parameters using the appropriate AP offsets. One way to do this is to copy
the standard parameters into the registers used by the JSB interface.

4. Make sure that all driver-supplied FDT routines return status in R0.

5. All places that invoke your support routines via a JSB instruction must be
changed to invoke the modified support routine via a CALLS instruction after
having pushed the actual parameter values.

6. After each of these calls, you must also check the return status. For non-
success status values (particularly SS$_FDT_COMPL), you must return to
your caller.

Using .JSB_ENTRY and the FDT completion macros, it is possible to write an
FDT support routine that does not return to its caller in the event of an error.
Once you convert to standard call interfaces, however, the flow of control
always returns to the caller of the support routine.

Handling Complex Conversions Situations 7–3

Handling Complex Conversions Situations
7.3 Converting Driver-Supplied FDT Support Routines to Call Interfaces

Note

If any informational messages like the following are displayed, you have
probably missed a .JSB_ENTRY FDT support routine or a branch between
some other .JSB_ENTRY routine and an FDT support routine.

%AMAC-I-RETINJSB, RET in JSB_ENTRY

Once you have converted all your FDT support routines to standard call
interfaces, you can eliminate many of the registers saves and restores that are
generated by the default register preserve list on the $DRIVER_FDT_ENTRY
macro. The default preserve list on the $DRIVER_FDT_ENTRY macro saves
every nonscratch register to protect against a potential RET-under-JSB inside
a .JSB_ENTRY FDT support routine. At the very least, you should be able to
reduce the preserve list to PRESERVE=<R2,R9,R10,R11> to cover the registers
that were allowed to be scratched by OpenVMS VAX upper-level FDT routines.
You can reduce this list further, if you know that your FDT routine is not altering
these registers, or if you rely on the .SET_REGISTERS directive and the register
autopreserve feature of the MACRO-32 compiler,

7.4 Converting the Start I/O Code Path to Call Interfaces
Fork, special kernel AST, system timer expiration, and device interrupt timeout
routines that are called by the OpenVMS exec can use either a standard call or
the traditional JSB interface described in Chapter 6.

To convert the Start I/O Code Path to call standard interfaces in drivers written
in MACRO-32, follow the procedure in Section 7.4.1. For a quick summary of the
differences between using ENVIRONMENT=CALL and ENVIRONMENT=JSB,
see Section 7.4.2.

7.4.1 Start I/O Call Interface Conversion Procedure
To convert the Start I/O Code Path to call standard interfaces in drivers written
in MACRO-32, follow these steps:

1. Use the $DRIVER_START_ENTRY and $DRIVER_ALTSTART_ENTRY
macros to define the driver’s start I/O and appropriate alternate start I/O
routines.

2. Use the DDTAB macro keywords

altstart instead of jsb_altstart
start instead of jsb_start

3. Use the ENVIRONMENT=CALL keyword parameter on the FORK, FORK_
ROUTINE, FORK_WAIT, IOFORK, REQCOM, REQCHAN, REQPCHAN,
WFIKPCH, and WFIRLCH macros.

4. Use the FORK_ROUTINE macro (with ENVIRONMENT=CALL), the .CALL_
ENTRY directive, or the .ENTRY directive instead of .JSB_ENTRY to define
the entry points for driver fork, channel grant, resume from interrupt, and
interrupt timeout routines.

5. Use the RET instruction instead of the RSB instruction to return from all of
the previous standard call interface routines.

7–4 Handling Complex Conversions Situations

Handling Complex Conversions Situations
7.4 Converting the Start I/O Code Path to Call Interfaces

6. Use the scratch registers as defined by the calling standard. Some of the old
JSB interface routines were allowed to scratch registers R2 through R5, which
are not in the scratch register set as defined by the calling standard. Also,
the calling standard allows R0 and R1 to be scratched by a called routine,
while some of the JSB interface routines preserve R0 or R1.

7. Use the following code sequence to invoke the driver interrupt resume routine
from the driver interrupt service routine:

PUSHL R5 ;P3 = UCB from R5
PUSHL UCB$Q_FR4(R5) ;P2 = FR4 (32-bits)
PUSHL UCB$Q_FR3(R5) ;P1 = FR3 (32-bits)
CALLS #3,@UCB$L_FPC(R5) ;call driver routine

as a replacement for:

MOVL UCB$Q_FR3(R5),R3 ;R3 = FR3 (32-bits)
MOVL UCB$Q_FR4(R5),R4 ;R4 = FR4 (32-bits)
JSB @UCB$L_FPC(R5) ;call driver routine

If your driver needs to preserve the full 64-bits of its FR3 or FR4 parameters,
then it can use the following code sequence. Note that although the following
code appears more complex, it results in code that is just as efficient as that
produced by the preceding example.

MOVX UCB$Q_FR3(R5),R16 ;R16 = FR3 (64-bits)
MOVX UCB$Q_FR4(R5),R17 ;R17 = FR4 (64-bits)
PUSHL R5 ;P3 = UCB from R5
PUSHL R17 ;P2 = 64-bits of R17
PUSHL R16 ;P1 = 64-bits of R16
CALLS #3,@UCB$L_FPC(R5) ;call driver routine

For more details about this code sequence, see the description of the FORK
ROUTINE interface in the system routines chapter.

The called routine can obtain 64-bit parameter values by declaring its entry
point using the FORK_ROUTINE macro or the WFIKPCH macro.

8. Examine the interroutine branches between the previous routines and other
routines in the same modules and change these routines to standard call
interfaces.

9. If you encounter any of the following MACRO-32 compiler diagnostic
messages, examine the relevant source:

%AMAC-E-ILLRSBCAL, illegal RSB in CALL_ENTRY routine

%AMAC-I-BRINTOCAL, branch into CALL_ENTRY routine from
JSB_ENTRY

%AMAC-I-JSBHOME, arglist use in JSB entry requires homed
arglist in caller

%AMAC-I-RETINJSB, RET in JSB_ENTRY, with non-scratch
registers

These messages are likely to result from a .JSB_ENTRY routine that needs to
be converted to a standard call entry. Note, however, that in some cases
you can receive the last three diagnostic messages under acceptable
circumstances. If this happens, you should document the reasons and
consider disabling the diagnostic message by bracketing the smallest possible
section of relevant code as follows:

Handling Complex Conversions Situations 7–5

Handling Complex Conversions Situations
7.4 Converting the Start I/O Code Path to Call Interfaces

.DSABL FLAGGING

.

.

.ENABL FLAGGING

In particular, the use of a RET from a JSB entry routine may be allowable in
an OpenVMS Alpha driver in the context of complex FDT routines. (For more
information, see Section 6.10.4.) However, if you change the source code to
avoid the need for a RET in a JSB routine, you can improve the performance
of the code path. (For more information, see Section 7.3.)

7.4.2 Simple Fork Macro Differences
This section summarizes the differences between using the
ENVIRONMENT=CALL and ENVIRONMENT=JSB parameters on the following
simple fork macros:

FORK
FORK_ROUTINE
FORK_WAIT
IOFORK
REQCHAN
REQPCHAN
REQCOM
WFIKPCH
WFIRLCH

7.4.2.1 Fork Routine End Instruction
Some simple fork macros generate an instruction that ends the current routine
and returns control to the routine’s caller. In a .JSB_ENTRY routine the
appropriate end instruction is an RSB. However, a .CALL_ENTRY routine
requires a RET instruction. Table 7–1 lists the simple fork macros whose fork
routine end instruction is determined by the ENVIRONMENT parameter.

Table 7–1 Fork Routine End Instruction

Macros ENVIRONMENT=CALL ENVIRONMENT=JSB

FORK1 RET RSB

FORK_WAIT1 RET RSB

IOFORK1 RET RSB

REQCHAN RET RSB

REQPCHAN RET RSB

REQCOM RET RSB

WFIKPCH RET RSB

WFIRLCH RET RSB

1If you use the CONTINUE parameter, this macro does not generate a fork routine end instruction.

7.4.2.2 Scratch Registers
Using the ENVIRONMENT=CALL parameter affects the list of scratch registers
on some simple fork macros. Table 7–2 summarizes the differences in scratch
register usage that are visible to the caller’s fork thread. All other implicit
register inputs and outputs on the simple fork macros are the same.

7–6 Handling Complex Conversions Situations

Handling Complex Conversions Situations
7.4 Converting the Start I/O Code Path to Call Interfaces

Table 7–2 Registers Scratched in Caller’s Fork Thread

Macros ENVIRONMENT=CALL ENVIRONMENT=JSB

FORK R0,R1 scratched R0,R1 preserved

R3,R4 preserved R3,R4 sratched

FORK_WAIT R0,R1 scratched R0,R1 preserved

IOFORK R0,R1 scratched R0,R1 preserved

R3,R4 preserved R3,R4 scratched

The following example illustrates how dependence on scratch register usage can
be hidden in existing code:

MY_UNIT_INIT:
.JSB_ENTRY INPUT=<R0,R4,R5>,OUTPUT=<R0>
... ;code that doesn’t alter R0
FORK ROUTINE=MY_UNIT_INIT_FORK

This routine does some work and then queues the routine MY_UNIT_INIT_FORK
as a fork routine. A unit initialization routine must return a successful status
back to its caller. The preceding sample routine does this as follows:

• R0 is set to SS$_NORMAL before entry into the OpenVMS VAX unit
initialization routine.

• The FORK macro with the default ENVIRONMENT=JSB setting does not
alter R0.

• The FORK macro generates an RSB instruction.

The OpenVMS Alpha equivalent of this unit initialization routine uses a standard
call interface and must use the ENVIRONMENT=CALL parameter on the FORK
macro. However, in doing so, the SS$_NORMAL value held in R0 is destroyed.
The following example shows how to avoid this problem:

MY_UNIT_INIT:
$DRIVER_UNITINIT_ENTRY
...
FORK ROUTINE=MY_UNIT_INIT_FORK,-

ENVIRONMENT=CALL,-
CONTINUE=10$

10$: MOVZWL #SS$_NORMAL,R0
RET

7.4.2.3 Fork Routine Entry Point
Some simple fork macros generate a fork routine entry point. The type of entry
point generated depends on which ENVIRONMENT parameter you use. The
parameters to a traditional JSB interface fork routine are contained in registers
R3, R4, and R5. In contrast, the parameters to a standard call fork routine are
passed using the standard argument passing mechanism and are referenced
using AP offsets. The following macros generate code that copies the standard
arguments into registers R3, R4, and R5; thereby, facilitating the conversion of
existing JSB interface fork routines to the standard call interface:

FORK
FORK_ROUTINE
FORK_WAIT

Handling Complex Conversions Situations 7–7

Handling Complex Conversions Situations
7.4 Converting the Start I/O Code Path to Call Interfaces

IOFORK
REQCHAN
REQPCHAN
WFIKPCH
WFIRLCH

Table 7–3 summarizes the differences in the fork routine entry points generated
by the FORK, FORK_ROUTINE, FORK_WAIT, IO_FORK, REQCHAN,
REQPCHAN, WFIKPCH, and WFIRLCH macros as determined by the
ENVIRONMENT parameter. Note that the FORK, FORK_WAIT, and IOFORK
macros do not generate a fork routine entry point if you use the ROUTINE
parameter.

Table 7–3 Fork Routine Entry Points

Entry Point Attributes ENVIRONMENT=CALL ENVIRONMENT=JSB

Entry directive .CALL_ENTRY .JSB_ENTRY

Parameters Accessed using AP offsets1 R3,R4,R5

Parameter fetch Parameters copied to R3,R4,R52 None

Allowable scratch registers R0,R1 R0-R4

1The symbolic names for the AP offsets are FORKARG$_FR3, FORKARG$_FR4, and FORKARG$_
FKB.
2The parameter copy can be disabled on the FORK_ROUTINE macro if the FETCH=NO parameter is
specified.

7.5 Device Interrupt Timeouts
Device interrupt timeouts are handled differently for OpenVMS Alpha drivers.
For
OpenVMS VAX drivers the UCB$L_FPC cell in the device unit control block
(UCB) contained the procedure value of the routine that served as both the
resume from interrupt routine and the interrupt timeout routine. These two
routines are now separate. The new UCB cell UCB$PS_TOUTROUT is used for
the procedure value of the interrupt timeout routine.

These changes are transparent to code that uses the WFIKPCH or WFIRLCH
macros, or calls the IOC$PRIMITIVE_WFIKPCH or IOC$PRIMITIVE_WFIRLCH
routines. However, code that manually sets the UCB$V_TIM bit in UCB$L_
STS now needs to place the timeout routine procedure value into UCB$PS_
TOUTROUT, instead of in UCB$L_FPC.

7.6 Obsolete Data Structure Cells
Some DDT and DPT data structure fields that supported OpenVMS VAX device
drivers have been removed. Table 7–4 lists the obsolete OpenVMS VAX fields and
the OpenVMS Alpha fields that have similar functions.

Note that the OpenVMS Alpha cells use different names because they point to
routines whose interfaces are different or they point to data structures whose
layout is significantly altered. For this reason, do not replace each reference to
an obsolete OpenVMS VAX field with its corresponding OpenVMS Alpha field
without considering the routine interface and data structure changes.

7–8 Handling Complex Conversions Situations

Handling Complex Conversions Situations
7.6 Obsolete Data Structure Cells

Table 7–4 Obsolete Data Structure Cells

Obsolete OpenVMS VAX Field Similar OpenVMS Alpha Field

DDT$L_ALTSTART DDT$PS_ALTSTART_2 or DDT$PS_
ALTSTART_JSB

DDT$PS_ALTSTART DDT$PS_ALTSTART_2 or DDT$PS_
ALTSTART_JSB

DDT$L_CANCEL DDT$PS_CANCEL_2

DDT$PS_CANCEL DDT$PS_CANCEL_2

DDT$L_CANCEL_SELECTIVE DDT$PS_CANCEL_SELECTIVE_2

DDT$PS_CANCEL_SELECTIVE DDT$PS_CANCEL_SELECTIVE_2

DDT$L_CHANNEL_ASSIGN DDT$PS_CHANNEL_ASSIGN_2

DDT$PS_CHANNEL_ASSIGN DDT$PS_CHANNEL_ASSIGN_2

DDT$L_CLONEDUCB DDT$PS_CLONEDUCB_2

DDT$PS_CLONEDUCB DDT$PS_CLONEDUCB_2

DDT$L_CTRLINIT DDT$PS_CTRLINIT_2

DDT$PS_CTRLINIT DDT$PS_CTRLINIT_2

DDT$L_FDT DDT$PS_FDT_2

DDT$PS_FDT DDT$PS_FDT_2

DDT$L_MNTVER DDT$PS_MNTVER_2

DDT$PS_MNTVER DDT$PS_MNTVER_2

DDT$L_REGDUMP DDT$PS_REGDUMP_2

DDT$PS_REGDUMP DDT$PS_REGDUMP_2

DDT$L_START DDT$PS_START_2 or DDT$PS_
START_JSB

DDT$PS_START DDT$PS_START_2 or DDT$PS_
START_JSB

DDT$L_UNITINIT DDT$PS_UNITINIT_2

DDT$PS_UNITINIT DDT$PS_UNITINIT_2

DPT$PS_DELIVER DPT$PS_DELIVER_2

7.7 Optimizing OpenVMS Alpha Drivers
When you have successfully converted an OpenVMS VAX device driver to an
OpenVMS Alpha device driver, you can optimize the driver’s performance by
performing the tasks covered in Section 7.7.1 through Section 7.7.4.

7.7.1 Using JSB-Replacement Macros
You can replace a JSB to a system routine in an OpenVMS VAX driver with a
macro. The JSB-replacement macro uses the same input registers and modifies
the same output registers as the corresponding JSB-based routine. In some cases,
you can specify that R0, R1, or both R0 and R1 not be saved if the driver does
not need them preserved. (These macros have an argument named save_r0,
save_r1, or, save_r0r1.) Eliminating unneeded 64-bit saves of these registers is
a performance gain.

Handling Complex Conversions Situations 7–9

Handling Complex Conversions Situations
7.7 Optimizing OpenVMS Alpha Drivers

As mentioned in Chapter 6, you should use the JSB-replacement macros in
Table 6–4 instead of an explicit JSB to the listed JSB-interface system routines.
A JSB-replacement macro is provided if the JSB-interface routine is no longer
available or if the JSB-interface routine is less efficient than the new standard
call version of the routine. The JSB-replacement macros use the register inputs
and outputs that your existing OpenVMS VAX code expects. However, these
macros directly invoke the OpenVMS Alpha standard call interface routines.

7.7.2 Avoid Fetching Unused Parameters
You can adapt a driver’s use of the driver entry point macros, so that it more
closely resembles the behavior of driver routines.

Each driver entry point macro, by default, initializes the general-purpose
registers an OpenVMS VAX driver routine expects as input. At the very least,
this practice requires a series of register-to-register loads, plus, by virtue of
the default behavior of the MACRO-32 compiler (which automatically preserves
any register an entry point modifies), a set of 64-bit register save and restore
operations. If the execution code path initiated at a driver entry point does not
use one or more of the registers defined as OpenVMS VAX input registers, you
might consider specifying fetch=NO and explicitly loading the registers it does
use.

7.7.3 Minimizing Register Preserve Lists
Each driver-entry-point macro, by default, preserves a set of registers across a
call. The MACRO-32 compiler, by default, preserves those registers the routine
explicitly modifies (but not those implicitly modified by a system routine or
driver-specific routine it calls). Here, too, if the execution path initiated at a
driver entry point does not use one or more of the registers defined as OpenVMS
VAX scratch registers, you might consider removing them from the preserve
mask. Before doing so, carefully examine the chain of execution that proceeds
from the entry point to ensure that some inconspicuous code path does not alter a
register you would like to remove from the mask.

For instance, the $DRIVER_FDT_ENTRY macro specifies, by default, that
registers R2 through R15 be preserved. For certain FDT entry points, you can
specify a much smaller set of registers — preserve=<R2,R9,R10,R11> is usually
sufficient. (These registers are allowed to be scratched by OpenVMS VAX FDT
routines.)

You can follow this recommendation only if the FDT processing initiated by
the upper-level FDT action routine avoids the situation in which a subroutine
call initiated by a JSB instruction is concluded by a RET instruction instead
of an RSB. A RET under JSB can occur in FDT processing if the upper-level
FDT routine issues a JSB to an FDT support routine that invokes an FDT
completion macro (see Table 6–2) without specifying do_ret=NO. The additional
RET instruction generated by a default invocation of the macro would return
control back to FDT dispatching code in the $QIO system service, and risks the
destruction of register context required by that code.

In some cases you may be able to remove all registers from the preserve list.
Note that you can select an empty register preserve list for the driver entry
point macros only by specifying PRESERVE=NULL. In contrast, if you specify
PRESERVE=<>, you will get the default value for the register preserve list and
not an empty preserve list.

7–10 Handling Complex Conversions Situations

Handling Complex Conversions Situations
7.7 Optimizing OpenVMS Alpha Drivers

7.7.4 Branching Between Local Routines
The compiler allows a branch from the body of one routine into the body of
another routine in the same module. However, because this results in additional
overhead in both routines, the compiler reports an information-level message.

If a CALL routine branches into a code path that executes an RSB, an error
message is reported. Such a CALL routine, if not corrected, will fail at run time.

If routines that share a code path have different register declarations, the register
restores will be done conditionally. That is, the registers written on the stack
at routine entry will be the same for both routines, but whether the register is
restored depends on which entry point was invoked.

For example:

ROUT1: .JSB_ENTRY OUTPUT=R3
MOVL R1, R3 ; R3 is output, not preserved
BLSS LAB1
RSB

ROUT2: .JSB_ENTRY ; R3 is not output, and
MOVL #4, R3 ; will be auto-preserved
JSB ROUT3 ; no registers destroyed

LAB1: CLRL R0
RSB

Note

For both routines, R3 is included in the registers saved on the stack at
entry. However, at exit, a mask (also in the stack frame) is tested before
restoring R3.

Declaring registers that are destroyed in two routines that share code as scratch
in one but not the other is more expensive than letting the registers be saved and
restored. In this case, you should declare the register R3 as scratch in ROUT2
because it was scratched in the OpenVMS VAX version of your driver.

Handling Complex Conversions Situations 7–11

8
Device Driver Entry Points

This chapter describes the standard driver routines that OpenVMS Alpha uses as
entry points in a device driver program.

Unlike OpenVMS VAX, OpenVMS Alpha does not support driver unloading
routines and unsolicited interrupt handling routines.

This chapter also describes the Alpha driver-entry-point macros that replace the
.JSB_ENTRY directive used in OpenVMS VAX driver entry points. These macros
perform the following operations:

1. Declare a call entry point.

2. Specify a register save list that consists of the registers that the Step 1
JSB interface was allowed to scratch. This save list augments the list of
autopreserved registers detected by the MACRO-32 compiler. You can specify
an alternative save list if you are certain that the default mask contains
registers that are not used in the execution path initiated by the entry point.

3. Define symbolic AP offsets that correspond to the routine parameters.

4. Copy the input parameters into the registers that correspond to the input
registers of the JSB interface. You can disable this register loading by using
an optional parameter.

Device Driver Entry Points 8–1

OpenVMS Alpha Device Driver Entry Points
Alternate Start-I/O Routine

Alternate Start-I/O Routine

Initiates activity on a device that can support multiple, concurrent I/O operations
and synchronizes access to its UCB.

Format

ALTSTART (irp, ucb)

Arguments

Argument Type Access Mechanism

irp IRP input reference
ucb UCB input reference

irp
I/O request packet for the current I/O request

ucb
Unit control block of the device that is the target of the I/O request

Essentials

Identifying the Routine
Specify the address of the alternate start-I/O routine in the altstart argument to
the DDTAB macro. This macro places the procedure value of the routine into the
DDT.

Declaring the Entry Point
Use:

$DRIVER_ALTSTART_ENTRY [preserve=<R2,R3,R4,R5>] [,fetch=YES]

where:

preserve indicates the registers to be preserved (in addition to those
automatically preserved by the MACRO-32 compiler) across the call to the
alternate start-I/O routine
fetch=YES, the default, loads the addresses of the IRP and UCB into R3
and R5, respectively; fetch=NO disables register loading. Regardless of the
value of the fetch argument, a driver alternate start-I/O routine that uses
this macro can access any of its arguments by using a symbolic name of the
form ALTARG$_argument-name.

Called by
Called by routine EXE_STD$ALTQUEPKT in module SYSQIOREQ. A driver FDT
routine typically is the caller of EXE_STD$ALTQUEPKT.

Context
An alternate start-I/O routine begins execution at fork IPL, holding the
corresponding fork lock. It must return control to EXE_STD$ALTQUEPKT
in this context.

8–2 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Alternate Start-I/O Routine

Because an alternate start-I/O routine gains control in fork process context, it can
access only those virtual addresses that are in system (S0) space.

Exit mechanism
The alternate start-I/O routine completes I/O requests by calling COM_
STD$POST. This routine places each IRP in the I/O postprocessing queue
and returns control to the driver. The driver can then fetch another IRP from
an internal queue. If no IRPs remain, the driver returns control to EXE_
STD$ALTQUEPKT, which relinquishes fork level synchronization and returns to
the driver FDT routine that called it. The FDT routine performs any required
postprocessing and returns the SS$_FDT_COMPL status to its caller.

Description

An alternate start-I/O routine initiates requests for activity on a device that can
process two or more I/O requests simultaneously. Because the method by which
the alternate start-I/O routine is invoked bypasses the unit’s pending-I/O queue
(UCB$L_IOQFL) and the device busy flag (UCB$V_BSY in UCB$L_STS), the
routine is activated regardless of whether the device unit is busy with another
request.

As a result, the driver that incorporates an alternate start-I/O routine must use
its own internal I/O queues (in a UCB extension, for instance) and maintain
synchronization with the unit’s pending-I/O queue. In addition, if the routine
processes more than one IRP at a time, it must use separate fork blocks for each
request.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• You must indicate the entry point of the routine with a $DRIVER_
ALTSTART_ENTRY macro, indicating which registers must be saved and
restored across routine execution.

• You must replace direct CSR access (for instance, by means of a MOVL
instruction) with CSR access by means of a CRAM.

• You should examine the routine’s use of suspension mechanisms (for instance,
its forking, wait-for-interrupt, and resource-wait semantics) to determine
whether it needs to be adapted to use the kernel process services. Typically a
driver that makes subroutine calls before suspending itself (and relies on the
previous context of these subroutines remaining intact on the stack), must be
adapted to use the kernel process services.

• If the routine need not be converted to a kernel process, you should replace
any calls to EXE$FORK, EXE$FORK_WAIT, EXE$IOFORK, IOC$WFIKPCH,
IOC$WFIRLCH, IOC$REQPCHANH, and IOC$REQPCHANL with
invocations of the appropriate suspension macro or with calls to EXE_
STD$PRIMITIVE_FORK, IOC_STD$PRIMITIVE_WFIKPCH, IOC_
STD$PRIMITIVE_WFIRLCH, IOC_STD$PRIMITIVE_REQCHANH, or
IOC_STD$PRIMITIVE_REQCHANL.

Device Driver Entry Points 8–3

OpenVMS Alpha Device Driver Entry Points
Cancel-I/O Routine

Cancel-I/O Routine

Prevents further device-specific processing of the I/O request currently being
processed on a device.

Format

CANCEL (chan, irp, pcb, ucb, reason)

Arguments

Argument Type Access Mechanism

chan integer input value
irp IRP input reference
pcb PCB input reference
ucb UCB input reference
reason integer input value

chan
Channel index number.

irp
I/O request packet, if any, for device (contents of UCB$L_IRP).

pcb
Process control block of process for which the I/O request is being canceled.

ucb
Unit control block.

reason
Reason for cancellation, one of the following:

CAN$C_CANCEL Called by $CANCEL system service
CAN$C_DASSGN Called by $DASSGN or $DALLOC system service

Essentials

Identifying the Routine
Supply the address of the cancel-I/O routine in the cancel argument of the
DDTAB macro. The macro places the procedure value of this routine into
DDT. Many drivers specify the system routine IOC_STD$CANCELIO as their
cancel-I/O routine.

Declaring the Entry Point
Use:

$DRIVER_CANCEL_ENTRY [preserve=<R2,R3,R4>] [,fetch=YES]

8–4 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Cancel-I/O Routine

where:

preserve indicates the registers to be preserved (in addition to those
automatically preserved by the MACRO-32 compiler) across the call to the
cancel I/O routine
fetch=YES, the default, loads the channel index number into R2, the
cancellation reason into R8, and the addresses of the IRP, PCB, and UCB into
R3, R4, and R5, respectively. fetch=NO disables register loading. Regardless
of the value of the fetch argument, a driver cancel-I/O routine that uses this
macro can access any of its arguments by using a symbolic name of the form
CANARG$_argument-name.

Called by
System routines call a driver’s cancel-I/O routine under the following
circumstances:

• When a process issues a Cancel-I/O-on-Channel system service ($CANCEL)

• When a process deallocates a device, causing the device’s reference count
(UCB$L_REFC) to become zero (that is, no process I/O channels are assigned
to the device)

• When a process deassigns a channel from a device, using the $DASSGN
system service

• When the command interpreter performs cleanup operations as part of image
termination by canceling all pending I/O requests for the image and closing
all image-related files open on process I/O channels

Context
A cancel-I/O routine begins execution at fork IPL, holding the corresponding fork
lock. It must return control to its caller in this context.

A cancel-I/O routine executes in kernel mode in the context of the caller of the
$CANCEL, $DALLOC, or $DASSGN system service.

Exit mechanism
The cancel-I/O routine returns to its caller.

Description

A driver’s cancel-I/O routine must perform the following tasks:

1. Confirm that the device is busy by examining the device-busy bit in the UCB
status longword (UCB$V_BSY in UCB$L_STS).

2. Confirm that the process ID (PID) of the request the device is servicing
(IRP$L_PID) matches that of the process requesting the cancellation (PCB$L_
PID).

3. Confirm that the channel-index number of the request the device is servicing
(IRP$L_CHAN) matches that specified in the cancel-I/O request.

4. Cause to be completed (canceled) as quickly as possible all active I/O requests
on the specified channel that were made by the process that has requested
the cancellation. The cancel-I/O routine usually accomplishes this by setting
UCB$V_CANCEL in the UCB$L_STS. When the next interrupt or timeout
occurs for the device, the driver’s start-I/O routine detects the presence of
an active but canceled I/O request by testing this bit and takes appropriate
action, such as completing the request without initiating any further device

Device Driver Entry Points 8–5

OpenVMS Alpha Device Driver Entry Points
Cancel-I/O Routine

activity. Other driver routines, such as the timeout handling routine, check
the cancel-I/O bit to determine whether to retry the I/O operation or abort it.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• You must indicate the entry point of a cancel-I/O routine with a $DRIVER_
CANCEL_ENTRY macro, indicating which registers must be saved and
restored across routine execution.

8–6 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Cancel Selective Routine

Cancel Selective Routine

Performs additional processing on a list of I/O requests that have been canceled.

Format

status=CANCEL_SELECTIVE (pcb, ucb, chan, iosb_vector, iosb_count)

Arguments

Argument Type Access Mechanism

pcb PCB input reference
ucb UCB input reference
chan integer input value
iosb_vector address input value
iosb_count integer input value

pcb
Process control block of process for which the I/O request is being canceled.

ucb
Unit control block.

chan
Channel index number.

iosb_vector
Vector of address of I/O status blocks (IOSBs), or zero.

iosb_count
Number of addresses in the IOSB vector.

Essentials

Identifying the Routine
Supply the address of the cancel selective routine in the cancel_selective
argument of the DDTAB macro. The macro places the procedure value of this
routine into DDT.

Declaring the Entry Point
Use:

$DRIVER_CANCEL_SELECTIVE_ENTRY [preserve=<>] [,fetch=YES]

where:

preserve indicates the registers to be preserved (in addition to those
automatically preserved by the MACRO-32 compiler) across the call to the
cancel selective routine.

Device Driver Entry Points 8–7

OpenVMS Alpha Device Driver Entry Points
Cancel Selective Routine

fetch=YES, the default, loads SS$_UNSUPPORTED status into R0, the
IOSB vector into R7, the IOSB count into R8, and the addresses of the PCB
and UCB into R4 and R5, respectively, fetch=NO disables register loading.
Regardless of the value of the fetch argument, a driver cancel selective
routine that uses this macro can access any of its arguments by using a
symbolic name of the form CANSARG$_argument-name.

Called by
EXE$CANCEL_SELECTIVE calls a driver’s cancel selective routine.

Context
A cancel selective routine is called at device IPL, holding the corresponding device
lock and the appropriate fork lock. The channel control block (CCB) is locked in
memory. It must return control to EXE$CANCEL_SELECTIVE in this context.

Exit mechanism
The cancel selective routine returns to its caller.

Description

Reserved to Digital.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note that you must indicate
the entry point of a cancel-I/O routine with a $DRIVER_CANCEL_SELECTIVE_
ENTRY macro, indicating which registers must be saved and restored across
routine execution.

8–8 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Channel Assign Routine

Channel Assign Routine

Performs specialized operations when a channel is assigned to a non-network
device.

Format

CHANNEL_ASSIGN (ucb, ccb)

Arguments

Argument Type Access Mechanism

ucb UCB input reference
ccb CCB input reference

ucb
Unit control block.

ccb
Channel control block.

Essentials

Identifying the Routine
Supply the address of the channel assign routine in the channel_assign
argument of the DDTAB macro. The macro places the procedure value of
this routine into DDT.

Declaring the Entry Point
Use:

$DRIVER_CHANNEL_ASSIGN_ENTRY [preserve=<>] [,fetch=YES]

where:

preserve indicates the registers to be preserved (in addition to those
automatically preserved by the MACRO-32 compiler) across the call to the
cancel selective routine.
fetch=YES, the default, loads the addresses of UCB and CCB into R5 and
R8, respectively, fetch=NO disables register loading. Regardless of the
value of the fetch argument, a driver channel assign routine that uses this
macro can access any of its arguments by using a symbolic name of the form
CHANARG$_argument-name.

Called by
EXE$ASSIGN_LOCAL (in module SYSASSIGN) calls a driver’s channel assign
routine.

Context
A channel assign routine is called in kernel mode at IPL 0.

Device Driver Entry Points 8–9

OpenVMS Alpha Device Driver Entry Points
Channel Assign Routine

Exit mechanism
The channel assign routine returns to its caller.

Description

Reserved to Digital.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note that you must indicate
the entry point of a channel assign routine with a $DRIVER_CHANNEL_
ASSIGN_ENTRY macro, indicating which registers must be saved and restored
across routine execution.

8–10 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Cloned UCB Routine

Cloned UCB Routine

Completes the initialization of the UCB cloned when a channel is requested for a
template device.

Format

status = CLONEDUCB (cloned_ucb, ddt, pcb, template_ucb)

Arguments

Argument Type Access Mechanism

cloned_ucb UCB input reference
ddt DDT input reference
pcb PCB input reference
template_ucb UCB input reference

cloned_ucb
Cloned unit control block. Fields of the cloned UCB have been initialized as
follows:

Field Value

UCB$L_FQFL Address of UCB$L_FQFL
UCB$L_FQBL Address of UCB$L_FQFL
UCB$L_FPC 0
UCB$Q_FR3 0
UCB$Q_FR4 0
UCB$W_BUFQUO 0
UCB$L_LINK Address of next UCB in DDB chain
UCB$L_IOQFL Address of UCB$L_IOQFL
UCB$L_IOQBL Address of UCB$L_IOQFL
UCB$W_UNIT Device unit number
UCB$W_CHARGE Mailbox byte quota charge (UCB$W_SIZE)
UCB$L_REFC 0
UCB$L_STS UCB$V_DELETEUCB set, UCB$V_ONLINE set
UCB$L_DEVSTS UCB$V_DELMBX set if DEV$V_MBX is set in

UCB$L_DEVCHAR

Device Driver Entry Points 8–11

OpenVMS Alpha Device Driver Entry Points
Cloned UCB Routine

Field Value

UCB$L_OPCNT 0
UCB$L_SVAPTE 0
UCB$L_BOFF 0
UCB$L_BCNT 0
UCB$L_ORB Address of object rights block (ORB) for the cloned

UCB

The cloned UCB ORB is initialized using the template UCB ORB. You can modify
the ORB on the template UCB using the DCL SET SECURITY command.

ddt
Driver dispatch table.

pcb
Process control block of the current process.

template_ucb
Template unit control block.

Essentials

Identifying the Routine
Specify the address of a cloned UCB routine in the cloneducb argument of the
DDTAB macro. The macro places the procedure value of the routine into the
DDT. Only drivers for template devices, such as mailboxes, specify a cloned UCB
routine.

Declaring the Entry Point
Use:

$DRIVER_CLONEDUCB_ENTRY [preserve=<R3>] [,fetch=YES]

where:

preserve indicates the registers to be preserved (in addition to those
automatically preserved by the MACRO-32 compiler) across the call to the
cloned UCB routine
fetch=YES, the default, loads SS$_NORMAL status into R0, and the
addresses of the cloned UCB, DDT, PCB, and template UCB into R2, R3,
R4, and R5, respectively; fetch=NO disables register loading. Regardless of
the value of the fetch argument, a driver cloned UCB routine that uses this
macro can access any of its arguments by using a symbolic name of the form
CLONEARG$_argument-name.

Called by
EXE$ASSIGN calls the driver’s cloned UCB routine when an Assign I/O Channel
system service request ($ASSIGN) specifies a template device (that is, bit
UCB$V_TEMPLATE in UCB$L_STS is set).

Context
A cloned UCB routine executes at IPL$_ASTDEL, holding the I/O database mutex
(IOC$GL_MUTEX).

A cloned UCB routine executes in kernel mode in the context of the process that
called the $ASSIGN system service.

8–12 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Cloned UCB Routine

Exit mechanism
A cloned UCB routine must return control and status to EXE$ASSIGN. If the
routine returns error status in R0, EXE$ASSIGN undoes the process of UCB
cloning and completes with failure status in R0.

Description

When a process requests that a channel be assigned to a template device,
EXE$ASSIGN does not assign the channel to the template device itself. Rather,
it creates a copy of the template device’s UCB and ORB, initializing and clearing
certain fields as appropriate.

The driver’s cloned UCB routine verifies the contents of these fields and completes
their initialization.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note that you must indicate
the entry point of a cloned UCB with a $DRIVER_CLONEDUCB_ENTRY macro,
indicating which registers must be saved and restored across routine execution.

Device Driver Entry Points 8–13

OpenVMS Alpha Device Driver Entry Points
Controller Initialization Routine

Controller Initialization Routine

Prepares a controller for operation.

Format

status = CTRLINIT (idb, ddb, crb)

Arguments

Argument Type Access Mechanism

idb IDB input reference
ddb DDB input reference
crb CRB input reference

idb
Interrupt dispatch block associated with the controller.

ddb
Device data block associated with the controller.

crb
Controller request block.

Essentials

Identifying the Routine
Specify the address of a controller initialization routine in the ctrlinit argument
of the DDTAB macro. The macro places the procedure value of this routine into
the DDT.

Declaring the Entry Point
Use:

$DRIVER_CTRLINIT_ENTRY [preserve=<R2>] [,fetch=YES]

where:

preserve indicates the registers to be preserved (in addition to those
automatically preserved by the MACRO-32 compiler) across the call to the
controller initialization routine.
fetch=YES, the default, loads SS$_NORMAL status into R0, the address of
the IDB into R4 and R5, and the addresses of the DDB and CRB into R6 and
R8, respectively; fetch=NO disables register loading. Regardless of the value
of the fetch argument, a driver controller initialization routine that uses this
macro can access any of its arguments by using a symbolic name of the form
CTRLARG$_argument-name.

8–14 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Controller Initialization Routine

Called by
The driver-loading procedure calls a driver’s controller initialization routine
when processing a CONNECT command. Also, the system calls this routine
if the device, controller, processor, or adapter to which the device is connected
experiences a power failure.

Context
OpenVMS calls a controller initialization routine at IPL$_POWER. If it must
lower IPL, the controller initialization routine cannot explicitly do so. Rather,
it must fork. Because the driver-loading procedure calls the unit initialization
routine immediately after the controller initialization returns control to it, the
driver’s initialization routines must synchronize their activities. If the controller
initialization routine forks, the unit initialization routine must be prepared to
execute before the controller initialization routine completes.

The portion of the controller initialization that services power failure cannot
acquire any spin locks. As a result, the routine cannot fork to perform power
failure servicing.

Because a controller initialization routine executes within system context, it can
refer only to those virtual addresses that reside in system (S0) space.

Exit mechanism
The controller initialization routine returns success or failure status to its caller.

Description

Some controllers require initialization when the system’s driver-loading routine
loads the driver and when the system is recovering from a power failure.
Depending on the device, a controller initialization routine performs any and
all of the following actions:

• Determines whether it is being called as a result of a power failure by
examining the power bit (UCB$V_POWER in UCB$L_STS) in the UCB. A
controller initialization routine may want to perform or avoid specific tasks
when servicing a power failure.

• Clears error-status bits in device registers.

• Enables controller interrupts.

• Allocates resources that must be permanently allocated to the controller.

• If the controller is dedicated to a single-unit device, such as a printer, fills in
IDB$PS_OWNER and set the online bit (UCB$V_ONLINE in UCB$L_STS).

• Initializes the interrupt vectors of devices with programmable interrupt
vectors.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• You must indicate the entry point of the routine with a $DRIVER_CTRLINIT_
ENTRY macro to indicate which registers must be saved and restored across
routine execution.

Device Driver Entry Points 8–15

OpenVMS Alpha Device Driver Entry Points
Controller Initialization Routine

• An OpenVMS VAX device driver specifies a controller initialization routine
by invoking the DPT_STORE macro to place its procedure value into
the interrupt transfer vector block (CRB$L_INTD+VEC$L_INITIAL). An
OpenVMS Alpha device driver specifies the routine in the ctrlinit argument
of the DDTAB macro.

• You must replace direct CSR access (for instance, by means of a MOVL
instruction) with CSR access by means of a CRAM.

• The controller initialization routine of an OpenVMS VAX device driver
receives the addresses of the device CSR in R4 and the IDB in R5. An
OpenVMS Alpha device driver’s controller initialization routine is not passed
the address of the CSR. It may access the controller’s register by means of the
controller register access mailbox (CRAM), the address of which is provided
in IDB$PS_CRAM.

• A controller initialization routine that must initialize the programmable
interrupt vectors of a device does so by referring to the vector offset placed in
IDB$L_VECTOR by the driver-loading procedure. For a device with multiple
interrupt vectors, IDB$L_VECTOR contains the address of a vector list
extension (VLE) which contains a list of vector offsets.

• An OpenVMS Alpha controller initialization routine must return success or
failure status to its caller.

8–16 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Driver Channel Grant Fork Routine Entry

Driver Channel Grant Fork Routine Entry

Enabled via the IOC_STD$REQCHANx or IOC$REQCHANx routines if
the CRB is not immediately available. The procedure value of the grant
routine is contained in ucb->ucb$l_fpc. The grant routine is invoked by IOC_
STD$RELCHAN which has been enhanced to support both the JSB interface and
the new standard call interface. The above also applies to IOC$RELCHAN
which is now simply a JSB-to-CALL interface jacket routine around IOC_
STD$RELCHAN.

Description

The JSB interface for the channel grant routine is:

JSB driver_channel_grant_routine

Inputs:

R3 contains a pointer to the IRP,

R4 contains a pointer to the IDB,

R5 contains a pointer to the UCB.

Outputs:

R0-R5 may be scratched by the routine.

The standard call interface for the channel grant routine is:

void driver_channel_grant_routine (IRP *irp, IDB *idb, UCB *ucb);

Inputs:

irp is a pointer to the IRP,

idb is a pointer to the IDB,

ucb is a pointer to the UCB.

Device Driver Entry Points 8–17

OpenVMS Alpha Device Driver Entry Points
Driver Device Timeout Routine Entry

Driver Device Timeout Routine Entry

Enabled by the WFIKPCH or WFIRLCH macros and invoked by the
EXE$TIMEOUT routine. The EXE$TIMEOUT routine supports both timeout
routines using the JSB interface and the standard call interface.

Description

The JSB interface for the interrupt timeout routine is:

JSB driver_timeout_routine

Inputs:

R3 contains a pointer to the IRP from UCB$Q_FR3(R5),

R4 contains the 64-bit value from UCB$Q_FR4(R5),

R5 contains a pointer to the UCB.

Outputs:

R0-R4 may be scratched by the routine.

The standard call interface for the interrupt timeout routine is:

void driver_timeout_routine (IRP *irp, int64 fr4, UCB *ucb);

Inputs:

irp is a pointer to the IRP from ucb->ucb$q_fr3,

fr4 is the 64-bit value from ucb->fkb$q_fr4,

ucb is a pointer to the UCB,

The procedure value of the driver interrupt timeout routine is found in ucb-
>ucb$ps_toutrout.

Note

By default the WFIKPCH macro and the IOC$PRIMITIVE_WFIKPCH
JSB interface routine set the ucb$ps_toutrout cell to contain the same
value as ucb$l_fpc.

8–18 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Driver Resume from Interrupt Routine Entry

Driver Resume from Interrupt Routine Entry

The driver resume from interrupt routine is setup by the WFIKPCH macro and is
invoked by the driver’s interrupt service routine.

Description

The JSB interface for the driver interrupt resume routine is:

JSB driver_resume_routine

Inputs:

R3 contains a pointer to the IRP from UCB$Q_FR3(R5),

R4 contains the 64-bit value from UCB$Q_FR4(R5),

R5 contains a pointer to the UCB.

Outputs:

R0-R4 may be scratched by the routine.

The recommended standard call interface for the driver resume from interrupt
routine is:

void driver_resume_routine (IRP *irp, int64 fr4, UCB *ucb);

Inputs:

irp is a pointer to the IRP from ucb->ucb$q_fr3,

fr4 is the 64-bit value from ucb->fkb$q_fr4,

ucb is a pointer to the UCB,

Note

The resume from interrupt routine interface must conform exactly to the
calling convention used in the interrupt service routine in that driver.
This differs from other routines, for example the interrupt timeout
routine, which could be written to use either the traditional or the new
interface.

It may be possible to eliminate the driver resume from interrupt routine
by moving some processing directly into the interrupt service routine and
by resuming the driver in a fork routine.

Device Driver Entry Points 8–19

OpenVMS Alpha Device Driver Entry Points
Start I/O Routine (Simple Fork, JSB Environment)

Start I/O Routine (Simple Fork, JSB Environment)

Activates a device to process a requested I/O function.

8–20 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Driver Unloading Routine

Driver Unloading Routine

******Not supported in OpenVMS Alpha drivers********

Device Driver Entry Points 8–21

OpenVMS Alpha Device Driver Entry Points
FDT Upper-Level Action Routine

FDT Upper-Level Action Routine

Performs any device-dependent activities needed to prepare the I/O database to
process an I/O request.

Format

status = driver_FDT_routine (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism

irp IRP input reference
pcb PCB input reference
ucb UCB input reference
ccb CCB input reference

irp
I/O request packet for the current I/O request. An FDT routine may read the
following IRP fields:

Field Contents

IRP$L_FUNC I/O function code supplied in the $QIO request
IRP$L_QIO_Pn Function-specific $QIO system service arguments (p1

through p6); n corresponds to an integer from 1 to 6.

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

ccb
Channel control block that describes the process-I/O channel.

Essentials

Identifying the Routine
Use the FDT_ACT macro to insert the procedure value of an upper-level FDT
action routine into the FDT action routine vector slot that corresponds to a
specified I/O function code.

Declaring the Entry Point
Use:

$DRIVER_FDT_ENTRY
[preserve=<R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15>] [,fetch=YES]

8–22 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
FDT Upper-Level Action Routine

where:

preserve indicates the registers to be preserved (in addition to those
automatically preserved by the MACRO compiler) across the call to the
upper-level FDT action routine.
fetch=YES, the default, loads the addresses of the IRP, PCB, UCB, and CCB
into R3, R4, R5, and R6, respectively; fetch=NO disables register loading.
Regardless of the value of the fetch argument, a driver upper-level FDT
action routine that uses this macro can access any of its arguments by using
a symbolic name of the form FDTARG$_argument-name.

Called by
The $QIO system service calls a driver’s upper-level FDT action routine from the
module SYSQIOREQ. An upper-level FDT action routine can call any number of
FDT support routines, as long as each routine returns control and status to the
upper-level routine.

Context
An FDT routine is called at IPL$_ASTDEL and must exit at IPL$_ASTDEL.
An FDT routine must not lower IPL below IPL$_ASTDEL. If it raises IPL,
it must lower it to IPL$_ASTDEL before passing control to any other code.
Similarly, before exiting, it must release any spin locks it may have acquired in
an OpenVMS multiprocessing environment.

FDT routines execute in the context of the process that requested the I/O activity.
If an FDT routine alters the stack, it must restore the stack before returning
control to the caller of the routine.

Exit mechanism
An FDT routine must return control and status to its caller. An upper-level
FDT action routine returns SS$_FDT_COMPL status to the $QIO system service
and passes the return status to be delivered to the caller of $QIO in the FDT_
CONTEXT structure.

Description

An upper-level FDT routine (and any FDT support routine it may call) validates
the function-dependent arguments to a $QIO system service request and prepares
the I/O database to service the request. For each function that a device supports,
an upper-level FDT action routine must provide preprocessing of requests for
that function. FDT processing may complete a function that does not involve an
I/O transfer. Otherwise FDT processing can abort the request or deliver it to the
driver.

An OpenVMS Alpha upper-level FDT action routine can invoke the
$FDTARGDEF macro, defined in SYS$LIBRARY:LIB.MLB, to provide symbolic
names for the standard AP offsets of the four parameters provided as input (IRP,
PCB, UCB, and CCB) to all upper-level FDT action routines. A routine that does
so can use names of the form FDTARG$_xxx, where xxx is the 3-letter structure
acronym, to access the input parameters.

Device Driver Entry Points 8–23

OpenVMS Alpha Device Driver Entry Points
FDT Upper-Level Action Routine

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• You must indicate the entry point of each upper-level FDT action routine with
a $DRIVER_FDT_ENTRY macro, indicating which registers must be saved
and restored across routine execution.

• You should examine an FDT routine’s use of R0, R7, and R8.

The FDT routine of an OpenVMS VAX device driver may obtain the address
of FDT routine being called from R0, the number of the bit that specifies the
code for the requested I/O function from R7, and the address of the entry in
the function decision table that dispatched control to this FDT routine.

An OpenVMS Alpha driver can obtain the user-supplied function code
from IRP$L_FUNC. It can obtain the address of the start of the FDT from
DDT$PS_FDT2. The DDT address is available from UCB$L_DDT.

• An FDT routine of an OpenVMS VAX device driver accesses values of the
function-dependent arguments specified in the $QIO request as offsets from
the value of the AP; an OpenVMS Alpha device driver obtains them from the
IRP (at symbolic offsets IRP$L_QIO_P1 through IRP$L_QIO_P6).

8–24 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
FDT Error-Handling Callback Routine

FDT Error-Handling Callback Routine

Processes error conditions that occur during EXE_STD$READLOCK, EXE_
STD$WRITELOCK, and EXE_STD$MODIFYLOCK processing.

Format

status = error_callback (irp, pcb, ucb, ccb, status)

Arguments

Argument Type Access Mechanism

irp IRP input reference
pcb PCB input reference
ucb UCB input reference
ccb CCB input reference
status integer input value

irp
I/O request packet for the current I/O request.

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

ccb
Channel control block that describes the process-I/O channel.

status
Error status returned by buffer accessibility check (SS$_ACCVIO or SS$_
BADPARAM) or buffer locking operation (SS$_ACCVIO, SS$_INSFWSL, or page
fault status).

Essentials

Identifying the Routine
Use the errtn argument in a call to EXE_STD$MODIFYLOCK, EXE_
STD$READLOCK, or EXE_STD$WRITELOCK.

Declaring the Entry Point
Use:

$DRIVER_ERRRTN_ENTRY [preserve=<>] [,fetch=YES]

Device Driver Entry Points 8–25

OpenVMS Alpha Device Driver Entry Points
FDT Error-Handling Callback Routine

where:

preserve indicates the registers to be preserved (in addition to those
automatically preserved by the MACRO compiler) across the call to the
upper-level FDT action routine.
fetch=YES, the default, loads the addresses of the IRP, PCB, UCB, CCB,
and status into R3, R4, R5, R6, and R0, respectively; fetch=NO disables
register loading. Regardless of the value of the fetch argument, a driver
error-handling callback routine that uses this macro can access any of its
arguments by using a symbolic name of the form ERRARG$_argument-
name.

Called by
EXE_STD$MODIFYLOCK, EXE_STD$READLOCK, and EXE_
STD$WRITELOCK call the driver’s error-handling callback routine to process
errors incurred by a buffer accessibility check or buffer locking operation.

Context
An error-handling callback routine is called at IPL$_ASTDEL and must exit at
IPL$_ASTDEL. An error-handling callback routine must not lower IPL below
IPL$_ASTDEL. If it raises IPL, it must lower it to IPL$_ASTDEL before passing
control to any other code. Similarly, before exiting, it must release any spin locks
it may have acquired in an OpenVMS multiprocessing environment.

Error-handling callback routines execute in the context of the process that
requested the I/O activity. If a routine alters the stack, it must restore the stack
before returning control to the caller of the routine.

Exit mechanism
An error-handling callback routine must return control to its caller and preserve
the contents of R0 and R1.

Description

An error-handling callback routine processes any errors incurred by a call to
EXE_STD$MODIFYLOCK, EXE_STD$READLOCK, or EXE_STD$WRITELOCK.

A driver typically requires an error-handling callback routine if it must lock
multiple areas into memory for a single I/O request and must regain control, if
the request is to be aborted, to unlock these areas. The routine performs such
operations as locating the addresses of the previously allocated buffers (typically
stored in the IRP) and calling MMG_STD$UNLOCK to release them.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• You must indicate the entry point of each FDT error-handling callback routine
with a $DRIVER_ERRRTN_ENTRY macro, indicating which registers must
be saved and restored across routine execution.

• You should examine an FDT routine’s use of R0, R7, and R8.

The FDT routine of an OpenVMS VAX device driver may obtain the address
of FDT routine being called from R0, the number of the bit that specifies the
code for the requested I/O function from R7, and the address of the entry in
the function decision table that dispatched control to this FDT routine.

8–26 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
FDT Error-Handling Callback Routine

An OpenVMS Alpha driver can obtain the user-supplied function code
from IRP$L_FUNC. It can obtain the address of the start of the FDT from
DDT$PS_FDT2. The DDT address is available from UCB$L_DDT.

• An FDT routine of an OpenVMS VAX device driver accesses values of the
function-dependent arguments specified in the $QIO request as offsets from
the value of the AP; an OpenVMS Alpha device driver obtains them from the
IRP (at symbolic offsets IRP$L_QIO_P1 through IRP$L_QIO_P6).

Device Driver Entry Points 8–27

OpenVMS Alpha Device Driver Entry Points
Interrupt Service Routine

Interrupt Service Routine

Processes interrupts generated by a device. The Interrupt Service routine is
called by the system interrupt dispatcher.

Format

DRIVER_INTERRUPT (idb, scb_offset)

Arguments

Argument Type Access Mechanism

idb IDB input reference
scb_offset integer input value

idb
Interrupt dispatch block.

Essentials

Identifying the Routine
Devices require an interrupt service routine for each interrupt vector. Use the
DPT_STORE_ISR macro to store the ISR procedure descriptor and entry point
address in the interrupt transfer vector block (VEC) at CRB$L_INTD. You can
find the second and third VECs at CRB$L_INTD2 and CRB$L_INTD+2*VEC$K_
LENGTH, respectively.

Declaring the Entry Point
Indicate the entry point of an OpenVMS Alpha interrupt service routine with
a .CALL_ENTRY MACRO-32 compiler directive to indicate which registers are
provided as input or used as output and which must be saved and restored. If
the interrupt service routine forks, transferring control to a fork routine, it must
declare, at its .CALL_ENTRY point, R3, R4, and R5 as input registers.

Called by
The interrupt service routine is called either by the OpenVMS interrupt
dispatcher (for direct-vectored adapters) or by an adapter interrupt service
routine (for non-direct-vector adapters).

Context
An OpenVMS Alpha driver’s interrupt service routine conforms to the OpenVMS
calling standard.

An interrupt service routine is called, executes, and returns at device IPL. It must
obtain the device lock associated with its device IPL. It performs this acquisition
as soon as it obtains the address of the UCB of the interrupting device. It must
release this device lock before dismissing the interrupt.

At the execution of a driver’s interrupt service routine, the processor is running
in interrupt mode on the kernel stack. As a result, an interrupt service routine
can reference only those virtual addresses that reside in system (S0) space.

8–28 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Interrupt Service Routine

Resuming the Suspended Driver Thread
The method that an interrupt service routine should use to invoke the driver’s
resume from interrupt routine depends on how the driver suspended its execution.

If the driver is using the simple fork mechanism with a JSB-based environment
then the driver resume from interrupt routine is invoked by the following:

MOVX UCB$Q_FR3(R5),R3 ;R3 = FR3 (64-bits)
MOVX UCB$Q_FR4(R5),R4 ;R4 = FR4 (64-bits)
JSB @UCB$L_FPC(R5)

If the driver is using the simple fork mechanism with a CALL-based environment
then the driver resume from interrupt routine is invoked in C by the following:

(ucb->ucb$l_fpc)(ucb->ucb$q_fr3, ucb->ucb$q_fr4, ucb);

or in MACRO-32 by the following:

PUSHL R5 ;Param3 = UCB address
PUSHL UCB$Q_FR4(R5) ;Param2 = FR4 value
PUSHL UCB$Q_FR3(R5) ;Param1 = FR3 value
CALLS #3,@UCB$L_FPC(R5)

If the driver is using the kernel process mechanism then the suspended kernel
process can be resumed in C by the following:

exe$kp_restart(kpb);

or:

(ucb->ucb$l_fpc)(ucb->ucb$q_fr3, ucb->ucb$q_fr4, ucb);

or in MACRO-32 by the following:

PUSHL UCB$Q_FR4(R5) ;Param1 = KPB address
CALLS #1,EXE$KP_RESTART

or:

PUSHL R5 ;Param3 = UCB address
PUSHL UCB$Q_FR4(R5) ;Param2 = FR4 value
PUSHL UCB$Q_FR3(R5) ;Param1 = FR3 value
CALLS #3,@UCB$L_FPC(R5)

Exit mechanism
The interrupt service routine returns to the interrupt dispatcher with a RET
instruction.

Description

An interrupt service routine performs the following functions:

1. Determines whether the interrupt is expected.

2. Processes or dismisses unexpected interrupts.

3. Activates the suspended driver so it can process expected interrupts.

Device Driver Entry Points 8–29

OpenVMS Alpha Device Driver Entry Points
Interrupt Service Routine

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• An OpenVMS VAX device driver declares an interrupt service routine by
issuing the DPT_STORE macro to store its address in an interrupt transfer
vector block. Because the OpenVMS Alpha interrupt dispatcher requires
the addresses of both the code entry point and the procedure descriptor of
an interrupt service routine, you must use the new DPT_STORE_ISR macro
(which generates both) to declare the routine.

• The OpenVMS VAX interrupt dispatcher issues a JSB instruction to pass
control to an OpenVMS VAX driver’s interrupt service routine; the OpenVMS
Alpha interrupt dispatcher issues a standard call to a driver’s interrupt
service routine. This results in some substantial differences:

You must indicate the entry point of an OpenVMS Alpha interrupt service
routine with a .CALL_ENTRY MACRO-32 compiler directive to indicate
which registers are provided as input or used as output and which must
be saved and restored.

An OpenVMS VAX driver’s interrupt service routine must preserve any of
the non-scratch registers R2 through R15 if it uses them.

An OpenVMS VAX driver’s interrupt service routine is passed various
information on the stack, including the address of the IDB, the contents
of R0 through R5, the PC, and PSL at the time of the interrupt.

The only parameter passed to an OpenVMS Alpha driver’s interrupt
service routine is the address of the IDB (that is, the contents of VEC$L_
IDB). The routine cannot reference data on the stack.

Before exiting, an OpenVMS VAX driver’s interrupt service routine
removes the address of the pointer to the IDB from the top of the
stack and restores the registers OpenVMS saved when dispatching the
interrupt.

An OpenVMS Alpha driver’s interrupt service routine does not perform
these actions.

An OpenVMS VAX driver’s interrupt service routine exits with an REI
instruction.

An OpenVMS Alpha driver’s interrupt service routine exits by returning
control with a RET instruction.

• You must replace direct CSR access (for instance, by means of a MOVL
instruction) with CSR access by means of a CRAM.

• If you alter the driver’s suspension mechanism such that it uses the
OpenVMS kernel process services, you must change the mechanism by
which the interrupt service routine reactivates lower IPL execution threads
by replacing the IOFORK macro with the KP_STALL_IOFORK macro.

8–30 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Mount Verification Routine

Mount Verification Routine

Performs device-specific mount verification.

Format

MNTVER (irp, ucb)

Arguments

Argument Type Access Mechanism

irp IRP input reference
ucb UCB input reference

irp
I/O request packet, or zero to complete mount verification.

ucb
Unit control block.

Essentials

Identifying the Routine
Supply the address of the mount verification routine in the mntver argument
of the DDTAB macro. The macro places the procedure value of this routine into
DDT. The default value of this argument, IOC_STD$MNTVER, is the only value
allowed for device drivers not supplied by Digital.

Declaring the Entry Point
Use:

$DRIVER_MNTVER_ENTRY [preserve=<>] [,fetch=YES]

where:

preserve indicates the registers to be preserved (in addition to those
automatically preserved by the MACRO-32 compiler) across the call to the
cancel selective routine.
fetch=YES, the default, loads the addresses of IRP and UCB into R3 and
R5, respectively, fetch=NO disables register loading. Regardless of the value
of the fetch argument, a driver mount verification routine that uses this
macro can access any of its arguments by using a symbolic name of the form
MNTARG$_argument-name.

Called by
Routine DRIVER_CODE in module MOUNTVER calls a driver’s mount
verification routine.

Context
A mount verification routine is called at fork IPL with the corresponding fork lock
held in a multiprocessing system.

Device Driver Entry Points 8–31

OpenVMS Alpha Device Driver Entry Points
Mount Verification Routine

Exit mechanism
The mount verification routine returns to its caller.

Description

Reserved to Digital.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note that you must indicate
the entry point of a mount verification routine with a $DRIVER_MNTVER_
ENTRY indicating which registers must be saved and restored across routine
execution.

8–32 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Register Dumping Routine

Register Dumping Routine

Copies the contents of a device’s registers to an error message buffer or a
diagnostic buffer.

Format

status = REGDMP (buffer, arg_2, ucb)

Arguments

Argument Type Access Mechanism

buffer address input reference
arg_2 unspecified input reference
ucb UCB input reference

buffer
Address of buffer into which a register dumping routine copies the contents of
device registers.

arg_2
Device-specific argument, usually a controller register access mailbox (CRAM).

ucb
Unit control block.

Essentials

Identifying the Routine
Specify the name of the register dumping routine in the regdmp argument of
the DDTAB macro. This macro places the procedure value of the routine into the
DDT.

Declaring the Entry Point
Use:

$DRIVER_REGDUMP_ENTRY [preserve=<R2>] [,fetch=YES]

where:

preserve indicates the registers to be preserved (in addition to those
automatically preserved by the MACRO compiler) across the call to the
register dumping routine.
fetch=YES, the default, loads the addresses of the buffer, the driver-specific
argument. and the UCB into R0, R4, and R5, respectively; fetch=NO disables
register loading. Regardless of the value of the fetch argument, a driver
register dumping routine that uses this macro can access any of its arguments
by using a symbolic name of the form REGARG$_argument-name.

Device Driver Entry Points 8–33

OpenVMS Alpha Device Driver Entry Points
Register Dumping Routine

Called by
The system error-logging routines (ERL_STD$DEVICERR, ERL_
STD$DEVICTMO, and ERL_STD$DEVICEATTN) and diagnostic buffer filling
routine (IOC_STD$DIAGBUFILL) call the register dumping routine.

Context
OpenVMS calls a register dumping routine at the same interrupt service routine
(IPL) at which the driver called the OpenVMS Alpha system routine ERL_
STD$DEVICERR, ERL_STD$DEVICTMO, ERL_STD$DEVICEATTN, or IOC_
STD$DIAGBUFILL. A register dumping routine must not change IPL.

A register dumping routine executes within the context of an IPL routine or a
driver fork process, using the kernel-mode stack. As a result, it can only refer to
those virtual addresses that reside in system (S0) space. If it uses the stack, the
register dumping routine must restore the stack before passing control to another
routine, waiting for an interrupt, or returning control to its caller.

Exit mechanism
The register dumping routine returns to its caller.

Description

A register dumping routine fills the indicated buffer as follows:

1. Writes a longword value representing the number of device registers to be
written into the buffer

2. Moves device register longword values into the buffer following the register
count longword

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• You must indicate the entry point of the routine with a $DRIVER_
REGDUMP_ENTRY macro, indicating which registers must be saved and
restored across routine execution.

• An OpenVMS VAX device driver’s register dumping routine is passed the
address of the device’s CSR in R4 (if the driver invoked the WFIKPCH macro
to wait for an interrupt or timeout).

An OpenVMS Alpha device driver’s register dumping routine is not passed
the address of the CSR. It may access the controller’s register by means of
the controller register access mailbox (CRAM), the address of which is usually
passed in arg_2.

• You must replace direct CSR access (for instance, by means of a MOVL
instruction) with CSR access by means of a CRAM.

8–34 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Start-I/O Routine (Simple Fork, Call Environment)

Start-I/O Routine (Simple Fork, Call Environment)

Activates a device to process a requested I/O function.

Format

START (irp, ucb)

Arguments

Argument Type Access Mechanism

irp IRP input reference
ucb UCB input reference

irp
I/O request packet.

ucb
Unit control block. The start-I/O routine uses information from the following
UCB fields to calculate the size and location of a transfer:

Field Description

UCB$L_BCNT Number of bytes to be transferred, copied from the
low-order word of IRP$L_BCNT

UCB$L_BOFF Byte offset into first page of direct-I/O transfer; for
buffered-I/O transfers, number of bytes to be charged to
the process allocating the buffer

UCB$L_SVAPTE For a direct-I/O transfer, virtual address of first page-
table entry (PTE) of I/O-transfer buffer; for buffered-I/O
transfer, address of buffer in system address space

Essentials

Identifying the Routine
Specify the name of the start-I/O routine in the start argument of the DDTAB
macro. This macro places the address of the routine into the DDT.

Declaring the Entry Point
Use:

$DRIVER_START_ENTRY [preserve=<R2,R4>] [,fetch=YES]

where:

preserve indicates the registers to be preserved (in addition to those
automatically preserved by the MACRO compiler) across the call to the
start-I/O routine

Device Driver Entry Points 8–35

OpenVMS Alpha Device Driver Entry Points
Start-I/O Routine (Simple Fork, Call Environment)

fetch=YES, the default, loads the addresses of the IRP and UCB into R3
and R5, respectively; fetch=NO disables register loading. Regardless of
the value of the fetch argument, a driver start-I/O routine that uses this
macro can access any of its arguments by using a symbolic name of the form
STARTARG$_argument-name.

Called by
A traditional start-I/O routine is called as the result of a standard call issued by
IOC_STD$INITIATE and IOC_STD$REQCOM in module IOSUBNPAG.

Context
A start-I/O routine is placed into execution at fork IPL, holding the associated
fork lock. It must relinquish control of the processor in the same context.

For many devices, the start-I/O routine raises IPL to IPL$_POWER to check
that a power failure has not occurred on the device prior to loading the device’s
registers. The start-I/O routine initiates device activity at device IPL, after
acquiring the corresponding device lock. An invocation of the WFIKPCH or
WFIRLCH macro (or KP_STALL_WFIKPCH or KP_STALL_WFIRLCH) to wait
for a device interrupt releases this device lock.

Because a start-I/O routine gains control of the processor in the context of a fork
process, it can refer only to those addresses that reside in system (S0) space. If
the start-I/O routine uses the stack, it must restore the stack before completing
the request, waiting for an interrupt, or requesting system resources.

Exit mechanism
A traditional start-I/O routine suspends itself whenever it must wait for a
required resource, such as a controller data channel. To do so, it invokes an
OpenVMS macro (such as REQPCHAN) that saves its context in the UCB fork
block, places the UCB in a resource wait queue, and returns control to the caller
of the start-I/O routine.

The start-I/O routine also suspends itself when it issues a WFIKPCH or
WFIRLCH macro to initiate device activity. These macros also store the driver’s
context in the UCB fork block to be restored when the device interrupts or times
out.

The start-I/O routine is again suspended if it forks to complete servicing of a
device interrupt. The IOFORK macro places driver context in the UCB fork
block, inserts the fork block into a processor-specific fork queue, and requests a
software interrupt from the processor at the corresponding fork IPL. After issuing
an IOFORK macro, the routine returns control to the driver’s interrupt service
routine.

The routine completes the processing of an I/O request by invoking the REQCOM
macro. In addition to initiating device-independent postprocessing of the current
request, the REQCOM macro attempts to start the next request waiting for a
device unit. If there are no waiting requests, the macro returns control to the
caller of the start-I/O routine, which is the OpenVMS fork dispatcher.

8–36 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Start-I/O Routine (Simple Fork, Call Environment)

Description

A driver’s start-I/O routine activates a device and waits for a device interrupt or
timeout. After a device interrupt, the driver’s interrupt service routine returns
control to the start-I/O routine at device IPL, holding the associated device lock.

The start-I/O routine usually forks at this time to perform various device-
dependent postprocessing tasks, and returns control to the interrupt service
routine.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• You must indicate the entry point of the start-I/O routine with a $DRIVER_
START_ENTRY macro, indicating which registers must be saved and restored
across routine execution.

• You must replace direct CSR access (for instance, by means of a MOVL
instruction) with CSR access by means of a CRAM.

• You should examine the routine’s use of suspension mechanisms (for instance,
its forking, wait-for-interrupt, and resource-wait semantics) to determine
whether it needs to be adapted to use the kernel process services. Typically a
driver that makes subroutine calls before suspending itself (and relies on the
previous context of these subroutines remaining intact on the stack), must be
adapted to use the kernel process services.

Device Driver Entry Points 8–37

OpenVMS Alpha Device Driver Entry Points
Start-I/O Routine (Kernel Process)

Start-I/O Routine (Kernel Process)

Activates a device to process a requested I/O function.

Format

START (kpb)

Arguments

Argument Type Access Mechanism

kpb KPB input reference

kpb
Kernel process block.

Essentials

Identifying the Routine
Specify the name of the kernel process start-I/O routine (EXE_STD$KP_
STARTIO) in the start argument of the DDTAB macro, and the name of the
driver’s start-I/O routine in the kp_startio argument.

Declaring the Entry Point
Indicate the entry point of a kernel process start-I/O routine with a .CALL_
ENTRY MACRO-32 compiler directive to indicate which registers are provided as
input or used as output and which registers must be saved and restored.

Called by
A kernel-process start-I/O routine is called by EXE_STD$KP_STARTIO in module
KERNEL_PROCESS.

Context
A kernel process start-I/O routine is placed into execution at fork IPL, holding the
associated fork lock. The kernel process start-I/O routine must relinquish control
of the processor in the same context.

For many devices, the start-I/O routine raises IPL to IPL$_POWER to check
that a power failure has not occurred on the device prior to loading the device’s
registers. The start-I/O routine initiates device activity at device IPL, after
acquiring the corresponding device lock. An invocation of the KP_STALL_
WFIKPCH or KP_STALL_WFIRLCH macro to wait for a device interrupt
releases this device lock.

Because a start-I/O routine gains control of the processor in the context of a fork
process, it can refer only to those addresses that reside in system (S0) space.

Neither the start-I/O routine that initiates a kernel process nor the kernel process
thread can depend on inheriting the synchronization capabilities (such as spin
locks and IPL) of the other when control is exchanged betwen them. If they must
share data or perform other operations that require synchonization, they must
explicitly establish a synchronization mechanism.

8–38 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Start-I/O Routine (Kernel Process)

The kernel process cannot assume that its initiator is not running in parallel, nor
can the initiator of the kernel process assume that the kernel process has already
executed when EXE$KP_START returns control.

Exit mechanism
A kernel process start-I/O routine suspends itself whenever it must wait for a
required resource, such as a controller data channel. To do so, the kernel process
start-I/O routine invokes an OpenVMS macro (such as KP_STALL_REQCHAN)
that saves its context in the UCB fork block, places the UCB in a resource wait
queue, and returns control to the caller of the start-I/O routine.

The start-I/O routine also suspends itself when it issues a KP_STALL_WFIKPCH
or KP_STALL_WFIRLCH macro to initiate device activity. These macros also
store the driver’s context in the UCB fork block to be restored when the device
interrupts or times out.

The start-I/O routine is again suspended if it forks to complete servicing of
a device interrupt. The KP_STALL_IOFORK macro places driver context in
the UCB fork block, inserts the fork block into a processor-specific fork queue,
and requests a software interrupt from the processor at the corresponding fork
IPL. After issuing a KP_STALL_IOFORK macro, the routine issues an RSB
instruction, returning control to the driver’s interrupt service routine.

The routine completes the processing of an I/O request by invoking the KP_
REQCOM macro. In addition to initiating device-independent postprocessing
of the current request, the KP_REQCOM macro also attempts to start the next
request waiting for a device unit. If there are no waiting requests, the macro
returns control to the caller of the kernel process start-I/O routine, EXE$KP_
STARTIO.

Description

A driver’s start-I/O routine activates a device and waits for a device interrupt or
timeout. After a device interrupt, the driver’s interrupt service routine returns
control to the start-I/O routine at device IPL, holding the associated device lock.

The start-I/O routine usually forks at this time to perform various device-
dependent postprocessing tasks, and returns control to the interrupt service
routine.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• If the routine need not be converted to a kernel process, you must replace any
calls to EXE$FORK, EXE$FORK_WAIT, EXE$IOFORK, IOC$WFIKPCH,
IOC$WFIRLCH, IOC$REQPCHANH, and IOC$REQPCHANL with
invocations of the appropriate suspension macro or with calls to EXE_
STD$PRIMITIVE_FORK, IOC_STD$PRIMITIVE_WFIKPCH, IOC_
STD$PRIMITIVE_WFIRLCH, IOC_STD$PRIMITIVE_REQCHANH, or
IOC_STD$PRIMITIVE_REQCHANL.

• You must indicate the entry point of a kernel process start-I/O routine with a
.CALL_ENTRY MACRO-32 compiler directive to indicate which registers are
provided as input or used as output and which registers must be saved and
restored. A kernel process start-I/O routine invokes the KP_REQCOM macro
(in place of the REQCOM macro) to return control properly to its caller.

Device Driver Entry Points 8–39

OpenVMS Alpha Device Driver Entry Points
Timeout Handling Code (Traditional)

Timeout Handling Code (Traditional)

Takes whatever action is necessary when a device has not yet responded to a
request for device activity, and the time allowed for a response has expired.

Format

BNEQ timeout-code-address

Input

Location Contents
R3 Contents of R3 when the last invocation of

WFIKPCH or WFIRLCH occurred (usually the
address of the IRP)

R4 Contents of R4 when the last invocation of
WFIKPCH or WFIRLCH occurred (usually the
address of the IDB)

R5 Address of UCB of the device
UCB$L_STS UCB$V_INT and UCB$V_TIM clear; UCB$V_

TIMOUT set

Essentials

Identifying the Timeout Handler
Specify the address of timeout code in the excpt argument to the WFIKPCH or
WFIRLCH macro.

Branched to
The WFIKPCH and WFIRLCH macros use this entry point, but only when the
label of timeout code is provided in their excpt argument. These macros are used
in the driver’s start-I/O routine; thus, strictly speaking, the driver itself is the
only entity that uses this entry point.

The OpenVMS Alpha software timer interrupt service routine restarts a stalled
driver fork procedure, passing to it a status (UCB$V_TIMOUT in UCB$L_STS)
which is inspected by one of two instructions left at the top of the fork procedure
by the WFIKPCH or WFIRLCH macro. If UCB$V_TIMOUT is set, the second
instruction branches to the timeout code.

Context
Timeout code receives control at device IPL and must exit at device IPL. At the
time the timeout code executes, the processor holds both the fork lock and the
device lock associated with the device.

After taking whatever device-specific action is necessary at device IPL, timeout
code can lower IPL to fork IPL to perform less critical activities. Because its
caller restores IPL to fork IPL (and releases the device lock), if a timeout handler
lowers IPL, it can do so only by forking or by performing the following steps:

1. Issue a DEVICEUNLOCK macro to lower to fork level

2. Perform timeout handling activities possible at the lower IPL

8–40 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Timeout Handling Code (Traditional)

3. Issue a DEVICELOCK macro to again obtain the device lock and raise to
device IPL

Timeout code can access only those virtual addresses that refer to system (S0)
space.

Traditional timeout code can use R0, R1, and R2 freely, but must preserve the
contents of all other registers. If it uses the stack, it must restore the stack
before completing or canceling the current I/O request, waiting for an interrupt,
or returning control to its caller.

Exit mechanism
Traditional timeout code issues an RSB instruction to return to the software
timer interrupt service routine, restarts the I/O request, or invokes the REQCOM
macro to complete the I/O request that encountered the timeout.

Description

There are no outputs required from timeout code but, depending on the
characteristics of the device, timeout code might cancel or retry the current
I/O request, send a message to the operator, or take some other action.

Before timeout code executes, the system has placed the device in a state in which
no interrupt is expected (by clearing the bit UCB$V_INT in field UCB$L_STS). If
the requested interrupt occurs while this routine executes, it will appear to be an
unsolicited interrupt. Many drivers handle this situation by disabling interrupts
while timeout code executes.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• On OpenVMS VAX systems, the software timer interrupt service routine
issues a JSB instruction to a timeout handling routine within a driver when
it detects that a device has timed out. On OpenVMS Alpha systems, the
OpenVMS Alpha suspension macros provide a mechanism by which the driver
fork routine, when resumed by a timeout, tests the timeout bit in the UCB
and branches, if the bit is set, to the address of the timeout code.

• You must replace direct control and status register (CSR) access (for instance,
by means of a MOVL instruction) with CSR access using one of the OpenVMS
Alpha CSR access methods (CRAMs, platform independent access routines, or
direct mapping).

Device Driver Entry Points 8–41

OpenVMS Alpha Device Driver Entry Points
Timeout Handling Code (Kernel Process)

Timeout Handling Code (Kernel Process)

Takes whatever action is necessary when a device has not yet responded to a
request for device activity, and the time allowed for a response has expired.

Format

BLBC timeout-code-address

Arguments

None.

Essentials

Identifying the Routine
Specify the address of the timeout code in the excpt argument to the KP_STALL_
WFIKPCH or KP_STALL_WFIRLCH macro.

Branched to
The KP_STALL_WFIKPCH, and KP_STALL_WFIRLCH macros use this entry
point, but only when the label of timeout code is provided in their excpt
argument. These macros are used in the driver’s start-I/O routine; thus, strictly
speaking, the driver itself is the only entity that uses this entry point.

The OpenVMS Alpha software timer interrupt service routine restarts a stalled
driver kernel process fork procedure, passing a status (UCB$V_TIMOUT in
UCB$L_STS) to it, which is inspected by one of two instructions left at the top
of the fork procedure by the KP_STALL_WFIKPCH or KP_STALL_WFIRLCH
macro. If UCB$V_TIMOUT is set, the second instruction branches to the timeout
code.

Context
The timeout code receives control at device IPL and must exit at device IPL. At
the time the timeout code executes, the processor holds both the fork lock and
device lock associated with the device.

After taking whatever device-specific action is necessary at device IPL, timeout
code can lower IPL to fork IPL to perform less critical activities. Because its
caller restores IPL to fork IPL (and releases the device lock), if timeout code
lowers IPL, it can do so only by forking or by performing the following steps:

1. Issue a DEVICEUNLOCK macro to lower to fork level

2. Perform timeout handling activities possible at the lower IPL

3. Issue a DEVICELOCK macro to again obtain the device lock and raise to
device IPL

Timeout code can access only those virtual addresses that refer to system (S0)
space.

Kernel process timeout code executes in the context of the kernel process thread
that invoked the KP_STALL_WFIKPCH or KP_STALL_WFIRLCH macro.

8–42 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Timeout Handling Code (Kernel Process)

Exit mechanism
Kernel process timeout code executes as part of the kernel process thread
that invoked WFIKPCH or WFIRLCH macro and therefore has no special exit
mechanism.

Description

There are no outputs required from timeout code but, depending on the
characteristics of the device, timeout code might cancel or retry the current
I/O request, send a message to the operator, or take some other action.

Before timeout code executes, OpenVMS has placed the device in a state in which
no interrupt is expected (by clearing the bit UCB$V_INT in field UCB$L_STS). If
the requested interrupt occurs while this routine executes, it will appear to be an
unsolicited interrupt. Many drivers handle this situation by disabling interrupts
while timeout code executes.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• On OpenVMS VAX systems, the software timer interrupt service routine
issues a JSB instruction to a timeout handling routine within a driver when
it detects that a device has timed out. On OpenVMS Alpha systems, the
OpenVMS Alpha suspension macros provide a mechanism by which the driver
fork routine, when resumed by a timeout, tests the timeout bit in the UCB
and branches, if the bit is set, to the address of the timeout code.

• You must replace direct CSR access (for instance, by means of a MOVL
instruction) with CSR access using one of the OpenVMS Alpha CSR access
methods (CRAMs, platform independent access routines, or direct mapping).

Device Driver Entry Points 8–43

OpenVMS Alpha Device Driver Entry Points
Unit Delivery Routine

Unit Delivery Routine

For controllers that can control a variable number of device units, determines
which specific devices are present and available for inclusion in the system’s
configuration.

Format

status = DELIVER (ddb, idb, unit_number, scratch_area, adp)

Arguments

Argument Type Access Mechanism

ddb DDB input reference
idb IDB input reference
unit_number integer input value
scratch_area address input reference
adp ADP input reference

ddb
Device data block.

idb
Interrupt dispatch block; 0 if none exists.

unit_number
Number of unit that the unit delivery routine must decide to configure or not to
configure.

scratch_area
Address of quadword scratch area.

adp
Adapter control block.

Essentials

Identifying the Routine
Specify the name of the unit delivery routine in the deliver argument to the
DPTAB macro. The macro puts the procedure value address of this routine in the
DPT.

Declaring the Entry Point
Use:

$DRIVER_DELIVER_ENTRY [preserve=<R2>] [,fetch=YES]

8–44 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Unit Delivery Routine

where:

preserve indicates the registers to be preserved (in addition to those
automatically preserved by the MACRO compiler) across the call to the unit
delivery routine.
fetch=YES, the default, loads the address of the IDB into R3 and R4, the
unit number into R5, the address of the scratch area into R7, and the address
of the ADP into R8; fetch=NO disables register loading. Regardless of the
value of the fetch argument, a driver unit delivery routine that uses this
macro can access any of its arguments by using a symbolic name of the form
DLVRARG$_argument-name.

Called by
The System Management (SYSMAN) utility’s IO AUTOCONFIGURE command
calls the unit delivery routine once for each unit the controller is capable of
controlling. This value is specified in the defunits argument to the DPTAB
macro.

Context
The unit delivery routine is called at IPL$_POWER. It must not lower IPL. The
unit delivery routine executes in the context of the process within which the
autoconfiguration facility executes.

Exit mechanism
A unit delivery routine returns success or failure status to the autoconfiguration
facility. If the routine returns error status, the unit is not configured.

Description

The unit delivery routine determines which units on a controller should be
configured. For instance, a unit delivery routine can prevent the creation of
UCBs for devices that do not respond to a test for their presence.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• You must indicate the entry point of the routine with a $DRIVER_DELIVER_
ENTRY macro to indicate which registers must be saved and restored across
routine execution.

• You must replace direct CSR access (for instance, by means of a MOVL
instruction) with CSR access using one of the OpenVMS Alpha CSR access
methods (CRAMs, platform independent access routines, or direct mapping).

• The unit delivery routine of an OpenVMS VAX device driver receives the
addresses of the device CSR in R4 and the IDB in R5. An OpenVMS Alpha
device driver’s unit delivery routine is not passed the address of the CSR. It
may access the controller’s register by means of the controller register access
mailbox (CRAM), the address of which is provided in IDB$PS_CRAM.

• An OpenVMS Alpha unit delivery routine is passed the address of the device
data block and the address of a quadword scratch area.

Device Driver Entry Points 8–45

OpenVMS Alpha Device Driver Entry Points
Unit Initialization Routine

Unit Initialization Routine

Prepares a device for operation and, in the case of a device on a dedicated
controller, initializes the controller.

Format

status = UNITINIT (idb, ucb)

Arguments

Argument Type Access Mechanism

idb IDB input reference
ucb UCB input reference

idb
Interrupt dispatch block associated with the controller.

ucb
Unit control block.

Essentials

Identifying the Routine
Specify the address of the unit initialization routine unitinit argument of the
DDTAB macro. This macro places the procedure value of the routine into the
DDT.

Declaring the Entry Point
Use:

$DRIVER_UNITINIT_ENTRY [preserve=<R2>] [,fetch=YES]

where:

preserve indicates the registers to be preserved (in addition to those
automatically preserved by the MACRO-32 compiler) across the call to the
unit initialization routine.
fetch=YES, the default, loads $SS_NORMAL status into R0, and the
addresses of the IDB and UCB into R4 and R5, respectively; fetch=NO
disables register loading. Regardless of the value of the fetch argument, a
driver unit initialization routine that uses this macro can access any of its
arguments by using a symbolic name of the form UNITARG$_argument-
name.

Called by
The driver-loading procedure calls a driver’s unit initialization routine when
processing a CONNECT command. OpenVMS calls a unit initialization routine
when the device, the controller, the processor, or the adapter to which the device
is connected undergoes power failure recovery.

8–46 Device Driver Entry Points

OpenVMS Alpha Device Driver Entry Points
Unit Initialization Routine

Context
OpenVMS calls a unit initialization routine at IPL$_POWER. If it must lower
IPL, the controller initialization routine cannot explicitly do so. Rather, it must
fork. Because the driver-loading procedure calls the unit initialization routine
immediately after the controller initialization returns control to it, the driver’s
initialization routines must synchronize their activities.

The portion of the unit initialization routine that services power failure cannot
acquire any spin locks. As a result, the routine cannot fork to perform power
failure servicing.

Because OpenVMS calls it in system context, a unit initialization routine can
only refer to those virtual addresses that reside in system (S0) space. R0, and
preserve the contents of all registers except R0, R1, and R2.

Exit mechanism
A unit initialization routine returns success or failure status to its caller.

Description

Depending on the device, a unit initialization routine performs any or all of the
following tasks:

1. Determines whether it is being called as a result of a power failure by
examining the power bit (UCB$V_POWER in UCB$L_STS) in the UCB. A
unit initialization routine may want to perform or avoid specific tasks when
servicing a power failure.

2. Clears error-status bits in device registers.

3. Enables controller interrupts.

4. Sets the online bit (UCB$V_ONLINE in UCB$L_STS).

5. Allocates resources that must be permanently allocated to the device or, for
some devices, the controller.

6. If the device has a dedicated controller, as some printers do, fills in IDB$PS_
OWNER.

7. For dedicated controllers, initializes controller and device hardware.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• You must indicate the entry point of the routine with a .JSB_ENTRY
MACRO-32 compiler directive to indicate which registers are provided as
input or used as output and which must be saved and restored.

• An OpenVMS VAX device driver can specify a controller initialization routine
by invoking the DPT_STORE macro to place its address into the interrupt
transfer vector block (CRB$L_INTD+VEC$L_UNITINIT). An OpenVMS
Alpha device driver specifies the routine in the unitinit argument of the
DDTAB macro.

• You must replace direct CSR access (for instance, by means of a MOVL
instruction) with CSR access using one of the OpenVMS Alpha CSR access
methods (CRAMs, platform independent access routines, or direct mapping).

Device Driver Entry Points 8–47

OpenVMS Alpha Device Driver Entry Points
Unit Initialization Routine

• The unit initialization routine of an OpenVMS VAX device driver receives
the addresses of the primary and secondary device CSRs in R3 and R4,
respectively. An OpenVMS Alpha device driver’s unit initialization routine is
not passed the addresses of the CSRs. It may access the controller registers
by means of the controller register access mailbox (CRAM), the address of
which is provided in IDB$PS_CRAM.

• An OpenVMS Alpha unit initialization routine must return success or failure
status to its caller.

8–48 Device Driver Entry Points

9
System Routines

This chapter describes the operating system routines that are used by device
drivers and employs the following conventions:

• Most routines reside in modules within the [SYS] facility of the operating
system. A routine description provides a facility name (in brackets) only if
the module is not located in the [SYS] facility.

• Many routines are not directly called by device drivers. Rather, the operating
system supplies macros that drivers invoke to accomplish the routine call.
The description of a routine that has such a macro interface lists the name
of the associated macro. Chapter 11 describes how a driver can use these
macros.

• System routines generally return a status value in R0 (for instance,
SS$_NORMAL). The low-order bit of this value indicates successful (1)
or unsuccessful (0) completion of the routine. Additional information on
returned status values appears in the OpenVMS System Services Reference
Manual and the OpenVMS System Messages and Recovery Procedures
Reference Manual.

Table 9–1 highlights some of the differences between OpenVMS VAX and
OpenVMS Alpha system routines.

Table 9–1 New, Changed, and Unsupported OpenVMS System Routines

System Routine Description Notes

EXE$BUS_DELAY Allows a system-specific bus delay within
a timed wait

New

EXE$DELAY Provides a short-term simple delay New

ERL$DEVICERR,
ERL$DEVICTMO,
ERL$DEVICEATTN

Allocate an error message buffer and
record in it information concerning the
error

Changed

EXE$FORK Creates a fork process on the current
processor

Replaced by
EXE$PRIMITIVE_
FORK and EXE_
STD$PRIMITIVE_FORK

EXE$FORK_WAIT Inserts a fork block on the fork-and-wait
queue

Replaced by
EXE$PRIMITIVE_
FORK_WAIT and EXE_
STD$PRIMITIVE_FORK_
WAIT

(continued on next page)

System Routines 9–1

System Routines

Table 9–1 (Cont.) New, Changed, and Unsupported OpenVMS System Routines

System Routine Description Notes

EXE$INSERT_IRP Inserts an IRP into the specified queue of
IRPs according to the base priority of the
process that issued the I/O request

New

EXE$INSERTIRP Inserts an IRP into the specified queue of
IRPs according to the base priority of the
process that issued the I/O request

Replaced by
EXE$INSERT_IRP

EXE$IOFORK Creates a fork process on the current
processor for a device driver, disabling
timeouts from the associated device

Replaced by
EXE$PRIMITIVE_
FORK and EXE_
STD$PRIMITIVE_FORK

EXE$KP_ALLOCATE_KPB Creates a KPB and a kernel process
stack, as required by the kernel process
services

New

EXE$KP_DEALLOCATE_KPB Deallocates a KPB and its associated
kernel process stack

New

EXE$KP_END Terminates the execution of a kernel
process

New

EXE$KP_FORK Stalls a kernel process in such a manner
that it can be resumed by the fork
dispatcher

New

EXE$KP_FORK_WAIT Stalls a kernel process in such a
manner that it can be resumed by the
software timer interrupt service routine’s
examination of the fork-and-wait queue

New

EXE$KP_RESTART Resumes the execution of a kernel
process

New

EXE$KP_STALL_GENERAL Stalls the execution of a kernel process New

EXE$KP_START Starts the execution of a kernel process New

EXE_STD$KP_STARTIO Sets up and starts a kernel process to be
used by a device driver

New

EXE$MODIFYLOCK Validate and prepare a user buffer for a
direct-I/O, DMA read/write operation.

Replaced by EXE_
STD$MODIFYLOCK and
CALL_MODIFYLOCK
macro

EXE$MODIFYLOCKR Validates and prepares a user buffer for
a direct-I/O, DMA modify operation.

Replaced by EXE_
STD$MODIFYLOCK and
CALL_MODIFYLOCK_
ERR macro

EXE$PRIMITIVE_FORK, EXE_
STD$PRIMITIVE_FORK

Creates a simple fork process on the
current processor

New

EXE$PRIMITIVE_FORK_WAIT,
EXE_STD$PRIMITIVE_FORK_
WAIT

Inserts a fork block on the fork-and-wait
queue

New

EXE$READLOCK Validate and prepare a user buffer for a
direct-I/O, DMA read operation.

Replaced by EXE_
STD$READLOCK and
CALL_READLOCK macro

(continued on next page)

9–2 System Routines

System Routines

Table 9–1 (Cont.) New, Changed, and Unsupported OpenVMS System Routines

System Routine Description Notes

EXE$READLOCKR Validates and prepares a user buffer for
a direct-I/O, DMA read operation

Replaced by EXE_
STD$READLOCK and
CALL_READLOCK_ERR
macro

EXE$TIMEDWAIT_COMPLETE Determines whether the time interval of
a timed wait has conclude

New

EXE$TIMEDWAIT_SETUP,
EXE$TIMEDWAIT_SETUP_
10US

Calculate and return the end-value
used by EXE$TIMEDWAIT_COMPLETE
to determine when a timed wait has
completed

New

EXE$WRITELOCK Validate and prepare a user buffer for a
direct-I/O, DMA write operation.

Replaced by EXE_
STD$WRITELOCK and
CALL_WRITELOCK macro

EXE$WRITELOCKR Validates and prepares a user buffer for
a direct-I/O, DMA write operation

Replaced by EXE_
STD$WRITELOCK and
CALL_WRITELOCK_ERR
macro

IOC$ALOALTMAP,
IOC$ALOALTMAPN,
IOC$ALOALTMAPSP

Allocate a set of Q22–bus alternate map
registers

Not supported. See
the description of
IOC$ALLOC_CNT_RES.

IOC$ALOUBAMAP,
IOC$ALOUBAMAPN

Allocate a set of UNIBUS map registers
or a set of the first 496 Q22–bus map
registers

Not supported. See
the description of
IOC$ALLOC_CNT_RES.

IOC$ALLOC_CNT_RES Allocates the requested number of items
of a counted resource

New

IOC$ALLOC_CRAB Allocates and initializes a counted
resource allocation block (CRAB)

New

IOC$ALLOC_CRCTX Allocates and initializes a counted
resource context block (CRCTX)

New

IOC$ALLOCATE_CRAM Allocates a controller register access
mailbox

New

IOC$CANCEL_CNT_RES Cancels a thread that has been stalled
waiting for a counted resource

New

IOC$CRAM_CMD Generates values for the command,
mask, and remote I/O interconnect
address fields of the hardware I/O
mailbox that are specific to the
interconnect that is the target of the
mailbox operation, inserting these values
into the indicated mailbox, buffer, or both

New

IOC$CRAM_IO Queues the hardware I/O mailbox
defined within a controller register
access mailbox (CRAM) to the mailbox
pointer register (MBPR) and awaits the
completion of the mailbox transaction

New

IOC$CRAM_QUEUE Queues the hardware I/O mailbox
defined within a controller register
access mailbox (CRAM) to the mailbox
pointer register (MBPR)

New

(continued on next page)

System Routines 9–3

System Routines

Table 9–1 (Cont.) New, Changed, and Unsupported OpenVMS System Routines

System Routine Description Notes

IOC$CRAM_WAIT Awaits the completion of a hardware I/O
mailbox transaction to a tightly coupled
I/O interconnect

New

IOC$DEALLOC_CNT_RES Deallocates the requested number of
items of a counted resource

New

IOC$DEALLOC_CRAB Deallocates a counted resource allocation
block (CRAB)

New

IOC$DEALLOC_CRCTX Deallocates a counted resource context
block (CRCTX)

New

IOC$DEALLOCATE_CRAM Deallocates a controller register access
mailbox

New

IOC$DIAGBUFILL Fills a diagnostic buffer if the original
$QIO request specified such a buffer

Changed

IOC$KP_REQCHAN Stalls a kernel process in such a manner
that it can be resumed by the granting of
a device controller channel

New

IOC$KP_WFIKPCH, IOC$KP_
WFIRLCH

Stall a kernel process in such a manner
that it can be resumed by device
interrupt processing

New

IOC$LOAD_MAP Loads a set of adapter-specific map
registers

New

IOC$LOADALTMAP Loads a set of alternate Q22–bus map
registers

Not supported; see
IOC$LOAD_MAP

IOC$LOADMBAMAP Loads MASSBUS map registers Not supported; see
IOC$LOAD_MAP

IOC$LOADUBAMAP,
IOC$LOADUBAMAPA

Load a set of UNIBUS map registers
or a set of the first 496 Q22–bus map
registers

Not supported; see
IOC$LOAD_MAP

IOC$MAP_IO Maps I/O bus physical address space
into an address region accessible by the
processor

New

IOC$NODE_FUNCTION Performs node-specific functions on
behalf of a driver, such as enabling or
disabling interrupts from a bus slot

New

IOC_STD$PRIMITIVE_
REQCHANH, IOC_
STD$PRIMITIVE_REQCHANL

Request a controller’s data channel and,
if unavailable, place process in channel
wait queue

New

IOC_STD$PRIMITIVE_
WFIKPCH, IOC_
STD$PRIMITIVE_WFIRLCH

Suspend a driver fork thread and fold its
context into a fork block in anticipation
of a device interrupt or timeout

New

IOC$READ_IO Reads a value from a previously mapped
location in I/O address space

New

IOC$RELALTMAP Releases a set of Q22–bus alternate map
registers

Not supported; see
IOC$DEALLOC_CNT_
RES

IOC$RELDATAP Releases a UNIBUS adapter’s buffered
data path.

Not supported

(continued on next page)

9–4 System Routines

System Routines

Table 9–1 (Cont.) New, Changed, and Unsupported OpenVMS System Routines

System Routine Description Notes

IOC$RELMAPREG Releases a set of UNIBUS map registers
or a set of the first 496 Q22–bus map
registers

Not supported; see
IOC$DEALLOC_CNT_
RES

IOC$REQALTMAP Allocates sufficient Q22–bus alternate
map registers to accommodate a DMA
transfer

Not supported; see
IOC$ALLOC_CNT_RES

IOC$REQDATAP,
IOC$REQDATAPNW

Request a UNIBUS adapter’s buffered
data path and, optionally, if no path is
available, place process in a data-path
wait queue

Not supported

IOC$REQMAPREG Allocates sufficient UNIBUS map
registers or a sufficient number of the
first 496 Q22–bus map registers to
accommodate a DMA transfer

Not supported; see
IOC$ALLOC_CNT_RES

IOC$REQPCHANH,
IOC$REQPCHANL,
IOC$REQSCHANH,
IOC$REQSCHANL

Request a controller’s primary or
secondary data channel and, if
unavailable, place process in channel
wait queue

Not supported

IOC$WFIKPCH,
IOC$WFIRLCH

Suspend a driver fork thread and fold its
context into a fork block in anticipation
of a device interrupt or timeout

Replaced by IOC_
STD$PRIMITIVE_
WFIKPCH and IOC_
STD$PRIMITIVE_
WFIRLCH

IOC$WRITE_IO Writes a value to a previously mapped
location in I/O address space

New

IOC$UNMAP_IO Unmaps a previously mapped I/O
address space

New

System Routines 9–5

System Routines
ACP_STD$ACCESS

ACP_STD$ACCESS

Accesses and creates ACP function processing.

Module

SYSACPFDT

Format

status = ACP_STD$ACCESS (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet.

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

ccb
Channel control block that describes the process-I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Access violation.
SS$_DEVNOTMOUNT Device not mounted.
SS$_DEVFOREIGN Device is mounted as foreign.
SS$_EXQUOTA File quota exceeded.
SS$_FILALRACC File already accessed.

9–6 System Routines

System Routines
ACP_STD$ACCESS

SS$_IVCHNLSEC Invalid section channel.
SS$_NORMAL The I/O request has been successfully queued to

the appropriate ACP or XQP.

Context

FDT dispatching code in the $QIO system service calls ACP_STD$ACCESS as an
upper-level FDT action routine at IPL$_ASTDEL.

Description

For Digital internal use only.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The FDT routine ACP$ACCESS expects, as input, a bit number indicating
the requested I/O function in R7, and the address of the FDT entry from
which it received control in R8.

R0, R7, and R8 are not provided as input to ACP_STD$ACCESS.

• ACP$ACCESS returns control to the system service dispatcher, passing it the
final $QIO system service status in R0. ACP_STD$ACCESS returns to its
caller, passing it SS$_FDT_COMPL status in R0 and storing the final $QIO
system service status in the FDT_CONTEXT structure. The $QIO system
service retrieves the status from this structure.

System Routines 9–7

System Routines
ACP_STD$ACCESSNET

ACP_STD$ACCESSNET

Connects to network function processing.

Module

SYSACPFDT

Format

status = ACP_STD$ACCESSNET (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet.

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

ccb
Channel control block that describes the process-I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Access violation.
SS$_NORMAL The I/O request has been successfully queued to

the appropriate ACP or XQP.
SS$_EXQUOTA File quota exceeded.
SS$_FILALRACC File already accessed.
SS$_IVCHNLSEC Invalid section channel.

9–8 System Routines

System Routines
ACP_STD$ACCESSNET

Context

FDT dispatching code in the $QIO system service calls ACP_STD$ACCESSNET
as an upper-level FDT action routine at IPL$_ASTDEL.

Description

For Digital internal use only.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The FDT routine ACP$ACCESSNET (used by OpenVMS VAX drivers)
expects, as input, a bit number indicating the requested I/O function in R7,
and the address of the FDT entry from which it received control in R8.

R0, R7, and R8 are not provided as input to ACP_STD$ACCESSNET.

• ACP$ACCESSNET returns control to the system service dispatcher, passing
it the final $QIO system service status in R0. ACP_STD$ACCESSNET
returns to its caller, passing it SS$_FDT_COMPL status in R0 and storing
the final $QIO system service status in the FDT_CONTEXT structure. The
$QIO system service retrieves the status from this structure.

System Routines 9–9

System Routines
ACP_STD$DEACCESS

ACP_STD$DEACCESS

Deaccesses ACP function processing.

Module

SYSACPFDT

Format

status = ACP_STD$DEACCESS (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet.

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

ccb
Channel control block that describes the process-I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_FILNOTACC File not accessed.
SS$_IVCHNLSEC Invalid section channel.
SS$_NORMAL Normal, successful completion.

9–10 System Routines

System Routines
ACP_STD$DEACCESS

Context

FDT dispatching code in the $QIO system service calls ACP_STD$DEACCESS as
an upper-level FDT action routine at IPL$_ASTDEL.

Description

For Digital internal use only.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The FDT routine ACP$DEACCESS (used by OpenVMS VAX drivers) expects,
as input, a bit number indicating the requested I/O function in R7, and the
address of the FDT entry from which it received control in R8.

R0, R7, and R8 are not provided as input to ACP_STD$DEACCESS.

• ACP$DEACCESS returns control to the system service dispatcher, passing it
the final $QIO system service status in R0. ACP_STD$DEACCESS returns
to its caller, passing it SS$_FDT_COMPL status in R0 and storing the final
$QIO system service status in the FDT_CONTEXT structure. The $QIO
system service retrieves the status from this structure.

System Routines 9–11

System Routines
ACP_STD$MODIFY

ACP_STD$MODIFY

Deletes and modifies ACP function processing.

Module

SYSACPFDT

Format

status = ACP_STD$MODIFY (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet.

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

ccb
Channel control block that describes the process-I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Access violation.
SS$_DEVNOTMOUNT Device not mounted.
SS$_DEVFOREIGN Device is mounted as foreign.
SS$_EXQUOTA File quota exceeded.
SS$_NORMAL The I/O request has been successfully queued to

the appropriate ACP or XQP.

9–12 System Routines

System Routines
ACP_STD$MODIFY

Context

FDT dispatching code in the $QIO system service calls ACP_STD$MODIFY as an
upper-level FDT action routine at IPL$_ASTDEL.

Description

For Digital internal use only.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The FDT routine ACP$MODIFY (used by OpenVMS VAX drivers) expects,
as input, a bit number indicating the requested I/O function in R7, and the
address of the FDT entry from which it received control in R8.

R0, R7, and R8 are not provided as input to ACP_STD$MODIFY.

• ACP$MODIFY returns control to the system service dispatcher, passing it the
final $QIO system service status in R0. ACP_STD$MODIFY returns to its
caller, passing it SS$_FDT_COMPL status in R0 and storing the final $QIO
system service status in the FDT_CONTEXT structure. The $QIO system
service retrieves the status from this structure.

System Routines 9–13

System Routines
ACP_STD$MOUNT

ACP_STD$MOUNT

Initiates ACP mount function processing.

Module

SYSACPFDT

Format

status = ACP_STD$MOUNT (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet.

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

ccb
Channel control block that describes the process-I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Access violation.
SS$_DEVNOTMOUNT Device not mounted.
SS$_NOPRIV Process has insufficient privileges.
SS$_NORMAL The I/O request has been successfully queued to

the appropriate ACP or XQP.

9–14 System Routines

System Routines
ACP_STD$MOUNT

Context

FDT dispatching code in the $QIO system service calls ACP_STD$MOUNT as an
upper-level FDT action routine at IPL$_ASTDEL.

Description

For Digital internal use only.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The FDT routine ACP$MOUNT (used by OpenVMS VAX drivers) expects,
as input, a bit number indicating the requested I/O function in R7, and the
address of the FDT entry from which it received control in R8.

R0, R7, and R8 are not provided as input to ACP_STD$MOUNT.

• ACP$MOUNT returns control to the system service dispatcher, passing it the
final $QIO system service status in R0. ACP_STD$MOUNT returns to its
caller, passing it SS$_FDT_COMPL status in R0 and storing the final $QIO
system service status in the FDT_CONTEXT structure. The $QIO system
service retrieves the status from this structure.

System Routines 9–15

System Routines
ACP_STD$READBLK

ACP_STD$READBLK

Processes a read block ACP function.

Module

SYSACPFDT

Format

status = ACP_STD$READBLK (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet.

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

ccb
Channel control block that describes the process-I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Access violation.
SS$_ENDOFFILE End of file reached.
SS$_FILNOTACC File not accessed on channel.
SS$_NOPRIV Process has insufficient privileges.
SS$_ILLIOFUNC Illegal I/O function.

9–16 System Routines

System Routines
ACP_STD$READBLK

SS$_ILLBLKNUM Illegal block number.
SS$_NORMAL Normal, successful completion.
SS$_INSFWSL Insufficient working set limit.

Context

FDT dispatching code in the $QIO system service calls ACP_STD$READBLK as
an upper-level FDT action routine at IPL$_ASTDEL.

Description

For Digital internal use only.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The FDT routine ACP$READBLK (used by OpenVMS VAX drivers) expects,
as input, a bit number indicating the requested I/O function in R7, and the
address of the FDT entry from which it received control in R8.

R0, R7, and R8 are not provided as input to ACP_STD$READBLK.

• ACP$READBLK returns control to the system service dispatcher, passing it
the final $QIO system service status in R0. ACP_STD$READBLK returns
to its caller, passing it SS$_FDT_COMPL status in R0 and storing the final
$QIO system service status in the FDT_CONTEXT structure. The $QIO
system service retrieves the status from this structure.

System Routines 9–17

System Routines
ACP_STD$WRITEBLK

ACP_STD$WRITEBLK

Processes a write block ACP function.

Module

SYSACPFDT

Format

status = ACP_STD$WRITEBLK (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet.

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

ccb
Channel control block that describes the process-I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Access violation.
SS$_BADPARAM Record size is too small for magtape function

processing.
SS$_ENDOFFILE End of file reached.
SS$_FILNOTACC File not accessed on channel.
SS$_NOPRIV Process has insufficient privileges.

9–18 System Routines

System Routines
ACP_STD$WRITEBLK

SS$_ILLIOFUNC Illegal I/O function.
SS$_ILLBLKNUM Illegal block number.
SS$_INSFMEM Insufficient memory to perform erase function.
SS$_INSFSPTS Insufficient system page table entries to perform

erase function.
SS$_INSFWSL Insufficient working set limit.
SS$_NORMAL Normal, successful completion.
SS$_WRITLCK Device software is write locked.

Context

FDT dispatching code in the $QIO system service calls ACP_STD$WRITEBLK as
an upper-level FDT action routine at IPL$_ASTDEL.

Description

For Digital internal use only.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The FDT routine ACP$WRITEBLK (used by OpenVMS VAX drivers) expects,
as input, a bit number indicating the requested I/O function in R7, and the
address of the FDT entry from which it received control in R8.

R0, R7, and R8 are not provided as input to ACP_STD$WRITEBLK.

• ACP$WRITEBLK returns control to the system service dispatcher, passing it
the final $QIO system service status in R0. ACP_STD$WRITEBLK returns
to its caller, passing it SS$_FDT_COMPL status in R0 and storing the final
$QIO system service status in the FDT_CONTEXT structure. The $QIO
system service retrieves the status from this structure.

System Routines 9–19

System Routines
COM_STD$DELATTNAST

COM_STD$DELATTNAST

Delivers all attention ASTs linked in the specified list.

Module

COMDRVSUB

Format

COM_STD$DELATTNAST (acb_lh, ucb)

Arguments

Argument Type Access Mechanism Status

acb_lh address input reference required
ucb UCB input reference required

ast_lh
Listhead of AST control blocks

ucb
Unit control block.

Context

COM_STD$DELATTNAST executes and exits at the caller’s IPL, and acquires no
spin locks. However, the caller must be executing at IPL$_RESCHED or higher
to avoid certain race conditions.

Description

COM_STD$DELATTNAST removes all AST control blocks (ACBs) from the
specified list. Using each ACB as a fork block, it schedules a fork process at IPL$_
QUEUEAST to queue the AST to its target process. COM_STD$DELATTNAST
dequeues each ACB from the head of the list, thus removing them in the reverse
order of their declaration by COM_STD$SETATTNAST. Note that in certain
circumstances attention ASTs can be delivered to a user process before the
delivery of I/O completion ASTs previously posted by the driver.

Macro

CALL_DELATTNAST [save_r0r1]

where:

save_r0r1 indicates that the macro should preserve registers R0 and R1
across the call to COM_STD$DELATTNAST. If save_r0r1 is blank or save_
r0r1=YES, the 64-bit registers are saved. (In the former case, the macro
generates a compile-time message. If save_r0r1=NO, the registers are not
saved.)

9–20 System Routines

System Routines
COM_STD$DELATTNAST

In an Alpha driver, CALL_DELATTNAST calls COM_STD$DELATTNAST
using the current contents of R4 and R5 as the listhead and ucb arguments,
respectively. Unless you specify save_r0r1=NO, it preserves the quadword
registers R0 and R1 across the call.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note that COM_
STD$DELATTNAST replaces COM$DELATTNAST. Unlike COM$DELATTNAST,
COM_STD$DELATTNAST does not preserve the contents of R0 and R1.

System Routines 9–21

System Routines
COM_STD$DELATTNASTP

COM_STD$DELATTNASTP

Delivers all attention ASTs linked in the specified list for a given process.

Module

COMDRVSUB

Format

COM_STD$DELATTNASTP (acb_lh, ucb, ipid)

Arguments

Argument Type Access Mechanism Status

acb_lh listhead input reference required
ucb UCB input reference required
ipid integer input value required

acb_lh
Listhead of AST control blocks

ucb
Unit control block.

ipid
Internal process ID (IPID) for the target process.

Context

COM_STD$DELATTNASTP executes and exits at the caller’s IPL, and acquires
no spin locks. However, the caller must be executing at IPL$_RESCHED or
higher to avoid certain race conditions.

Description

For Digital internal use only.

Macro

CALL_DELATTNASTP [save_r0r1]

where:

save_r0r1 indicates that the macro should preserve registers R0 and R1
across the call to COM_STD$DELATTNASTP. If save_r0r1 is blank or save_
r0r1=YES, the 64-bit registers are saved. (In the former case, the macro
generates a compile-time message. If save_r0r1=NO, the registers are not
saved.)

9–22 System Routines

System Routines
COM_STD$DELATTNASTP

In an Alpha driver, CALL_DELATTNASTP calls COM_STD$DELATTNASTP
using the current contents of R4, R5 and R6 as the listhead, ucb, and ipid
arguments, respectively. Unless you specify save_r0r1=NO, it preserves the
quadword registers R0 and R1 across the call.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• COM_STD$DELATTNASTP replaces COM$DELATTNASTP. Unlike
COM$DELATTNASTP, COM_STD$DELATTNASTP does not preserve
the contents of R0 and R1.

System Routines 9–23

System Routines
COM_STD$DELCTRLAST

COM_STD$DELCTRLAST

Delivers all control ASTs, linked in the specified list, that match a given condition.

Module

COMDRVSUB

Format

COM_STD$DELCTRLAST (acb_lh, ucb, matchchar, inclchar_p)

Arguments

Argument Type Access Mechanism Status

acb_lh listhead input reference required
ucb UCB input reference required
matchchar integer input value required
inclchar_p pointer output value required

acb_lh
Listhead of AST control blocks

ucb
Unit control block.

matchchar
Match character.

inclchar_p
Address in which COM_STD$DELCTRLAST writes the character to include in
the data stream, or NULL.

Context

COM_STD$DELCTRLAST executes and exits at the caller’s IPL, and acquires no
spin locks. However, the caller must be executing at IPL$_RESCHED or higher
to avoid certain race conditions.

Description

For Digital internal use only.

Macro

CALL_DELCTRLAST [save_r0r1]

9–24 System Routines

System Routines
COM_STD$DELCTRLAST

where:

save_r0r1 indicates that the macro should preserve registers R0 and R1
across the call to COM_STD$DELCTRLAST. If save_r0r1 is blank or save_
r0r1=YES, the 64-bit registers are saved. (In the former case, the macro
generates a compile-time message. If save_r0r1=NO, the registers are not
saved.)

In an Alpha driver, CALL_DELCTRLAST calls COM_STD$DELCTRLAST using
the current contents of R4, R5, and R3 as the listhead, ucb, and matchchar
arguments, respectively. When COM$DELCTRLAST returns, it moves the
include character into R3. Unless you specify save_r0r1=NO, it preserves the
quadword registers R0 and R1 across the call.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• COM_STD$DELCTRLAST replaces COM$DELCTRLAST. Unlike
COM$DELCTRLAST, COM_STD$DELCTRLAST does not preserve the
contents of R0 and R1.

System Routines 9–25

System Routines
COM_STD$DELCTRLASTP

COM_STD$DELCTRLASTP

Delivers all control ASTs, linked in the specified list, that match a given condition.

Module

COMDRVSUB

Format

COM_STD$DELCTRLASTP (acb_lh, ucb, ipid, matchchar, inclchar_p)

Arguments

Argument Type Access Mechanism Status

acb_lh listhead input reference required
ucb UCB input reference required
ipid integer input value required
matchchar integer input value required
inclchar_p pointer input value required

acb_lh
Listhead of AST control blocks

ucb
Unit control block.

ipid
Internal process ID (IPID) for the target process.

matchchar
Match character.

inclchar_p
Address in which COM_STD$DELCTRLAST writes the character to include in
the data stream, or NULL.

Context

COM_STD$DELCTRLASTP executes and exits at the caller’s IPL, and acquires
no spin locks. However, the caller must be executing at IPL$_RESCHED or
higher to avoid certain race conditions.

Description

For Digital internal use only.

9–26 System Routines

System Routines
COM_STD$DELCTRLASTP

Macro

CALL_DELCTRLASTP [save_r0r1]

where:

save_r0r1 indicates that the macro should preserve registers R0 and R1
across the call to COM_STD$DELCTRLASTP. If save_r0r1 is blank or save_
r0r1=YES, the 64-bit registers are saved. (In the former case, the macro
generates a compile-time message. If save_r0r1=NO, the registers are not
saved.)

In an Alpha driver, CALL_DELCTRLASTP calls COM_STD$DELCTRLASTP
using the current contents of R4, R5, R6, and R3 as the listhead, ucb, ipid,
and matchchar arguments, respectively. When COM$DELCTRLASTP returns,
it moves the include character into R3. Unless you specify save_r0r1=NO, it
preserves the quadword registers R0 and R1 across the call.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• COM_STD$DELCTRLASTP replaces COM$DELCTRLASTP. Unlike
COM$DELCTRLASTP, COM_STD$DELCTRLASTP does not preserve the
contents of R0 and R1.

System Routines 9–27

System Routines
COM_STD$DRVDEALMEM

COM_STD$DRVDEALMEM

Deallocates system dynamic memory.

Module

MEMORYALC_MIN or MEMORYALC_MON

Format

COM_STD$DRVDEALMEM (block)

Arguments

Argument Type Access Mechanism Status

ptr structure input reference required

ptr
Block to be deallocated. The block must be a standard OpenVMS data structure
(in which offset FKB$W_SIZE contains its size). The block size must be at least
FKB$K_LENGTH (24 bytes). (The FKB$ symbols are defined by the $FKBDEF
macro in SYS$LIBRARY:LIB.MLB.)

Context

A driver can call COM_STD$DRVDEALMEM from any IPL. COM_
STD$DRVDEALMEM executes at the caller’s IPL and returns control at that
IPL. The caller retains any spin locks it held at the time of the call.

Description

COM_STD$DRVDEALMEM transfers control to EXE$DEANONPAGED
to deallocate the buffer specified by the block parameter. If COM_
STD$DRVDEALMEM cannot deallocate memory at the caller’s IPL, it
transforms the block being deallocated into a fork block and queues the block
in the fork queue. The code that executes in the fork process then jumps to
EXE$DEANONPAGED.

If the buffer to be deallocated is less than FKB$C_LENGTH in size, or its
address is not aligned on a 16-byte boundary, COM_STD$DRVDEALMEM issues
a BADDALRQSZ bugcheck.

Macro

CALL_DRVDEALMEM [save_r0r1]

where:

save_r0r1 indicates that the macro should preserve registers R0 and R1
across the call to COM_STD$DRVDEALMEM. If save_r0r1 is blank or save_
r0r1=YES, the 64-bit registers are saved. (In the former case, the macro

9–28 System Routines

System Routines
COM_STD$DRVDEALMEM

generates a compile-time message. If save_r0r1=NO, the registers are not
saved.)

In an Alpha driver, CALL_DRVDEALMEM calls COM_STD$DRVDEALMEM
using the current contents of R0 as the ptr argument. Unless you specify save_
r0r1=NO, the macro preserves the quadword registers R0 and R1 across the call.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• COM_STD$DRVDEALMEM replaces COM$DRVDEALMEM (OpenVMS VAX
drivers). Unlike COM$DRVDEALMEM, COM_STD$DRVDEALMEM does not
preserve the contents of R0 and R1.

System Routines 9–29

System Routines
COM_STD$FLUSHATTNS

COM_STD$FLUSHATTNS

Removes specified ASTs from an attention AST list.

Module

COMDRVSUB

Format

status = COM_STD$FLUSHATTNS (pcb, ucb, chan ,acb_lh)

Arguments

Argument Type Access Mechanism Status

pcb PCB input reference required
ucb UCB input reference required
chan integer input value required
acb_lh listhead input reference required

pcb
Process control block. COM_STD$FLUSHATTNS reads the following PCB fields:

Field Contents

PCB$L_PID Process ID
PCB$L_ASTCNT ASTs remaining in quota

COM_STD$FLUSHATTNS increases PCB$L_ASTCNT once for each AST control
block (ACB) it flushes.

ucb
Unit control block. COM_STD$FLUSHATTNS reads UCB$L_DLCK to obtain the
address of the device lock.

chan
Number of the assigned I/O channel.

acb_lh
Listhead of ACBs.

Return Values

SS$_NORMAL Normal, successful completion

9–30 System Routines

System Routines
COM_STD$FLUSHATTNS

Context

COM_STD$FLUSHATTNS raises IPL to device IPL, acquiring the corresponding
device lock. Before returning control to its caller at the caller’s IPL, COM_
STD$FLUSHATTNS releases the device lock. The caller retains any spin locks it
held at the time of the call.

Description

A driver’s cancel-I/O routine calls COM_STD$FLUSHATTNS to flush an attention
AST list. A driver FDT routine calls COM_STD$FLUSHATTNS to service a $QIO
request that specifies a set-attention-AST function and a value of 0 in the p1
argument (IRP$L_QIO_P1).

COM_STD$FLUSHATTNS locates all ACBs blocks whose channel number and
PID match those supplied as input to the routine. It removes them from the
specified list, deallocates them, and returns control to its caller.

Macro

CALL_FLUSHATTNS

In an Alpha driver, CALL_FLUSHATTNS calls COM_STD$FLUSHATTNS using
the current contents of R4, R5, R6, and R7 as the pcb, ucb, chan, and acb_lh
arguments, respectively. It returns status in R0.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• COM_STD$FLUSHATTNS replaces COM$FLUSHATTNS (used by OpenVMS
VAX drivers).

System Routines 9–31

System Routines
COM_STD$FLUSHCTRLS

COM_STD$FLUSHCTRLS

Removes specified ASTs from a control AST list.

Module

COMDRVSUB

Format

status = COM_STD$FLUSHCTRLS (pcb, ucb, chan ,acb_lh, mask_p)

Arguments

Argument Type Access Mechanism Status

pcb PCB input reference required
ucb UCB input reference required
chan integer input value required
acb_lh listhead input reference required
mask_p mask_

longword
input reference required

pcb
Process control block. COM_STD$FLUSHCTRLS reads the following PCB fields:

Field Contents

PCB$L_PID Process ID
PCB$L_ASTCNT ASTs remaining in quota

COM_STD$FLUSHCTRLS increases PCB$L_ASTCNT once for each control AST
control block (TAST) it flushes.

ucb
Unit control block. COM_STD$FLUSHCTRLS reads UCB$L_DLCK to obtain the
address of the device lock.

chan
Number of the assigned I/O channel.

acb_lh
Listhead of ACBs.

mask_p
Summary mask of active control characters. COM_STD$FLUSHCTRLS updates
this mask.

9–32 System Routines

System Routines
COM_STD$FLUSHCTRLS

Return Values

SS$_NORMAL Normal, successful completion

Context

COM_STD$FLUSHCTRLS raises IPL to device IPL, acquiring the corresponding
device lock. Before returning control to its caller at the caller’s IPL, COM_
STD$FLUSHCTRLS releases the device lock. The caller retains any spin locks it
held at the time of the call.

Description

For Digital internal use only.

Macro

CALL_FLUSHCTRLS

In an Alpha driver, CALL_FLUSHCTRLS calls COM_STD$FLUSHCTRLS using
the current contents of R2, R4, R5, R6, and R7 as the mask, pcb, ucb, chan,
and acb_lh arguments, respectively. It returns status in R0.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• COM_STD$FLUSHCTRLS replaces COM$FLUSHCTRLS (used by OpenVMS
VAX drivers).

System Routines 9–33

System Routines
COM_STD$POST, COM_STD$POST_NOCNT

COM_STD$POST, COM_STD$POST_NOCNT

Initiate device-independent postprocessing of an I/O request independent of the
status of the device unit.

Module

COMDRVSUB

Format

COM_STD$POST (irp, ucb)

COM_STD$POST_NOCNT (irp)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
ucb UCB input reference required

irp
I/O request block. The following IRP fields are input to I/O postprocessing.

Field Contents

IRP$L_MEDIA Data to be copied to the I/O status block
IRP$L_MEDIA+4 Data to be copied to the I/O status block

ucb
Unit control block (COM_STD$POST only). COM_STD$POST increases the unit
operation count (UCB$L_OPCNT).

Context

Drivers call COM_STD$POST at or above fork IPL. Drivers call COM_
STD$POST_NOCNT at or above IPL$_ASTDEL. These routines execute at
their caller’s IPL and return control at that IPL. The caller retains any spin locks
it held at the time of the call.

Description

A driver fork process calls COM_STD$POST or COM_STD$POST_NOCNT after
it has completed device-dependent I/O processing for an I/O request initiated
by EXE_STD$ALTQUEPKT. Because COM_STD$POST_NOCNT, unlike COM_
STD$POST, does not increment the unit’s operations count (UCB$L_OPCNT), a
driver uses COM_STD$POST_NOCNT to initiate completion processing for an
I/O request when the associated UCB is not available.

9–34 System Routines

System Routines
COM_STD$POST, COM_STD$POST_NOCNT

COM_STD$POST and COM_STD$POST_NOCNT insert the IRP into the
systemwide I/O postprocessing queue, request an IPL$_IOPOST software
interrupt, and return control to the caller. Unlike IOC_STD$REQCOM, these
routines do not attempt to dequeue any IRP waiting for the device or change the
busy status of the device.

Macro

CALL_POST [save_r1]
CALL_POST_NOCNT [save_r1]

where:

save_r1 indicates that the macro should preserve register R1 across the call
to COM_STD$POST or COM_STD$POST_NOCNT. If save_r1 is blank or
save_r1=YES, the 64-bit register is saved. (In the former case, the macro
generates a compile-time message. If save_r1=NO, R1 is not saved.)

In an Alpha driver, CALL_POST calls COM_STD$POST using the current
contents of R3 and R5 as the irp and ucb arguments, respectively. CALL_POST_
NOCNT simulates a JSB to COM$POST_NOCNT. It calls COM_STD$POST_
NOCNT using the current contents of R3 as the irp argument. Unless you
specify save_r1=NO, the macro preserves the quadword register R1 across the
call.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• COM_STD$POST replaces COM$POST (used by OpenVMS VAX drivers);
COM_STD$POST_NOCNT replaces COM$POST_NOCNT. The Alpha routines
do not preserve R1 across the call.

System Routines 9–35

System Routines
COM_STD$SETATTNAST

COM_STD$SETATTNAST

Enables or disables attention ASTs.

Module

COMDRVSUB

Format

status = COM_STD$SETATTNAST (irp, pcb, ucb, ccb, acb_lh)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required
acb_lh listhead input reference required

irp
I/O request packet for the current I/O request.

COM_STD$SETATTNAST reads the following IRP fields:

Field Contents

IRP$L_QIO_P1 $QIO system service p1 argument, containing the
address of the AST routine, or zero to flush the AST
queue.

IRP$L_QIO_P2 $QIO system service p2 argument, containing the AST
parameter.

IRP$L_QIO_P3 $QIO system service p3 argument, containing the
access mode of the AST request.

IRP$L_CHAN I/O request channel index number.

pcb
Process control block of the current process.

COM_STD$SETATTNAST reads the following PCB fields:

Field Contents

PCB$L_ASTCNT Number of ASTs remaining in process quota
PCB$L_PID Process ID

COM_STD$SETATTNAST decreases PCB$L_ASTCNT if it successfully queues
the AST.

9–36 System Routines

System Routines
COM_STD$SETATTNAST

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

COM_STD$SETATTNAST reads UCB$L_DLCK.

ccb
Channel control block that describes the process-I/O channel

acb_lh
Address of listhead of AST control blocks.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

SS$_NORMAL Normal, successful completion

Status in FDT_CONTEXT

SS$_EXQUOTA Process AST quota exceeded.
SS$_INSFMEM No memory available to allocate the expanded

ACB.

Context

The FDT support routine COM_STD$SETATTNAST must be called from code
executing at IPL$_ASTDEL. COM_STD$SETATTNAST raises IPL and acquires
the corresponding device lock, to insert the AST into the AST queue. It returns
control to its caller at IPL$_ASTDEL.

Description

A driver FDT routine calls COM_STD$SETATTNAST to service a $QIO request
that specifies a set-attention-AST function.

If the p1 argument of the request contains a zero, COM_STD$SETATTNAST
transfers control to COM_STD$FLUSHATTNS, which disables all ASTs indicated
by the PID and I/O channel number (IRP$L_CHAN). COM_STD$FLUSHATTNS
searches through the AST control block (ACB) list, extracts each identified
ACB, deallocates it, and returns SS$_NORMAL status in R0 to COM_
STD$SETATTNAST. COM_STD$SETATTNAST returns this status to its caller.

If the p1 argument of the request contains the address of an AST routine, COM_
STD$SETATTNAST decreases PCB$L_ASTCNT and allocates an expanded AST
control block (ACB) that contains the following information:

• Spin lock index SPL$C_QUEUEAST

• Address of the AST routine (as specified in p1)

• AST parameter (as specified in p2)

• Access mode (the maximum, or least privileged, access mode between the
access mode specified in p3 and the current process’s access mode). Bit
ACB$V_QUOTA is set in this value to indicate that the AST was requested
by a process, not by the system.

System Routines 9–37

System Routines
COM_STD$SETATTNAST

• Number of the assigned I/O channel

• PID of the requesting process

COM_STD$SETATTNAST links the ACB to the start of the specified linked list
of ACBs located in a UCB extension area. COM$DELATTNAST can later use the
expanded ACB to fork to IPL$_QUEUEAST, at which IPL it reformats the block
into a standard ACB.

If the process exceeds its AST quota, or if there is no memory available to allocate
the expanded ACB, COM_STD$SETATTNAST restores PCB$L_ASTCNT to
its original value and calls EXE_STD$ABORTIO, passing it a qio_sts of SS$_
BADPARAM. When it regains control, COM_STD$SETATTNAST returns to its
caller with this status in the FDT_CONTEXT structure and SS$_FDT_COMPL
status in R0.

The caller of COM_STD$SETATTNAST must examine the status in R0:

• If the status is SS$_NORMAL, the attention AST has been enabled (or the
AST has been flushed), as requested.

• If the status is SS$_FDT_COMPL, an error has occurred that has caused the
operation to be aborted. You can determine the reason for the failure from
FDT_CONTEXT$L_QIO_STATUS.

Macro

CALL_SETATTNAST

In an Alpha driver, CALL_SETATTNAST calls COM_STD$SETATTNAST using
the current contents of R3, R4, R5, R6, and R7, as the irp, pcb, ucb, ccb,
and acb_lh arguments, respectively. It returns status in R0 and in the FDT_
CONTEXT structure.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• COM_STD$SETATTNAST replaces COM$SETATTNAST.
COM$SETATTNAST returns to its caller only upon success; COM_
STD$SETATTNAST returns to its caller whether it has been successful
or not. It returns SS$_NORMAL or SS$_FDT_COMPL status in R0. When
it returns SS$_FDT_COMPL status, the FDT_CONTEXT structure contains
additional status (SS$_EXQUOTA or SS$_INSFMEM) to explain why the
request has been aborted.

• COM$SETATTNAST preserves the addresses of the IRP and UCB in R3 and
R5 across the call. COM_STD$SETATTNAST does not.

9–38 System Routines

System Routines
COM_STD$SETCTRLAST

COM_STD$SETCTRLAST

Enables or disables control ASTs.

Module

COMDRVSUB

Format

status = COM_STD$SETCTRLAST (irp, pcb, ucb, acb_lh, mask, tast_p)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
acb_lh listhead input reference required
mask mask_

longword
input value required

tast_p TAST output value required

irp
I/O request packet for the current I/O request.

COM_STD$SETCTRLAST reads the following IRP fields:

Field Contents

IRP$L_QIO_P1 $QIO system service p1 argument, containing the
address of the AST routine to call when an out-of-band
character is typed, or zero to flush the queue.

IRP$L_QIO_P2 $QIO system service p2 argument, containing the
address of the short-form terminator mask, indicating
which out-of-band characters precipitate AST delivery.
This address is passed as an AST parameter when the
AST is delivered.

IRP$L_QIO_P3 $QIO system service p3 argument, containing the
access mode of the AST request.

IRP$L_CHAN I/O request channel index number

pcb
Process control block of the current process.

System Routines 9–39

System Routines
COM_STD$SETCTRLAST

COM_STD$SETCTRLAST reads the following PCB fields:

Field Contents

PCB$L_ASTCNT Number of ASTs remaining in process quota
PCB$L_PID Process ID

COM_STD$SETCTRLAST decreases PCB$L_ASTCNT if it successfully queues
the AST.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

COM_STD$SETCTRLAST reads UCB$L_DLCK.

acb_lh
Address of listhead of AST control blocks.

mask
Summary mask of active control characters. COM_STD$SETCTRLAST updates
the summary mask to be the inclusive-OR of all masks in the control AST list.

tast_p
Address of the control AST block (TAST), returned as output from COM_
STD$SETCTRLAST.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

SS$_NORMAL Normal, successful completion

Status in FDT_CONTEXT

SS$_ACCVIO Specified mask is not addressable.
SS$_EXQUOTA Process AST quota exceeded.
SS$_INSFMEM No memory available to allocate the expanded

ACB.

Context

The FDT support routine COM_STD$SETCTRLAST must be called from code
executing at IPL$_ASTDEL. COM_STD$SETCTRLAST raises IPL and acquires
the corresponding device lock, to insert the AST into the AST queue. It returns
control to its caller at IPL$_ASTDEL.

Description

For Digital internal use only.

9–40 System Routines

System Routines
COM_STD$SETCTRLAST

Macro

CALL_SETCTRLAST

In an Alpha driver, CALL_SETCTRLAST calls COM_STD$SETCTRLAST using
the current contents of R3, R4, R5, R7, and R2, as the irp, pcb, ucb, acb_lh, and
mask arguments, respectively. It returns the TAST block in R2. It returns status
in R0 and in the FDT_CONTEXT structure.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• COM_STD$SETCTRLAST replaces COM$SETCTRLAST. The order in which
formal parameters are passed to COM_STD$SETCTRLAST differs from the
order in which they are provided in registers to the COM$SETCTRLAST
routine.

• COM_STD$SETCTRLAST does not provide the address of the TAST block as
output in R2.

• COM$SETCTRLAST returns to its caller only upon success; COM_
STD$SETCTRLAST returns to its caller whether it has been successful
or not. It returns SS$_NORMAL or SS$_FDT_COMPL status in R0. When
it returns SS$_FDT_COMPL status, the FDT_CONTEXT structure contains
additional status (SS$_EXQUOTA or SS$_INSFMEM) to explain why the
request has been aborted.

System Routines 9–41

System Routines
ERL_STD$ALLOCEMB

ERL_STD$ALLOCEMB

Allocates an error log message buffer and initializes its header.

Module

ERRORLOG

Format

status = ERL_STD$ALLOCEMB (size, embdv_p)

Arguments

Argument Type Access Mechanism Status

size integer input value required
embdv_p pointer output reference required

size
Size of requested error message buffer in bytes.

embdv_p
Address of a pointer in which ERL_STD$ALLOCEMB writes the address of the
error message buffer (EMBDV).

Return Values

status Low bit set indicates success, low bit clear
indicates failure

Context

A driver can call ERL_STD$ALLOCEMB from any IPL. ERL_STD$ALLOCEMB
raises IPL to IPL$_EMB and obtains the corresponding spin lock to allocate the
error message buffer. It returns control to its caller at its caller’s IPL. The caller
retains any spin locks it held at the time of the call.

Description

For Digital internal use only.

Macro

CALL_ALLOCEMB

In an Alpha driver, CALL_ALLOCEMB calls ERL_STD$ALLOCEMB using the
current contents of R1 as the size argument. It returns status in R0, the address
of the allocated EMB in R2 and copies the error log sequence number from
EMB$W_DV_ERRSEQ to R1.

9–42 System Routines

System Routines
ERL_STD$ALLOCEMB

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• ERL_STD$ALLOCEMB replaces ERL$ALLOCEMB. Unlike
ERL$ALLOCEMB, ERL_STD$ALLOCEMB does not return the error
sequence number in R1. A driver can obtain the error sequence number
from the error message buffer (EMB$W_DV_ERRSEQ).

System Routines 9–43

System Routines
ERL_STD$DEVICEATTN, ERL_STD$DEVICERR, ERL_STD$DEVICTMO

ERL_STD$DEVICEATTN, ERL_STD$DEVICERR, ERL_STD$DEVICTMO

Allocate an error message buffer and record in it information concerning the
error.

Module

ERRORLOG

Format

ERL_STD$DEVICEATTN (driver_param, ucb)

ERL_STD$DEVICERR (driver_param, ucb)

ERL_STD$DEVICTMO (driver_param, ucb)

Arguments

Argument Type Access Mechanism Status

driver_param undefined input reference required
ucb UCB input reference required

driver_param
Parameter to be passed to the register dumping routine, usually a controller
register access mailbox (CRAM).

ucb
Unit control block. These routines read the following UCB fields:

Field Contents

UCB$L_DEVCHAR Bit DEV$V_ELG set.
UCB$L_FUNC Bit IO$V_INHERLOG clear.
UCB$L_IRP Address of IRP currently being processed (ERL_

STD$DEVICERR and ERL_STD$DEVICTMO only).
UCB$L_ORB ORB address.
UCB$L_DDB DDB address.
UCB$L_DDT DDT address. DDT$W_ERRORBUF contains the size

of the error message buffer in bytes.

These routines write the following UCB fields:

Field Contents

UCB$L_ERRCNT Increased.
UCB$L_EMB Address of error message buffer.
UCB$L_STS UCB$V_ERLOGIP set.

9–44 System Routines

System Routines
ERL_STD$DEVICEATTN, ERL_STD$DEVICERR, ERL_STD$DEVICTMO

Context

A driver calls ERL_STD$DEVICEATTN, ERL_STD$DEVICERR, or ERL_
STD$DEVICTMO at or above fork IPL, holding the corresponding fork lock in an
OpenVMS multiprocessing environment.

These routines return control to the caller at the caller’s IPL. The caller retains
any spin locks it held at the time of the call.

Description

ERL_STD$DEVICERR and ERL_STD$DEVICTMO log an error associated with
a particular I/O request. ERL_STD$DEVICEATTN logs an error that is not
associated with an I/O request. Each of these routines performs the following
steps:

1. Increases UCB$L_ERRCNT to record a device error. If the error-log-in-
progress bit (UCB$V_ERLOGIP in UCB$L_STS) is set, the routine returns
control to its caller.

2. Allocates from the current error log allocation buffer an error message buffer
of the length specified in the device’s DDT (in argument erlgbf to the DDTAB
macro). This allocation is performed at IPL$_EMB holding the EMB spin
lock.

3. Places the address of the error message buffer in UCB$L_EMB.

4. Sets UCB$V_ERLOGIP in UCB$L_STS.

5. Initializes the buffer with the current system time, error log sequence
number, and error type code. These routines use the following error type
codes:

ERL_STD$DEVICEATTN Device attention (EMB$C_DA)
ERL_STD$DEVICERR Device error (EMB$C_DE)
ERL_STD$DEVICTMO Device timeout (EMB$C_DT)

6. Loads fields from the UCB, the IRP, and the DDB into the buffer, including
the following:

UCB$B_DEVCLASS Device class
UCB$B_DEVTYPE Device type
IRP$L_PID Process ID of the process originating the

I/O request (ERL_STD$DEVICERR or ERL_
STD$DEVICTMO)

IRP$L_BOFF Transfer parameter (ERL_STD$DEVICERR and
ERL_STD$DEVICTMO)

IRP$L_BCNT Transfer parameter (ERL_STD$DEVICERR and
ERL_STD$DEVICTMO)

IRP$L_MEDIA Disk address
UCB$W_UNIT Unit number
UCB$L_ERRCNT Count of device errors
UCB$L_OPCNT Count of completed operations
ORB$L_OWNER UIC of volume owner

System Routines 9–45

System Routines
ERL_STD$DEVICEATTN, ERL_STD$DEVICERR, ERL_STD$DEVICTMO

UCB$L_DEVCHAR Device characteristics
IRP$L_FUNC I/O function value (ERL_STD$DEVICERR and

ERL_STD$DEVICTMO)
DDB$T_NAME Device name (concatenated with cluster node name

if appropriate)

7. Loads into R0 the address of the location in the buffer in which the contents
of the device registers are to be stored.

8. Calls the driver’s register dumping routine, the address of which is specified
in the regdmp argument to the DDTAB macro.

Macro

CALL_DEVICEATTN [save_r0r1]
CALL_DEVICERR [save_r0r1]
CALL_DEVICTMO [save_r0r1]

where:

save_r0r1 indicates that the macros must preserve the contents of R0 and
R1 across the call to ERL_STD$DEVICEATTN, ERL_STD$DEVICERR, or
ERL_STD$DEVICTMO. If save_r0r1 is blank or save_r0r1=YES, the 64-bit
registers are saved. (In the former case, the macro generates a compile-time
message. If save_r0r1=NO, the registers are not saved.)

In an Alpha driver, the CALL_DEVICEATTN, CALL_DEVICERR, and CALL_
DEVICTMO macros call corresponding routines using the current contents of R4
and R5 as the driverpar and ucb arguments, respectively. Unless you specify
save_r0r1=NO, it preserves the quadword registers R0 and R1 across the call.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• ERL_STD$DEVICEATTN, ERL_STD$DEVICERR, and ERL_
STD$DEVICTMO replace ERL$DEVICEATTN, ERL$DEVICERR, and
ERL$DEVICTMO. The Alpha routines do not preserve the contents of R0 and
R1.

• Because the UCB$L_MEDIA field has been removed from the UCB local
disk extension, these routines write the disk address into the EMB from
IRP$L_MEDIA.

• Because the UCB$B_SLAVE field has been removed from the UCB local disk
extension, these routines do not write that field.

• OpenVMS Alpha device drivers consequently do not need to define the local
disk UCB extension or local tape UCB extension to use these error logging
routines.

• driver_param is considered required input to these routines.

9–46 System Routines

System Routines
ERL_STD$RELEASEMB

ERL_STD$RELEASEMB

Releases an error message buffer to the error logging process.

Module

ERRORLOG

Format

ERL_STD$RELEASEMB (embdv)

Arguments

Argument Type Access Mechanism Status

embdv EMBDV input reference required

embdv
Error message buffer to be released.

Context

A driver can call ERL_STD$RELEASEMB from any IPL. ERL_
STD$RELEASEMB raises IPL to IPL$_EMB and obtains the corresponding
spin lock to release the error message buffer. It returns control to its caller at its
caller’s IPL. The caller retains any spin locks it held at the time of the call.

Description

For Digital internal use only.

Macro

CALL_RELEASEMB

In an Alpha driver, CALL_RELEASEMB calls ERL_STD$RELEASEMB using the
current contents of R2 as the buff argument.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• ERL_STD$RELEASEMB replaces ERL$RELEASEMB.

System Routines 9–47

System Routines
EXE$BUS_DELAY

EXE$BUS_DELAY

Allows a system-specific bus delay within a timed wait.

Module

[.SYSLOA]TIMEDWAIT

Macro

TIMEDWAIT

Format

EXE$BUS_DELAY adp

Context

EXE$BUS_DELAY conforms to the OpenVMS calling standard.

Arguments

adp
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by value

Address of ADP.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.
SS$_INSFARG Not all of the required arguments were specified.

Description

The OpenVMS VAX version of the TIMEDWAIT macro generated a processor-
specific delay for the bus indicated by the ADP before executing the series of
instructions, specified in the macro invocation, that check for the occurrence of a
specific event or condition. In OpenVMS VAX systems, the delay helps prevent
flooding the bus paths with references to device interface registers in I/O space.

An implicit call to EXE$BUS_DELAY is included in the expansion of the
TIMEDWAIT macro when you specify the bus argument. You can explicitly
call EXE$BUS_DELAY but, if you do, you must not also employ the TIMEDWAIT
macro with the bus argument.

9–48 System Routines

System Routines
EXE$BUS_DELAY

Note

In OpenVMS Alpha, EXE$BUS_DELAY checks for the required argument
and, if it is present, returns to its caller with SS$_NORMAL status.

System Routines 9–49

System Routines
EXE$DELAY

EXE$DELAY

Provides a short-term simple delay.

Module

[SYSLOA]TIMEDWAIT

Macro

TIMEDELAY

Format

EXE$DELAY delta

Context

EXE$DELAY conforms to the OpenVMS calling standard.

Arguments

delta
VMS Usage: aligned quadword
type: quadword (unsigned)
access: read only
mechanism: by reference

Delay time specified in nanoseconds.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.
SS$_INSFARG Not all of the required arguments were specified.

Description

EXE$DELAY implements a simple delay by looping for at least the requested
time interval. System events such as interrupt processing may have some impact
on the actual time delay.

9–50 System Routines

System Routines
EXE$KP_ALLOCATE_KPB

EXE$KP_ALLOCATE_KPB

Creates a KPB and a kernel process stack, as required by the OpenVMS kernel
process services.

Module

KERNEL_PROCESS_MIN, KERNEL_PROCESS_MON

Macro

KP_ALLOCATE_KPB
DDTAB (start=EXE$KP_STARTIO)

Format

EXE$KP_ALLOCATE_KPB kpb ,stack_size ,flags ,param_size

Context

EXE$KP_ALLOCATE_KPB conforms to the OpenVMS Alpha calling standard.

Because EXE$KP_ALLOCATE_KPB raises IPL to IPL$_SYNCH and obtains the
MMG spin lock, its caller cannot be executing above IPL$_SYNCH or hold any
higher ranked spin locks. EXE$KP_ALLOCATE_KPB returns control to its caller
at its caller’s IPL. The caller retains any spin locks it held at the time of the call.

Arguments

kpb
VMS Usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of KPB.

stack_size
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Requested size (in bytes) of kernel process stack.

flags
VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flags indicating the type, size, and configuration of the KPB to be created.
EXE$KP_ALLOCATE_KPB accepts only the following flags:

KPB$V_VEST KPB must be a VEST KPB. (See Chapter 10 for a
description of VEST KPBs.)

System Routines 9–51

System Routines
EXE$KP_ALLOCATE_KPB

KPB$V_SPLOCK Spinlock area must be present. (Note that
EXE$KP_ALLOCATE_KPB automatically sets
this bit when KPB$V_VEST is set.)

KPB$V_DEBUG Debug area must be present.
KPB$V_DEALLOC_AT_
END

KP_END should call KP_DEALLOCATE.

param_size
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Size in bytes of KPB parameter area, if any.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.
SS$_BADPARAM An illegal value was specified in the flags

argument.
SS$_INSFARG Not all of the required arguments were specified.
SS$_INSFMEM KPB cannot be allocated because of a failure in

the nonpaged pool allocation routine.
SS$_INSFRPGS Kernel process stack cannot be allocated because

of there are not enough free pages in the system.

Description

EXE$KP_ALLOCATE_KPB creates the KPB and the kernel process stack needed
by a kernel process. It performs the following tasks:

• Verifies the contents of the flags parameter. If the flags parameter is valid,
EXE$KP_ALLOCATE_KPB uses it as the basis for the mask it writes to
KPB$IS_FLAGS. It automatically sets KPB$V_SCHED for all KPBs and, for
VEST KPBs, also sets KPB$V_SPLOCK. Finally, it sets KPB$V_PARAM if a
non-zero param_size argument is specified.

• Computes the size of the KPB to be allocated. For both VEST and non-VEST
KPBs, the KPB includes the base KPB and scheduling area. VEST KPBs
also, by default, include the spinlock area, which is optional for non-VEST
KPBs. For VEST and non-VEST KPBs alike, the debug and parameter areas
are optional. The presence of KP$V_DEBUG in the flags argument causes
EXE$KP_ALLOCATE_KPB to include the KPB debug area; the presence of a
non-zero param_size argument causes it to include the KPB parameter area
(rounded up to an integral number of quadwords).

9–52 System Routines

System Routines
EXE$KP_ALLOCATE_KPB

• Allocates a KPB of the appropriate size. If the KPB cannot be allocated, it
returns SS$_INSFMEM status to its caller.

• Initializes the following KPB fields:

KPB$IB_TYPE DYN$C_MISC
KPB$IB_SUBTYPE DYN$C_KPB
KPB$IS_FLAGS Computed flags value
KPB$PS_SCH_PTR Address of KPB scheduling area
KPB$PS_SPL_PTR Address of KPB spinlock area, if present
KPB$PS_DBG_PTR Address of KPB debug area, if present
KPB$PS_PRM_PTR Address of KPB parameter area, if present
KPB$IS_PRM_LENGTH Length of the KPB parameter area, if specified,

rounded up to an integral number of quadwords

• Computes the size of the kernel process stack by rounding the value of stack_
size up to an integral number of CPU-specific pages, converting the result to
bytes, and storing it in KPB$IS_STACK_SIZE.

• Allocates and initializes sufficient system PTEs for the stack, plus two
no-access guard pages. If the sufficient PTEs are not available, EXE$KP_
ALLOCATE_KPB deallocates the KPB and returns SS$_INSFRPGS status to
its caller.

• Stores in KPB$PS_STACK_BASE the system virtual address of the start of
the no-access guard page at the base of the kernel process stack. The kernel
process stack grows negatively from this address.

• Inserts the address of the KPB in the location specified by the kpb argument.

The caller of EXE$KP_ALLOCATE_KPB is responsible for providing wait and
retry operations in case of allocation failures.

System Routines 9–53

System Routines
EXE$KP_DEALLOCATE_KPB

EXE$KP_DEALLOCATE_KPB

Deallocates a KPB and its associated kernel process stack.

Module

KERNEL_PROCESS_MIN, KERNEL_PROCESS_MON

Macro

KP_DEALLOCATE_KPB

Format

EXE$KP_DEALLOCATE_KPB kpb

Context

EXE$KP_DEALLOCATE_KPB conforms to the OpenVMS Alpha calling standard.

EXE$KP_DEALLOCATE_KPB forks to perform KPB cleanup and call the
routines that deallocate the KPB and the kernel process stack. As a result,
drivers can call EXE$KP_DEALLOCATE_KPB from any IPL.

Arguments

kpb
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of KPB.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.
SS$_INSFARG The kpb argument was not specified.

Description

EXE$KP_DEALLOCATE_KPB deallocates the KPB and the associated kernel
process stack It performs the following tasks:

• Validates the structure indicated by the kpb argument. If the structure is
not a KPB, or if it is currently valid, active, or in the process of deletion,
EXE$KP_DEALLOCATE_KPB requests an INCONSTATE bugcheck.

9–54 System Routines

System Routines
EXE$KP_DEALLOCATE_KPB

• Indicates that KPB deletion is in progress by setting KPB$V_DELETING in
KPB$IS_FLAGS.

• Sets up the KPB fork block (at KPB$PS_FQFL) so that the rest of KPB
cleanup can transpire at IPL$_QUEUEAST. EXE$KP_DEALLOCATE_KPB
issues a call to IOC$PRIMITIVE_FORK to queue the fork block on the IPL$_
QUEUEAST fork queue. When IOC$PRIMITIVE_FORK returns control,
EXE$KP_DEALLOCATE_KPB returns SS$_NORMAL status to its caller.

• When execution resumes at IPL$_QUEUEAST, the EXE$KP_DEALLOCATE_
KPB fork routine deallocates the stack and returns the KPB to nonpaged
pool.

System Routines 9–55

System Routines
EXE$KP_END

EXE$KP_END

Terminates the execution of a kernel process.

Module

KERNEL_PROCESS_MAGIC

Macro

KP_END

Format

EXE$KP_END kpb

Context

EXE$KP_END conforms to the OpenVMS Alpha calling standard.

The caller of EXE$KP_END must be executing at IPL$_RESCHED or above.

Arguments

kpb
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of KPB.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.
SS$_INSFARG The kpb argument was not specified.

Description

EXE$KP_END performs the following tasks to terminate the execution of a
kernel process:

• If the kpb argument is not supplied, returns SS$_INSFARG status to its
caller.

• Validates the structure indicated by the kpb argument. If the structure is
not a KPB, or if it is currently invalid or inactive, EXE$KP_END requests an
INCONSTATE bugcheck.

9–56 System Routines

System Routines
EXE$KP_END

• Restores the SP of the initiator of the kernel process thread from KPB$PS_
SAVED_SP and poisons that field.

• Restores the preserved registers (as indicated by KPB$IS_REG_MASK) and
SP of the initiator of the kernel process thread.

• Marks the kernel process as inactive and invalid by clearing KPB$V_ACTIVE
and KPB$V_VALID in KPB$IS_FLAGS.

• If KPB$V_DEALLOC_AT_END in KPB$IS_FLAGS is set (as it is in VEST
KPBs), call EXE$KP_DEALLOCATE_KPB to deallocate the KPB and its
associated kernel process stack.

• Returns successfully to the initiator of the kernel process thread (that is, the
caller of EXE$START_KP or EXE$RESTART_KP).

System Routines 9–57

System Routines
EXE$KP_FORK

EXE$KP_FORK

Stalls a kernel process in such a manner that it can be resumed by the OpenVMS
fork dispatcher.

Module

KERNEL_PROCESS_MIN, KERNEL_PROCESS_MON

Macro

KP_STALL_FORK, KP_STALL_IOFORK

Format

EXE$KP_FORK kpb [,fkb]

Context

EXE$KP_FORK conforms to the OpenVMS Alpha calling standard. It can only
be called by a kernel process.

Arguments

kpb
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of the caller’s KPB (which must be a VEST KPB). KPB$PS_UCB must
contain the address of a UCB and KPB$PS_IRP must contain the address of an
IRP.

fkb
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a fork block, usually in the UCB. If this argument is omitted,
EXE$KP_FORK uses the fork block within the KPB (KPB$PS_FQFL).

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

9–58 System Routines

System Routines
EXE$KP_FORK

Return Values

SS$_NORMAL The routine completed successfully.
SS$_BADPARAM The kpb argument does not specify a VEST

KPB.
SS$_INSFARG Not all of the required arguments were specified.

Description

EXE$KP_FORK performs the following tasks in stalling the kernel process:

1. Saves the kpb argument in KPB$PS_FKBLK. If this argument is not
specified to EXEKP_FORK, EXEKP_FORK writes the address of KPB$PS_
FQFL into KPB$PS_FKBLK.

2. Inserts the procedure descriptor of subroutine STALL_FORK in KPB$PS_
SCH_STALL_RTN, thus making it the kernel process scheduling stall routine.

3. Clears KPB$PS_SCH_RESTART, thus indicating that there is no kernel
process scheduling restart routine.

4. Calls EXE$KP_STALL_GENERAL, passing to it the address of the KPB.

Having stalled the kernel process, the STALL_FORK kernel process scheduling
stall routine returns control to EXE$KP_STALL_GENERAL, which returns
to the initiator of the kernel process thread (that is, the caller of EXE$KP_
START or EXE$KP_RESTART). When the fork dispatcher ultimately resumes
the suspended routine, STALL_FORK calls EXE$KP_RESTART which, in turn,
passes control back to EXE$KP_FORK. The kernel process forking stall routine
then returns to the kernel process that called it.

System Routines 9–59

System Routines
EXE$KP_FORK_WAIT

EXE$KP_FORK_WAIT

Stalls a kernel process in such a manner that it can be resumed by the software
timer interrupt service routine’s examination of the fork-and-wait queue.

Module

KERNEL_PROCESS_MIN, KERNEL_PROCESS_MON

Macro

KP_STALL_FORK_WAIT

Format

EXE$KP_FORK_WAIT kpb [,fkb]

Context

EXE$KP_FORK_WAIT conforms to the OpenVMS Alpha calling standard and can
only be called by a kernel process.

The caller of EXE$KP_FORK_WAIT must be executing at or above IPL$_SYNCH.

Arguments

kpb
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of the caller’s KPB.

fkb
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a fork block. If this argument is omitted, EXE$KP_FORK_WAIT uses
the fork block within the KPB (KPB$PS_FKBLK).

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

9–60 System Routines

System Routines
EXE$KP_FORK_WAIT

Return Values

SS$_NORMAL The routine completed successfully.
SS$_INSFARG Not all of the required arguments were specified.

Description

EXE$KP_FORK_WAIT performs the following tasks in stalling a kernel process:

1. Saves the fkb argument, if specified, in KPB$PS_FKBLK. If the argument
is not specified, EXE$KP_FORK_WAIT moves the address of KPB$PS_FQFL
into KPB$PS_FKBLK.

2. Inserts the procedure descriptor of subroutine STALL_FORK_WAIT in
KPB$PS_SCH_STALL_RTN, thus making it the kernel process scheduling
stall routine.

3. Clears KPB$PS_SCH_RESTART, thus indicating that there is no kernel
process scheduling restart routine.

4. Calls EXE$KP_STALL_GENERAL, passing to it the address of the KPB.

Note that, having stalled the kernel process, the STALL_FORK_WAIT kernel
process scheduling stall routine returns control to EXE$KP_STALL_GENERAL,
which returns to the initiator of the kernel process thread (that is, the caller
of EXE$KP_START or EXE$KP_RESTART). When the fork block is ultimately
removed from the fork-and-wait-queue, STALL_FORK_WAIT calls EXE$KP_
RESTART which, in turn, passes control back to EXE$KP_FORK_WAIT.
EXE$KP_FORK_WAIT then returns to kernel process that called it.

System Routines 9–61

System Routines
EXE$KP_RESTART

EXE$KP_RESTART

Resumes the execution of a kernel process.

Module

KERNEL_PROCESS_MAGIC

Macro

KP_RESTART

Format

EXE$KP_RESTART kpb [,thread_status]

Context

EXE$KP_RESTART conforms to the OpenVMS Alpha calling standard.

The caller of EXE$KP_RESTART, usually a kernel process scheduling stall
routine, must be executing at IPL$_RESCHED or above.

Arguments

kpb
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of KPB.

thread_status
VMS Usage: longword (unsigned)
type: read only
access: by value
mechanism:

Status value to be returned to the kernel process that is to be resumed. This is
the status returned by the call to EXE$KP_STALL_GENERAL. If the thread_
status argument is not present, EXE$KP_RESTART returns SS$_NORMAL
status to the kernel process.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

9–62 System Routines

System Routines
EXE$KP_RESTART

Return Values

SS$_NORMAL The routine completed successfully.
SS$_INSFARG The kpb argument was not specified.

Description

EXE$KP_RESTART performs the following tasks to restart a kernel process:

1. Validates the structure indicated by the kpb argument. If the structure
is not a KPB, or if it is currently invalid, EXE$KP_START requests an
INCONSTATE bugcheck.

2. Preserves the current context by saving the current stack pointer (SP) and the
registers indicated by KPB$IS_REG_MASK on the stack (which it quadword-
aligns after obtaining the current SP). It saves the new value of the SP in
KPB$PS_SAVED_SP.

3. Restores the SP of the stalled kernel process from KPB$PS_STACK_SP.

4. Restores the preserved registers (as indicated by KPB$IS_REG_MASK) from
the top of the kernel process stack, plus the original SP of the kernel process
stack.

5. Makes the KPB active by setting the corresponding bit in KPB$IS_FLAGS.

6. Calls the kernel process scheduling restart routine, if one is specified, passing
it the KPB address, the return status value, and the procedure value of the
kernel process spinlock restart routine.

7. Resumes the stalled kernel process.

System Routines 9–63

System Routines
EXE$KP_STALL_GENERAL

EXE$KP_STALL_GENERAL

Stalls the execution of a kernel process.

Module

KERNEL_PROCESS_MAGIC

Macro

KP_STALL_GENERAL
KP_STALL_FORK
KP_STALL_FORK_WAIT
KP_STALL_IOFORK
KP_STALL_REQCHAN
KP_STALL_WFIKPCH
KP_STALL_WFIRLCH

Format

EXE$KP_STALL_GENERAL kpb

Context

EXE$KP_STALL_GENERAL conforms to the OpenVMS Alpha calling standard
and can only be called by a kernel process.

Arguments

kpb
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of the caller’s KPB.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.
SS$_INSFARG Not all of the required arguments were specified.
Other values As supplied to EXE$KP_RESTART

9–64 System Routines

System Routines
EXE$KP_STALL_GENERAL

Description

EXE$KP_STALL_GENERAL suspends execution of the current kernel process. It
performs the following tasks:

• Validates the structure indicated by the kpb argument. If the structure is
not a KPB, or if it is currently valid, active, or in the process of deletion,
EXE$KP_STALL_GENERAL requests an INCONSTATE bugcheck.

• Preserves the current context by saving the current kernel process stack
pointer (SP) and the registers indicated by KPB$IS_REG_MASK on the stack
(which it quadword-aligns after obtaining the current SP). It saves the new
value of the kernel process SP in KPB$PS_STACK_SP.

• Restores the SP of the initiator of the kernel process thread from KPB$PS_
SAVED_SP and poisons that field.

• Restores the preserved registers (as indicated by KPB$IS_REG_MASK) from
the top of the initiator’s stack, plus the original SP of the initiator of the
kernel process thread.

• Marks the kernel process as inactive by clearing KPB$V_ACTIVE in KPB$IS_
FLAGS.

• Calls the kernel process scheduling stall routine indicated by the procedure
value in KPB$PS_SCH_STALL_RTN, passing it the KPB address and the
procedure value of the spin lock stall handling routine (from KPB$PS_SPL_
STALL_ROUTINE), or zero if the KPB spin lock area is not present. If there
is no kernel process scheduling stall routine, EXE$KP_STALL_GENERAL
requests an INCONSTATE bugcheck.

OpenVMS provides the following jacket routines for EXE$KP_STALL_GENERAL
that supply scheduling stall routines for basic device driver functions:

Table 9–2 Kernel Process Stall Jacket Routines and Scheduling Stall Routines

Stall Jacket Routine Scheduling Stall Routine1 Action of Stall Routine

EXE$KP_FORK STALL_FORK Calls EXE$PRIMITIVE_FORK on
behalf of a kernel process. When it
regains control from the OpenVMS fork
dispatcher, this stall routine resumes
the kernel process by calling EXE$KP_
RESTART.

EXE$KP_FORK_WAIT STALL_FORK_WAIT Calls EXE$PRIMITIVE_FORK_WAIT
on behalf of a kernel process. When
it regains control from the OpenVMS
software timer interrupt service routine
(which resumes the entries on the fork-
and-wait queue), this stall routine
resumes the kernel process by calling
EXE$KP_RESTART.

1These scheduling stall routines are not globally accessible.

(continued on next page)

System Routines 9–65

System Routines
EXE$KP_STALL_GENERAL

Table 9–2 (Cont.) Kernel Process Stall Jacket Routines and Scheduling Stall Routines

Stall Jacket Routine Scheduling Stall Routine1 Action of Stall Routine

EXE$KP_IOFORK STALL_FORK Calls EXE$PRIMITIVE_FORK (with
timeouts disabled from the device unit
associated with the KPB [UCB$PS_
UCB]) on behalf of a kernel process.
When it regains control from the
OpenVMS fork dispatcher, this stall
routine resumes the kernel process by
calling EXE$KP_RESTART.

IOC$KP_REQCHAN STALL_REQCHAN Calls EXE$PRIMITIVE_REQCHAN
on behalf of a kernel process. When it
regains control after the channel has
been granted, this stall routine resumes
the kernel process by calling EXE$KP_
RESTART.

IOC$KP_WFIKPCH STALL_WFIXXCH Issues the WFIKPCH macro on behalf of
a kernel process. When it regains control
due to a timeout or from interrupt
servicing, this stall routine resumes
the kernel process by calling EXE$KP_
RESTART, returning to it SS$_NORMAL
or SS$_TIMEOUT status.

IOC$KP_WFIRLCH STALL_WFIXXCH Issues the WFIRLCH macro on behalf of
a kernel process. When it regains control
due to a timeout or from interrupt
servicing, it resumes the kernel process
by calling EXE$KP_RESTART, returning
to it SS$_NORMAL or SS$_TIMEOUT
status.

1These scheduling stall routines are not globally accessible.

When the kernel process scheduling stall routine returns control, EXE$KP_
STALL_GENERAL returns SS$_NORMAL status to the initiator of the kernel
process thread (that is, the caller if EXE$KP_START or EXE$KP_RESTART).

9–66 System Routines

System Routines
EXE$KP_START

EXE$KP_START

Starts the execution of a kernel process.

Module

KERNEL_PROCESS_MAGIC

Macro

KP_START
DDTAB (start=EXE$KP_STARTIO)

Format

EXE$KP_START kpb ,routine [,reg-mask]

Context

EXE$KP_START conforms to the OpenVMS Alpha calling standard. Its caller
must be executing at IPL$_RESCHED or above.

Neither the initiator of the kernel process thread nor the kernel process itself
can assume that there is any relationship between them unless they mutually
establish one. The initiator and the kernel process must establish explicit
synchronization between themselves for operations that require it.

The kernel process cannot assume that its initiator is not running in parallel.
Neither can it depend on inheriting the synchronization capabilities of its caller
(for instance, its spin locks and IPL). The initiator of the kernel process thread
cannot assume that the kernel process has already executed when EXE$KP_
START returns control.

Arguments

kpb
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of KPB.

routine
VMS Usage: procedure_value
type: longword (unsigned)
access: read only
mechanism: by reference

Procedure value of the routine to be started as the top-level routine in the kernel
process.

reg-mask
VMS Usage: mask_quadword
type: quadword (unsigned)
access: read only
mechanism: by value

System Routines 9–67

System Routines
EXE$KP_START

Optional register save mask, indicating which registers must be preserved across
kernel process context switches. Registers R0, R1, R16 through R25, R28, R30,
and R31 (KPREG$K_ERR_REG_MASK) are never preserved across context
switches; a reg-mask that indicates any of these registers is illegal. Registers
R12 through R15, R26, R27, and R29 (KPREG$K_MIN_REG_MASK) are always
saved and need not be specified.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.
SS$_BADPARAM An illegal reg-mask was specified.
SS$_INSFARG Not all of the required arguments were specified.

Description

EXE$KP_START performs the following tasks to create a kernel process and
start its execution:

1. Validates the structure indicated by the kpb argument. If the structure is
not a KPB, or if it is currently valid, active, or in the process of deletion,
EXE$KP_START requests an INCONSTATE bugcheck.

2. Constructs the register save mask from the value specified in reg-mask,
if present, and the minimal register save mask. EXE$KP_START writes a
value into this field that reflects the register save mask specified by its caller,
plus a set of registers that are always preserved across such context switches
(KPB$K_MIN_REG_MASK), including R12 through R15, R27, and R29.

If an illegal reg-mask is specified, EXE$KP_START returns SS$_
BADPARAM status to its caller. Otherwise, EXE$KP_START saves the
register save mask in KPB$IS_REG_MASK.

3. Preserves the current context by saving the current stack pointer (SP) and the
registers indicated by KPB$IS_REG_MASK on the stack (which it quadword-
aligns after obtaining the current SP). It saves the new value of the SP in
KPB$PS_SAVED_SP.

4. Establishes kernel process context by loading the base of the kernel process
stack (KPB$PS_STACK_BASE) into the SP and KPB$PS_STACK_SP.

5. Makes the KPB active and valid by setting the corresponding bits in KPB$IS_
FLAGS.

6. Initializes the bottom of the kernel process stack to enable implicit kernel
process termination (by means of a call to EXE$KP_END) if the top-level
kernel process routine returns to EXE$KP_START.

7. Calls the top-level kernel process routine, as indicated by the routine
argument, passing to it the address of the KPB.

9–68 System Routines

System Routines
EXE$KP_START

If the initiator of the kernel process thread and the kernel process must
exchange additional parameters, they can do so only by using the KPB
parameter area. The KPB parameter area is optionally created in the KPB by
EXE$KP_ALLOCATE_KPB.

8. When it regains control as the result of the kernel process invoking the
KP_REQCOM macro, calls EXE$KP_END.

System Routines 9–69

System Routines
EXE$KP_STARTIO

EXE$KP_STARTIO

Sets up and starts a kernel process to be used by a device driver.

Module

KERNEL_PROCESS_MIN, KERNEL_PROCESS_MON

Macro

DDTAB (start=EXE$KP_STARTIO)

Format

JSB G^EXE$KP_STARTIO

Context

The caller of EXE$KP_STARTIO (usually IOC$INITIATE) must be executing at
fork IPL and hold the fork lock indicated by UCB$B_FLCK. EXE$KP_STARTIO
returns to its caller in fork context with no explicit output values.

Input

Location Contents
R0 Address of DDT
R3 Address of IRP
R5 Address of UCB
UCB$L_BCNT Number of bytes to be transferred
UCB$L_BOFF Byte offset into first page of direct-I/O transfer;

for buffered-I/O transfers, number of bytes to be
charged to the process allocating the buffer

UCB$L_SVAPTE For a direct-I/O transfer, virtual address of first
page-table entry (PTE) of I/O-transfer buffer;
for buffered-I/O transfer, addess of buffer is
system address space

DDT$PS_KP_STARTIO Procedure value of the driver’s start-I/O
routine, which serves as the top-level routine
within the kernel process thread.

DDT$IS_STACK_BCNT Size in bytes of the kernel process stack
DDT$IS_REG_MASK Kernel process register save mask

Description

EXE$KP_STARTIO uses information stored in the DDT to set up and start a
kernel process that can be used by a device driver. It performs the following
tasks:

1. Establishes the size of the kernel process stack as the minimum of DDT$IS_
STACK_BCNT and KPB$K_MIN_IO_STACK (currently 8KB).

9–70 System Routines

System Routines
EXE$KP_STARTIO

2. Issues a standard call to EXE$KP_ALLOCATE_KPB to create the KPB and
allocate the kernel process stack, passing to it the following:

Zero as the size of the KPB parameter area

KPB flags, indicating a VEST KPB with scheduling and spinlock areas,
that is deallocated when the kernel process is terminated.

the kernel process stack size

IRP$PS_KPB as the target location of the KPB address

If there were not enough free pages in the system for the kernel process
stack, and the I/O request described by the IRP has not since been cancelled,
EXE$KP_STARTIO issues a fork-and-wait request. When EXE$TIMEOUT
resumes EXE$KP_STARTIO, it retries the call to EXE$KP_ALLOCATE_KPB.

If the attempt to allocated nonpaged pool for the KPB failed, EXE$KP_
STARTIO requests an INCONSTATE bugcheck.

3. Inserts the address of the IRP in KPB$PS_IRP and the address of the UCB in
KPB$PS_UCB

4. Establishes the kernel process register save mask as the logical-OR of the
registers specified in DDT$IS_REG_MASK and those indicated by KPREG$K_
MIN_IO_REG_MASK (R2 through R5; the VAX AP, FP, SP, and PC [registers
R12 through R15]; and R26, R27, and R29), minus those indicated by
KPREG$K_ERR_REG_MASK (R0 and R1; R16 through R25; R28; R30; and
R31).

5. Issues a standard call to EXE$KP_START, passing it the register save mask,
the procedure value of a kernel process start-I/O routine (DDT$PS_KP_
STARTIO), and the address of the KPB.

6. Issues an RSB instruction to its caller (usually IOC$INITIATE, or
EXE$TIMEOUT if EXE$KP_STARTIO was resumed by fork-and-wait
mechanism)

System Routines 9–71

System Routines
EXE$TIMEDWAIT_COMPLETE

EXE$TIMEDWAIT_COMPLETE

Dermines whether the time interval of a timed wait has concluded.

Module

[SYSLOA]TIMEDWAIT

Macro

TIMEDWAIT

Format

EXE$TIMEDWAIT_COMPLETE end-value

Context

EXE$TIMEDWAIT_COMPLETE conforms to the OpenVMS Alpha calling
standard.

Arguments

end-value
VMS Usage: aligned quadword
type: quadword (unsigned)
access: modify
mechanism: by reference

End time calculated by a previous call to EXE$TIMEDWAIT_SETUP or
EXE$TIMEDWAIT_SETUP_10US.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_CONTINUE The timed wait has not yet completed. The time
interval for the timed wait may or may not have
expired. This is a success status.

SS$_INSFARG Not all of the required arguments were specified.
SS$_TIMEOUT The time interval for a timed wait has expired

and the timed wait is complete.

9–72 System Routines

System Routines
EXE$TIMEDWAIT_COMPLETE

Description

EXE$TIMEDWAIT_COMPLETE compares the specified end-value (as computed
by a prior call to EXE$TIMEDWAIT_SETUP or EXE$TIMEDWAIT_SETUP_
10US) with an internal current-value. There are three results of this comparison:

• If the end-value is greater than or equal to the current-value value, the
timed wait has not yet completed, and EXE$TIMEDWAIT_COMPLETE
returns SS$_CONTINUE status.

• If the end-value is less than the current-value, EXE$TIMEDWAIT_
COMPLETE sets the end-value to –1 and returns SS$_CONTINUE status.

When EXE$TIMEDWAIT_COMPLETE returns SS$_CONTINUE status to the
TIMEDWAIT macro, the macro reexecutes a specified series of instructions
that tests for a particular exit condition. Having set the end-value to –1
prior to returning SS$_CONTINUE status, EXE$TIMEDWAIT_COMPLETE
allows for the possibility that the exit condition was actually met during the
timed wait time interval, but after the embedded instruction series could
detect it. This could be the case, for instance, if an interrupt occurred and
was serviced after the instruction sequence was executed but before the call
to EXE$TIMEDWAIT_COMPLETE was made. As a result of this behavior,
all timed wait instruction loops execute one additional time after the timed
wait time interval has concluded.

• If the end-value is equal to –1, the timed wait has completed and
EXE$TIMEDWAIT_COMPLETE returns SS$_TIMEOUT status.

System Routines 9–73

System Routines
EXE$TIMEDWAIT_SETUP, EXE$TIMEDWAIT_SETUP_10US

EXE$TIMEDWAIT_SETUP, EXE$TIMEDWAIT_SETUP_10US

Calculate and return the end-value used by EXE$TIMEDWAIT_COMPLETE to
determine when a timed wait has completed.

Module

[SYSLOA]TIMEDWAIT

Macro

TIMEDWAIT

Format

EXE$TIMEDWAIT_SETUP delta-time ,end-value

EXE$TIMEDWAIT_SETUP_10US delta-time ,end-value

Context

EXE$TIMEDWAIT_SETUP and EXE$TIMEDWAIT_SETUP_10US conform to the
OpenVMS Alpha calling standard.

Arguments

delta-time
VMS Usage: aligned quadword
type: quadword (unsigned)
access: read only
mechanism: by reference

Delay time specified in nanoseconds (for EXE$TIMEDWAIT_SETUP) or 10-
microsecond units (for EXE$TIMEDWAIT_SETUP_10US))

end-value
VMS Usage: aligned quadword
type: quadword (unsigned)
access: write only
mechanism: by reference

End time token to be supplied as input to EXE$TIMEDWAIT_COMPLETE.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

9–74 System Routines

System Routines
EXE$TIMEDWAIT_SETUP, EXE$TIMEDWAIT_SETUP_10US

Return Values

SS$_NORMAL The routine completed successfully.
SS$_INSFARG Not all of the required arguments were specified.

Description

EXE$TIMEDWAIT_SETUP and EXE$TIMEDWAIT_SETUP_10US compute
the end-value that is supplied as an input argument to a subsequent call to
EXE$TIMEDWAIT_COMPLETE. EXE$TIMEDWAIT_COMPLETE uses the
end-value to determine whether the timed wait time interval has concluded.

EXE$TIMEDWAIT_SETUP and EXE$TIMEDWAIT_SETUP_10US generate a
system-specific end-value from the sum of the specified delta-time and the
current time, converted to a value that can be directly compared to an internal
current-value. EXE$TIMEDWAIT_SETUP_10US performs the additional step of
converting the input delta-time to a number of nanoseconds.

System Routines 9–75

System Routines
EXE_STD$ABORTIO

EXE_STD$ABORTIO

Completes the servicing of an I/O request without returning status to the I/O
status block specified in the request.

Module

SYSQIOREQ

Format

status = EXE_STD$ABORTIO (irp, pcb, ucb, qio_sts)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
qio_sts integer input value required

irp
I/O request packet. EXE_STD$ABORTIO copies the qio_sts parameter to IRP$L_
IOST1 and clears IRP$PS_FDT_CONTEXT. The caller of EXE_STD$ABORTIO
should not access the IRP after the routine returns SS$_FDT_COMPL status.

pcb
PCB of current process

ucb
Unit control block

qio_sts
Final status to be returned by the $QIO system service to its caller. EXE_
STD$ABORTIO places this status in FDT_CONTEXT$L_QIO_STATUS. If you
intend to access the FDT context structure after EXE_STD$ABORTIO returns,
you must obtain its address from IRP$PS_FDT_CONTEXT and store it before
making the call.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

9–76 System Routines

System Routines
EXE_STD$ABORTIO

Status in FDT_CONTEXT

Contents of qio_sts
argument

Context

EXE_STD$ABORTIO executes at its caller’s IPL and raises to fork IPL, acquiring
the associated fork lock in a multiprocessing environment. As a result, its caller
cannot be executing above fork IPL. A driver usually transfers control to EXE_
STD$ABORTIO at IPL$_ASTDEL.

EXE_STD$ABORTIO returns to its caller at the caller’s IPL.

Description

The FDT completion routine EXE_STD$ABORTIO terminates the servicing of
an I/O request without returning status to the I/O status block specified in the
original call to the $QIO system service.

EXE_STD$ABORTIO performs the following actions:

1. Examines the qio_sts argument. If the argument contains SS$_FDT_
COMPL, EXE_STD$ABORTIO returns to its caller. This check prevents an
I/O request from being aborted more than once.

2. Places the status to be returned to the caller of the $QIO system service in
IRP$L_IOST1 and in the FDT_CONTEXT structure.

3. Clears the pointer to the FDT_CONTEXT structure in IRP$PS_FDT_
CONTEXT.

4. Requests the fork lock, raising IPL to fork IPL, to perform the following
tasks:

a. Clear IRP$L_IOSB so that no status is returned by I/O postprocessing

b. Clear ACB$V_QUOTA in IRP$B_RMOD to prevent the delivery of any
AST to the process specified in the I/O request

c. Update the count of available AST entries at PCB$L_ASTCNT, if
necessary

d. Insert the IRP in the local processor’s I/O postprocessing queue. If the
queue is empty, request a software interrupt from the local processor at
IPL$_IOPOST.

5. Releases the fork lock, restoring the caller’s IPL. The pending IPL$_IOPOST
interrupt causes I/O postprocessing to occur before the remaining instructions
in EXE_STD$ABORTIO are executed.

When all I/O postprocessing has been completed, EXE_STD$ABORTIO regains
control and returns SS$_FDT_COMPL status to its caller.

Any ASTs specified when the I/O request was issued will not be delivered, and
any event flags requested will not be set.

System Routines 9–77

System Routines
EXE_STD$ABORTIO

Macro

CALL_ABORTIO [do_ret=YES]

where:

do_ret indicates that the macro generates a RET instruction at the end of its
expansion, thus returning control to the caller of the routine that invokes it.

In an Alpha driver, the CALL_ABORTIO macro initializes the irp, pcb, ucb, and
qio_sts parameters from the contents of R3, R4, R5, and R0, respectively, and
calls EXE_STD$ABORTIO. When EXE_STD$ABORTIO returns control to the
code generated by a default invocation of $ABORTIO, a RET instruction returns
control to the caller of $ABORTIO’s invoker. Status is returned in R0 and in the
FDT_CONTEXT structure.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The order in which formal parameters are passed to EXE_STD$ABORTIO
differs from the order in which they are provided in registers to the VAX
routine EXE$ABORTIO.

• The contents of R0 are destroyed across the call to EXE_STD$ABORTIO. This
is especially important if you use the $ABORTIO macro on OpenVMS Alpha
systems and expect R0 to retain its value afterwards.

• Unlike EXE$ABORTIO, EXE_STD$ABORTIO does not lower IPL to 0 before
exiting. EXE_STD$ABORTIO returns to its caller at the caller’s IPL.

• EXE$ABORTIO returns control to the system service dispatcher, passing it
the final $QIO system service status in R0. EXE_STD$ABORTIO returns
to its caller, passing it SS$_FDT_COMPL status in R0 and storing the final
$QIO system service status in the FDT_CONTEXT structure. The $QIO
system service retrieves the status from this structure.

9–78 System Routines

System Routines
EXE_STD$ALLOCBUF, EXE_STD$ALLOCIRP

EXE_STD$ALLOCBUF, EXE_STD$ALLOCIRP

Allocates a buffer from nonpaged pool for a buffered-I/O operation.

Module

MEMORYALC

Format

status = EXE_STD$ALLOCBUF (reqsize, blocksize, blockptr)

status = EXE_STD$ALLOCIRP (blocksize, blockptr)

Arguments

Argument Type Access Mechanism Status

reqsize integer input value required
alosize_p pointer output value required
bufptr_p pointer output value required

reqsize
Size of requested buffer in bytes (EXE_STD$ALLOCBUF only). This value should
include the 12 bytes required to store header information.

alosize_p
Location in which EXE_STD$ALLOCBUF and EXE_STD$ALLOCIRP write the
size of the requested buffer in bytes.

bufptr_p
Location in which EXE_STD$ALLOCBUF and EXE_STD$ALLOCIRP write the
address of allocated buffer. The following fields are initialized in the buffer:

Field Contents

IRP$W_SIZE (in
allocated buffer)

Size of requested buffer in bytes (for EXE_
STD$ALLOCBUF), IRP$C_LENGTH (for EXE_
STD$ALLOCIRP).

IRP$B_TYPE (in
allocated buffer)

DYN$C_BUFIO (for EXE_STD$ALLOCBUF), DYN$C_
IRP (for EXE_STD$ALLOCIRP).

Return Values

SS$_NORMAL Normal, successful completion.
SS$_INSFMEM Insufficient memory to satisfy request.

System Routines 9–79

System Routines
EXE_STD$ALLOCBUF, EXE_STD$ALLOCIRP

Context

EXE_STD$ALLOCBUF and EXE_STD$ALLOCIRP set IPL to IPL$_ASTDEL.
As a result they cannot be called by code executing above IPL$_ASTDEL. They
return control to the caller at IPL$_ASTDEL.

Description

EXE_STD$ALLOCBUF attempts to allocate a buffer of the requested size from
nonpaged pool; EXE_STD$ALLOCIRP attempts to allocate an IRP from nonpaged
pool.

If sufficient memory is not available, EXE_STD$ALLOCBUF and EXE_
STD$ALLOCIRP examine the PCB (CTL$GL_PCB) to determine whether
the process has resource wait mode enabled. If PCB$V_SSRWAIT in PCB$L_STS
is clear, these routines place the process in a resource wait state until memory is
released.

The caller must check and adjust process quotas (JIB$L_BYTCNT or JIB$L_
BYTLM, or both) by calling EXE$DEBIT_BYTCNT or EXE$DEBIT_BYTCNT_
BYTLM.

Note

You can perform this task and allocate a buffer of the requested size
by using the routines EXE$DEBIT_BYTCNT_ALO and EXE$DEBIT_
BYTCNT_BYTLM_ALO. These routines invoke EXE_STD$ALLOCBUF.)

The normal buffered I/O postprocessing routine (IOC_STD$REQCOM), initiated
by the REQCOM macro, readjusts quotas and also deallocates the buffer.

Note

The value returned in the alosize_p argument and placed at IRP$W_
SIZE in the allocated buffer is the size of the allocated buffer. The actual
size of the buffer is determined according to the algorithms used by
EXE$ALONONPAGED and the size of the lookaside list packets. The
nonpaged pool deallocation routine (EXE$DEANONPAGED), called in
buffered I/O postprocessing, uses similar algorithms when returning
memory to nonpaged pool.

Macro

CALL_ALLOCBUF
CALL_ALLOCIRP

In an Alpha driver, CALL_ALLOCBUF and CALL_ALLOCIRP simulate a JSB
to EXE$ALLOCBUF and EXE$ALLOCIRP, respectively. CALL_ALLOCBUF
calls EXE_STD$ALLOCBUF using the current contents of R1 as the reqsize
argument. Both CALL_ALLOCBUF and CALL_ALLOCIRP return status in R0,
the address of the allocated buffer in R2 and its size in R1. If a resource wait
occurred, these macros return the address of the PCB in R4.

9–80 System Routines

System Routines
EXE_STD$ALLOCBUF, EXE_STD$ALLOCIRP

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE_STD$ALLOCBUF and EXE_STD$ALLOCIRP replace EXE$ALLOCBUF
and EXE$ALLOCIRP. The Alpha routines do not preserve the original
contents of R4, or return the address of the PCB in R4 if a wait has occurred.

System Routines 9–81

System Routines
EXE_STD$ALTQUEPKT

EXE_STD$ALTQUEPKT

Delivers an IRP to a driver’s alternate start-I/O routine without regard for the
status of the device.

Module

SYSQIOREQ

Format

EXE_STD$ALTQUEPKT (irp, ucb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
ucb UCB input reference required

irp
I/O request packet.

ucb
Unit control block.

EXE_STD$ALTQUEPKT reads the following UCB fields:

Field Contents

UCB$B_FLCK Fork lock index
UCB$L_DDT Address of unit’s DDT. EXE_STD$ALTQUEPKT reads

DDB$PS_ALTSTART to obtain the procedure value of
the driver’s alternate start-I/O routine.

UCB$L_ALTIOWQ Address of the alternate start-I/O wait queue listhead.

Context

A driver FDT routine typically calls EXE_STD$ALTQUEPKT at IPL$_ASTDEL.
EXE_STD$ALTQUEPKT raises to fork IPL (acquiring the associated fork lock)
before calling the driver’s alternate start-I/O routine. When the alternate start-
I/O routine returns control to it, EXE_STD$ALTQUEPKT returns control to its
caller at the caller’s IPL (having released its acquisition of the fork lock).

Description

EXE_STD$ALTQUEPKT calls the driver’s alternate start-I/O routine. It does not
test whether the unit is busy before making the call.

9–82 System Routines

System Routines
EXE_STD$ALTQUEPKT

Macro

CALL_ALTQUEPKT

CALL_ALTQUEPKT calls EXE_STD$ALTQUEPKT, using the current contents of
R3 and R5 as the irp and ucb arguments, respectively.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE_STD$ALTQUEPKT replaces EXE$ALTQUEPKT.

System Routines 9–83

System Routines
EXE_STD$CARRIAGE

EXE_STD$CARRIAGE

Interprets the carriage control specifier in IRP$B_CARCON and converts it to a
generic prefix or suffix format.

Module

SYSQIOFDT

Format

EXE_STD$CARRIAGE (irp)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required

irp
I/O request packet.

Context

A driver FDT routine calls EXE_STD$CARRIAGE at IPL$_ASTDEL. EXE_
STD$CARRIAGE returns control to the driver at that IPL.

Description

For Digital internal use only.

Macro

CALL_CARRIAGE

CALL_CARRIAGE calls EXE_STD$CARRIAGE, using the current contents of R3
as the irp arguments.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE_STD$CARRIAGE replaces EXE$CARRIAGE.

9–84 System Routines

System Routines
EXE_STD$CHKxxxACCES

EXE_STD$CHKxxxACCES

Checks logical (EXE_STD$CHKLOGACCES), physical (EXE_
STD$CHKPHYACCES), read (EXE_STD$CHKRDACCES), write (EXE_
STD$CHKWRTACCES), execute (EXE_STD$CHKEXEACCES), create (EXE_
STD$CHKCREACCES), or delete (EXE_STD$CHKDELACCES) I/O function
access, based on the specified protection information.

Module

EXSUBROUT

Format

status = EXE_STD$CHKCREACCES (arb, orb, pcb, ucb)

status = EXE_STD$CHKDELACCES (arb, orb, pcb, ucb)

status = EXE_STD$CHKEXEACCES (arb, orb, pcb, ucb)

status = EXE_STD$CHKLOGACCES (arb, orb, pcb, ucb)

status = EXE_STD$CHKPHYACCES (arb, orb, pcb, ucb)

status = EXE_STD$CHKRDACCES (arb, orb, pcb, ucb)

status = EXE_STD$CHKWRTACCES (arb, orb, pcb, ucb)

Arguments

Argument Type Access Mechanism Status

arb ARB input reference required
orb ORB input reference required
pcb PCB input reference required
ucb UCB input reference required

arb
Agent rights block.

orb
Object rights block.

pcb
Process control block of accessor.

ucb
Unit control block of accessed object.

System Routines 9–85

System Routines
EXE_STD$CHKxxxACCES

Return Values

SS$_NORMAL Specified access allowed.
SS$_NOPRIV Specified access denied.

Context

A driver FDT routine calls EXE_STD$CHKPHYACCES, EXE_
STD$CHKLOGACCES, EXE_STD$CHKWRTACCES, EXE_STD$CHKRDACCES,
EXE_STD$CHKCREACCES, EXE_STD$CHKEXEACCES, and EXE_
STD$CHKDELACCES, at IPL$_ASTDEL. These routines return control to
the driver at that IPL.

Description

For Digital internal use only.

Macro

CALL_CHKCREACCES [save_r1]
CALL_CHKDELACCES [save_r1]
CALL_CHKEXEACCES [save_r1]
CALL_CHKLOGACCES [save_r1]
CALL_CHKPHYACCES [save_r1]
CALL_CHKRDACCES [save_r1]
CALL_CHKWRTACCES [save_r1]

where:

save_r1 indicates that the macro must preserve the contents of R1 across
the call to EXE_STD$CHKPHYACCES, EXE_STD$CHKLOGACCES,
EXE_STD$CHKWRTACCES, EXE_STD$CHKEXEACCES, EXE_
STD$CHKCREACCES, EXE_STD$CHKDELACCES or EXE_
STD$CHKRDACCES. If save_r1 is blank or save_r1=YES, the 64-bit
register is saved. (In the former case, the macro generates a compile-time
message. If save_r1=NO, R1 is not saved.)

In an Alpha driver, the CALL_CHKCREACCES, CALL_CHKDELACCES,
CALL_CHKEXEACCES, CALL_CHKLOGACCES, CALL_CHKPHYACCES,
CALL_CHKWRTACCES, and CALL_CHKRDACCES, macros simulate the
JSB to EXE$CHKCREACCES, EXE$CHKDELACCES, EXE$CHKEXEACCES,
EXE$CHKPHYACCES, EXE$CHKLOGACCES, EXE$CHKWRTACCES, or
EXE$CHKRDACCES in a VAX driver. Each macro calls the corresponding
access-checking routine, using the current contents of R0, R1, R4, and R5 as the
arb, orb, pcb, and ucb arguments. Unless you specify save_r1=NO, the macro
preserves the quadword register R1 across the call. All macros return status in
R0.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The OpenVMS Alpha I/O function access checking routines replace their
OpenVMS VAX counterparts, but do not does not preserve R1 across a call.

9–86 System Routines

System Routines
EXE_STD$FINISHIO

EXE_STD$FINISHIO

Completes the servicing of an I/O request and returns status to the I/O status
block specified in the original call to the $QIO system service.

Module

SYSQIOREQ

Format

status = EXE_STD$FINISHIO (irp, ucb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
ucb UCB input reference required

irp
I/O request packet. EXE_STD$FINISHIO clears IRP$PS_FDT_CONTEXT. The
caller of EXE_STD$FINISHIO should not access the IRP after the routine returns
SS$_FDT_COMPL status.

ucb
Unit control block. EXE_STD$FINISHIO increases UCB$L_OPCNT.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_NORMAL The routine completed successfully.

Context

EXE_STD$FINISHIO executes at its caller’s IPL and raises to fork IPL, acquiring
the associated fork lock in a multiprocessing environment. As a result, its caller
cannot be executing above fork IPL. A driver usually transfers control to EXE_
STD$FINISHIO at IPL$_ASTDEL.

EXE_STD$FINISHIO returns to its caller at the caller’s IPL.

System Routines 9–87

System Routines
EXE_STD$FINISHIO

Description

The FDT completion routine EXE_STD$FINISHIO completes the servicing of an
I/O request and returns status to the I/O status block specified in the original call
to the $QIO system service. It performs the following actions:

1. Clears the pointer to the FDT context structure in IRP$PS_FDT_CONTEXT.

2. Requests the fork lock, raising IPL to fork IPL, to perform the following
tasks:

a. Increase the number of I/O operations completed on the current
device in the operation count field of the UCB (UCB$L_OPCNT). This
task is performed at fork IPL, holding the associated fork lock in a
multiprocessing environment.

b. Insert the IRP in the local processor’s I/O postprocessing queue. If the
queue is empty, request a software interrupt from the local processor at
IPL$_IOPOST.

3. Releases the fork lock, restoring the caller’s IPL. The pending IPL$_IOPOST
interrupt causes I/O postprocessing to occur before the remaining instructions
in EXE_STD$FINISHIO are executed.

When all I/O postprocessing has been completed, EXE_STD$FINISHIO regains
control and returns SS$_FDT_COMPL status to its caller, passing SS$_NORMAL
as the final $QIO completion status in the FDT_CONTEXT structure.

The image that requested the I/O operation receives SS$_NORMAL status,
indicating that the I/O request has completed without device-independent error.

Macro

CALL_FINISHIO [do_ret=YES]
CALL_FINISHIOC [do_ret=YES]

where:

do_ret indicates that the macro generates a RET instruction at the end of its
expansion, thus returning control to the caller of the routine that invokes it.

In an Alpha driver, the CALL_FINISHIO macro simulates the JMP to
EXE$FINISHIO in the FDT routine of a VAX driver. The CALL_FINISHIOC
macro simulates the JMP to EXE$FINISHIOC. The former macro moves the
current contents of R0 and R1 into IRP$L_IOST1 and IRP$L_IOST2, respectively;
the latter initializes IRP$L_IOST1 from R0 and clears IRP$L_IOST2. Both
macros initialize the irp and ucb parameters from the contents of R3 and R5,
respectively before calling EXE_STD$FINISHIO. When EXE_STD$FINISHIO
returns control to the code generated by a default invocation of CALL_FINISHIO
or CALL_FINISHIOC, a RET instruction returns control to the caller of the
macro’s invoker. Status is returned in R0 and in the FDT_CONTEXT structure.

9–88 System Routines

System Routines
EXE_STD$FINISHIO

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• A VAX driver supplies the first and second longwords of device-specific status
(in R0 and R1) as input to EXE$FINISHIO. EXE$FINISHIO writes these
longwords to IRP$L_IOST1 and IRP$L_IOST2, respectively, from which
I/O postprocessing transfers their values to the I/O status block specified in
the original $QIO call. These status longwords are not input parameters to
EXE_STD$FINISHIO. Rather, an Alpha driver’s FDT routine must fill in
IRP$L_IOST1 and IRP$L_IOST2 before calling EXE_STD$FINISHIO.

Because the OpenVMS VAX routines EXE$FINISHIO and EXE$FINISHIOC
differ only in that the latter routine clears the second longword on I/O status,
there is no Alpha equivalent of EXE$FINISHIOC. If the driver needs to
clear the second I/O status longword, it simply does so before calling EXE_
STD$FINISHIO.

• The address of the PCB, supplied as input to EXE$FINISHIO on OpenVMS
VAX systems, is not provided as input to EXE_STD$FINISHIO.

• Unlike EXE$FINISHIO, EXE_STD$FINISHIO does not lower IPL to 0 before
exiting. EXE_STD$FINISHIO returns to its caller at the caller’s IPL.

• EXE$FINISHIO returns control to the system service dispatcher, passing
it the final $QIO system service status (SS$_NORMAL) in R0. EXE_
STD$FINISHIO returns to its caller, passing it SS$_FDT_COMPL status
in R0 and storing the final $QIO system service status (SS$_NORMAL) in
the FDT_CONTEXT structure. The $QIO system service retrieves the status
from this structure.

System Routines 9–89

System Routines
EXE$ILLIOFUNC

EXE$ILLIOFUNC

Aborts I/O preprocessing for an I/O function not supported a driver.

Module

SYSQIOFDT

Format

status = EXE$ILLIOFUNC (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet for the current I/O request

pcb
Process control block of the current process

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request

ccb
Channel control block that describes the process-I/O channel

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Context

FDT dispatching code in the $QIO system service calls EXE$ILLIOFUNC at
IPL$_ASTDEL when processing an I/O function that is not supported by a driver.
EXE$ILLIOFUNC returns to the system service dispatcher at IPL$_ASTDEL.

9–90 System Routines

System Routines
EXE$ILLIOFUNC

Description

Because any slot corresponding to an unsupported function in a driver’s FDT
action vector contains the procedure value of EXE$ILLIOFUNC, FDT dispatching
code in the $QIO system service calls EXE$ILLIOFUNC to process any I/O
request specifying an unsupported I/O function code.

EXE$ILLIOFUNC calls EXE_STD$ABORTIO to terminate the processing of the
I/O request.

System Routines 9–91

System Routines
EXE_STD$INSERT_IRP

EXE_STD$INSERT_IRP

Inserts an I/O request packet (IRP) into the specified queue of IRPs according to
the base priority of the process that issued the I/O request.

Module

SYSQIOREQ

Format

status = EXE_STD$INSERT_IRP (irp_lh, irp)

Arguments

Argument Type Access Mechanism Status

queue listhead input reference required
irp_lh address input reference required

irp_lh
I/O queue listhead for the device.

irp
I/O request packet. EXE_STD$INSERT_IRP reads the base address of the
process requesting the I/O from IRP$B_PRI.

Return Values

status Low bit set if at least one IRP is already in the
queue, low bit clear if the IRP is the only entry.

Context

EXE_STD$INSERT_IRP must be called at fork IPL or higher. In an OpenVMS
multiprocessing environment, the caller must also hold the associated fork lock.
EXE_STD$INSERT_IRP does not alter IPL or acquire any spin locks. It returns
to its caller.

Description

EXE_STD$INSERT_IRP determines the position of the specified IRP in the
pending-I/O queue according to two factors:

• Priority of the IRP, which is derived from the requesting process’s base
priority as stored in the IRP$B_PRI

• Time that the entry is queued; for each priority, the queue is ordered on a
first-in/first-out basis

EXE_STD$INSERT_IRP inserts the IRP into the queue at that position, adjusts
the queue links, and returns a value to indicate the status of the queue.

9–92 System Routines

System Routines
EXE_STD$INSERT_IRP

Macro

CALL_INSERT_IRP

In an Alpha driver, the CALL_INSERT_IRP macro simulates a JSB to
EXE$INSERT_IRP in a VAX driver. CALL_INSERT_IRP calls EXE_
STD$INSERT_IRP, using the current contents of R2 and R3 as the irp_lh
and irp arguments, respectively. It returns status in R0.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE_STD$INSERT_IRP replaces EXE$INSERTIRP (used by OpenVMS VAX
drivers).

System Routines 9–93

System Routines
EXE_STD$INSIOQ, EXE_STD$INSIOQC

EXE_STD$INSIOQ, EXE_STD$INSIOQC

Insert an IRP in a device’s pending-I/O queue and call the driver’s start-I/O
routine if the device is not busy.

Module

SYSQIOREQ

Format

EXE_STD$INSIOQ (irp, ucb)

EXE_STD$INSIOQC (irp, ucb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
ucb UCB input reference required

irp
I/O request packet.

ucb
Unit control block.

EXE_STD$INSIOQ and EXE_STD$INSIOQC read the following UCB fields:

Field Contents

UCB$B_FLCK Fork lock index
UCB$L_STS UCB$V_BSY set if device is busy, clear if device is idle
UCB$L_IOQFL Address of pending-I/O queue listhead
UCB$L_QLEN Length of pending-I/O queue

EXE_STD$INSIOQ and EXE_STD$INSIOQC write the following UCB fields:

Field Contents

UCB$L_STS UCB$V_BSY set
UCB$W_QLEN Increased

Context

EXE_STD$INSIOQ and EXE_STD$INSIOQC immediately raise to fork IPL and,
in a multiprocessing environment, obtain the corresponding fork lock. As a result,
their callers must not be executing at an IPL higher than fork IPL or hold a spin
lock ranked higher than the fork lock.

9–94 System Routines

System Routines
EXE_STD$INSIOQ, EXE_STD$INSIOQC

EXE_STD$INSIOQ unconditionally releases ownership of the fork lock before
returning control to the caller without possession of the fork lock. If a fork
process must retain possession of the fork lock, it should call EXE_STD$INSIOQC
instead.

Description

EXE_STD$INSIOQ and EXE_STD$INSIOQC insert an IRP in a device’s pending-
I/O queue and call the driver’s start-I/O routine if the device is not busy.

EXE_STD$INSIOQ and EXE_STD$INSIOQC increase UCB$L_QLEN and
proceed according to the status of the device (as indicated by UCB$V_BSY in
UCB$L_STS) as follows:

• If the device is busy, call EXE_STD$INSERT_IRP to place the IRP on the
device’s pending-I/O queue.

• If the device is idle, call IOC_STD$INITIATE to begin device processing of
the I/O request immediately. IOC_STD$INITIATE transfers control to the
driver’s start-I/O routine.

Macro

CALL_INSIOQ
CALL_INSIOQC

In an Alpha driver, the CALL_INSIOQ and CALL_INSIOQC macros simulate a
JSB to EXE$INSIOQ and EXE$INSIOQ, respectively, in a VAX driver. $INSIOQ
calls EXE_STD$INSIOQ, and $INSIOQC calls EXE_STD$INSIOQC, using the
current contents of R3 and R5 as the irp and ucb arguments, respectively.

Notes for Converting VAX Drivers

None.

System Routines 9–95

System Routines
EXE_STD$IORSNWAIT

EXE_STD$IORSNWAIT

Places a process in a resource wait state if it has enabled resource waits.

Module

SYSQIOFDT

Format

status = EXE_STD$IORSNWAIT (irp, pcb, ucb, ccb, qio_sts, rsn)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required
qio_sts input integer value required
rsn input integer value required

irp
I/O request packet.

pcb
Process control block.

ucb
Unit control block.

ccb
Channel control block.

qio_sts
Final status to be returned by the $QIO system service to its caller if the
caller has not enabled resource wait mode. EXE_STD$IORSNWAIT calls EXE_
STD$ABORTIO to place this status in FDT_CONTEXT$L_QIO_STATUS. If you
intend to access the FDT context structure after EXE_STD$IORSNWAIT returns,
you must obtain its address from IRP$PS_FDT_CONTEXT and store it before
making the call.

rsn
Number of the resource for which the request is waiting.

9–96 System Routines

System Routines
EXE_STD$IORSNWAIT

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

Contents of qio_sts
argument

Process has not enabled resource waits.

SS$_WAIT_CALLERS_
MODE

Process has been placed in a resource wait state.

Context

EXE_STD$IORSNWAIT is called by, and returns to, a driver’s FDT routine at
IPL$_ASTDEL.

Description

For Digital internal use only.

Macro

CALL_IORSNWAIT [do_ret=YES]

where:

do_ret indicates that the macro generates a RET instruction at the end of its
expansion, thus returning control to the caller of the routine that invokes it.

In an Alpha driver, the CALL_IORSNWAIT macro calls EXE_STD$IORSNWAIT
using the current contents of R3, R4, R5, R6, R0, and R1 as the irp, pcb, ucb,
ccb, qio_sts, and rsn arguments, respectively. When EXE_STD$IORSNWAIT
returns control to the code generated by a default invocation of CALL_
IORSNWAIT, a RET instruction returns control to the caller of the macro’s
invoker. Status is returned in R0 and in the FDT_CONTEXT structure.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE_STD$IORSNWAIT replaces EXE$IORSNWAIT. The order in which
formal parameters are passed to EXE_STD$IORSNWAIT differs from
the order in which they are provided in registers to the VAX routine
EXE$IORSNWAIT.

• EXE$IORSNWAIT returns control to the system service dispatcher, passing it
the final $QIO system service status in R0. EXE_STD$IORSNWAIT returns
to its caller, passing it SS$_FDT_COMPL status in R0 and storing the final
$QIO system service status in the FDT context structure. The $QIO system
service retrieves the status from this structure.

System Routines 9–97

System Routines
EXE_STD$LCLDSKVALID

EXE_STD$LCLDSKVALID

Processes I/O functions that affect the online count and local valid status of a
disk.

Module

SYSQIOFDT

Format

status = EXE_STD$LCLDSKVALID (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet for the current I/O request. The I/O function for the current
request is available in IRP$L_FUNC.

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

EXE_STD$LCLDSKVALID reads the following UCB fields.

Field Contents

UCB$B_FLCK Fork lock index
UCB$L_STS UCB$V_LCL_VALID set if the volume is valid; clear if

the drive is unloaded or available
UCB$B_ONLCNT Number of hosts that have set this disk on line

EXE_STD$LCLDSKVALID writes the following UCB fields:

Field Contents

UCB$L_STS UCB$V_LCL_VALID set if the requested function is
IO$_PACKACK; cleared if the requested function is
IO$_UNLOAD or IO$_AVAILABLE

9–98 System Routines

System Routines
EXE_STD$LCLDSKVALID

Field Contents

UCB$B_ONLCNT Incremented if UCB$V_LCL_VALID is not set and the
requested function is IO$_PACKACK; decremented if
UCB$V_LCL_VALID is set and the requested function
is IO$_UNLOAD or IO$_AVAILABLE

ccb
Channel control block that describes the process-I/O channel

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_NORMAL The routine completed successfully.

Context

FDT dispatching code calls EXE_STD$LCLDSKVALID at IPL$_ASTDEL.
EXE_STD$LCLDSKVALID immediately raises IPL to fork IPL, requesting
the associated fork lock in a multiprocessing environment. When it regains
control from EXE_STD$QIODRVPKT or EXE_STD$FINISHIO, EXE_
STD$LCLDSKVALID lowers IPL to IPL$_ASTDEL and relinquishes the fork
lock before returning to the system service dispatcher.

Description

A disk driver specifies the system-supplied upper-level FDT action routine EXE_
STD$LCLDSKVALID in an FDT_ACT macro invocation to service a request for
an IO$_PACKACK, IO$_AVAILABLE, or IO$_UNLOAD function for a local disk.
The actions of EXE_STD$LCLDSKVALID depend on the I/O function indicated
by R7 and the value of UCB$V_LCL_VALID in UCB$L_STS.

For an IO$_PACKACK function, EXE_STD$LCLDSKVALID proceeds as follows:

• If UCB$V_LCL_VALID is clear:

Sets UCB$V_LCL_VALID.

Increases UCB$B_ONLCNT.

If this is the first cluster pack acknowledgment on the disk (that is, if
UCB$B_ONLCNT equals 1), invokes the $QIODRVPKT macro to deliver
the IRP to the driver’s start-I/O routine. EXE_STD$LCLDSKVALID
regains control with SS$_FDT_COMPL status in R0 and a final $QIO
system service status of SS$_NORMAL in the FDT_CONTEXT structure.

• If UCB$V_LCL_VALID is set, EXE_STD$LCLDSKVALID requests that the
FDT completion routine EXE_STD$FINISHIO complete the I/O request.
EXE_STD$FINISHIO returns to EXE_STD$LCLDSKVALID with SS$_FDT_
COMPL status in R0 and a final $QIO system service status of SS$_NORMAL
in the FDT_CONTEXT structure.

System Routines 9–99

System Routines
EXE_STD$LCLDSKVALID

For an IO$_UNLOAD or IO$_AVAILABLE function, EXE_STD$LCLDSKVALID
proceeds as follows:

• If UCB$V_LCL_VALID is set:

Clears UCB$V_LCL_VALID

Decreases UCB$B_ONLCNT

If this is the last cluster unload or available request, invokes the
$QIODRVPKT macro to deliver the IRP to the driver’s start-I/O routine.
EXE_STD$LCLDSKVALID regains control with SS$_FDT_COMPL status
in R0 and a final $QIO system service status of SS$_NORMAL in the
FDT_CONTEXT structure.

• If UCB$V_LCL_VALID is clear, EXE_STD$LCLDSKVALID requests that
the FDT completion routine EXE_STD$FINISHIO complete the I/O request.
EXE_STD$FINISHIO returns to EXE_STD$LCLDSKVALID with SS$_FDT_
COMPL status in R0 and a final $QIO system service status of SS$_NORMAL
in the FDT_CONTEXT structure.

A driver must define the local disk UCB extension to use this routine.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The upper-level FDT routine EXE$LCLDSKVALID (used by OpenVMS VAX
device drivers) expects as input in R7 the number of the bit that specifies the
code for the requested I/O function from R7, and, in R8, the address of the
entry in the function decision table (FDT) from which it received control.

R0, R7, and R8 are not provided as input to EXE_STD$LCLDSKVALID.

9–100 System Routines

System Routines
EXE_STD$MNTVERSIO

EXE_STD$MNTVERSIO

Initiates a mount verification I/O request to a device.

Module

MOUNTVER

Format

EXE_STD$MNTVERSIO (rout, irp, ucb)

Arguments

Argument Type Access Mechanism Status

rout procedure
value

input value required

irp IRP input reference required
ucb UCB input reference required

rout
Procedure value of action routine to postprocess the mount verification I/O
request.

irp
I/O request packet.

ucb
Unit control block.

Context

EXE_STD$MNTVERSIO raises IPL to fork IPL, obtaining the corresponding
fork lock in an OpenVMS multiprocessing system. It releases the fork lock and
returns control to its caller at its caller’s IPL.

Description

For Digital internal use only.

Macro

CALL_MNTVERSIO

In an Alpha driver, the CALL_MNTVERSIO macro calls EXE_
STD$MNTVERSIO, using the current contents of R0, R3, and R5 as the rout,
irp, and ucb arguments, respectively.

System Routines 9–101

System Routines
EXE_STD$MNTVERSIO

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE_STD$MNTVERSIO replaces EXE$MNTVERSIO.

9–102 System Routines

System Routines
EXE_STD$MODIFY

EXE_STD$MODIFY

Translates a logical read/write function into a physical read/write function,
transfers $QIO system service parameters to the IRP, validates and prepares a
user buffer, and aborts the request or proceeds with a direct-I/O, DMA read/write
operation.

Module

SYSQIOFDT

Format

status = EXE_STD$MODIFY (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet for the current I/O request.

EXE_STD$MODIFY reads the following IRP fields:

Field Contents

IRP$L_QIO_P1 $QIO system service p1 argument, containing the
buffer’s virtual address.

IRP$L_QIO_P2 $QIO system service p2 argument, containing the
number of bytes in transfer. The maximum number of
bytes that EXE_STD$MODIFY can transfer is 65,535
(128 pages minus one byte).

IRP$L_QIO_P4 $QIO system service p4 argument, containing the
carriage control byte.

IRP$L_FUNC I/O function code.
IRP$B_RMOD Access mode of the caller of the $QIO system service.

EXE_STD$MODIFY writes the following IRP fields:

Field Contents

IRP$B_CARCON Carriage control byte (from IRP$L_QIO_P4)
IRP$L_FUNC Logical read/write function code converted to physical

System Routines 9–103

System Routines
EXE_STD$MODIFY

Field Contents

IRP$L_STS IRP$V_FUNC set to indicate read function
IRP$L_SVAPTE System virtual address of the PTE that maps the first

page of the buffer
IRP$L_BOFF Byte offset to start of transfer in page
IRP$L_OBOFF Original byte offset into the first page of a segmented

direct-I/O transfer
IRP$L_BCNT Size of transfer in bytes

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

ccb
Channel control block that describes the process-I/O channel

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Buffer specified in buffer parameter does not
allow read access.

SS$_BADPARAM size parameter is less than zero.
SS$_INSFWSL Insufficient working set limit.
SS$_NORMAL The I/O request has been successfully queued.
SS$_QIO_CROCK Buffer page must be faulted into memory.

Context

FDT dispatching code in the $QIO system service calls EXE_STD$MODIFY as an
upper-level FDT action routine at IPL$_ASTDEL.

Description

A driver specifies the system-supplied upper-level FDT action routine EXE_
STD$MODIFY to prepare a direct-I/O read/write request. A driver cannot specify
EXE_STD$MODIFY for buffered-I/O functions. Drivers that process functions
that require an intermediate system buffer typically supply their own upper-level
FDT action routines to handle them.

EXE_STD$MODIFY performs the following functions:

• Sets IRP$V_FUNC in IRP$L_STS to indicate a read function

• Copies the p4 argument of the $QIO request from IRP$L_QIO_P4 to IRP$B_
CARCON

9–104 System Routines

System Routines
EXE_STD$MODIFY

• Translates a logical read/write function to a physical read/write function and
stores the new function code in IRP$L_FUNC.

• Examines the size of the transfer, as specified in the p2 argument of the $QIO
request (IRP$L_QIO_P2), and takes one of the following actions:

If the transfer byte count is zero, EXE_STD$MODIFY invokes the
$QIODRVPKT macro to deliver the IRP to the driver’s start-I/O routine.
EXE_STD$MODIFY regains control with SS$_FDT_COMPL status in R0
and a final $QIO system service status of SS$_NORMAL in the FDT_
CONTEXT structure. It returns to the $QIO system service, passing
these status values.

The driver start-I/O routine should check for zero-length buffers to avoid
mapping to adapter node space. An attempted mapping can cause a
system failure.

If the byte count is not zero, EXE_STD$MODIFY calls EXE_
STD$MODIFYLOCK, passing 0 as the value of the err_rout argument.

EXE_STD$MODIFYLOCK disables an optimization in MMG_STD$IOLOCK and
joins the code for EXE_STD$READLOCK. EXE_STD$MODIFYLOCK invokes the
$READCHK macro, which calls EXE_STD$READCHK.

EXE_STD$READCHK performs the following actions:

• Moves the transfer byte count (size parameter) into IRP$L_BCNT.

If the byte count is negative, it calls EXE_STD$ABORTIO, passing it a
qio_sts of SS$_BADPARAM. When it regains control, EXE_STD$READCHK
returns to EXE_STD$MODIFYLOCK with SS$_BADPARAM status in the
FDT_CONTEXT structure and SS$_FDT_COMPL status in R0. EXE_
STD$MODIFYLOCK immediately returns to EXE_STD$MODIFY, passing
these status values. EXE_STD$MODIFY, in turn, returns to the $QIO system
service.

• Determines if the specified buffer is write accessible for a read I/O function,
with one of the following results:

If the buffer allows write access returns SS$_NORMAL in R0 to EXE_
STD$MODIFYLOCK.

If the buffer does not allow write access, EXE_STD$READCHK
calls EXE_STD$ABORTIO, passing it a qio_sts of SS$_ACCVIO.
When it regains control, EXE_STD$READCHK returns to EXE_
STD$MODIFYLOCK with SS$_ACCVIO status in the FDT_CONTEXT
structure and SS$_FDT_COMPL status in R0. EXE_STD$MODIFYLOCK
immediately returns to EXE_STD$MODIFY, passing these status values.
EXE_STD$MODIFY returns to the $QIO system service.

If EXE_STD$READCHK succeeds, EXE_STD$MODIFYLOCK moves into IRP$L_
BOFF and IRP$L_OBOFF the byte offset to the start of the buffer and calls
MMG_STD$IOLOCK.

MMG_STD$IOLOCK attempts to lock into memory those pages that contain the
buffer, with one of the following results:

• If MMG_STD$IOLOCK succeeds, EXE_STD$MODIFYLOCK stores in IRP$L_
SVAPTE the system virtual address of the process PTE that maps the
first page of the buffer, and returns SS$_NORMAL status in R0 to EXE_
STD$MODIFYLOCK. EXE_STD$MODIFYLOCK returns immediately to
EXE_STD$MODIFY, passing to it this status value.

System Routines 9–105

System Routines
EXE_STD$MODIFY

EXE_STD$MODIFY invokes the $QIODRVPKT macro to deliver the IRP
to the driver’s start-I/O routine. EXE_STD$MODIFY regains control with
SS$_FDT_COMPL status in R0 and a final $QIO system service status of
SS$_NORMAL in the FDT_CONTEXT structure. It returns to the $QIO
system service, passing these status values.

• If MMG_STD$IOLOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL, or
page fault status to EXE_STD$MODIFYLOCK.

For SS$_ACCVIO and SS$_INSFWSL status, EXE_STD$MODIFYLOCK
calls EXE_STD$ABORTIO, passing it one of these status values as a qio_sts
argument. When it regains control, EXE_STD$MODIFYLOCK returns EXE_
STD$MODIFY the specified status value in the FDT_CONTEXT structure
and SS$_FDT_COMPL status in R0. EXE_STD$MODIFY returns to the
$QIO system service.

For page fault status, EXE_STD$MODIFYLOCK sets the final $QIO status
in the FDT_CONTEXT structure to SS$_QIO_CROCK and initializes FDT_
CONTEXT$L_QIO_R1_VALUE to the virtual address to be faulted. It then
adjusts the direct I/O count and AST count to the values they held before the
I/O request, deallocates the IRP, and restarts the I/O request at the $QIO
system service. This procedure is carried out so that the user process can
receive ASTs while it waits for the page fault to complete. Once the page is
faulted into memory, the $QIO system service will resubmit the I/O request.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The FDT routine EXE$MODIFY expects as input in R7 the number of the
bit that specifies the code for the requested I/O function from R7, and, in R8,
the address of the entry in the function decision table from which it received
control.

R0, R7, and R8 are not provided as input to EXE_STD$MODIFY.

• EXE$MODIFY returns control to the system service dispatcher, passing it
the final $QIO system service status (SS$_NORMAL, SS$_ACCVIO, or SS$_
BADPARAM, or SS$_INSFWSL) in R0. EXE_STD$MODIFY returns to its
caller, passing it SS$_FDT_COMPL status in R0 and storing the final $QIO
system service status in the FDT_CONTEXT structure. The $QIO system
service retrieves the status from this structure.

9–106 System Routines

System Routines
EXE_STD$MODIFYLOCK

EXE_STD$MODIFYLOCK

Validates and prepares a user buffer for a direct-I/O, DMA read/write operation.

Module

SYSQIOFDT

Format

status = EXE_STD$MODIFYLOCK (irp, pcb, ucb, ccb, buf, bufsiz, err_rout)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required
buf address input reference required
bufsiz integer input value required
err_rout procedure

value
input value required

irp
I/O request packet for the current I/O request.

EXE_STD$MODIFYLOCK reads IRP$B_RMOD to determine the access mode of
the caller of the $QIO system service.

EXE_STD$MODIFYLOCK writes the following IRP fields:

Field Contents

IRP$L_SVAPTE System virtual address of the PTE that maps the first
page of the buffer

IRP$L_BOFF Byte offset to start of transfer in page
IRP$L_OBOFF Original byte offset into the first page of a segmented

direct-I/O transfer
IRP$L_BCNT Size of transfer in bytes

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

System Routines 9–107

System Routines
EXE_STD$MODIFYLOCK

ccb
Channel control block that describes the process-I/O channel.

buf
Virtual address of buffer.

bufsiz
Number of bytes in transfer.

err_rout
Procedure value of error-handling callback routine, or 0 if the driver does not
process errors.

A driver typically specifies an error-handling callback routine when the driver
must lock multiple areas into memory for a single I/O request and regain control
to unlock these areas, if the request is to be aborted. The routine performs
those tasks required before the request is backed out of or aborted. Such
operations could include calling MMG_STD$UNLOCK to release previous buffers
participating in the I/O operation. The error-handling routine must preserve R0
and R1 and return back to EXE_STD$MODIFYLOCK.

Chapter 8 describes the error-handling callback routine interface.

Return Values

SS$_NORMAL The buffer is read-accessible and has been locked
in memory.

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Buffer specified in buf parameter does not allow
read access.

SS$_BADPARAM bufsiz parameter is less than zero.
SS$_INSFWSL Insufficient working set limit.
SS$_NORMAL Nothing has occurred yet to prevent the I/O

request from being successfully queued. This is
the initial value of the status field in an FDT_
CONTEXT structure.

SS$_INSFWSL Insufficient working set limit.
SS$_QIO_CROCK Buffer page must be faulted into memory.

Context

The system-supplied upper-level FDT action routine EXE_STD$MODIFY, or a
driver-specific upper-level FDT action routine, calls EXE_STD$MODIFYLOCK at
IPL$_ASTDEL.

9–108 System Routines

System Routines
EXE_STD$MODIFYLOCK

Description

A driver FDT routine calls the system-supplied FDT support routine EXE_
STD$MODIFYLOCK to check the read accessibility of an I/O buffer supplied
in a $QIO request for a read/write function, and lock the buffer in memory in
preparation for a DMA read/write operation.

A driver cannot specify EXE_STD$MODIFY for buffered-I/O functions. Drivers
that process functions that require an intermediate system buffer typically supply
their FDT routines to handle them.

EXE_STD$MODIFYLOCK disables an optimization in MMG_STD$IOLOCK and
joins the code for EXE_STD$READLOCK. EXE_STD$MODIFYLOCK invokes the
$READCHK macro, which calls EXE_STD$READCHK.

EXE_STD$READCHK performs the following actions:

• Moves the transfer byte count (bufsiz parameter) into IRP$L_BCNT.

If the byte count is negative, EXE_STD$READCHK returns SS$_BADPARAM
status to EXE_STD$MODIFYLOCK.

• Determines if the specified buffer is write accessible for a read I/O function,
with one of the following results:

If the buffer allows write access, EXE_STD$READCHK sets IRP$V_
FUNC in IRP$L_STS and returns SS$_NORMAL in R0 to EXE_
STD$MODIFYLOCK.

If the buffer does not allow write access, EXE_STD$READCHK returns
SS$_ACCVIO status to EXE$_STD$MODIFYLOCK.

If error status (SS$_BADPARAM or SS$_ACCVIO) is returned, EXE_
STD$MODIFYLOCK immediately calls the specified error-handling callback
routine, passing to it the IRP, PCB, UCB, CCB, and status value. The
callback routine must preserve R0 and R1 and return control to EXE_
STD$MODIFYLOCK. When the callback routine returns (or if no callback
routine is specified), EXE_STD$MODIFYLOCK calls EXE_STD$ABORTIO,
passing it the error status as qio_sts. EXE_STD$ABORTIO returns to EXE_
STD$MODIFYLOCK with the error status in the FDT_CONTEXT structure and
SS$_FDT_COMPL status in R0. EXE_STD$MODIFYLOCK immediately returns
to its caller, passing these status values.

If SS$_NORMAL status is returned, EXE_STD$MODIFYLOCK moves into
IRP$L_BOFF and IRP$L_OBOFF the byte offset to the start of the buffer and
calls MMG_STD$IOLOCK.

MMG_STD$IOLOCK attempts to lock into memory those pages that contain the
buffer, with one of the following results:

• If MMG_STD$IOLOCK succeeds, EXE_STD$MODIFYLOCK stores in IRP$L_
SVAPTE the system virtual address of the process PTE that maps the
first page of the buffer, and returns SS$_NORMAL status in R0 to EXE_
STD$MODIFYLOCK. EXE_STD$MODIFYLOCK returns immediately to its
caller, passing to it this status value.

• If MMG_STD$IOLOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL, or
page fault status to EXE_STD$MODIFYLOCK. EXE_STD$MODIFYLOCK
immediately calls the specified error-handling callback routine, passing to
it the IRP, PCB, UCB, CCB, and status value. The callback routine must
preserve R0 and R1 and return control to EXE_STD$MODIFYLOCK. When

System Routines 9–109

System Routines
EXE_STD$MODIFYLOCK

the callback routine returns (or if no callback routine is specified), EXE_
STD$MODIFYLOCK proceeds as follows:

For SS$_ACCVIO and SS$_INSFWSL status, EXE_STD$MODIFYLOCK
calls EXE_STD$ABORTIO, passing it one of these status values as a
qio_sts argument. When it regains control, EXE_STD$MODIFYLOCK
returns to its caller the specified status value in the FDT_CONTEXT
structure and SS$_FDT_COMPL status in R0.

For page fault status, EXE_STD$MODIFYLOCK sets the final $QIO
status in the FDT_CONTEXT structure to SS$_QIO_CROCK and
initializes FDT_CONTEXT$L_QIO_R1_VALUE to the virtual address
to be faulted. It then adjusts the direct I/O count and AST count to the
values they held before the I/O request, deallocates the IRP, and restarts
the I/O request at the $QIO system service. This procedure is carried
out so that the user process can receive ASTs while it waits for the page
fault to complete. Once the page is faulted into memory, the $QIO system
service will resubmit the I/O request.

The caller of EXE_STD$MODIFYLOCK must examine the status in R0:

• If the status is SS$_NORMAL, the buffer is write accessible and has been
successfully locked into memory and the starting virtual address of the page
table entries that map the buffer is available in IRP$L_SVAPTE.

• If the status is SS$_FDT_COMPL, an error has occurred that has caused
the I/O request to be aborted. You can determine the reason for the failure
from FDT_CONTEXT$L_QIO_STATUS. Ordinarily a driver specifies an
error-handling callback routine to process such errors.

Note that a driver cannot access the IRP once it has received SS$_FDT_
COMPL status. If you know you need access to information stored in the
IRP to back out an I/O request that has been aborted, you must store that
information elsewhere prior to calling EXE_STD$MODIFYLOCK.

Macro

CALL_MODIFYLOCK
CALL_MODIFYLOCK_ERR [interface_warning=YES]

where:

interface_warning=YES, the default, specifies that the macro generate
a compile-time warning indicating how the behavior of the macro differs
from the VAX version of the corresponding system routine. interface_
warning=NO suppresses the warning.

In an Alpha driver, CALL_MODIFYLOCK simulates a JSB to
EXE$MODIFYLOCK and CALL_MODIFYLOCK_ERR simulates a
JSB to EXE$MODIFYLOCK_ERR. CALL_MODIFYLOCK calls EXE_
STD$MODIFYLOCK, specifying 0 as the err_rout argument; CALL_
MODIFYLOCK_ERR also calls EXE_STD$MODIFYLOCK, using the contents of
R2 as the err_rout argument. Both macros supply the current contents of R3,
R4, R5, R6, R0, and R1 as the irp, pcb, ucb, ccb, buf, and bufsiz arguments,
respectively.

9–110 System Routines

System Routines
EXE_STD$MODIFYLOCK

When EXE_STD$MODIFYLOCK or EXE_STD$MODIFYLOCK_ERR returns,
code generated by the macro examines the return status:

• If success status (SS$_NORMAL) is returned, the macro moves the contents
of IRP$L_SVAPTE into R1 and writes a 5 into R2 to indicate a modify
operation. Status is returned in R0 and in the FDT_CONTEXT structure.

• If failure status (SS$_FDT_COMPL) is returned, the macro writes a 5 to R2
to indicate a modify operation and and returns to FDT dispatching code in
the $QIO system service.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE_STD$MODIFYLOCK replaces EXE$MODIFYLOCK and
EXE$MODIFYLOCK_ERR.

R0, R7, and R8 are not provided as input to EXE_STD$MODIFYLOCK.

• The order in which formal parameters are passed to EXE_
STD$MODIFYLOCK differs from the order in which they are provided in
registers to the VAX routines EXE$MODIFYLOCK and EXE$MODIFYLOCK_
ERR.

• EXE$MODIFYLOCK_ERR provides a mechanism by which a driver callback
routine obtains control upon an error condition prior to the abortion of an I/O
request. EXE_STD$MODIFYLOCK accepts the address of an error-handling
callback routine in the err_rout argument. The error-handling routine is
called after an I/O request encounters a buffer access or memory allocation
failure and before the request is aborted.

• The design of FDT processing for OpenVMS Alpha device drivers guarantees
that the caller of EXE_STD$MODIFYLOCK regains control whether the
modify lock operation is successful or not. When a driver regains control from
a call to EXE_STD$MODIFYLOCK, return status in R0 indicates that the
buffer has been successfully locked (SS$_NORMAL) or that the operation
failed and the request has been aborted (SS$_FDT_COMPL). The driver must
check the return status and take appropriate action. Final $QIO completion
status, indicating the reason the operation failed, is stored in the FDT_
CONTEXT structure.

Normally, a driver services a modify lock failure by supplying the address of
an error-handling callback routine to EXE_STD$MODIFYLOCK.

• Driver code that executes after receiving failure status (SS$_FDT_
COMPL) from EXE_STD$MODIFYLOCK cannot access information
in the IRP. If the driver anticipates accessing IRP fields when EXE_
STD$MODIFYLOCK returns, it must store these fields elsewhere before
calling EXE_STD$MODIFYLOCK.

• Upon successful completion, EXE$MODIFYLOCK and EXE$MODIFYLOCK_
ERR provide as output the system virtual address of the first process
PTE that maps the buffer in R1 and in IRP$L_SVAPTE. Because EXE_
STD$MODIFYLOCK does not provide R1 as output, a driver must obtain
this information from IRP$L_SVAPTE. Similarly, the VAX routines set R2 to
1 to indicate a a read function. EXE_STD$MODIFYLOCK does not provide
R2 as output; a driver can determine whether a function is write or read by
examining IRP$V_FUNC in IRP$L_STS.

System Routines 9–111

System Routines
EXE_STD$MOUNT_VER

EXE_STD$MOUNT_VER

During I/O postprocessing, determines whether mount verification should be
initiated on a given disk or tape device on behalf of the I/O request being
completed.

Module

MOUNTVER

Format

status = EXE_STD$MOUNT_VER (iost1, iost2, irp, ucb)

Arguments

Argument Type Access Mechanism Status

iost1 integer input value required
iost2 integer input value required
irp IRP input reference required
ucb UCB input reference required

iost1
First longword of I/O status.

iost2
Second longword of I/O status.

irp
I/O request packet. This argument is 0 if there is no IRP to clean up.

ucb
Unit control block.

Return Values

status Low bit set indicates that mount verification
has not been initiated and that the caller should
continue; low bit clear indicates that mount
verification has been initiated and that the caller
should return.

Context

EXE_STD$MOUNT_VER is typically called at or above IPL$_IOPOST.

9–112 System Routines

System Routines
EXE_STD$MOUNT_VER

Description

For Digital internal use only.

Macro

CALL_MOUNT_VER [save_r0r1]

where:

save_r0r1 indicates that the macro should preserve registers R0 and R1
across the call to EXE_STD$MOUNT_VER. If save_r0r1 is blank or save_
r0r1=YES, the 64-bit registers are saved. (In the former case, the macro
generates a compile-time message. If save_r0r1=NO, the registers are not
saved.)

In an Alpha driver, CALL_MOUNT_VER calls EXE_STD$MOUNT_VER, using
the current contents of R0, R1, R3, and R5 as the iost1, iost2, irp, and ucb
arguments, respectively. When EXE_STD$MOUNT_VER returns, code generated
by this macro copies return status from R0 to R2. Unless you specify save_
r0r1=NO, the macro preserves the quadword registers R0 and R1 across the call.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE_STD$MOUNT_VER replaces EXE$MOUNT_VER. Unlike
EXE$MOUNT_VER, EXE_STD$MOUNT_VER does not preserve R0 and
R1 across the call, or provide its return status in R2.

System Routines 9–113

System Routines
EXE_STD$ONEPARM

EXE_STD$ONEPARM

Copies a single $QIO parameter from IRP$L_QIO_P1 to IRP$L_MEDIA and
delivers the IRP to a driver’s start-I/O routine.

Module

SYSQIOFDT

Format

status = EXE_STD$ONEPARM (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet for the current I/O request. EXE_STD$ONEPARM copies
the first $QIO function-specific parameter (p1) from IRP$L_QIO_P1 to IRP$L_
MEDIA.

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

ccb
Channel control block that describes the process-I/O channel

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_NORMAL The routine completed successfully.

9–114 System Routines

System Routines
EXE_STD$ONEPARM

Context

FDT dispatching code in the $QIO system service calls EXE_STD$ONEPARM as
an upper-level FDT action routine at IPL$_ASTDEL.

Description

A driver specifies the system-supplied upper-level FDT action routine EXE_
STD$ONEPARM to process an I/O function code that requires only one
parameter. This parameter should need no checking: for instance, for read
or write accessibility.

EXE_STD$ONEPARM copies the first $QIO function-dependent parameter (p1)
from IRP$L_QIO_P1 to IRP$L_MEDIA and invokes the $QIODRVPKT macro
to deliver the IRP to the driver. EXE_STD$ONEPARM regains control with
SS$_FDT_COMPL status in R0 and a final $QIO system service status of SS$_
NORMAL in the FDT_CONTEXT structure.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The FDT routine EXE$ONEPARM (used by OpenVMS VAX) obtains the value
of the first function-dependent argument (p1) specified in the $QIO request
from 00(AP). An OpenVMS Alpha FDT routine cannot obtain the argument as
an offset from the AP; rather, it accesses the argument from a new IRP field,
IRP$L_QIO_P1.

In order to convert an OpenVMS VAX driver to an OpenVMS Alpha driver,
the upper-level action routine EXE_STD$ONEPARM exists, to move the value
of (p1) from IRP$L_QIO_P1 to IRP$L_MEDIA and invokes the $QIODRVPKT
macro. If your driver does not access (p1) from IRP$L_MEDIA, but rather,
uses the contents of IRP$L_QIO_P1, specifying EXE_STD$ONEPARM
as an upper-level FDT action routine may defy all logic. (If your driver
ignores the contents of IRP$L_MEDIA, it is immaterial whether you specify
EXE_STD$ZEROPARM or EXE_STD$ONEPARM as the upper-level FDT
action routine that delivers the IRP to the driver.) To avoid the unnecessary
copy, you can write an upper-level FDT action routine that invokes the
$QIODRVPKT macro.

• EXE$ONEPARM expects as input in R7 the number of the bit that specifies
the code for the requested I/O function from R7, and, in R8, the address of the
entry in the function decision table (FDT) from which it received control.

R0, R7, and R8 are not provided as input to EXE_STD$ONEPARM.

• EXE$ONEPARM returns control to the system service dispatcher, passing
it the final $QIO system service status (SS$_NORMAL) in R0. EXE_
STD$ONEPARM returns to its caller, passing it SS$_FDT_COMPL status in
R0 and storing the final $QIO system service status in the FDT_CONTEXT
structure. The $QIO system service retrieves the status from this structure.

System Routines 9–115

System Routines
EXE_STD$PRIMITIVE_FORK

EXE_STD$PRIMITIVE_FORK

Creates a simple fork process on the local processor.

Module

FORKCNTRL

Format

EXE_STD$PRIMITIVE_FORK (fr3, fr4, fkb)

Arguments

Argument Type Access Mechanism Status

fr3 int64 input value required
fr4 int64 input value required
fkb FKB input reference required

fr3
Value to pass to the fork routine in FKB$Q_FR3.

fr4
Value to pass to the fork routine in FKB$Q_FR4.

fkb
Fork block. At input, FKB$B_FLCK must contain the fork lock index and
FKB$L_FPC must contain the procedure value of the fork routine.

Context

EXE_STD$PRIMITIVE_FORK acquires no spin locks and leaves IPL unchanged.
EXE_STD$PRIMITIVE_FORK, unlike the OpenVMS VAX system routine
EXE$FORK, returns to its caller and not to its caller’s caller. It assumes that,
prior to the call, its caller has placed the procedure value of the fork routine into
FKB$L_FPC.

EXE_STD$PRIMITIVE_FORK provides fork context to the fork routine in
FKB$Q_FR3 (contents of fr3) and FKB$Q_FR4 (contents fr4). All other registers
are destroyed. The fork routine executes at the IPL indicated by the fork lock
index stored in FKB$B_FLCK.

Description

EXE_STD$PRIMITIVE_FORK moves the contents of the fr3 and fr4 arguments
into FKB$Q_FR3 and FKB$Q_FR4, respectively. It determines the fork IPL
by using the value of FKB$B_FLCK as an index into the spin lock IPL vector
(SMP$AL_IPLVEC). EXE_STD$PRIMITIVE_FORK inserts the fork block into the
fork queue on the local processor (headed by CPU$Q_SWIQFL) corresponding to
this IPL. If the queue is empty, EXE_STD$PRIMITIVE_FORK issues a SOFTINT
macro, requesting a software interrupt from the local processor at that fork IPL.

9–116 System Routines

System Routines
EXE_STD$PRIMITIVE_FORK

A driver that calls EXE_STD$PRIMITIVE_FORK explicitly (that is, instead of
invoking the IOFORK macro) must ensure that UCB$V_TIM in the UCB$L_STS
field is clear before making the call.

Macro

FORK
IOFORK

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE_STD$PRIMITIVE_FORK is a call-based routine that performs the same
operation as the JSB-based routine EXE$PRIMITIVE_FORK on OpenVMS
Alpha systems. The OpenVMS VAX routines EXE$FORK and EXE$IOFORK
are not provided on OpenVMS Alpha systems.

System Routines 9–117

System Routines
EXE_STD$PRIMITIVE_FORK_WAIT

EXE_STD$PRIMITIVE_FORK_WAIT

Inserts a fork block on the fork-and-wait queue.

Module

FORKCNTRL

Format

EXE_STD$PRIMITIVE_FORK_WAIT (fr3, fr4, fkb)

Arguments

Argument Type Access Mechanism Status

fr3 int64 input value required
fr4 int64 input value required
fkb FKB input reference required

fr3
Value to pass to the fork routine in FKB$Q_FR3.

fr4
Value to pass to the fork routine in FKB$Q_FR4.

fkb
Fork block. At input, FKB$B_FLCK must contain the fork lock index and
FKB$L_FPC must contain the procedure value of the fork routine.

Context

The caller of EXE_STD$PRIMITIVE_FORK_WAIT must be executing at or
above IPL$_SYNCH. EXE_STD$PRIMITIVE_FORK_WAIT acquires the MEGA
(SPL$C_MEGA) spin lock, raising IPL to IPL$_MEGA in the process, to access
the fork-and-wait queue (EXE$AR_FORK_WAIT_QUEUE). It releases the spin
lock, restoring the previous IPL, prior to returning to its caller.

EXE_STD$PRIMITIVE_FORK_WAIT, unlike the OpenVMS VAX system routine
EXE$FORK_WAIT, returns to its caller and not to its caller’s caller. It assumes
that, prior to the call, its caller has placed the procedure value of the fork routine
into FKB$L_FPC.

EXE_STD$PRIMITIVE_FORK_WAIT provides fork context to the fork routine
in FKB$Q_FR3 (contents of fr3) and FKB$Q_FR4 (contents of fr4). All other
registers are destroyed. The fork routine executes at the IPL indicated by the
fork lock index stored in FKB$B_FLCK.

9–118 System Routines

System Routines
EXE_STD$PRIMITIVE_FORK_WAIT

Description

EXE_STD$PRIMITIVE_FORK_WAIT moves the contents of fr3 and fr4 into
FKB$Q_FR3 and FKB$Q_FR4 respectively. Having obtained the MEGA spin
lock, it inserts the fork block indicated by fkb at end of the fork-and-wait queue
(EXE$GL_FKWAITBL) and releases the spin lock.

Up to one second later, the software timer interrupt service routine will remove
this and all other entries from the fork-and-wait queue and resume their
respective fork routines.

Macro

FORK_WAIT

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE_STD$PRIMITIVE_FORK_WAIT is a call-based routine that performs
the same operation as the JSB-based routine EXE$PRIMITIVE_FORK_WAIT
on OpenVMS Alpha systems. The OpenVMS VAX routines EXE$FORK and
EXE$IOFORK are not provided on OpenVMS Alpha systems.

System Routines 9–119

System Routines
EXE_STD$QIOACPPKT

EXE_STD$QIOACPPKT

Delivers an IRP to the appropriate ACP or XQP.

Module

SYSQIOREQ

Format

status = EXE_STD$QIOACPPKT (irp, pcb, ucb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required

irp
I/O request packet.

pcb
Process control block.

ucb
Unit control block.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_NORMAL The routine completed successfully.

Context

EXE_STD$QIOACPPKT is called by, and returns to, a driver’s FDT routine at
IPL$_ASTDEL.

Description

For Digital internal use only.

9–120 System Routines

System Routines
EXE_STD$QIOACPPKT

Macro

CALL_QIOACPPKT [do_ret=YES]

where:

do_ret indicates that the macro generates a RET instruction at the end of its
expansion, thus returning control to the caller of the routine that invokes it.

In an Alpha driver, the calls EXE_STD$QIOACPPKT using the current contents
of R3, R4, and R5 as the irp, pcb, and ucb arguments, respectively. When EXE_
STD$QIOACPPKT returns control to the code generated by a default invocation
of CALL_QIOACPPKT, a RET instruction returns control to the caller of the
macro’s invoker. Status is returned in R0 and in the FDT_CONTEXT structure.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE$QIOACPPKT returns control to the system service dispatcher, passing
it the final $QIO system service status (SS$_NORMAL) in R0. EXE_
STD$QIOACPPKT returns to its caller, passing it SS$_FDT_COMPL status
in R0 and storing the final $QIO system service status (SS$_NORMAL) in the
FDT context structure. The $QIO system service retrieves the status from
this structure.

System Routines 9–121

System Routines
EXE_STD$QIODRVPKT

EXE_STD$QIODRVPKT

Delivers an IRP to a driver’s start-I/O routine or pending-I/O queue.

Module

SYSQIOREQ

Format

status = EXE_STD$QIODRVPKT (irp, ucb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
ucb UCB input reference required

irp
I/O request packet. EXE_STD$QIODRVPKT clears IRP$PS_FDT_CONTEXT.
The caller of EXE_STD$QIODRVPKT should not access the IRP after the routine
returns SS$_FDT_COMPL status.

ucb
Unit control block.

EXE_STD$QIODRVPKT (by means of the call to EXE_STD$INSIOQ) reads the
following UCB fields:

Field Contents

UCB$B_FLCK Fork lock index
UCB$L_STS UCB$V_BSY set if device is busy, clear if device is idle
UCB$L_IOQFL Address of pending-I/O queue listhead
UCB$L_QLEN Length of pending-I/O queue

EXE_STD$QIODRVPKT (by means of the call to EXE_STD$INSIOQ) writes the
following UCB fields:

Field Contents

UCB$L_STS UCB$V_BSY set
UCB$W_QLEN Increased

9–122 System Routines

System Routines
EXE_STD$QIODRVPKT

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_NORMAL The routine completed successfully.

Context

EXE_STD$QIODRVPKT is called by, and returns to, a driver’s FDT routine at
IPL$_ASTDEL.

Description

The FDT completion routine EXE_STD$QIODRVPKT delivers an IRP to the
driver’s start-I/O routine or pending-I/O queue.

EXE_STD$QIODRVPKT clears the pointer to the FDT context structure in
IRP$PS_FDT_CONTEXT and calls. EXE_STD$INSIOQ checks the status of the
device and calls either EXE_STD$INSERT_IRP or IOC_STD$INITIATE to place
the IRP in the device’s pending-I/O queue or deliver it to the driver’s start-I/O
routine, respectively.

When EXE_STD$INSIOQ returns, EXE_STD$QIODRVPKT returns SS$_FDT_
COMPL status to its caller, passing SS$_NORMAL as the final $QIO completion
status in the FDT context structure.

The image that requested the I/O operation receives SS$_NORMAL status,
indicating that the I/O request has completed without device-independent error.

Macro

CALL_QIODRVPKT [do_ret=YES]

where:

do_ret indicates that the macro generates a RET instruction at the end of its
expansion, thus returning control to the caller of the routine that invokes it.

In an Alpha driver, the CALL_QIODRVPKT macro clears IRP$PS_FDT_
CONTEXT and calls EXE_STD$INSIOQ, using the current contents of R3
and R5 as the irp and ucb arguments, respectively. When EXE_STD$INSIOQ
returns control to the code generated by a default invocation of $QIODRVPKT,
a RET instruction returns control to the caller of the macro’s invoker. Status is
returned in R0.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The address of the PCB, supplied as input to EXE$QIODRVPKT on OpenVMS
VAX systems, is not provided as input to EXE_STD$QIODRVPKT.

System Routines 9–123

System Routines
EXE_STD$QIODRVPKT

• Unlike EXE$QIODRVPKT, EXE_STD$QIODRVPKT does not lower IPL to 0
before exiting. EXE_STD$QIODRVPKT returns to its caller at the caller’s
IPL.

• EXE$QIODRVPKT returns control to the system service dispatcher, passing
it the final $QIO system service status (SS$_NORMAL) in R0. EXE_
STD$QIODRVPKT returns to its caller, passing it SS$_FDT_COMPL status
in R0 and storing the final $QIO system service status (SS$_NORMAL) in the
FDT context structure. The $QIO system service retrieves the status from
this structure.

9–124 System Routines

System Routines
EXE_STD$QXQPPKT

EXE_STD$QXQPPKT

Inserts an I/O request packet on the end of the XQP work queue and initiates its
processing if it is the only request on the queue.

Module

SYSQIOREQ

Format

status = EXE_STD$QXQPPKT (pcb, acb)

Arguments

Argument Type Access Mechanism Status

pcb PCB input reference required
acb ACB input reference required

pcb
Process control block.

acb
AST control block within the IRP.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_NORMAL The routine completed successfully.

Context

EXE_STD$QXQPPKT is called by, and returns to, a driver’s FDT routine at
IPL$_ASTDEL.

Description

For Digital internal use only.

System Routines 9–125

System Routines
EXE_STD$QXQPPKT

Macro

CALL_QXQPPKT

In an Alpha driver, the CALL_QXQPPKT macro calls EXE_STD$QXQPPKT using
the current contents of R4 and R5 as the pcb and acb arguments, respectively.
Status is returned in R0 and in the FDT_CONTEXT structure.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE$QXQPPKT returns control to the system service dispatcher, passing
it the final $QIO system service status (SS$_NORMAL) in R0. EXE_
STD$QXQPPKT returns to its caller, passing it SS$_FDT_COMPL status
in R0 and storing the final $QIO system service status (SS$_NORMAL) in the
FDT context structure. The $QIO system service retrieves the status from
this structure.

9–126 System Routines

System Routines
EXE_STD$READ

EXE_STD$READ

Translates a logical read function into a physical read function, transfers $QIO
system service parameters to the IRP, validates and prepares a user buffer, and
aborts the request or proceeds with a direct-I/O, DMA write operation.

Module

SYSQIOFDT

Format

status = EXE_STD$READ (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet for the current I/O request.

EXE_STD$READ reads the following IRP fields:

Field Contents

IRP$L_QIO_P1 $QIO system service p1 argument, containing the
buffer’s virtual address.

IRP$L_QIO_P2 $QIO system service p2 argument, containing the
number of bytes in transfer. The maximum number
of bytes that EXE_STD$READ can transfer is 65,535
(128 pages minus one byte).

IRP$L_QIO_P4 $QIO system service p4 argument, containing the
carriage control byte.

IRP$L_FUNC I/O function code.
IRP$B_RMOD Access mode of the caller of the $QIO system service.

EXE_STD$READ writes the following IRP fields:

Field Contents

IRP$B_CARCON Carriage control byte (from IRP$L_QIO_P4)
IRP$L_FUNC Logical read function code converted to physical
IRP$L_STS IRP$V_FUNC set to indicate read function

System Routines 9–127

System Routines
EXE_STD$READ

Field Contents

IRP$L_SVAPTE System virtual address of the PTE that maps the first
page of the buffer

IRP$L_BOFF Byte offset to start of transfer in page
IRP$L_OBOFF Original byte offset into the first page of a segmented

direct-I/O transfer
IRP$L_BCNT Size of transfer in bytes

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

ccb
Channel control block that describes the process-I/O channel

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Buffer specified in buf parameter does not allow
write access.

SS$_BADPARAM bufsiz parameter is less than zero.
SS$_INSFWSL Insufficient working set limit.
SS$_NORMAL The I/O request has been successfully queued.
SS$_QIO_CROCK Buffer page must be faulted into memory.

Context

FDT dispatching code in the $QIO system service calls EXE_STD$READ as an
upper-level FDT action routine at IPL$_ASTDEL.

Description

A driver specifies the system-supplied upper-level FDT action routine EXE_
STD$READ to prepare a direct-I/O read request. A driver cannot specify EXE_
STD$READ for buffered-I/O functions. Drivers that process functions that
require an intermediate system buffer typically supply their own upper-level FDT
action routines to handle them.

EXE_STD$READ performs the following functions:

• Sets IRP$V_FUNC in IRP$L_STS to indicate a read function

• Copies the p4 argument of the $QIO request from IRP$L_QIO_P4 to IRP$B_
CARCON

9–128 System Routines

System Routines
EXE_STD$READ

• Translates a logical read function to a physical read function and stores the
new function code in IRP$L_FUNC.

• Examines the size of the transfer, as specified in the p2 argument of the $QIO
request (IRP$L_QIO_P2), and takes one of the following actions:

If the transfer byte count is zero, EXE_STD$READ invokes the
$QIODRVPKT macro to deliver the IRP to the driver’s start-I/O routine.
EXE_STD$READ regains control with SS$_FDT_COMPL status in R0
and a final $QIO system service status of SS$_NORMAL in the FDT_
CONTEXT structure. It returns to the $QIO system service, passing
these status values.

The driver start-I/O routine should check for zero-length buffers to avoid
mapping to adapter node space. An attempted mapping can cause a
system failure.

If the byte count is not zero, EXE_STD$READ calls EXE_
STD$READLOCK, specifying 0 as the err_rout argument.

EXE_STD$READLOCK invokes the $READCHK macro, which calls EXE_
STD$READCHK.

EXE_STD$READCHK performs the following actions:

• Moves the transfer byte count (bufsiz parameter) into IRP$L_BCNT.

If the byte count is negative, it calls EXE_STD$ABORTIO, passing it a
qio_sts of SS$_BADPARAM. When it regains control, EXE_STD$READCHK
returns to EXE_STD$READLOCK with SS$_BADPARAM status in the
FDT_CONTEXT structure and SS$_FDT_COMPL status in R0. EXE_
STD$READLOCK immediately returns to EXE_STD$READ, passing these
status values. EXE_STD$READ, in turn, returns to the $QIO system service.

• Determines if the specified buffer is write accessible for a read I/O function,
with one of the following results:

If the buffer allows write access, EXE_STD$READCHK sets IRP$V_
FUNC in IRP$L_STS and returns SS$_NORMAL in R0 to EXE_
STD$READLOCK.

If the buffer does not allow write access, EXE_STD$READCHK calls
EXE_STD$ABORTIO, passing it a qio_sts of SS$_ACCVIO. When it
regains control, EXE_STD$READCHK returns to EXE_STD$READLOCK
with SS$_ACCVIO status in the FDT_CONTEXT structure and SS$_
FDT_COMPL status in R0. EXE_STD$READLOCK immediately returns
to EXE_STD$READ, passing these status values. EXE_STD$READ
returns to the $QIO system service.

If EXE_STD$READCHK succeeds, EXE_STD$READLOCK moves into IRP$L_
BOFF and IRP$L_OBOFF the byte offset to the start of the buffer and calls
MMG_STD$IOLOCK.

MMG_STD$IOLOCK attempts to lock into memory those pages that contain the
buffer, with one of the following results:

• If MMG_STD$IOLOCK succeeds, EXE_STD$READLOCK stores in IRP$L_
SVAPTE the system virtual address of the process PTE that maps the
first page of the buffer, and returns SS$_NORMAL status in R0 to EXE_
STD$READLOCK. EXE_STD$READLOCK returns immediately to EXE_
STD$READ, passing to it this status value.

System Routines 9–129

System Routines
EXE_STD$READ

EXE_STD$READ invokes the $QIODRVPKT macro to deliver the IRP to
the driver’s start-I/O routine. EXE_STD$READ regains control with SS$_
FDT_COMPL status in R0 and a final $QIO system service status of SS$_
NORMAL in the FDT_CONTEXT structure. It returns to the $QIO system
service, passing these status values.

• If MMG_STD$IOLOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL, or
page fault status to EXE_STD$READLOCK.

For SS$_ACCVIO and SS$_INSFWSL status, EXE_STD$READLOCK calls
EXE_STD$ABORTIO, passing it one of these status values as a qio_sts
argument. When it regains control, EXE_STD$READLOCK returns EXE_
STD$READ the specified status value in the FDT_CONTEXT structure and
SS$_FDT_COMPL status in R0. EXE_STD$READ returns to the $QIO
system service.

For page fault status, EXE_STD$READLOCK sets the final $QIO status
in the FDT_CONTEXT structure to SS$_QIO_CROCK and initializes FDT_
CONTEXT$L_QIO_R1_VALUE to the virtual address to be faulted. It then
adjusts the direct I/O count and AST count to the values they held before the
I/O request, deallocates the IRP, and restarts the I/O request at the $QIO
system service. This procedure is carried out so that the user process can
receive ASTs while it waits for the page fault to complete. Once the page is
faulted into memory, the $QIO system service will resubmit the I/O request.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The FDT routine EXE$READ expects as input in R7 the number of the bit
that specifies the code for the requested I/O function from R7, and, in R8,
the address of the entry in the function decision table from which it received
control.

R0, R7, and R8 are not provided as input to EXE_STD$READ.

• EXE$READ returns control to the system service dispatcher, passing it the
final $QIO system service status (SS$_NORMAL, SS$_ACCVIO, or SS$_
BADPARAM, or SS$_INSFWSL) in R0. EXE_STD$READ returns to its
caller, passing it SS$_FDT_COMPL status in R0 and storing the final $QIO
system service status in the FDT_CONTEXT structure. The $QIO system
service retrieves the status from this structure.

9–130 System Routines

System Routines
EXE_STD$READCHK

EXE_STD$READCHK

Verifies that a process has write access to the pages in the buffer specified in a
$QIO request.

Module

SYSQIOFDT

Format

status = EXE_STD$READCHK (irp, pcb, ucb, buf, bufsiz)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
buf address input reference required
bufsiz integer input value required

irp
I/O request packet for the current I/O request.

EXE_STD$READCHK reads IRP$B_RMOD to determine the access mode of the
caller of the $QIO system service.

EXE_STD$READCHK writes the following IRP fields:

Field Contents

IRP$L_STS IRP$V_FUNC set, indicating a read function
IRP$L_BCNT Size of transfer in bytes

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

buf
Virtual address of buffer.

bufsiz
Number of bytes in transfer.

System Routines 9–131

System Routines
EXE_STD$READCHK

Return Values

SS$_NORMAL The buffer is write-accessible.
SS$_FDT_COMPL Warning-level status indicating that FDT

processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Buffer specified in buf parameter does not allow
write access.

SS$_BADPARAM bufsiz parameter is less than zero.
SS$_INSFWSL Insufficient working set limit.
SS$_NORMAL Nothing has occurred yet to prevent the I/O

request from being successfully queued. This is
the initial value of the status field in an FDT_
CONTEXT structure.

Context

The FDT support routine EXE_STD$READLOCK, or a driver-specific FDT
routine, calls EXE_STD$READCHK at IPL$_ASTDEL.

Description

A driver FDT routine calls the system-supplied FDT support routine EXE_
STD$READCHK to check the write accessibility of an I/O buffer supplied in a
$QIO request for a read function.

EXE_STD$READCHK performs the following actions:

• Moves the transfer byte count (bufsiz parameter) into IRP$L_BCNT.

If the byte count is negative, it calls EXE_STD$ABORTIO, passing it a
qio_sts of SS$_BADPARAM. When it regains control, EXE_STD$READCHK
returns to its caller with SS$_BADPARAM status in the FDT_CONTEXT
structure and SS$_FDT_COMPL status in R0.

• Determines if the specified buffer is write accessible for a read I/O function,
with one of the following results:

If the buffer allows write access, EXE_STD$READCHK sets IRP$V_
FUNC in IRP$L_STS and returns SS$_NORMAL in R0 to its caller.

If the buffer does not allow write access, EXE_STD$READCHK calls
EXE_STD$ABORTIO, passing it a qio_sts of SS$_ACCVIO. When it
regains control, EXE_STD$READCHK returns to its caller with SS$_
ACCVIO status in the FDT_CONTEXT structure and SS$_FDT_COMPL
status in R0.

The caller of EXE_STD$READCHK must examine the status in R0:

• If the status is SS$_NORMAL, the buffer is write-accessible.

• If the status is SS$_FDT_COMPL, an error has occurred that has caused the
I/O request to be aborted. You can determine the reason for the failure from
FDT_CONTEXT$L_QIO_STATUS.

9–132 System Routines

System Routines
EXE_STD$READCHK

Certain drivers must perform additional processing to back out an I/O request
after it has aborted. For instance, if the driver has locked multiple buffers into
memory for a single I/O request, it must unlock them once the request has been
aborted. A driver cannot access the IRP once it has received SS$_FDT_COMPL
status. If you know you need access to information stored in the IRP to back out
an I/O request that has been aborted, you must store that information elsewhere
prior to calling EXE_STD$READCHK.

Macro

CALL_READCHK
CALL_READCHKR

In an Alpha driver, CALL_READCHK simulates a JSB to EXE$READCHK and
CALL_READCHKR simulates a JSB to EXE$READCHKR. Both macros call
EXE_STD$READCHK using the current contents of R3, R4, R5, R0, and R1 as
the irp, pcb, ucb, buf, and bufsiz arguments, respectively.

When EXE_STD$READCHK returns, $READCHK and $READCHKR move 1
into R2 to indicate a read operation and examines the return status:

• If success status (SS$_NORMAL) is returned, CALL_READCHK and CALL_
READCHKR copy the contents of IRP$L_BCNT into R1. CALL_READCHK
writes the starting address of the I/O buffer in R0; CALL_READCHKR
preserves the return status value in R0.

• If failure status (SS$_FDT_COMPL) is returned, CALL_READCHK returns
to FDT dispatching code in the $QIO system service. CALL_READCHKR
does not return control to $QIO.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE_STD$READCHK replaces EXE$READCHK and EXE$READCHKR.
For compatibility with the VAX routines, use the CALL_READCHK and
CALL_READCHKR macros.

• EXE$READCHK and EXE$READCHKR expect as input in R7 the number
of the bit that specifies the code for the requested I/O function from R7, and,
in R8, the address of the entry in the function decision table from which it
received control.

R0, R7, and R8 are not provided as input to EXE_STD$READCHK.

• The order in which formal parameters are passed to EXE_STD$READCHK
differs from the order in which they are provided in registers to the VAX
routines EXE$READCHK and EXE$READCHKR.

• EXE$READCHK and EXE$READCHKR provide a mechanism by which a
driver callback routine or coroutine obtains control upon an error condition
prior to the abortion of an I/O request. The design of FDT processing
for OpenVMS Alpha device drivers guarantees that the caller of EXE_
STD$READCHK regains control whether the read check operation is
successful. The caller must examine the return status in R0 (SS$_NORMAL
indicates the buffer is write accessible, SS$_FDT_COMPL indicates that
the operation failed and the request has been aborted) and take appropriate

System Routines 9–133

System Routines
EXE_STD$READCHK

action. Final $QIO completion status, indicating the reason the operation
failed, is stored in the FDT_CONTEXT structure.

• Driver code that services failure status (SS$_FDT_COMPL) from EXE_
STD$READLOCK (for instance a callback routine formerly specified to
EXE$READLOCK_ERR) cannot access information in the IRP. If the driver
anticipates handling failure status by using the contents of IRP fields, it must
store these fields elsewhere before calling EXE_STD$READLOCK.

This is especially important for driver code that expects EXE_
STD$READCHK to access the transfer size in R1 after the call. Unlike
EXE$READCHK and EXE$READCHKR, EXE_STD$READCHK does not
preserve the contents of R1 and R3 across the call. If you must repeat a
CALL_READCHK macro invocation, you must be sure to reload R0, R1, and
R3 with the virtual address of the buffer, the transfer size, and the address of
the IRP, respectively, before each subsequent invocation.

• Upon successful completion, EXE$READCHK and EXE$READCHKR set
R2 to 1 for a read function. EXE_STD$READCHK does not provide R2
as output; a driver can determine whether a function is read or write by
examining IRP$V_FUNC in IRP$L_STS.

9–134 System Routines

System Routines
EXE_STD$READLOCK

EXE_STD$READLOCK

Validates and prepares a user buffer for a direct-I/O, DMA write operation.

Module

SYSQIOFDT

Format

status = EXE_STD$READLOCK (irp, pcb, ucb, ccb, buf, bufsiz, err_rout)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required
buf address input reference required
bufsiz integer input value required
err_rout procedure

value
input value required

irp
I/O request packet for the current I/O request.

EXE_STD$READLOCK reads IRP$B_RMOD to determine the access mode of the
caller of the $QIO system service.

EXE_STD$READLOCK writes the following IRP fields:

Field Contents

IRP$L_STS IRP$V_FUNC set, indicating a read function
IRP$L_SVAPTE System virtual address of the PTE that maps the first

page of the buffer
IRP$L_BOFF Byte offset to start of transfer in page
IRP$L_OBOFF Original byte offset into the first page of a segmented

direct-I/O transfer
IRP$L_BCNT Size of transfer in bytes

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

System Routines 9–135

System Routines
EXE_STD$READLOCK

ccb
Channel control block that describes the process-I/O channel.

buf
Virtual address of buffer.

bufsiz
Number of bytes in transfer

err_rout
Procedure value of error-handling callback routine, or 0 if the driver does not
process errors.

A driver typically specifies an error-handling callback routine when the driver
must lock multiple areas into memory for a single I/O request and regain control
to unlock these areas, if the request is to be aborted. The routine performs
those tasks required before the request is backed out of or aborted. Such
operations could include calling MMG_STD$UNLOCK to release previous buffers
participating in the I/O operation. The error-handling routine must preserve R0
and R1 and return back to EXE_STD$READLOCK.

Chapter 8 describes the error-handling callback routine interface.

Return Values

SS$_NORMAL The buffer is write-accessible and has been
locked in memory.

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Buffer specified in buf parameter does not allow
write access.

SS$_BADPARAM bufsiz parameter is less than zero.
SS$_INSFWSL Insufficient working set limit.
SS$_NORMAL Nothing has occurred yet to prevent the I/O

request from being successfully queued. This is
the initial value of the status field in an FDT_
CONTEXT structure.

SS$_QIO_CROCK Buffer page must be faulted into memory.

Context

The system-supplied upper-level FDT action routine EXE_STD$READ, or a
driver-specific upper-level FDT action routine, calls EXE_STD$READLOCK at
IPL$_ASTDEL.

9–136 System Routines

System Routines
EXE_STD$READLOCK

Description

A driver FDT routine calls the system-supplied FDT support routine EXE_
STD$READLOCK to check the write accessibility of an I/O buffer supplied in a
$QIO request for a read function, and lock the buffer in memory in preparation
for a DMA write operation.

A driver cannot specify EXE_STD$READ for buffered-I/O functions. Drivers that
process functions that require an intermediate system buffer typically supply
their own FDT routines to handle them.

EXE_STD$READLOCK invokes the $READCHK macro, which calls EXE_
STD$READCHK.

EXE_STD$READCHK performs the following actions:

• Moves the transfer byte count (bufsiz parameter) into IRP$L_BCNT.

If the byte count is negative, EXE_STD$READCHK returns SS$_BADPARAM
status to EXE_STD$READLOCK.

• Determines if the specified buffer is write accessible for a read I/O function,
with one of the following results:

If the buffer allows write access, EXE_STD$READCHK sets IRP$V_
FUNC in IRP$L_STS and returns SS$_NORMAL in R0 to EXE_
STD$READLOCK.

If the buffer does not allow write access, EXE_STD$READCHK returns
SS$_ACCVIO status to EXE$_STD$READLOCK.

If error status (SS$_BADPARAM or SS$_ACCVIO) is returned, EXE_
STD$READLOCK immediately calls the specified error-handling callback
routine, passing to it the IRP, PCB, UCB, CCB, and status value. The callback
routine must preserve R0 and R1 and return control to EXE_STD$READLOCK.
When the callback routine returns (or if no callback routine is specified), EXE_
STD$READLOCK calls EXE_STD$ABORTIO, passing it the error status as
qio_sts. EXE_STD$ABORTIO returns to EXE_STD$READLOCK with the error
status in the FDT_CONTEXT structure and SS$_FDT_COMPL status in R0.
EXE_STD$READLOCK immediately returns to its caller, passing these status
values.

If SS$_NORMAL status is returned, EXE_STD$READLOCK moves into IRP$L_
BOFF and IRP$L_OBOFF the byte offset to the start of the buffer and calls
MMG_STD$IOLOCK.

MMG_STD$IOLOCK attempts to lock into memory those pages that contain the
buffer, with one of the following results:

• If MMG_STD$IOLOCK succeeds, EXE_STD$READLOCK stores in IRP$L_
SVAPTE the system virtual address of the process PTE that maps the
first page of the buffer, and returns SS$_NORMAL status in R0 to EXE_
STD$READLOCK. EXE_STD$READLOCK returns immediately to its caller,
passing to it this status value.

• If MMG_STD$IOLOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL,
or page fault status to EXE_STD$READLOCK. EXE_STD$READLOCK
immediately calls the specified error-handling callback routine, passing to
it the IRP, PCB, UCB, CCB, and status value. The callback routine must
preserve R0 and R1 and return control to EXE_STD$READLOCK. When

System Routines 9–137

System Routines
EXE_STD$READLOCK

the callback routine returns (or if no callback routine is specified), EXE_
STD$READLOCK proceeds as follows:

For SS$_ACCVIO and SS$_INSFWSL status, EXE_STD$READLOCK
calls EXE_STD$ABORTIO, passing it one of these status values as a qio_
sts argument. When it regains control, EXE_STD$READLOCK returns
to its caller the specified status value in the FDT_CONTEXT structure
and SS$_FDT_COMPL status in R0.

For page fault status, EXE_STD$READLOCK sets the final $QIO status
in the FDT_CONTEXT structure to SS$_QIO_CROCK and initializes
FDT_CONTEXT$L_QIO_R1_VALUE to the virtual address to be faulted.
It then adjusts the direct I/O count and AST count to the values they
held before the I/O request, deallocates the IRP, and restarts the I/O
request at the $QIO system service. This procedure is carried out so that
the user process can receive ASTs while it waits for the page fault to
complete. Once the page is faulted into memory, the $QIO system service
will resubmit the I/O request.

The caller of EXE_STD$READLOCK must examine the status in R0:

• If the status is SS$_NORMAL, the buffer is write accessible and has been
successfully locked into memory and the starting virtual address of the page
table entries that map the buffer is available in IRP$L_SVAPTE.

• If the status is SS$_FDT_COMPL, an error has occurred that has caused
the I/O request to be aborted. You can determine the reason for the failure
from FDT_CONTEXT$L_QIO_STATUS. Ordinarily a driver specifies an
error-handling callback routine to process such errors.

Note that a driver cannot access the IRP once it has received SS$_FDT_
COMPL status. If you know you need access to information stored in the
IRP to back out an I/O request that has been aborted, you must store that
information elsewhere prior to calling EXE_STD$READLOCK.

Macro

CALL_READLOCK
CALL_READLOCK_ERR [interface_warning=YES]

where:

interface_warning=YES, the default, specifies that the macro generate
a compile-time warning indicating how the behavior of the macro differs
from the VAX version of the corresponding system routine. interface_
warning=NO suppresses the warning.

In an Alpha driver, the CALL_READLOCK simulates a JSB to EXE$READLOCK
and CALL_READLOCK_ERR simulates a JSB to EXE$READLOCK_ERR.
CALL_READLOCK calls EXE_STD$READLOCK, specifying 0 as the err_rout
argument; CALL_READLOCK_ERR also calls EXE_STD$READLOCK, using
the contents of R2 as the err_rout argument. Both macros supply the current
contents of R3, R4, R5, R6, R0, and R1 as the irp, pcb, ucb, ccb, buf, and
bufsiz arguments, respectively.

9–138 System Routines

System Routines
EXE_STD$READLOCK

When EXE_STD$READLOCK or EXE_STD$READLOCK_ERR returns, code
generated by the macro examines the return status:

• If success status (SS$_NORMAL) is returned, the macro copies the contents
of IRP$L_SVAPTE into R1 and writes a 1 to R2 to indicate a read operation.
Status is returned in R0 and in the FDT_CONTEXT structure.

• If failure status (SS$_FDT_COMPL) is returned, the macro writes a 1 to R2
to indicate a read operation and returns to FDT dispatching code in the $QIO
system service.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE_STD$READLOCK replaces EXE$READLOCK and EXE$READLOCK_
ERR. For compatibility with the VAX routines, use the CALL_READLOCK
and CALL_READLOCK_ERR macros.

• EXE$READLOCK and EXE$READLOCK_ERR expect as input in R7 the
number of the bit that specifies the code for the requested I/O function from
R7, and, in R8, the address of the entry in the function decision table from
which it received control.

R0, R7, and R8 are not provided as input to EXE_STD$READLOCK.

• The order in which formal parameters are passed to EXE_STD$READLOCK
differs from the order in which they are provided in registers to the VAX
routines EXE$READLOCK and EXE$READLOCK_ERR.

• EXE$READLOCK_ERR provides a mechanism by which a driver callback
routine obtains control upon an error condition prior to the abortion of an
I/O request. EXE_STD$READLOCK accepts the address of an error-handling
callback routine in the err_rout argument. The error-handling routine is
called after an I/O request encounters a buffer access or memory allocation
failure and before the request is aborted.

• The design of FDT processing for OpenVMS Alpha drivers guarantees that
the caller of EXE_STD$READLOCK regains control whether the read lock
operation is successful. When a driver regains control from a call to EXE_
STD$READLOCK, return status in R0 indicates that the buffer has been
successfully locked (SS$_NORMAL) or that the operation failed and the
request has been aborted (SS$_FDT_COMPL). The driver must check the
return status and take appropriate action. Final $QIO completion status,
indicating the reason the operation failed, is stored in the FDT_CONTEXT
structure.

Normally, a driver services a read lock failure by supplying the address of an
error-handling callback routine to EXE_STD$READLOCK.

• Driver code that executes after receiving failure status (SS$_FDT_COMPL)
from EXE_STD$READLOCK cannot access information in the IRP. If the
driver anticipates accessing IRP fields when EXE_STD$READLOCK returns,
it must store these fields elsewhere before calling EXE_STD$READLOCK.

• Upon successful completion, EXE$READLOCK and EXE$READLOCK_
ERR provide as output the system virtual address of the first process
PTE that maps the buffer in R1 and in IRP$L_SVAPTE. Because EXE_
STD$READLOCK does not provide R1 as output, a driver must obtain this
information from IRP$L_SVAPTE. Similarly, the VAX routines set R2 to 1

System Routines 9–139

System Routines
EXE_STD$READLOCK

for a read function and clear it otherwise. EXE_STD$READLOCK does not
provide R2 as output; a driver can determine whether a function is read or
write by examining IRP$V_FUNC in IRP$L_STS.

9–140 System Routines

System Routines
EXE_STD$SENSEMODE

EXE_STD$SENSEMODE

Copies device-dependent characteristics from the device’s UCB into the second
longword of the I/O status block (IOSB) specified in a $QIO system service call,
and completes the I/O operation successfully.

Module

SYSQIOFDT

Format

status = EXE_STD$SENSEMODE (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet for the current I/O request.

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified
as an argument to the $QIO request. EXE_STD$SENSEMODE reads the
device-dependent status stored in UCB$L_DEVDEPEND.

ccb
Channel control block that describes the process-I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_NORMAL The routine completed successfully.

System Routines 9–141

System Routines
EXE_STD$SENSEMODE

Context

FDT dispatching code in the $QIO system service calls EXE_STD$SENSEMODE
as an upper-level FDT action routine at IPL$_ASTDEL.

Description

A driver specifies the system-supplied upper-level FDT action routine EXE_
STD$SENSEMODE to process the sense-device-mode (IO$_SENSEMODE) and
sense-device-characteristics (IO$_SENSECHAR) I/O functions.

EXE_STD$SENSEMODE loads the contents of UCB$L_DEVDEPEND into the
second longword of the I/O status block (IOSB) specified in the original $QIO
system service call. It then places SS$_NORMAL status into the FDT_CONTEXT
structure and transfers control to EXE_STD$FINISHIO to insert the IRP in the
local processor’s I/O postprocessing queue.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The FDT routine EXE$SENSEMODE (used by VAX drivers) expects as input
in R7 the number of the bit that specifies the code for the requested I/O
function from R7, and, in R8, the address of the entry in the function decision
table from which it received control.

R0, R7, and R8 are not provided as input to EXE_STD$SENSEMODE.

• EXE$SENSEMODE returns control to the system service dispatcher, passing
it the final $QIO system service status (SS$_NORMAL) in R0. EXE_
STD$SENSEMODE returns to its caller, passing it SS$_FDT_COMPL status
in R0 and storing the final $QIO system service status in the FDT_CONTEXT
structure. The $QIO system service retrieves the status from this structure.

9–142 System Routines

System Routines
EXE_STD$SETCHAR, EXE_STD$SETMODE

EXE_STD$SETCHAR, EXE_STD$SETMODE

Write device-specific status and control information into the device’s UCB and
complete the I/O request (EXE_STD$SETCHAR); or write the information
into the IRP and deliver the IRP to the driver’s start-I/O routine (EXE_
STD$SETMODE).

Module

SYSQIOFDT

Format

status = EXE_STD$SETCHAR (irp, pcb, ucb, ccb)

status = EXE_STD$SETMODE (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet for the current I/O request.

EXE_STD$SETCHAR and EXE_STD$SETMODE read the following IRP fields:

Field Contents

IRP$L_FUNC I/O function code supplied in the $QIO request
IRP$B_RMOD Mode of the $QIO caller
IRP$L_QIO_P1 $QIO system service p1 argument, containing the

device characteristics quadword.

EXE_STD$SETMODE writes the following IRP fields:

Field Contents

IRP$L_MEDIA First longword of device characteristics
IRP$L_MEDIA+4 Second longword of device characteristics

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

System Routines 9–143

System Routines
EXE_STD$SETCHAR, EXE_STD$SETMODE

EXE_STD$SETCHAR writes the following UCB fields:

Field Contents

UCB$B_DEVCLASS Byte 0 of device characteristics quadword
UCB$B_DEVTYPE Byte 1 of device characteristics quadword
UCB$W_DEVBUFSIZ Bytes 2 and 3 of device characteristics quadword
UCB$L_DEVDEPEND Bytes 4 through 7 of device characteristics quadword

ccb
Channel control block that describes the process-I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_NORMAL The routine completed successfully.
SS$_ACCVIO Process calling the $QIO system service with the

IO$_SETMODE or IO$_SETCHAR function does
not have read access to the quadword containing
the new device characteristics.

SS$_ILLIOFUNC IO$_SETMODE and IO$_SETCHAR functions
are not legal for disk devices.

Context

FDT dispatching code in the $QIO system service calls EXE_STD$SETCHAR and
EXE_STD$SETMODE as upper-level FDT action routines at IPL$_ASTDEL.

Description

A driver specifies the system-supplied upper-level FDT action routine
EXE_STD$SETCHAR or EXE_STD$SETMODE to process the set-device-
mode (IO$_SETMODE) and set-device-characteristics (IO$_SETCHAR)
functions, respectively. If setting device characteristics requires device
activity or synchronization with fork processing, the driver’s FDT_ACT macro
invocation must specify EXE_STD$SETMODE. Otherwise, it can specify EXE_
STD$SETCHAR.

EXE_STD$SETCHAR and EXE_STD$SETMODE examine the current value
of UCB$B_DEVCLASS to determine whether the device permits the specified
function. If the device class is disk (DC$_DISK), the routines place SS$_
ILLIOFUNC status in the FDT_CONTEXT structure and transfer control to
EXE_STD$ABORTIO to terminate the request.

EXE_STD$SETCHAR and EXE_STD$SETMODE then ensure that the process
has read access to the quadword containing the new device characteristics. If it
does not, the routines place SS$_ACCVIO status in the FDT_CONTEXT structure
and transfer control to EXE_STD$ABORTIO to terminate the request.

9–144 System Routines

System Routines
EXE_STD$SETCHAR, EXE_STD$SETMODE

If the request passes these checks, EXE_STD$SETCHAR and EXE_
STD$SETMODE proceed as follows:

• EXE_STD$SETCHAR stores the specified characteristics in the UCB. For an
IO$_SETCHAR function, the device type and class fields (UCB$B_DEVCLASS
and UCB$B_DEVTYPE, respectively) receive the first word of data. For both
IO$_SETCHAR and IO$_SETMODE functions, EXE_STD$SETCHAR writes
the second word into the default-buffer-size field (UCB$W_DEVBUFSIZ) and
the third and fourth words into the device-dependent-characteristics field
(UCB$Q_DEVDEPEND).

Finally, EXE_STD$SETCHAR stores normal completion status (SS$_
NORMAL) in the FDT_CONTEXT structure and transfers control to the
FDT completion routine EXE_STD$FINISHIO to insert the IRP in the
local processor’s I/O postprocessing queue. EXE_STD$FINISHIO returns to
EXE_STD$SETCHAR with SS$_FDT_COMPL status in R0 and a final $QIO
system service status of SS$_NORMAL in the FDT_CONTEXT structure.

• EXE_STD$SETMODE stores the specified quadword of characteristics in
IRP$L_MEDIA, places normal completion status (SS$_NORMAL) in the
FDT_CONTEXT structure, and transfers control to FDT completion routine
EXE_STD$QIODRVPKT to deliver the IRP to the driver’s start-I/O routine.
EXE_STD$QIODRVPKT returns to EXE_STD$SETMODE with SS$_FDT_
COMPL status in R0 and a final $QIO system service status of SS$_NORMAL
in the FDT_CONTEXT structure.

The driver’s start-I/O routine copies data from IRP$L_MEDIA and the following
longword into UCB$W_DEVBUFSIZ, UCB$L_DEVDEPEND, and, if the I/O
function is IO$_SETCHAR, UCB$B_DEVCLASS and UCB$B_DEVTYPE as well.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The FDT routines EXE$SETCHAR and EXE$SETMODE (used by OpenVMS
VAX device drivers) expect as input in R7 the number of the bit that specifies
the code for the requested I/O function from R7, and, in R8, the address of the
entry in the function decision table from which it received control.

R0, R7, and R8 are not provided as input to EXE_STD$SETCHAR and EXE_
STD$SETMODE.

• EXE$SETCHAR and EXE$SETMODE return control to the system service
dispatcher, passing it the final $QIO system service status (SS$_NORMAL,
SS$_ACCVIO, or SS$_ILLIOFUNC) in R0. EXE_STD$SETCHAR or EXE_
STD$SETMODE returns to its caller, passing it SS$_FDT_COMPL status in
R0 and storing the final $QIO system service status in the FDT_CONTEXT
structure. The $QIO system service retrieves the status from this structure.

System Routines 9–145

System Routines
EXE_STD$SNDEVMSG

EXE_STD$SNDEVMSG

Builds and sends a device-specific message to the mailbox of a system process,
such as the job controller or OPCOM.

Module

MBDRIVER

Format

status = EXE_STD$SNDEVMSG (mb_ucb, msgtyp, ucb)

Arguments

Argument Type Access Mechanism Status

mb_ucb MB_UCB input reference required
msgtyp integer input value required
ucb UCB input reference required

mb_ucb
Mailbox UCB. (SYS$AR_JOBCTLMB contains the address of the job controller’s
mailbox; SYS$AR_OPRMBX contains the address of OPCOM’s mailbox.)

msgtyp
Message type. OPCOM message types have the prefix OPC$_ and are defined by
the $OPCMSG macro in SYS$LIBRARY:STARLET.MLB.

ucb
Device UCB. EXE_STD$SNDEVMSG reads the following UCB fields:

UCB$W_UNIT Device unit number.
UCB$L_DDB Address of device DDB. EXE_STD$SNDEVMSG

constructs the device controller name from DDB$T_
NAME and mailbox UCB fields.

Return Values

SS$_DEVNOTMBX mb_ucb does not specify a mailbox UCB.
SS$_INSFMEM The system is unable to allocate memory for the

message.
SS$_MBFULL The message mailbox is full of messages.
SS$_MBTOOSML The message is too large for the mailbox.
SS$_NOPRIV The caller lacks privilege to write to the mailbox.
SS$_NORMAL Normal, successful completion.

9–146 System Routines

System Routines
EXE_STD$SNDEVMSG

Context

Because EXE_STD$SNDEVMSG raises IPL to IPL$_MAILBOX and obtains
the MAILBOX spin lock in a multiprocessing environment, its caller cannot be
executing above IPL$_MAILBOX. EXE_STD$SNDEVMSG returns control to its
caller at the caller’s IPL. The caller retains any spin locks it held at the time of
the call.

Description

EXE_STD$SNDEVMSG builds a 32-byte message on the stack that includes the
following information:

Bytes Contents

0 and 1 Low word of msgtyp parameter
2 and 3 Device unit number (UCB$W_UNIT)
4 through 31 Counted string of device controller name, formatted as

node$controller for clusterwide devices

EXE_STD$SNDEVMSG then calls EXE_STD$WRTMAILBOX to send the
message to a mailbox.

Macro

CALL_SNDEVMSG [save_r1]

where:

save_r1 indicates that the macro should preserve register R1 across the call
to COM_STD$POST. If save_r1 is blank or save_r1=YES, the 64-bit register
is saved. (In the former case, the macro generates a compile-time message. If
save_r1=NO, R1 is not saved.)

In an Alpha driver, the CALL_SNDEVMSG macro calls EXE_STD$SNDEVMSG,
using the current contents of R3, R4, and R5 as the mb_ucb, msgtyp, and
ucb arguments, respectively. It returns status in R0. Unless you specify save_
r1=NO, the macro preserves R1 across the call.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE_STD$SNDEVMSG replaces EXE$SNDEVMSG (used by OpenVMS
VAX drivers). Unlike EXE$SNDEVMSG, EXE_STD$SNDEVMSG does not
preserve R1 across the call.

System Routines 9–147

System Routines
EXE_STD$WRITE

EXE_STD$WRITE

Translates a logical write function into a physical write function, transfers $QIO
system service parameters to the IRP, validates and prepares a user buffer, and
aborts the request or proceeds with a direct-I/O, DMA read operation.

Module

SYSQIOFDT

Format

status = EXE_STD$WRITE (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet for the current I/O request.

EXE_STD$WRITE reads the following IRP fields:

Field Contents

IRP$L_QIO_P1 $QIO system service p1 argument, containing the
buffer’s virtual address.

IRP$L_QIO_P2 $QIO system service p2 argument, containing the
number of bytes in transfer. The maximum number of
bytes that EXE_STD$WRITE can transfer is 65,535
(128 pages minus one byte).

IRP$L_QIO_P4 $QIO system service p4 argument, containing the
carriage control byte.

IRP$L_FUNC I/O function code.
IRP$B_RMOD Access mode of the caller of the $QIO system service.

EXE_STD$WRITE writes the following IRP fields:

Field Contents

IRP$B_CARCON Carriage control byte (from IRP$L_QIO_P4)
IRP$L_FUNC Logical write function code converted to physical

9–148 System Routines

System Routines
EXE_STD$WRITE

Field Contents

IRP$L_SVAPTE System virtual address of the PTE that maps the first
page of the buffer

IRP$L_BOFF Byte offset to start of transfer in page
IRP$L_OBOFF Original byte offset into the first page of a segmented

direct-I/O transfer
IRP$L_BCNT Size of transfer in bytes

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

ccb
Channel control block that describes the process-I/O channel

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Buffer specified in buf parameter does not allow
read access.

SS$_BADPARAM bufsiz parameter is less than zero.
SS$_INSFWSL Insufficient working set limit.
SS$_NORMAL The I/O request has been successfully queued.
SS$_QIO_CROCK Buffer page must be faulted into memory.

Context

FDT dispatching code in the $QIO system service calls EXE_STD$WRITE as an
upper-level FDT action routine at IPL$_ASTDEL.

Description

A driver specifies the system-supplied upper-level FDT action routine EXE_
STD$WRITE to prepare a direct-I/O write request. A driver cannot specify
EXE_STD$WRITE for buffered-I/O functions. Drivers that process functions that
require an intermediate system buffer typically supply their own upper-level FDT
action routines to handle them.

EXE_STD$WRITE performs the following functions:

• Copies the p4 argument of the $QIO request from IRP$L_QIO_P4 to IRP$B_
CARCON

• Translates a logical write function to a physical write function and stores the
new function code in IRP$L_FUNC.

System Routines 9–149

System Routines
EXE_STD$WRITE

• Examines the size of the transfer, as specified in the p2 argument of the $QIO
request (IRP$L_QIO_P2), and takes one of the following actions:

If the transfer byte count is zero, EXE_STD$WRITE invokes the
$QIODRVPKT macro to deliver the IRP to the driver’s start-I/O routine.
EXE_STD$WRITE regains control with SS$_FDT_COMPL status in R0
and a final $QIO system service status of SS$_NORMAL in the FDT_
CONTEXT structure. It returns to the $QIO system service, passing
these status values.

The driver start-I/O routine should check for zero-length buffers to avoid
mapping to adapter node space. An attempted mapping can cause a
system failure.

If the byte count is not zero, EXE_STD$WRITE calls EXE_
STD$WRITELOCK, passing 0 as the value of the err_rout argument.

EXE_STD$WRITELOCK invokes the $WRITECHK macro, which calls EXE_
STD$WRITECHK.

EXE_STD$WRITECHK performs the following actions:

• Moves the transfer byte count (bufsiz parameter) into IRP$L_BCNT.

If the byte count is negative, it calls EXE_STD$ABORTIO, passing it a qio_
sts of SS$_BADPARAM. When it regains control, EXE_STD$WRITECHK
returns to EXE_STD$WRITELOCK with SS$_BADPARAM status in the
FDT_CONTEXT structure and SS$_FDT_COMPL status in R0. EXE_
STD$WRITELOCK immediately returns to EXE_STD$WRITE, passing
these status values. EXE_STD$WRITE, in turn, returns to the $QIO system
service.

• Determines if the specified buffer is read accessible for a write I/O function,
with one of the following results:

If the buffer allows read access returns SS$_NORMAL in R0 to EXE_
STD$WRITELOCK.

If the buffer does not allow read access, EXE_STD$WRITECHK
calls EXE_STD$ABORTIO, passing it a qio_sts of SS$_ACCVIO.
When it regains control, EXE_STD$WRITECHK returns to EXE_
STD$WRITELOCK with SS$_ACCVIO status in the FDT_CONTEXT
structure and SS$_FDT_COMPL status in R0. EXE_STD$WRITELOCK
immediately returns to EXE_STD$WRITE, passing these status values.
EXE_STD$WRITE returns to the $QIO system service.

If EXE_STD$WRITECHK succeeds, EXE_STD$WRITELOCK moves into IRP$L_
BOFF and IRP$L_OBOFF the byte offset to the start of the buffer and calls
MMG_STD$IOLOCK.

MMG_STD$IOLOCK attempts to lock into memory those pages that contain the
buffer, with one of the following results:

• If MMG_STD$IOLOCK succeeds, EXE_STD$WRITELOCK stores in IRP$L_
SVAPTE the system virtual address of the process PTE that maps the
first page of the buffer, and returns SS$_NORMAL status in R0 to EXE_
STD$WRITELOCK. EXE_STD$WRITELOCK returns immediately to EXE_
STD$WRITE, passing to it this status value.

9–150 System Routines

System Routines
EXE_STD$WRITE

EXE_STD$WRITE invokes the $QIODRVPKT macro to deliver the IRP to
the driver’s start-I/O routine. EXE_STD$WRITE regains control with SS$_
FDT_COMPL status in R0 and a final $QIO system service status of SS$_
NORMAL in the FDT_CONTEXT structure. It returns to the $QIO system
service, passing these status values.

• If MMG_STD$IOLOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL, or
page fault status to EXE_STD$WRITELOCK.

For SS$_ACCVIO and SS$_INSFWSL status, EXE_STD$WRITELOCK calls
EXE_STD$ABORTIO, passing it one of these status values as a qio_sts
argument. When it regains control, EXE_STD$WRITELOCK returns EXE_
STD$WRITE the specified status value in the FDT_CONTEXT structure
and SS$_FDT_COMPL status in R0. EXE_STD$WRITE returns to the $QIO
system service.

For page fault status, EXE_STD$WRITELOCK sets the final $QIO status
in the FDT_CONTEXT structure to SS$_QIO_CROCK and initializes FDT_
CONTEXT$L_QIO_R1_VALUE to the virtual address to be faulted. It then
adjusts the direct I/O count and AST count to the values they held before the
I/O request, deallocates the IRP, and restarts the I/O request at the $QIO
system service. This procedure is carried out so that the user process can
receive ASTs while it waits for the page fault to complete. Once the page is
faulted into memory, the $QIO system service will resubmit the I/O request.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The FDT routine EXE$WRITE (used by OpenVMS VAX device drivers)
expects as input in R7 the number of the bit that specifies the code for the
requested I/O function from R7, and, in R8, the address of the entry in the
function decision table from which it received control.

R0, R7, and R8 are not provided as input to EXE_STD$WRITE.

• EXE$WRITE returns control to the system service dispatcher, passing it the
final $QIO system service status (SS$_NORMAL, SS$_ACCVIO, or SS$_
BADPARAM, or SS$_INSFWSL) in R0. EXE_STD$WRITE returns to its
caller, passing it SS$_FDT_COMPL status in R0 and storing the final $QIO
system service status in the FDT_CONTEXT structure. The $QIO system
service retrieves the status from this structure.

System Routines 9–151

System Routines
EXE_STD$WRITECHK

EXE_STD$WRITECHK

Verifies that a process has read access to the pages in the buffer specified in a
$QIO request.

Module

SYSQIOFDT

Format

status = EXE_STD$WRITECHK (irp, pcb, ucb, buf, bufsiz)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
buf address input reference required
bufsiz integer input value required

irp
I/O request packet for the current I/O request.

EXE_STD$WRITECHK reads IRP$B_RMOD to determine the access mode of the
caller of the $QIO system service.

EXE_STD$WRITECHK writes the size of the transfer in bytes to IRP$L_BCNT.

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

buf
Virtual address of buffer.

bufsiz
Number of bytes in transfer.

9–152 System Routines

System Routines
EXE_STD$WRITECHK

Return Values

SS$_NORMAL The buffer is read-accessible.
SS$_FDT_COMPL Warning-level status indicating that FDT

processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Buffer specified in buf parameter does not allow
read access.

SS$_BADPARAM bufsiz parameter is less than zero.
SS$_INSFWSL Insufficient working set limit.
SS$_NORMAL Nothing has occurred yet to prevent the I/O

request from being successfully queued. This is
the initial value of the status field in an FDT_
CONTEXT structure.

Context

The FDT support routine EXE_STD$WRITELOCK, or a driver-specific FDT
routine, calls EXE_STD$WRITECHK at IPL$_ASTDEL.

Description

A driver FDT routine calls the system-supplied FDT support routine EXE_
STD$WRITECHK to check the read accessibility of an I/O buffer supplied in a
$QIO request for a write function.

EXE_STD$WRITECHK performs the following actions:

• Moves the transfer byte count (bufsiz parameter) into IRP$L_BCNT.

If the byte count is negative, it calls EXE_STD$ABORTIO, passing it a qio_
sts of SS$_BADPARAM. When it regains control, EXE_STD$WRITECHK
returns to its caller with SS$_BADPARAM status in the FDT_CONTEXT
structure and SS$_FDT_COMPL status in R0.

• Determines if the specified buffer is read accessible for a write I/O function,
with one of the following results:

If the buffer allows read access, EXE_STD$WRITECHK returns SS$_
NORMAL in R0 to its caller.

If the buffer does not allow read access, EXE_STD$WRITECHK calls
EXE_STD$ABORTIO, passing it a qio_sts of SS$_ACCVIO. When it
regains control, EXE_STD$WRITECHK returns to its caller with SS$_
ACCVIO status in the FDT_CONTEXT structure and SS$_FDT_COMPL
status in R0.

The caller of EXE_STD$WRITECHK must examine the status in R0:

• If the status is SS$_NORMAL, the buffer is read-accessible.

• If the status is SS$_FDT_COMPL, an error has occurred that has caused the
I/O request to be aborted. You can determine the reason for the failure from
FDT_CONTEXT$L_QIO_STATUS.

System Routines 9–153

System Routines
EXE_STD$WRITECHK

Certain drivers must perform additional processing to back out an I/O request
after it has aborted. For instance, if the driver has locked multiple buffers into
memory for a single I/O request, it must unlock them once the request has been
aborted. Note that a driver cannot access the IRP once it has received SS$_FDT_
COMPL status. If you know you need access to information stored in the IRP to
back out an I/O request that has been aborted, you must store that information
elsewhere prior to calling EXE_STD$WRITELOCK.

Macro

CALL_WRITECHK
CALL_WRITECHKR

In an Alpha driver, CALL_WRITECHK simulates a JSB to EXE$WRITECHK
and CALL_READCHKR simulates a JSB to EXE$READCHKR. Both macros call
EXE_STD$READCHK using the current contents of R3, R4, R5, R0, and R1 as
the irp, pcb, ucb, buf, and bufsiz arguments, respectively.

When EXE_STD$WRITECHK returns, CALL_WRITECHK and CALL_
WRITECHKR clear R2 to indicate a write operation and examines the return
status:

• If success status (SS$_NORMAL) is returned, CALL_WRITECHK and CALL_
WRITECHKR copy the contents of IRP$L_BCNT into R1. CALL_WRITECHK
writes the starting address of the I/O buffer in R0; CALL_WRITECHKR
preserves the return status value in R0.

• If failure status (SS$_FDT_COMPL) is returned, CALL_WRITECHK returns
to FDT dispatching code in the $QIO system service. CALL_WRITECHKR
does not return control to $QIO.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE_STD$WRITECHK replaces EXE$WRITECHK and EXE$WRITECHKR
(used by VAX drivers). For compatibility with the VAX routines, use the
CALL_WRITECHK and CALL_WRITECHKR macros.

• EXE$WRITECHK and EXE$WRITECHKR expect as input in R7 the number
of the bit that specifies the code for the requested I/O function from R7, and,
in R8, the address of the entry in the function decision table from which it
received control.

R0, R7, and R8 are not provided as input to EXE_STD$WRITECHK.

• The order in which formal parameters are passed to EXE_STD$WRITECHK
differs from the order in which they are provided in registers to the
EXE$WRITECHK and EXE$WRITECHKR routines .

• EXE$WRITECHK and EXE$WRITECHKR provide a mechanism by which a
driver callback routine or coroutine obtains control upon an error condition
prior to the abortion of an I/O request. The design of FDT processing
for OpenVMS Alpha device drivers guarantees that the caller of EXE_
STD$WRITECHK regains control whether the write check operation is
successful. The caller must examine the return status in R0 (SS$_NORMAL
indicates the buffer is read accessible, SS$_FDT_COMPL indicates that the
operation failed and the request has been aborted) and take appropriate

9–154 System Routines

System Routines
EXE_STD$WRITECHK

action. Final $QIO completion status, indicating the reason the operation
failed, is stored in the FDT_CONTEXT structure.

• Driver code that services failure status (SS$_FDT_COMPL) from EXE_
STD$WRITELOCK (for instance, a callback routine formerly specified to
EXE$WRITELOCK_ERR) cannot access information in the IRP. If the driver
anticipates handling failure status by using the contents of IRP fields, it must
store these fields elsewhere before calling EXE_STD$WRITELOCK.

This is especially important for driver code that expects EXE_
STD$WRITECHK to access the transfer size in R1 after the call. Unlike
EXE$WRITECHK and EXE$WRITECHKR, EXE_STD$WRITECHK does
not preserve the contents of R1 and R3 across the call. If you must repeat a
CALL_WRITECHK macro invocation, be sure to reload R0, R1, and R3 with
the virtual address of the buffer, the transfer size, and the address of the IRP,
respectively, before each subsequent invocation.

• Upon successful completion, EXE$WRITECHK and EXE$WRITECHKR clear
R2 to indicate a write function. EXE_STD$WRITECHK does not provide
R2 as output; a driver can determine whether a function is write or read by
examining IRP$V_FUNC in IRP$L_STS.

System Routines 9–155

System Routines
EXE_STD$WRITELOCK

EXE_STD$WRITELOCK

Validates and prepares a user buffer for a direct-I/O, DMA read operation.

Module

SYSQIOFDT

Format

status = EXE_STD$WRITELOCK (irp, pcb, ucb, ccb, buf, bufsiz, err_rout)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required
buf address input reference required
bufsiz integer input value required
err_rout procedure

value
input value required

irp
I/O request packet for the current I/O request.

EXE_STD$WRITELOCK reads IRP$B_RMOD to determine the access mode of
the caller of the $QIO system service.

EXE_STD$WRITELOCK writes the following IRP fields:

Field Contents

IRP$L_SVAPTE System virtual address of the PTE that maps the first
page of the buffer

IRP$L_BOFF Byte offset to start of transfer in page
IRP$L_OBOFF Original byte offset into the first page of a segmented

direct-I/O transfer
IRP$L_BCNT Size of transfer in bytes

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

9–156 System Routines

System Routines
EXE_STD$WRITELOCK

ccb
Channel control block that describes the process-I/O channel.

buf
Virtual address of buffer.

bufsiz
Number of bytes in transfer.

err_rout
Procedure value of error-handling callback routine, or 0 if the driver does not
process errors.

A driver typically specifies an error-handling callback routine when it must lock
multiple areas into memory for a single I/O request and must regain control
to unlock these areas, if the request is to be aborted. The routine performs
those tasks required before the request is backed out of or aborted. Such
operations could include calling MMG_STD$UNLOCK to release previous buffers
participating in the I/O operation. The error-handling routine must preserve R0
and R1 and return back to EXE_STD$WRITELOCK.

Chapter 8 describes the error-handling callback routine interface.

Return Values

SS$_NORMAL The buffer is read-accessible and has been locked
in memory.

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Buffer specified in buf parameter does not allow
read access.

SS$_BADPARAM bufsiz parameter is less than zero.
SS$_INSFWSL Insufficient working set limit.
SS$_NORMAL Nothing has occurred yet to prevent the I/O

request from being successfully queued. This is
the initial value of the status field in an FDT_
CONTEXT structure.

SS$_INSFWSL Insufficient working set limit.
SS$_QIO_CROCK Buffer page must be faulted into memory.

Context

The system-supplied upper-level FDT action routine EXE_STD$WRITE, or a
driver-specific upper-level FDT action routine, calls EXE_STD$WRITELOCK at
IPL$_ASTDEL.

System Routines 9–157

System Routines
EXE_STD$WRITELOCK

Description

A driver FDT routine calls the system-supplied FDT support routine EXE_
STD$WRITELOCK to check the read accessibility of an I/O buffer supplied in a
$QIO request for a write function, and lock the buffer in memory in preparation
for a DMA write operation.

A driver cannot specify EXE_STD$WRITE for buffered-I/O functions. Drivers
that process functions that require an intermediate system buffer typically supply
their FDT routines to handle them.

EXE_STD$WRITELOCK invokes the $WRITECHK macro, which calls EXE_
STD$WRITECHK.

EXE_STD$WRITECHK performs the following actions:

• Moves the transfer byte count (bufsiz parameter) into IRP$L_BCNT.

If the byte count is negative, EXE_STD$WRITECHK returns SS$_
BADPARAM status to EXE_STD$READLOCK.

• Determines if the specified buffer is read accessible for a write I/O function,
with one of the following results:

If the buffer allows read access, EXE_STD$WRITECHK returns SS$_
NORMAL in R0 to EXE_STD$WRITELOCK.

If the buffer does not allow write access, EXE_STD$READCHK returns
SS$_ACCVIO status to EXE$_STD$READLOCK.

If error status (SS$_BADPARAM or SS$_ACCVIO) is returned, EXE_
STD$WRITELOCK immediately calls the specified error-handling callback
routine, passing to it the IRP, PCB, UCB, CCB, and status value. The callback
routine must preserve R0 and R1 and return control to EXE_STD$WRITELOCK.
When the callback routine returns (or if no callback routine is specified), EXE_
STD$WRITELOCK calls EXE_STD$ABORTIO, passing it the error status as
qio_sts. EXE_STD$ABORTIO returns to EXE_STD$WRITELOCK with the error
status in the FDT_CONTEXT structure and SS$_FDT_COMPL status in R0.
EXE_STD$WRITELOCK immediately returns to its caller, passing these status
values.

If SS$_NORMAL status is returned, EXE_STD$WRITELOCK moves into IRP$L_
BOFF and IRP$L_OBOFF the byte offset to the start of the buffer and calls
MMG_STD$IOLOCK.

MMG_STD$IOLOCK attempts to lock into memory those pages that contain the
buffer, with one of the following results:

• If MMG_STD$IOLOCK succeeds, EXE_STD$WRITELOCK stores in IRP$L_
SVAPTE the system virtual address of the process PTE that maps the
first page of the buffer, and returns SS$_NORMAL status in R0 to EXE_
STD$WRITELOCK. EXE_STD$WRITELOCK returns immediately to its
caller, passing to it this status value.

• If MMG_STD$IOLOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL, or
page fault status to EXE_STD$WRITELOCK. EXE_STD$WRITELOCK
immediately calls the specified error-handling callback routine, passing to
it the IRP, PCB, UCB, CCB, and status value. The callback routine must
preserve R0 and R1 and return control to EXE_STD$WRITELOCK. When

9–158 System Routines

System Routines
EXE_STD$WRITELOCK

the callback routine returns (or if no callback routine is specified), EXE_
STD$WRITELOCK proceeds as follows:

For SS$_ACCVIO and SS$_INSFWSL status, EXE_STD$WRITELOCK
calls EXE_STD$ABORTIO, passing it one of these status values as a
qio_sts argument. When it regains control, EXE_STD$WRITELOCK
returns to its caller the specified status value in the FDT_CONTEXT
structure and SS$_FDT_COMPL status in R0.

For page fault status, EXE_STD$WRITELOCK sets the final $QIO status
in the FDT_CONTEXT structure to SS$_QIO_CROCK and initializes
FDT_CONTEXT$L_QIO_R1_VALUE to the virtual address to be faulted.
It then adjusts the direct I/O count and AST count to the values they
held before the I/O request, deallocates the IRP, and restarts the I/O
request at the $QIO system service. This procedure is carried out so that
the user process can receive ASTs while it waits for the page fault to
complete. Once the page is faulted into memory, the $QIO system service
will resubmit the I/O request.

The caller of EXE_STD$WRITELOCK must examine the status in R0:

• If the status is SS$_NORMAL, the buffer is write accessible and has been
successfully locked into memory and the starting virtual address of the page
table entries that map the buffer is available in IRP$L_SVAPTE.

• If the status is SS$_FDT_COMPL, an error has occurred that has caused
the I/O request to be aborted. You can determine the reason for the failure
from FDT_CONTEXT$L_QIO_STATUS. Ordinarily a driver specifies an
error-handling callback routine to process such errors.

Note that a driver cannot access the IRP once it has received SS$_FDT_
COMPL status. If you know you need access to information stored in the
IRP to back out an I/O request that has been aborted, you must store that
information elsewhere prior to calling EXE_STD$WRITELOCK.

Macro

CALL_WRITELOCK
CALL_WRITELOCK_ERR [interface_warning=YES]

where:

interface_warning=YES, the default, specifies that the macro generate
a compile-time warning indicating how the behavior of the macro differs
from the VAX version of the corresponding system routine. interface_
warning=NO suppresses the warning.

In an OpenVMS Alpha driver, the CALL_WRITELOCK simulates a JSB
to EXE$WRITELOCK and CALL_WRITELOCK_ERR simulates a JSB to
EXE$WRITELOCK_ERR. CALL_WRITELOCK calls EXE_STD$WRITELOCK,
specifying 0 as the err_rout argument; CALL_WRITELOCK_ERR also calls
EXE_STD$WRITELOCK, using the contents of R2 as the err_rout argument.
Both macros supply the current contents of R3, R4, R5, R6, R0, and R1 as the
irp, pcb, ucb, ccb, buf, and bufsiz arguments, respectively.

System Routines 9–159

System Routines
EXE_STD$WRITELOCK

When EXE_STD$WRITELOCK or EXE_STD$WRITELOCK_ERR returns, code
generated by the macro examines the return status:

• If success status (SS$_NORMAL) is returned, the macro moves the contents
of IRP$L_SVAPTE into R1 and clears R2 to indicate a write operation. Status
is returned in R0 and in the FDT_CONTEXT structure.

• If failure status (SS$_FDT_COMPL) is returned, the macro clears R2 to
indicate a write operation and returns to FDT dispatching code in the $QIO
system service.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE_STD$WRITELOCK replaces EXE$WRITELOCK and
EXE$WRITELOCK_ERR. For compatibility with the VAX routines, use
the CALL_WRITELOCK and CALL_WRITELOCK_ERR macros.

• EXE$WRITELOCK and EXE$WRITELOCK_ERR expect as input in R7 the
number of the bit that specifies the code for the requested I/O function from
R7, and, in R8, the address of the entry in the function decision table from
which it received control.

R0, R7, and R8 are not provided as input to EXE_STD$WRITELOCK.

• The order in which formal parameters are passed to EXE_STD$WRITELOCK
differs from the order in which they are provided in registers to the VAX
routines EXE$WRITELOCK and EXE$WRITELOCK_ERR.

• EXE$WRITELOCK_ERR provides a mechanism by which a driver callback
routine or coroutine obtains control upon an error condition prior to the
abortion of an I/O request. EXE_STD$WRITELOCK accepts the address of
an error-handling callback routine in the err_rout argument. The error-
handling routine is called after an I/O request encounters a buffer access or
memory allocation failure and before the request is aborted.

• The design of FDT processing for OpenVMS Alpha device drivers guarantees
that the caller of EXE_STD$WRITELOCK regains control whether the write
lock operation is successful. When a driver regains control from a call to
EXE_STD$WRITELOCK, return status in R0 indicates that the buffer has
been successfully locked (SS$_NORMAL) or that the operation failed and the
request has been aborted (SS$_FDT_COMPL). The driver must check the
return status and take appropriate action. Final $QIO completion status,
indicating the reason the operation failed, is stored in the FDT_CONTEXT
structure.

Normally, a driver services a read lock failure by supplying the address of an
error-handling callback routine to EXE_STD$WRITELOCK.

• Driver code that executes after receiving failure status (SS$_FDT_COMPL)
from EXE_STD$WRITELOCK cannot access information in the IRP. If
the driver anticipates accessing IRP fields when EXE_STD$WRITELOCK
returns, it must store these fields elsewhere before calling EXE_
STD$WRITELOCK.

• Upon successful completion, EXE$WRITELOCK and EXE$WRITELOCK_
ERR provide as output the system virtual address of the first process
PTE that maps the buffer in R1 and in IRP$L_SVAPTE. Because EXE_
STD$WRITELOCK does not provide R1 as output, a driver must obtain this

9–160 System Routines

System Routines
EXE_STD$WRITELOCK

information from IRP$L_SVAPTE. Similarly, the VAX routines clear R2 for
a write function. EXE_STD$WRITELOCK does not provide R2 as output;
a driver can determine whether a function is write or read by examining
IRP$V_FUNC in IRP$L_STS.

System Routines 9–161

System Routines
EXE_STD$WRTMAILBOX

EXE_STD$WRTMAILBOX

Sends a message to a mailbox.

Module

MBDRIVER

Format

status = EXE_STD$WRTMAILBOX (mb_ucb, msgsiz, msg)

Arguments

Argument Type Access Mechanism Status

mb_ucb MB_UCB input reference required
msgsiz integer input value required
msg address input reference required

mb_ucb
Mailbox UCB. (SYS$AR_JOBCTLMB contains the address of the job controller’s
mailbox; SYS$AR_OPRMBX contains the address of OPCOM’s mailbox.)

msgsiz
Message size.

msg
Address of buffer containing the message.

Return Values

SS$_INSFMEM The system is unable to allocate memory for the
message.

SS$_MBFULL The message mailbox is full of messages.
SS$_MBTOOSML The message is too large for the mailbox.
SS$_NOPRIV The caller lacks privilege to write to the mailbox.
SS$_NORMAL Normal, successful completion.

Context

Because EXE_STD$WRTMAILBOX raises IPL to IPL$_MAILBOX and obtains
the MAILBOX spin lock in a multiprocessing environment, its caller cannot be
executing above IPL$_MAILBOX. EXE_STD$WRTMAILBOX returns control to
its caller at the caller’s IPL. The caller retains any spin locks it held at the time
of the call.

9–162 System Routines

System Routines
EXE_STD$WRTMAILBOX

Description

EXE_STD$WRTMAILBOX checks fields in the mailbox UCB (UCB$W_MSGQUO,
UCB$W_DEVMSGSIZ) to determine whether it can deliver a message of
the specified size to the mailbox. It also checks fields in the associated
ORB to determine whether the caller is sufficiently privileged to write to
the mailbox. Finally, it calls EXE$ALONONPAGED to allocate a block of
nonpaged pool to contain the message. If it fails any of these operations, EXE_
STD$WRTMAILBOX returns error status to its caller.

If it is successful thus far, EXE_STD$WRTMAILBOX creates a message and
delivers it to the mailbox’s message queue, adjusts its UCB fields accordingly, and
returns success status to its caller.

Macro

CALL_WRTMAILBOX [save_r1]

where:

save_r1 indicates that the macro should preserve register R1 across the call
to COM_STD$POST. If save_r1 is blank or save_r1=YES, the 64-bit register
is saved. (In the former case, the macro generates a compile-time message. If
save_r1=NO, R1 is not saved.)

In an Alpha driver, the CALL_WRTMAILBOX macro simulates a JSB to
EXE$WRTMAILBOX in a VAX driver. CALL_WRTMAILBOX calls EXE_
STD$WRTMAILBOX, using the current contents of R5, R3, and R4 as the
mb_ucb, msgsiz, and msg arguments, respectively. It returns status in R0.
Unless you specify save_r1=NO, the macro preserves the R1 across the call.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• EXE_STD$WRTMAILBOX replaces EXE$WRTMAILBOX (used by VAX
drivers). The order in which formal parameters are passed to EXE_
STD$WRTMAILBOX differs from the order in which they are provided in
registers to the VAX routine EXE$WRTMAILBOX.

• Unlike EXE$WRTMAILBOX, EXE_STD$WRTMAILBOX does not preserve
R1 across the call.

System Routines 9–163

System Routines
EXE_STD$ZEROPARM

EXE_STD$ZEROPARM

Delivers an I/O request that requires no parameters to a driver’s start-I/O
routine.

Module

SYSQIOFDT

Format

status = EXE_STD$ZEROPARM (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet for the current I/O request. EXE_STD$ZEROPARM clears
IRP$L_MEDIA.

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

ccb
Channel control block that describes the process-I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_NORMAL The routine completed successfully.

9–164 System Routines

System Routines
EXE_STD$ZEROPARM

Context

FDT dispatching code in the $QIO system service calls EXE_STD$ZEROPARM as
an upper-level FDT action routine at IPL$_ASTDEL.

Description

A driver specifies the system-supplied upper-level FDT action routine EXE_
STD$ZEROPARM to process an I/O function code that has no required
parameters.

EXE_STD$ZEROPARM clears IRP$L_MEDIA and invokes the $QIODRVPKT
macro to deliver the IRP to the driver. EXE_STD$ZEROPARM regains control
with SS$_FDT_COMPL status in R0 and a final $QIO system service status of
SS$_NORMAL in the FDT_CONTEXT structure.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The FDT routine EXE$ZEROPARM (used by OpenVMS VAX device drivers)
expects as input in R7 the number of the bit that specifies the code for the
requested I/O function from R7, and, in R8, the address of the entry in the
function decision table from which it received control.

R0, R7, and R8 are not provided as input to EXE_STD$ZEROPARM.

• EXE$ZEROPARM returns control to the system service dispatcher, passing
it the final $QIO system service status (SS$_NORMAL) in R0. EXE_
STD$ZEROPARM returns to its caller, passing it SS$_FDT_COMPL status in
R0 and storing the final $QIO system service status in the FDT_CONTEXT
structure. The $QIO system service retrieves the status from this structure.

System Routines 9–165

System Routines
IOC$ALOALTMAP, IOC$ALOALTMAPN, IOC$ALOALTMAPSP

IOC$ALOALTMAP, IOC$ALOALTMAPN, IOC$ALOALTMAPSP

Allocate a set of Q22–bus alternate map registers.

Notes for Converting VAX Drivers

Not supported on OpenVMS Alpha systems. See the description of IOC$ALLOC_
CNT_RES.

9–166 System Routines

System Routines
IOC$ALOUBAMAP, IOC$ALOUBAMAPN

IOC$ALOUBAMAP, IOC$ALOUBAMAPN

Allocate a set of UNIBUS map registers or a set of the first 496 Q22–bus map
registers.

Notes for Converting VAX Drivers

Not supported on OpenVMS Alpha systems. See the description of IOC$ALLOC_
CNT_RES.

System Routines 9–167

System Routines
IOC$ALLOC_CNT_RES

IOC$ALLOC_CNT_RES

Allocates the requested number of items of a counted resource.

Module

ALLOC_CNT_RES

Format

IOC$ALLOC_CNT_RES crab ,crctx

Context

IOC$ALLOC_CNT_RES conforms to the OpenVMS Alpha calling standard. Its
caller must be executing at fork IPL, holding the corresponding fork lock.

Arguments

crab
VMS Usage: address
type: longword (signed)
access: read only
mechanism: by reference

Address of CRAB that describes the counted resource. For adapters that supply
a counted resource, such as map registers, ADP$L_CRAB often contains this
address.

crctx
VMS Usage: address
type: longword (signed)
access: read only
mechanism: by reference

Address of CRCTX structure that describes the request for the counted resource.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.

9–168 System Routines

System Routines
IOC$ALLOC_CNT_RES

SS$_BADPARAM Request count was greater than the total number
of items managed by the CRAB or the total
number of items defined by a bounded request.
This status is also returned if the lower bound of
the request (CRCTX$L_LOW_BOUND) is greater
than the upper bound (CRCTX$L_UP_BOUND).

SS$_INSFMAPREG Insufficient resources to satisfy request, or other
requests precede this one in the resource-wait
queue.

Description

IOC$ALLOC_CNT_RES allocates a requested number of items from a counted
resource. The resource request is described in the CRCTX structure; the counted
resource itself is described in the CRAB.

A driver typically initializes the following fields of the CRCTX before submitting
it in a call to IOC$ALLOC_CNT_RES.

Field Description

CRCTX$L_ITEM_CNT Number of items to be allocated. When requesting
map registers, this value in this field should include
an extra map register to be allocated and loaded as
a guard page to prevent runaway transfers.

CRCTX$L_CALLBACK Procedure value of the callback routine to be called
when the deallocation of resource items allows a
stalled resource request to be granted.
A value of 0 in this field indicates that, on an
allocation failure, control should return to the caller
immediately without queueing the CRCTX to the
CRAM’s wait queue.

A caller can also specify the upper and lower bounds of the search for allocatable
resource items by supplying values for CRCTX$L_LOW_BOUND and CRCTX$L_
UP_BOUND.

IOC$ALLOC_CNT_RES performs the following tasks:

• It acquires the spin lock indicated by CRAB$L_SPINLOCK, raising IPL to
IPL$_SYNCH in the process.

• If there are no waiters for the counted resource (that is, the resource wait
queue headed by CRAB$L_WQFL is empty) or if the CRCTX describes a high-
priority allocation request (CRCTX$V_HIGH_PRIO in CRCTX$L_FLAGS is
set), IOC$ALLOC_CNT_RES attempts the allocation immediately. It scans
the CRAB allocation array for a descriptor that contains as many free items
as requested by the caller (in CRCTX$L_ITEM_CNT).

In performing the scan, IOC$ALLOC_CNT_RES considers any indicated
range of counted resource items that are to be involved in the scan, and limits
its search to those item descriptors in the allocation array that describe items
within these bounds. A bounded search is indicated by nonzero values in
CRCTX$L_UP_BOUND and CRCTX$L_LOW_BOUND. IOC$ALLOC_CNT_
RES rounds up the allocation request to the minimal allocation granularity,
as indicated by CRAB$L_ALLOC_GRAN_MASK.

System Routines 9–169

System Routines
IOC$ALLOC_CNT_RES

The number of the first resource item granted to the caller is placed in
CRCTX$L_ITEM_NUM and CRCTX$V_ITEM_VALID is set in CRCTX$L_
FLAGS.

• If this allocation attempt fails, saves the current values of R3, R4, and R5 in
the CRCTX fork block. IOC$ALLOC_CNT_RES writes a –1 to CRCTX$L_
ITEM_NUM, and inserts the CRCTX in the resource-wait queue (headed by
CRAB$L_WQFL). It then returns SS$_INSFMAPREG status to its caller.

Note

If a counted resource request does not specify a callback routine
(CRCTX$L_CALLBACK), IOC$ALLOC_CNT_RES does not insert
its CRCTX in the resource-wait queue. Rather, it returns SS$_
INSFMAPREG status to its caller.

When a counted resource deallocation occurs, the CRCTX is removed from the
wait queue and the allocation is attempted again.

When the allocation succeeds, IOC$ALLOC_CNT_RES issues a JSB
instruction to the callback routine (CRCTX$L_CALLBACK), passing it
the following values:

Location Contents

R0 SS$_NORMAL
R1 Address of CRAB
R2 Address of CRCTX
R3 Contents of R3 at the time of the original

allocation request (CRCTX$Q_FR3)
R4 Contents of R4 at the time of the original

allocation request (CTCTX$Q_FR4)
R5 Contents of R5 at the time of the original

allocation request (CRCTX$Q_FR5)
Other registers Destroyed

The callback routine checks R0 to determine whether it has been called with
SS$_NORMAL or SS$_CANCEL status (from IOC$CANCEL_CNT_RES). If
the former, it typically proceeds to loads the map registers that have been
allocated. It must preserve all registers it uses other than R0 through R5 and
exit with an RSB instruction.

• It releases the spin lock indicated by CRAB$L_SPINLOCK (upon the
condition that its caller did not already own that spin lock at the time of
the call) and returns to its caller.

OpenVMS Alpha allows you to indicate that a counted resource request should
take precedence over any waiting request by setting the CRCTX$V_HIGH_PRIO
bit in CRCTX$L_FLAGS. A driver uses a high-priority counted resource request
to preempt normal I/O activity and service some exception condition from the
device. (For instance, during a multivolume backup, a tape driver might make
a high-priority request, when it encounters the end-of-tape marker, to get a
subsequent tape loaded before normal I/O activity to the tape can resume. A disk
driver might issue a high-priority request to service a disk offline condition.)

9–170 System Routines

System Routines
IOC$ALLOC_CNT_RES

IOC$ALLOC_CNT_RES never stalls a high-priority counted resource request
or places its CRCTX in a resource-wait queue. Rather, it attempts to allocate
the requested number of resource items immediately. If IOC$ALLOC_CNT_RES
cannot grant the requested number of items, it returns SS$_INSFMAPREG
status to its caller.

System Routines 9–171

System Routines
IOC$ALLOC_CRAB

IOC$ALLOC_CRAB

Allocates and initializes a counted resource allocation block (CRAB).

Module

ALLOC_CNT_RES

Format

IOC$ALLOC_CRAB item_cnt ,req_alloc_gran ,crab_ref

Context

IOC$ALLOC_CRAB conforms to the OpenVMS Alpha calling standard. Because
IOC$ALLOC_CRAB calls EXE$ALONONPAGED to allocate sufficient memory for
a CRAB, its caller cannot be executing above IPL$_POOL.

Arguments

item_cnt
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Number of items associated with the resource.

req_alloc_gran
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Requested allocation granularity associated with the resource.

crab_ref
VMS Usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of a cell to which IOC$ALLOC_CRAB returns the address of the
allocated CRAB.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

9–172 System Routines

System Routines
IOC$ALLOC_CRAB

Return Values

SS$_BADPARAM Specified allocation granularity is larger than the
specified item count.

SS$_NORMAL The routine completed successfully.
SS$_INSFMEM Memory allocation request failed.

Description

A driver calls IOC$ALLOC_CRAB to allocate a counted resource allocation block
(CRAB) that describes a counted resource. A counted resources, such as a set of
map registers, has the following attributes:

• The resource consists of an ordered set of items.

• The allocator can request one or more items. When requesting multiple items,
the requester expects to receive a contiguous set of items. Thus, allocated
items can be described by a starting number and a count.

• Allocation and deallocation of the resource are common operations and, thus,
must be efficient and quick.

• A single deallocation may allow zero or more stalled allocation requests to
proceed.

IOC$ALLOC_CRAB computes the size of the CRAB as the sum of the fixed
portion of the CRAB, plus the maximum number of descriptors required in the
allocation array. It then calls EXE$ALONONPAGED to allocate the CRAB. If the
allocation request succeeds, IOC$ALLOC_CRAB initializes the CRAB as follows
and returns SS$_NORMAL to its caller:

Field Description

CRAB$W_SIZE Size of the CRAB in bytes
CRAB$B_TYPE DYN$C_MISC
CRAB$B_SUBTYPE DYN$C_CRAB
CRAB$L_WQFL CRAB$L_WQFL
CRAB$L_WQBL CRAB$L_WQFL
CRAB$L_TOTAL_ITEMS Contents of the item_cnt argument
CRAB$L_ALLOC_GRAN_
MASK

One less than the contents of the req_alloc_gran
argument (rounded up to the next highest power of
two if the value specified is not a power of two)

CRAB$L_VALID_DESC_
CNT

1

CRAB$L_SPINLOCK Address of dynamic spin lock used to synchronize
access to this CRAB. Currently, CRAB spin locks
are obtained at IPL$_IOLOCK8.

IOC$ALLOC_CRAB initializes the first descriptor in the allocation array to
indicate a set of item_cnt items of the resource, starting at item 0.

System Routines 9–173

System Routines
IOC$ALLOC_CRCTX

IOC$ALLOC_CRCTX

Allocates and initializes a counted resource context block (CRCTX).

Module

ALLOC_CNT_RES

Format

IOC$ALLOC_CRCTX crab ,crctx_ref ,fleck_index

Context

IOC$ALLOC_CRCTX conforms to the OpenVMS Alpha calling standard. Because
IOC$ALLOC_CRCTX calls EXE$ALONONPAGED to allocate sufficient memory
for a CRCTX, its caller cannot be executing above IPL$_POOL.

Arguments

crab
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of CRAB that describes the counted resource. For adapters that supply
a counted resource, such as map registers, ADP$L_CRAB often contains this
address.

crctx_ref
VMS Usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of a location in which IOC$ALLOC_CRCTX places the address of the
allocated CRCTX.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.
SS$_INSFMEM Memory allocation request failed.

9–174 System Routines

System Routines
IOC$ALLOC_CRCTX

Description

A driver calls IOC$ALLOC_CRCTX to allocate a CRCTX to describe a specific
request for a given counted resource, such as a set of map registers. The driver
subsequently uses the CRCTX as input to IOC$ALLOC_CNT_RES to allocate a
given set of the objects managed as a counted resource.

IOC$ALLOC_CRCTX calls EXE$ALONONPAGED to allocate the CRCTX. If
the allocation request succeeds, IOC$ALLOC_CRCTX initializes the CRCTX as
follows and returns SS$_NORMAL to its caller:

Field Description

CRCTX$W_SIZE Size of the CRCTX in bytes
CRCTX$B_TYPE DYN$C_MISC
CRCTX$B_SUBTYPE DYN$C_CRCTX
CRCTX$L_CRAB Address of CRAB as specified in the crab argument
CRCTX$W_FSIZE FKB$K_LENGTH
CRCTX$B_FTYPE DYN$C_FRK
CRCTX$B_FLCK IPL$_IOLOCK8

System Routines 9–175

System Routines
IOC$ALLOCATE_CRAM

IOC$ALLOCATE_CRAM

Allocates a controller register access mailbox.

Module

CRAM-ALLOC

Macro

DPTAB (ucb_crams and idb_crams arguments) CRAM_ALLOC

Format

IOC$ALLOCATE_CRAM cram [,idb] [,ucb] [,adp]

Context

IOC$ALLOCATE_CRAM conforms to the OpenVMS Alpha calling standard.
Because IOC$ALLOCATE_CRAM may need to allocate pages from the free page
list, its caller must be executing at or below IPL$_SYNCH and must not hold
spin locks ranked higher than IO_MISC.

IOC$ALLOCATE_CRAM acquires and releases the IO_MISC spin lock and
returns to its caller at its caller’s IPL.

Arguments

cram
VMS Usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of CRAM allocated by IOC$ALLOCATE_CRAM

idb
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of IDB for device.

ucb
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of UCB for device.

adp
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

9–176 System Routines

System Routines
IOC$ALLOCATE_CRAM

Address of ADP for device.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL CRAM has been successfully allocated.
SS$_INSFARG Insufficient arguments supplied in call

Description

IOC$ALLOCATE_CRAM allocates a single controller register access mailbox
(CRAM) and fills in the following fields:

CRAM$W_SIZE Size of CRAM
CRAM$B_TYPE Structure type (DYN$C_MISC)
CRAM$B_SUBTYPE Structure type (DYN$C_CRAM)
CRAM$Q_RBADR Address of remote tightly-coupled I/O interconnect

(from IDB$Q_CSR)
CRAM$Q_HW_MBX Physical address of hardware I/O mailbox
CRAM$L_MBPR Mailbox pointer register (from ADP$PS_MBPR)
CRAM$Q_QUEUE_TIME Default mailbox queue timeout value (from ADP$Q_

QUEUE_TIME)
CRAM$Q_WAIT_TIME Default mailbox wait-for-completion timeout value

(from ADP$Q_WAIT_TIME)
CRAM$B_HOSE Number of remote tightly-coupled I/O interconnect

(from ADP$B_HOSE_NUM)
CRAM$L_IDB IDB address
CRAM$L_UCB UCB address

A driver may choose to allocate a CRAM on a per-controller or a per-unit basis.
Typically a driver specifies values in the idb_crams and ucb_crams arguments
of the DPTAB macro that indicate how many CRAMs should be allocated to
a controller (IDB) or a unit (UCB). If these values (DPT$W_IDB_CRAMS and
DPT$W_UCB_CRAMS) are nonzero in the DPT, the driver loading procedure
automatically invokes IOC$ALLOCATE_CRAM to allocate the specified number
of CRAMs. The driver-loading procedure thereafter sets up IDB$PS_CRAM to
point to a linked list of CRAMs associated with a controller, UCB$PS_CRAM to a
linked list of CRAMs associated with a device unit.

System Routines 9–177

System Routines
IOC$CANCEL_CNT_RES

IOC$CANCEL_CNT_RES

Cancels a thread that has been stalled waiting for a counted resource.

Module

ALLOC_CNT_RES

Format

IOC$CANCEL_CNT_RES crab ,crctx [,resume_flag]

Context

IOC$CANCEL_CNT_RES conforms to the OpenVMS Alpha calling standard. Its
caller must be executing at fork IPL, holding the corresponding fork lock.

Arguments

crab
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of CRAB that describes the counted resource. For adapters that supply
a counted resource, such as map registers, ADP$L_CRAB often contains this
address.

crctx
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of CRCTX structure that describes the request for the counted resource.

[resume_flag]
VMS Usage: boolean
type: longword (unsigned)
access: read only
mechanism: by value

Indication of whether the cancelled thread should be resumed. If true,
IOC$CANCEL_CNT_RES calls the driver callback routine with SS$_CANCEL
status. If not specified or false, IOC$CANCEL_CNT_RES does not resume the
cancelled thread.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

9–178 System Routines

System Routines
IOC$CANCEL_CNT_RES

Return Values

SS$_NORMAL The routine completed successfully.
SS$_BADPARAM The specified CRCTX was not found in the CRAB

wait queue.

Description

IOC$CANCEL_CNT_RES cancels a thread that has been stalled waiting for a
counted resource. The resource request is described in the CRCTX structure; the
counted resource itself is described in the CRAB.

IOC$CANCEL_CNT_RES scans the CRAB wait queue (CRAB$L_WFQL) to locate
the specified CRCTX. If it cannot locate the CRCTX, it returns SS$_BADPARAM
status to its caller.

If it locates the CRCTX in the CRAB wait queue and the resume_flag argument
is not specified or is false, it removes the CRCTX from the queue and returns
SS$_NORMAL status to its caller. Otherwise, after removing the CRCTX, it
issues a JSB to the driver’s callback routine (CRCTX$L_CALLBACK), passing it
the following values:

Location Contents

R0 SS$_CANCEL
R1 Address of CRAB
R2 Address of CRCTX
R3 CRCTX$Q_FR3
R4 CRCTX$Q_FR4
R5 CRCTX$Q_FR5
Other registers Destroyed

The callback routine checks R0 to determine whether it has been called with
SS$_NORMAL (from IOC$ALLOC_CNT_RES) or SS$_CANCEL status. If the
latter, it takes appropriate steps to respond to the request cancellation. It must
preserve all registers it uses other than R0 through R5 and exit with an RSB
instruction.

When it regains control from the driver callback routine, IOC$CANCEL_CNT_
RES returns SS$_NORMAL status to its caller.

System Routines 9–179

System Routines
IOC$CRAM_CMD

IOC$CRAM_CMD

Generates values for the command, mask, and remote I/O interconnect address
fields of the hardware I/O mailbox that are specific to the interconnect that is the
target of the mailbox operation, inserting these values into the indicated mailbox,
buffer, or both.

Module

[CPUxxxx]IO_SUPPORT_xxxx†

Macro

CRAM_CMD

Format

IOC$CRAM_CMD cmd_index ,byte_offset ,adp_ptr [,cram_ptr] [,buffer_ptr]

Context

IOC$CRAM_CMD conforms to the OpenVMS Alpha calling standard. It acquires
no spin locks and leaves IPL unchanged. After inserting the hardware I/O
mailbox values into the CRAM or specified buffer, IOC$CRAM_CMD returns to
its caller.

Arguments

cmd_index
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Command index. IOC$CRAM_CMD uses this index to generate a mailbox
command that is specific to the tightly-coupled interconnect that is to be the
target of a request using this CRAM.

You can specify any of the following values (defined by the $CRAMDEF
macro), although which of these I/O operations is supported depends on the
I/O interconnect that is to be the object of the mailbox operation.

Command Index Description

CRAMCMD$K_RDQUAD32 Quadword read in 32-bit space
CRAMCMD$K_RDLONG32 Longword read in 32-bit space
CRAMCMD$K_RDWORD32 Word read in 32-bit space
CRAMCMD$K_RDBYTE32 Byte read in 32-bit space
CRAMCMD$K_WTQUAD32 Quadword write in 32-bit space
CRAMCMD$K_WTLONG32 Longword write in 32-bit space
CRAMCMD$K_WTWORD32 Word write in 32-bit space

† where xxxx represents the internal OpenVMS code number for an Alpha CPU

9–180 System Routines

System Routines
IOC$CRAM_CMD

Command Index Description

CRAMCMD$K_WTBYTE32 Byte write in 32-bit space
CRAMCMD$K_RDQUAD64 Quadword read in 64 bit space
CRAMCMD$K_RDLONG64 Longword read in 64 bit space
CRAMCMD$K_RDWORD64 Word read in 64 bit space
CRAMCMD$K_RDBYTE64 Byte read in 64 bit space
CRAMCMD$K_WTQUAD64 Quadword write in 64 bit space
CRAMCMD$K_WTLONG64 Longword write in 64 bit space
CRAMCMD$K_WTWORD64 Word write in 64 bit space
CRAMCMD$K_WTBYTE64 Byte write in 64 bit space

byte_offset
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Byte offset of the field to be written or read from the base of device interface
register (CSR) space. Calculation of the RBADR and MASK fields of the hardware
mailbox depends on the addressing and masking mechanisms provided by the
remote bus. The byte_offset argument is used by IOC$CRAM_CMD to calculate
the RBADR.

adp_ptr
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Address of ADP associated with this command. IOC$CRAM_CMD uses this
parameter to determine which tightly-coupled I/O interconnect is the object of the
mailbox transaction and to construct the mailbox command accordingly.

cram_ptr
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Address of CRAM. IOC$CRAM_CMD returns the command, mask, and remote
bus address values in the corresponding fields of the hardware I/O mailbox.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

System Routines 9–181

System Routines
IOC$CRAM_CMD

Return Values

SS$_NORMAL The calculated command, mask, and remote bus
address values have been written to the CRAM
and/or the specified buffer.

SS$_BADPARAM Illegal command supplied as input or illegal
argument supplied in call

SS$_INSFARG Insufficient arguments supplied in call

Description

IOC$CRAM_CMD calculates the COMMAND, MASK, and RBADR fields for a
hardware I/O mailbox according to the requirements of a specific I/O interconnect.
It performs the following tasks:

• Obtains the address of the command table specific to the given I/O
interconnect from ADP$PS_COMMAND_TBL.

• Uses the value specified in the command argument as an index into the
command table to determine the corresponding command supported by the
I/O interconnect.

• If the command is valid for the I/O interconnect, IOC$CRAM_CMD writes it
to CRAM$L_COMMAND, to the specified buffer, or to both. If the command is
invalid for the I/O interconnect, IOC$CRAM_CMD returns SS$_BADPARAM
status to its caller.

• Calculates the RBADR and MASK fields based of the hardware I/O mailbox,
basing their values on the command, the address of device register interface
space (ADP$Q_CSR or IDB$Q_CSR, if the cram argument is specified), the
byte_offset argument, and interconnect-specific requirements. It writes
these values to CRAM$B_BYTE_MASK and CRAM$Q_RBADR, to the
specified buffer, or to both.

• Returns SS$_NORMAL status to its caller.

9–182 System Routines

System Routines
IOC$CRAM_IO

IOC$CRAM_IO

Queues the hardware I/O mailbox defined within a controller register access
mailbox (CRAM) to the mailbox pointer register (MBPR) and awaits the
completion of the mailbox transaction.

Module

[SYSLOA]CRAM-IO

Macro

CRAM_IO

Format

IOC$CRAM_IO cram

Context

IOC$CRAM_IO conforms to the OpenVMS Alpha calling standard. It acquires no
spin locks and leaves IPL unchanged. After queuing the request and waiting for
its completion, IOC$CRAM_IO returns to its caller.

Arguments

cram
VMS Usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of CRAM associated with the hardware I/O mailbox transaction.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL CRAM has been successfully queued to the
MBPR.

SS$_BADPARAM Supplied argument is not a CRAM.
SS$_CTRLERR Error bit set in mailbox transaction.
SS$_INSFARG No argument supplied in call.
SS$_INTERLOCK Failed to queue hardware I/O mailbox to MBPR

in queue time.

System Routines 9–183

System Routines
IOC$CRAM_IO

SS$_TIMEOUT Mailbox operation did not complete in mailbox
transaction timeout interval.

Description

IOC$CRAM_IO performs an entire hardware I/O mailbox transaction from
the queuing of the hardware I/O mailbox to the MBPR to the transaction’s
completion. A call to IOC$CRAM_IO is the equivalent of independent calls to
IOC$CRAM_QUEUE and IOC$CRAM_WAIT. Prior to calling IOC$CRAM_IO, a
driver typically calls IOC$CRAM_CMD to insert a command, mask, and remote
interconnect address into the hardware I/O mailbox portion of the CRAM. For
CRAMs involved in writes to device interface registers, the driver must also
insert the data to be written into CRAM$Q_WDATA,

IOC$CRAM_IO initiates an I/O operation to a device in remote I/O space by
writing the physical address of the hardware I/O mailbox portion of a CRAM to
the MBPR. If it is not able to post the mailbox to the MBPR in the MBPR queue
timeout interval (CRAM$Q_QUEUE_TIME), it returns SS$_INTERLOCK status
to its caller.

If it does successfully queue the mailbox, it sets the CRAM$V_IN_USE bit in
CRAM$B_CRAM_FLAGS and repeatedly checks the done bit in the hardware I/O
mailbox (CRAM$V_MBX_DONE in CRAM$W_MBX_FLAGS):

• If the done bit is not set in the mailbox transaction timeout interval
(CRAM$Q_WAIT_TIME), IOC$CRAM_IO leaves the CRAM$V_IN_USE
bit in CRAM$B_CRAM_FLAGS set and returns SS$_TIMEOUT status to its
caller.

• If the done bit is set, but the error bit in the mailbox (CRAM$V_MBX_ERROR
in CRAM$W_MBX_FLAGS) is also set, IOC$CRAM_IO clears CRAM$V_IN_
USE and returns SS$_CTRLERR status to its caller. Note that, if the disable-
error bit (CRAM$V_DER) is set, IOC$CRAM_IO never returns an error
(although it may request an IOMBXERR fatal bugcheck in the event of an
error).

• If the done bit is set and the error bit is clear, IOC$CRAM_IO clears
CRAM$V_IN_USE and returns SS$_NORMAL status to its caller. If
IOC$CRAM_IO returns SS$_NORMAL status for read mailbox operations,
the requested data has been returned to CRAM$Q_RDATA. A return of SS$_
NORMAL status for mailbox write operations does not necessarily guarantee
that the data placed in CRAM$Q_WDATA has been successfully written to
the device register.

9–184 System Routines

System Routines
IOC$CRAM_QUEUE

IOC$CRAM_QUEUE

Queues the hardware I/O mailbox defined within a controller register access
mailbox (CRAM) to the mailbox pointer register (MBPR).

Module

[SYSLOA]CRAM-IO

Macro

CRAM_QUEUE

Format

IOC$CRAM_QUEUE cram

Context

IOC$CRAM_QUEUE conforms to the OpenVMS Alpha calling standard. It
acquires no spin locks and leaves IPL unchanged. After queuing the request,
IOC$CRAM_QUEUE returns to its caller. It is expected that the caller will
eventually call IOC$CRAM_WAIT to await completion of the request.

Arguments

cram
VMS Usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of CRAM to be queued.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL CRAM has been successfully queued to the
MBPR.

SS$_BADPARAM Supplied argument is not a CRAM.
SS$_INSFARG No argument supplied in call
SS$_INTERLOCK Failed to queue hardware I/O mailbox to MBPR

in queue time.

System Routines 9–185

System Routines
IOC$CRAM_QUEUE

Description

IOC$CRAM_QUEUE initiates an I/O operation to a device in remote I/O space
by writing the physical address of the hardware I/O mailbox portion of a CRAM
to the MBPR. Prior to calling IOC$CRAM_QUEUE, a driver typically calls
IOC$CRAM_CMD to insert a command, mask, and remote interconnect address
into the hardware I/O mailbox portion of the CRAM. For CRAMs involved in
writes to device interface registers, the driver must also insert the data to be
written into CRAM$Q_WDATA,

If it is not able to post the mailbox to the MBPR in the MBPR queue timeout
interval (CRAM$Q_QUEUE_TIME), IOC$CRAM_QUEUE returns SS$_
INTERLOCK status to its caller. If the disable-error bit (CRAM$V_DER) is
set, IOC$CRAM_QUEUE does not return an error (although it may request an
IOMBXERR fatal bugcheck in the event of an error).

If IOC$CRAM_QUEUE does successfully queue the mailbox, it sets the CRAM$V_
IN_USE bit in CRAM$B_CRAM_FLAGS and returns SS$_NORMAL.

9–186 System Routines

System Routines
IOC$CRAM_WAIT

IOC$CRAM_WAIT

Awaits the completion of a hardware I/O mailbox transaction to a tightly-coupled
I/O interconnect.

Module

[SYSLOA]CRAM-IO

Macro

CRAM_WAIT

Format

IOC$CRAM_WAIT cram

Context

IOC$CRAM_WAIT conforms to the OpenVMS Alpha calling standard. It acquires
no spin locks and leaves IPL unchanged. After queuing the request, IOC$CRAM_
WAIT returns to its caller.

IOC$CRAM_WAIT assumes that its caller has previously called IOC$CRAM_
QUEUE to post to the MBPR the hardware I/O mailbox defined within the
specified CRAM for an I/O operation.

Arguments

cram
VMS Usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of CRAM associated with a previously-queued hardware I/O mailbox
transaction.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL CRAM has been successfully queued to the
MBPR.

SS$_BADPARAM Supplied argument is not a CRAM.
SS$_CTRLERR Error bit set in mailbox transaction.

System Routines 9–187

System Routines
IOC$CRAM_WAIT

SS$_INSFARG No argument supplied in call.
SS$_TIMEOUT Mailbox operation did not complete in mailbox

transaction timeout interval.

Description

IOC$CRAM_WAIT checks the done bit in the hardware I/O mailbox (CRAM$V_
MBX_DONE in CRAM$W_MBX_FLAGS):

• If CRAM$V_MBX_DONE is not set in the mailbox transaction timeout
interval (CRAM$Q_WAIT_TIME), IOC$CRAM_WAIT leaves the CRAM$V_
IN_USE bit in CRAM$B_CRAM_FLAGS set and returns SS$_TIMEOUT
status to its caller.

• If CRAM$V_MBX_DONE is set, but the error bit in the mailbox (CRAM$V_
MBX_ERROR in CRAM$W_MBX_FLAGS) is also set, IOC$CRAM_WAIT
clears CRAM$V_IN_USE and returns SS$_CTRLERR status to its caller.
In this case, CRAM$W_ERROR_BITS contains a device-specific encoding of
additional status information.

• If the done bit is set and the error bit is clear, IOC$CRAM_WAIT clears
CRAM$V_IN_USE and returns SS$_NORMAL status to its caller. If
IOC$CRAM_WAIT returns SS$_NORMAL status for read mailbox operations,
the requested data has been returned to CRAM$Q_RDATA. A return of SS$_
NORMAL status for mailbox write operations does not necessarily guarantee
that the data placed in CRAM$Q_WDATA has been successfully written to
the device register.

Note

If the disable-error bit (CRAM$V_DER) is set, IOC$CRAM_WAIT does not
return an error (although it may request an IOMBXERR fatal bugcheck
in the event of an error).

9–188 System Routines

System Routines
IOC$DEALLOC_CNT_RES

IOC$DEALLOC_CNT_RES

Deallocates the requested number of items of a counted resource.

Module

DEALLOC_CNT_RES

Format

IOC$DEALLOC_CNT_RES crab ,crctx

Context

IOC$DEALLOC_CNT_RES conforms to the OpenVMS Alpha calling standard.
Its caller must be executing at fork IPL, holding the corresponding fork lock.

Arguments

crab
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of CRAB.

crctx
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of CRCTX structure.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.
SS$_BADPARAM CRCTX$L_ITEM_CNT and CRCTX$L_ITEM_

NUM fields are invalid.

System Routines 9–189

System Routines
IOC$DEALLOC_CNT_RES

Description

IOC$DEALLOC_CNT_RES deallocates a requested number of items of a
counted resource. The resource request is described in the CRCTX structure;
the counted resource itself is described in the CRAB. After deallocating the items,
IOC$DEALLOC_CNT_RES attempts to restart any waiters for the resource.

IOC$DEALLOC_CNT_RES performs the following tasks:

1. It examines CRCTX$V_ITEM_VALID in CRCTX$L_FLAGS. If it is clear,
IOC$DEALLOC_CNT_RES returns SS$_BADPARAM status to its caller.

2. It acquires the spin lock indicated by CRAB$L_SPINLOCK, raising IPL to
IPL$_IOLOCKLL in the process.

3. It scans the CRAB allocation array for a descriptor into which the items being
deallocated (indicated by CRCTX$L_ITEM_CNT) can be merged.

4. It adjusts the CRAB allocation array and CRAB$L_VALID_DESC_CNT to
reflect the deallocation.

5. If there are waiters for the counted resource, IOC$DEALLOC_CNT_RES
removes the CRCTX of the first waiter from the CRAB wait queue (CRAB$L_
WQFL) and calls IOC$ALLOC_CNT_RES to grant the requested number of
resources.

If this attempt succeeds, IOC$DEALLOC_CNT_RES restores the context
of the stalled waiter (R3 through R5), releases the spin lock indicated by
CRAB$L_SPINLOCK (upon the condition that the caller of IOC$DEALLOC_
CNT_RES did not already own this spin lock at the time of the call), and
issues a standard call to the callback routine indicated by CRCTX$L_
CALLBACK, passing it the address of the CRAB; the address of the CRCTX;
the values stored in CRCTX$Q_FR3, CRCTX$Q_FR4, and CRCTX$Q_FR5;
and SS$_NORMAL status.

IOC$DEALLOC_CNT_RES continues to attempt to restart waiters in this
manner until an allocation request fails. When this occurs, IOC$DEALLOC_
CNT_RES replaces its CRCTX in the CRAB wait queue, conditionally releases
the spin lock indicated by CRAB$L_SPINLOCK, and returns SS$_NORMAL
status to its caller.

6. If there are no waiters for the counted resource, IOC$DEALLOC_CNT_RES
conditionally releases the spin lock indicated by CRAB$L_SPINLOCK, and
returns SS$_NORMAL status to its caller.

9–190 System Routines

System Routines
IOC$DEALLOC_CRAB

IOC$DEALLOC_CRAB

Deallocates a counted resource allocation block (CRAB).

Module

ALLOC_CNT_RES

Format

IOC$DEALLOC_CRAB crab

Context

IOC$DEALLOC_CRAB conforms to the OpenVMS Alpha calling standard.
Because IOC$DEALLOC_CRAB calls EXE$DEANONPAGED, its caller cannot be
executing above IPL$_SYNCH.

Arguments

crab
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of CRAB to be deallocated.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.

Description

A driver calls IOC$DEALLOC_CRAB to deallocate a CRAB. IOC$DEALLOC_
CRAB passes the address of the CRAB to EXE$DEANONPAGED and returns
SS$_NORMAL status to its caller.

System Routines 9–191

System Routines
IOC$DEALLOC_CRCTX

IOC$DEALLOC_CRCTX

Deallocates a counted resource context block (CRCTX).

Module

ALLOC_CNT_RES

Format

IOC$DEALLOC_CRCTX crctx

Context

IOC$DEALLOC_CRCTX conforms to the OpenVMS Alpha calling standard.
Because IOC$DEALLOC_CRCTX calls EXE$DEANONPAGED, its caller cannot
be executing above IPL$_SYNCH.

Arguments

crctx
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of CRCTX to be deallocated.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.

Description

A driver calls IOC$DEALLOC_CRCTX to deallocate a CRCTX. IOC$DEALLOC_
CRCTX passes the address of the CRCTX to EXE$DEANONPAGED and returns
SS$_NORMAL status to its caller.

9–192 System Routines

System Routines
IOC$DEALLOCATE_CRAM

IOC$DEALLOCATE_CRAM

Deallocates a controller register access mailbox.

Module

CRAM-ALLOC

Macro

CRAM_DEALLOC

Format

IOC$DEALLOCATE_CRAM cram

Context

IOC$DEALLOCATE_CRAM conforms to the OpenVMS Alpha calling standard.
Its caller must be executing at or below IPL 8 and must not hold spin locks
ranked higher than IO_MISC.

IOC$DEALLOCATE_CRAM acquires and releases the IO_MISC spin lock and
returns to its caller at its caller’s IPL.

Arguments

cram
VMS Usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of CRAM to be deallocated by IOC$DEALLOCATE_CRAM

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL CRAM has been successfully deallocated.
SS$_BADPARAM Supplied argument is not a CRAM.
SS$_INSFARG Insufficient arguments supplied in call

Description

IOC$DEALLOCATE_CRAM deallocates a single controller register access mailbox
(CRAM).

System Routines 9–193

System Routines
IOC$KP_REQCHAN

IOC$KP_REQCHAN

Stalls a kernel process in such a manner that it can be resumed by the granting
of a device controller channel.

Module

KERNEL_PROCESS_MIN, KERNEL_PROCESS_MON

Macro

KP_STALL_REQCHAN

Format

IOC$KP_REQCHAN kpb ,priority

Context

IOC$KP_REQCHAN conforms to the OpenVMS Alpha calling standard. It can
only be called by a kernel process.

A kernel process calls IOC$KP_REQCHAN at fork IPL holding the appropriate
fork lock.

If the requested channel is busy, either the channel-requesting routine
IOC$PRIMITIVE_REQCHANH or IOC$PRIMITIVE_REQCHANL preserves
the contents of its caller’s R3 in UCB$Q_FR3 (contents of caller’s R3).
IOC$RELCHAN eventually issues a JSB instruction to the fork routine upon
granting the channel request. At this time, the kernel process is provided with
the contents of UCB$Q_FR3 in R3, the IDB address in R4, and the UCB address
in R5.

Arguments

kpb
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of the caller’s KPB which must be a VEST KPB. KPB$PS_UCB must
contain the address of a UCB and KPB$PS_IRP must contain the address of an
IRP.

priority
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Priority of the request for the controller channel. You must specify one of the
following symbolic constants:

9–194 System Routines

System Routines
IOC$KP_REQCHAN

Constant Meaning

KPB$K_LOW Insert fork block of UCB requesting controller channel at the
tail of the channel-wait queue.

KPB$K_HIGH Insert fork block of UCB requesting controller channel at the
head of the channel-wait queue.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.
SS$_BADPARAM The kpb argument does not specify a VEST

KPB, or an illegal value was supplied in the
priority argument.

SS$_INSFARG Not all of the required arguments were specified.

Description

IOC$KP_REQCHAN first checks the CRB to determine if the controller channel is
busy. If the CRB is not busy (CRB$V_BSY in CRB$B_MASK is clear), IOC$KP_
REQCHAN grants the channel request immediately by placing the UCB address
in IDB$L_OWNER and returning SS$_NORMAL status to its caller.

If the CRB is busy, IOC$KP_REQCHAN performs the following tasks to initiate a
stall of the kernel process:

1. Copies the priority argument to KPB$IS_CHANNEL_DATA.

2. Inserts the procedure descriptor of subroutine STALL_REQCHAN in
KPB$PS_SCH_STALL_RTN, thus making it the kernel process scheduling
stall routine.

3. Clears KPB$PS_SCH_RESTART, thus indicating that there is no kernel
process scheduling restart routine.

4. Calls EXE$KP_STALL_GENERAL, passing to it the address of the KPB.

Note that, having stalled the kernel process, the STALL_REQCHAN kernel
process scheduling stall routine returns control to EXE$KP_STALL_GENERAL,
which returns to the initiator of the kernel process thread (that is, the caller of
EXE$KP_START or EXE$KP_RESTART). When the controller channel request is
ultimately granted, STALL_REQCHAN calls EXE$KP_RESTART which, in turn,
passes control back to IOC$KP_REQCHAN. IOC$KP_REQCHAN then returns to
the kernel process that called it.

System Routines 9–195

System Routines
IOC$KP_WFIKPCH, IOC$KP_WFIRLCH

IOC$KP_WFIKPCH, IOC$KP_WFIRLCH

Stall a kernel process in such a manner that it can be resumed by device
interrupt processing.

Module

KERNEL_PROCESS_MIN, KERNEL_PROCESS_MON

Macro

KP_STALL_WFIKPCH
KP_STALL_WFIRLCH

Format

IOC$KP_WFIKPCH kpb ,time ,newipl

IOC$KP_WFIRLCH kpb ,time ,newipl

Context

IOC$KP_WFIKPCH and IOC$KP_WFIRLCH conform to the OpenVMS Alpha
calling standard. They can only be called by a kernel process.

When called, IOC$KP_WFIKPCH or IOC$KP_WFIRLCH assumes that the local
processor has obtained the appropriate synchronization with the device database
by securing the appropriate device lock, as recorded in the unit control block
(UCB$L_DLCK) of the device unit from which the interrupt is expected. This
requirement also presumes that the local processor is executing at the device IPL
associated with the lock.

Before exiting, the wait-for-interrupt routine (IOC$PRIMITIVE_WFIKPCH or
IOC$PRIMITIVE_WFIRLCH) conditionally releases the device lock, so that if
the initiator of the kernel process thread previously owned the device lock, it
will continue to hold it when it regains control. IOC$PRIMITIVE_WFIKPCH
or IOC$PRIMITIVE_WFIRLCH also lowers the local processor’s IPL to the IPL
specified in the newipl argument.

Arguments

kpb
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of the caller’s KPB (which must be a VEST KPB). KPB$PS_UCB must
contain the address of a UCB and KPB$PS_IRP must contain the address of an
IRP.

time
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

9–196 System Routines

System Routines
IOC$KP_WFIKPCH, IOC$KP_WFIRLCH

Timeout value in seconds.

newipl
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

IPL to which to lower before returning to the initiator of the kernel process
thread (that is, the caller of EXE$KP_START or EXE$KP_RESTART). This IPL
must be the fork IPL associated with device processing and at which the kernel
process was executing prior to invoking the DEVICELOCK macro.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.
SS$_BADPARAM The kpb argument does not specify a VEST

KPB.
SS$_INSFARG Not all of the required arguments were specified.
SS$_TIMEOUT A timeout has occurred.

Description

IOC$KP_WFIKPCH and IOC$KP_WFIRLCH perform the following tasks to
initiate a stall of the kernel process:

1. Copy the time argument to KPB$IS_TIMEOUT_TIME and the newipl
argument to KPB$IS_RESTORE_IPL.

2. Move the symbolic constant KPB$K_KEEP (for IOC$KP_WFIKPCH) or
KPB$K_RELEASE (for IOC$KP_WFIRLCH) to KPB$IS_CHANNEL_DATA.

3. Insert the procedure descriptor of subroutine STALL_WFIXXCH in KPB$PS_
SCH_STALL_RTN, this making it the kernel process scheduling stall routine.

4. Clear KPB$PS_SCH_RESTART, thus indicating that there is no kernel
process scheduling restart routine.

5. Call EXE$KP_STALL_GENERAL, passing to it the address of the KPB.

Note that, having stalled the kernel process, the STALL_WFIXXCH kernel
process scheduling stall routine returns control to EXE$KP_STALL_GENERAL,
which returns to the initiator of the kernel process thread (that is, the caller of
EXE$KP_START or EXE$KP_RESTART). When interrupt servicing transfers
control back to STALL_WFIXXCH, or a timeout occurs, STALL_WFIXXCH calls
EXE$KP_RESTART which, in turn, passes control back to IOC$KP_WFIKPCH
or IOC$KP_WFIRLCH. The kernel process wait-for-interrupt stall routine then
returns to the kernel process that called it.

System Routines 9–197

System Routines
IOC$LOAD_MAP

IOC$LOAD_MAP

Loads a set of adapter-specific map registers.

Module

[CPUxxxx]MAPREG_xxxx†

Format

IOC$LOAD_MAP adp ,crctx ,svapte ,boff ,dma_address_ref

Context

IOC$LOAD_MAP conforms to the OpenVMS Alpha calling standard.

Arguments

adp
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of ADP for adapter which provides the map registers.

crctx
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of CRCTX that describes a map register allocation (that is, a CRCTX
that has been obtained by a call to IOC$ALLOC_CRCTX and supplied in a
call to IOC$ALLOC_CNT_RES for the CRAB that manages this adapter’s map
registers).

svapte
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

System virtual address of the PTE for the first page to be used in the transfer.

boff
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Byte offset into the first page of the transfer buffer.

† where xxxx represents the internal OpenVMS code number for an Alpha CPU

9–198 System Routines

System Routines
IOC$LOAD_MAP

dma_address_ref
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a location to receive a port-specific DMA address. For DEC 3000-500
systems, this address is a function of the starting map register and the byte
offset. A DEC 3000-500 system port driver must strip off two lower bits when
loading the address register of the DMA device.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.
SS$_INSMEM Memory allocation failure.

Description

A driver calls IOC$LOAD_MAP to load a set of adapter-specific map registers.
The driver must have previously allocated the map registers (including an extra
two to serve as guard pages) in calls to IOC$ALLOC_CRCTX and IOC$ALLOC_
CNT_RES.

IOC$LOAD_MAP computes a port-specific DMA address and returns it to the
driver for use in a hardware I/O mailbox operation that loads the address register
of a DMA device.

System Routines 9–199

System Routines
IOC$MAP_IO

IOC$MAP_IO

IOC$MAP_IO maps I/O bus physical address space into an address region
accessible by the processor. The caller of this routine can express the mapping
request in terms of the bus address space without regard to address swizzle
space, dense space, or sparse space.

IOC$MAP_IO is supported on PCI, EISA, TURBOchannel, or PCI systems. It is
not supported on XMI systems.

Description

The routine prototype is as follows:

int ioc$map_io (ADP *adp,
int node,
uint64 *physical_offset,
int num_bytes,
int attributes,
uint64 *iohandle)

Inputs

adp Address of bus ADP. Driver can get this from
IDB$PS_ADP.

node Bus node number of device. Bus specific
interpretation. Available to driver in
CRB$L_NODE (driver must be loaded with /NODE
qualifier).

physical_offset Address of a quadword cell. For EISA, PCI,
and Futurebus, the quadword cell should contain
the starting bus physical address to be mapped. For
Turbochannel, the quadword cell should contain the
physical offset from the Turbochannel slot base
address.

num_bytes Number of bytes to be mapped. Expressed in terms
of the bus/device without regard to the platform
hardware addressing tricks.

attributes Specifies desired attributes of space to be
mapped. From [lib]iocdef. One of the following:

IOC$K_BUS_IO_BYTE_GRAN

Request mapping in a platform address space which
corresponds to bus I/O space and provides byte
granularity access. In general, if you are mapping
device control registers that exist in bus I/O space,
you should specify this attribute. For example,
drivers for PCI devices with registers in PCI I/O
space or EISA devices with EISA I/O port addresses
should request mapping with this attribute.

IOC$K_BUS_MEM_BYTE_GRAN

Request mapping in a platform address space which
corresponds to bus memory space and provides byte
granularity access. In general, if you are mapping
device registers that exist in bus memory space, you
should specify this attribute. For example, drivers
for PCI devices with registers in PCI memory space
should request mapping with this attribute.

IOC$K_BUS_DENSE_SPACE

9–200 System Routines

System Routines
IOC$MAP_IO

Request mapping in a platform address space that
corresponds to bus memory space and provides
coarse access granularity. IOC$K_BUS_DENSE_SPACE
is suitable for mapping device memory buffers such
as graphics frame buffers. In IOC$K_BUS_DENSE_SPACE,
there must be no side effects on reads and it may be
possible for the processor to merge writes. Thus
you should not map device registers in dense
space.

iohandle Pointer to a 64 bit cell. A 64 bit
magic number is written to this cell by IOC$MAP_IO
when the mapping request is successful. The caller
must save the iohandle, as it is an input to
IOC$CRAM_CMD and to the new platform independent
access routines IOC$READ_IO and IOC$WRITE_IO.

Outputs

SS$_NORMAL Success. The address space is mapped. A 64 bit
IOHANDLE is written to the caller’s buffer.

SS$_BADPARAM Bad input argument. For example, the requested
bus address may not be accessible from the CPU, or
the attribute may be unrecognized.

SS$_UNSUPPORTED Address space with the requested attributes
not available on this platform. For example, the
Jensen platform does not support EISA memory dense
space.

SS$_INSFSPTS Not enough PTEs to satisfy mapping request.

System Routines 9–201

System Routines
IOC$NODE_FUNCTION

IOC$NODE_FUNCTION

Performs node-specific functions on behalf of a driver, such as enabling or
disabling interrupts from a bus slot.

Module

[SYSLOA]MISC_SUPPORT

Format

IOC$NODE_FUNCTION crb_addr ,function_code

Context

IOC$NODE_FUNCTION conforms to the OpenVMS Alpha calling standard. It
may be called in kernel mode at any IPL and may acquire the MEGA spin lock
(SPL$C_MEGA), raising IPL to IPL$_MEGA in the process, depending on the
function code.

Arguments

crb_addr
VMS Usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of CRB.

function_code
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Function to be effected for the bus node indicated by the crb_addr argument.
You can specify one of the following values (defined by the $IOCDEF macro in
SYS$LIBRARY:LIB.MLB). Note that not all function codes are supported by all
adapters.

Code Action

IOC$K_ENABLE_INTR Enable interrupts
IOC$K_DISABLE_INTR Disable interrupts
IOC$K_ENABLE_SG Enable scatter/gather map
IOC$K_DISABLE_SG Disable scatter/gather map
IOC$K_ENABLE_PAR Enable parity
IOC$K_DISABLE_PAR Disable parity
IOC$K_ENABLE_BLKM Enable block mode
IOC$K_DISABLE_BLKM Disable block mode

9–202 System Routines

System Routines
IOC$NODE_FUNCTION

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.
SS$_ILLIOFUNC Requested function not available on this platform

or bus.

Description

IOC$NODE_FUNCTION locates the ADP associated with the specified CRB
(from VEC$PS_ADP) and calls the adapter-specific node function routine specified
in ADP$PS_NODE_FUNCTION. The node function routine performs the function
indicated by the function_code argument.

Drivers request the node-specific functions as follows:

• IOCK_ENABLE_INTR, IOCK_DISABLE_INTR

On both DEC 3000-500 and DEC 3000-300 systems, when the console
transfers control to OpenVMS Alpha, TURBOchannel interrupts from all
slots are disabled. The controller or unit initialization routine of a driver
for a TURBOchannel devices must call IOC$NODE_FUNCTION, specifying
the IOC$K_ENABLE_INTR function code, to enable interrupts for the
TURBOchannel slot in which the device resides. The field CRB$L_NODE of
the specified CRB contains this slot number.

Calling IOC$NODE_FUNCTION with the IOC$K_DISABLE_INTR code
disables interrupts from the node.

• IOCK_ENABLE_SG, IOCK_DISABLE_SG

On DEC 3000-500 systems, calling IOC$NODE_FUNCTION with function
code IOC$K_ENABLE_SG, allows DMA transactions from a device to use the
DEC 3000-500 system scatter/gather map. The TURBOchannel slot of the
device is indicated by the field CRB$L_NODE in the specified CRB.

Calling IOC$NODE_FUNCTION with the IOC$K_DISABLE_SG code disables
the scatter/gather map.

DEC 3000-300 systems have no scatter/gather map. IOC$NODE_FUNCTION
returns SS$_ILLIOFUNC if it is called on a DEC 3000-300 system with either
an IOC$K_ENABLE_SG or IOC$K_DISABLE_SG function code.

• IOCK_ENABLE_PAR, IOCK_DISABLE_PAR

On DEC 3000-500 systems, calling IOC$NODE_FUNCTION with function
code IOC$K_ENABLE_PAR causes parity to be generated on TURBOchannel
transactions directed to a device, and causes parity to be checked on
TURBOchannel transactions coming from the device. The TURBOchannel
slot of the device is indicated by the field CRB$L_NODE in the specified CRB.

System Routines 9–203

System Routines
IOC$NODE_FUNCTION

If an adapter supports TURBOchannel parity, a driver controller or unit
initialization routine enable it by calling IOC$NODE_FUNCTION with the
IOC$K_ENABLE_PAR function code.

Calling IOC$NODE_FUNCTION with the IOC$K_DISABLE_PAR code
disables TURBOchannel parity.

DEC 3000-300 systems do not support TURBOchannel parity. IOC$NODE_
FUNCTION returns SS$_ILLIOFUNC if it is called on a DEC 3000-300
system with either an IOC$K_ENABLE_PAR or IOC$K_DISABLE_PAR
function code.

• IOCK_ENABLE_BLKM, IOCK_DISABLE_BLKM

On DEC 3000-500 systems, calling IOC$NODE_FUNCTION with
function code IOC$K_ENABLE_BLKM causes block mode to be used on
TURBOchannel transactions to and from the device indicated by the field
CRB$L_NODE in the specified CRB. Most drivers have no need to enable
block mode.

DEC 3000-300 systems do not support TURBOchannel block mode.
IOC$NODE_FUNCTION returns SS$_ILLIOFUNC if it is called on a
DEC 3000-300 system with either an IOC$K_ENABLE_BLKM or IOC$K_
DISABLE_BLKM function code.

9–204 System Routines

System Routines
IOC$READ_IO

IOC$READ_IO

Reads a value from a previously mapped location in I/O address space. This
routine requires that the I/O space to be accessed has been previously mapped by
a call to IOC$MAP_IO.

IOC$READ_IO is supported on PCI, EISA, TURBOchannel, and PCI systems. It
is not supported on XMI systems.

Description

The routine prototype for IOC$READ_IO is as follows:

int ioc$read_io (ADP *adp,
uint64 *iohandle,
int offset,
int length,
void *read_data)

Inputs

adp Address of bus ADP. Driver can get this from
IDB$PS_ADP.

iohandle Pointer to a 64 bit IOHANDLE. The 64 bit IOHANDLE
is obtained by calling the platform independent
mapping routine IOC$MAP_IO.

offset Offset in device space of field to be read or written.
This should be specified as an offset from the base of
the space that was previously mapped by the call to
IOC$MAP_IO. The offset is specified in terms of the
device or bus without regard to any hardware address
trickery.

length Length of field to be read or written. Should be 1
(byte), 2 (word), 3 (tribyte), 4 (longword) or 8
(quadword). Note that not all of these lengths are
supported on all buses.

read_data Pointer to a data cell. For ioc$read_io, the
data read from the device will be returned in this cell.
If the requested data length was 1, 2, 3, or 4, a
longword is written to the data cell with valid data
in the byte lane(s) corresponding to the requested
length and offset. If the requested data length was 8,
a quadword is written to the data cell.

write_data Pointer to a data cell. The data cell should
contain the data to be written to the device. For
lengths of 1, 2, 3 or 4, the ioc$write_io routine
reads a longword from the data cell and writes this
longword to the bus with the proper byte enables set
according to the length and offset. The actual
data to be written must be positioned in the proper
byte lane(s) according to the requested length and
offset. For a length 8 transfer, the ioc$write_io
routine reads a quadword from the data cell.

Outputs

SS$_NORMAL Success. If IOC$READ_IO, data is returned in the
caller’s buffer. If IOC$WRITE_IO, data is written to
device.

SS$_BADPARAM Bad input argument, such as an illegal length.

System Routines 9–205

System Routines
IOC$READ_IO

SS$_UNSUPPORTED A transaction length not supported by this bus
or platform.

9–206 System Routines

System Routines
IOC$UNMAP_IO

IOC$UNMAP_IO

Unmaps a previously mapped I/O address space, returning the IOHANDLE and
the PTEs to the system. The caller’s quadword cell containing the IOHANDLE is
cleared.

Description

The routine prototype is as follows:

int ioc$unmap_io (ADP *adp,
uint64 *iohandle)

System Routines 9–207

System Routines
IOC$WRITE_IO

IOC$WRITE_IO

Writes a value to a previously mapped location in I/O address space.
IOC$WRITE_IO requires that the I/O space to be accessed has been previously
mapped by a call to IOC$MAP_IO.

Description

The routine prototype is as follows:

int ioc$write_io (ADP *adp,
uint64 *iohandle,
int offset,
int length,
void *write_data)

Inputs

adp Address of bus ADP. Driver can get this from
IDB$PS_ADP.

iohandle Pointer to a 64 bit IOHANDLE. The 64 bit IOHANDLE
is obtained by calling the platform independent
mapping routine IOC$MAP_IO.

offset Offset in device space of field to be read or written.
This should be specified as an offset from the base of
the space that was previously mapped by the call to
IOC$MAP_IO. The offset is specified in terms of the
device or bus without regard to any hardware address
trickery.

length Length of field to be read or written. Should be 1
(byte), 2 (word), 3 (tribyte), 4 (longword) or 8
(quadword). Note that not all of these lengths are
supported on all buses.

read_data Pointer to a data cell. For ioc$read_io, the
data read from the device will be returned in this cell.
If the requested data length was 1, 2, 3, or 4, a
longword is written to the data cell with valid data
in the byte lane(s) corresponding to the requested
length and offset. If the requested data length was 8,
a quadword is written to the data cell.

write_data Pointer to a data cell. The data cell should
contain the data to be written to the device. For
lengths of 1, 2, 3 or 4, the ioc$write_io routine
reads a longword from the data cell and writes this
longword to the bus with the proper byte enables set
according to the length and offset. The actual
data to be written must be positioned in the proper
byte lane(s) according to the requested length and
offset. For a length 8 transfer, the ioc$write_io
routine reads a quadword from the data cell.

Outputs

SS$_NORMAL Success. If ioc$read_io, data is returned in the
caller’s buffer. If ioc$write_io, data is written to
device.

SS$_BADPARAM Bad input argument, such as an illegal length.

SS$_UNSUPPORTED A transaction length not supported by this bus
or platform.

9–208 System Routines

System Routines
IOC_STD$ALTREQCOM

IOC_STD$ALTREQCOM

Completes an I/O request for a device using the disk or tape class drivers.

Module

IOSUBNPAG

Format

IOC_STD$ALTREQCOM (iost1, iost2, cdrp, irp_p, ucb_p)

Arguments

Argument Type Access Mechanism Status

iost1 integer input value required
iost2 integer input value required
cdrp CDRP input reference required
irp_p pointer output reference required
ucb_p pointer output reference required

iost1
First longword of I/O status.

iost2
Second longword of I/O status.

cdrp
Class driver request packet.

irp_p
Address at which IOC_STD$ALTREQCOM writes the address of the I/O request
packet.

ucb_p
Address at which IOC_STD$ALTREQCOM writes the address of the unit control
block.

Context

IOC_STD$ALTREQCOM is typically called at fork IPL with the corresponding
fork lock held in an OpenVMS multiprocessing system.

Description

For Digital internal use only.

System Routines 9–209

System Routines
IOC_STD$ALTREQCOM

Macro

CALL_ALTREQCOM

In an Alpha driver, the CALL_ALTREQCOM macro calls IOC_
STD$ALTREQCOM, using the current contents of R0, R1, and R5 as the iost1,
iost2, and cdrp arguments, respectively. When IOC_STD$ALTREQCOM returns,
the macro returns the address of the IRP in R3 and the address of the UCB in
R4.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$ALTREQCOM replaces IOC$ALTREQCOM (used by OpenVMS
VAX drivers). Unlike IOC$ALTREQCOM, IOC_STD$ALTREQCOM does not
return the addresses of the IRP and UCB in R3 and R5, respectively.

9–210 System Routines

System Routines
IOC_STD$BROADCAST

IOC_STD$BROADCAST

Broadcasts the specified message to a given terminal.

Module

IOSUBNPAG

Format

status = IOC_STD$BROADCAST (msglen, msg_p, ucb)

Arguments

Argument Type Access Mechanism Status

msglen integer input value required
msg_p address input reference required
ucb UCB input reference required

msglen
Message length.

msg_p
Message.

ucb
Address of target terminal’s UCB.

Return Values

SS$_ILLIOFUNC The specified term_ucb is not associated with a
terminal.

SS$_INSFMEM Insufficient dynamic nonpaged pool to satisfy the
request.

SS$_NORMAL The broadcast completed successfully.

Context

IOC_STD$BROADCAST is typically called at fork IPL with the corresponding
fork lock held in an OpenVMS multiprocessing system.

Description

For Digital internal use only.

System Routines 9–211

System Routines
IOC_STD$BROADCAST

Macro

CALL_BROADCAST [save_r1]

where:

save_r1 indicates that the macro should preserve register R1 across the call
to IOC_STD$BROADCAST. If save_r1 is blank or save_r1=YES, the 64-bit
register is saved. (In the former case, the macro generates a compile-time
message. If save_r1=NO, R1 is not saved.)

In an Alpha driver, the CALL_BROADCAST macro calls IOC_STD$BROADCAST,
using the current contents of R1, R2, and R5 as the msglen, msg_p, and ucb
arguments, respectively. It returns status in R0. Unless you specify save_
r1=NO, the macro preserves the quadword register R1 across the call.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$BROADCAST replaces IOC$BROADCAST (used by OpenVMS
VAX drivers). Unlike IOC$BROADCAST, IOC_STD$BROADCAST does not
preserve R1 across the call.

9–212 System Routines

System Routines
IOC_STD$CANCELIO

IOC_STD$CANCELIO

Conditionally marks a UCB so that its current I/O request will be canceled.

Module

IOSUBNPAG

Format

IOC_STD$CANCELIO (chan, irp, pcb, ucb)

Arguments

Argument Type Access Mechanism Status

chan integer input value required
irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required

chan
Channel index number.

irp
I/O request packet. IOC_STD$CANCELIO reads the following IRP fields:

Field Contents

IRP$L_PID Process identification of the process that queued the
I/O request

IRP$L_CHAN I/O request channel index number

pcb
Current process control block.

ucb
Unit control block. IOC_STD$CANCELIO reads UCB$L_STS to determine
if the device is busy (UCB$V_BSY set) or idle (UCB$V_BSY clear). IOC_
STD$CANCELIO sets UCB$V_CANCEL if the I/O request should be canceled.

Context

IOC_STD$CANCELIO executes at its caller’s IPL, obtains no spin locks,
and returns control to its caller at the caller’s IPL. It is usually called by
EXE$CANCEL (if specified in the DDT as the driver’s cancel-I/O routine) at fork
IPL, holding the corresponding fork lock in a multiprocessing environment.

System Routines 9–213

System Routines
IOC_STD$CANCELIO

Description

IOC_STD$CANCELIO cancels I/O to a device in the following device-independent
manner:

1. It confirms that the device is busy by examining the device-busy bit in the
UCB status longword (UCB$V_BSY in UCB$L_STS).

2. It confirms that the IRP in progress on the device originates from the current
process (that is, the contents of IRP$L_PID and PCB$L_PID are identical).

3. It confirms that the specified channel-index number is the same as the value
stored in the IRP’s channel-index field (IRP$L_CHAN).

4. It sets the cancel-I/O bit in the UCB status longword (UCB$V_CANCEL in
UCB$L_STS).

Macro

CALL_CANCELIO [save_r0r1]

where:

save_r0r1 indicates that the macro should preserve registers R0 and R1
across the call to IOC_STD$CANCELIO. If save_r0r1 is blank or save_
r0r1=YES, the 64-bit registers are saved. (In the former case, the macro
generates a compile-time message. If save_r0r1=NO, the registers are not
saved.)

In an Alpha driver, the CALL_CANCELIO macro calls IOC_STD$CANCELIO,
using the current contents of R2, R3, R4, and R5 as the chan, irp, pcb, and
ucb arguments, respectively. Unless you specify save_r0r1=NO, it preserves the
quadword registers R0 and R1 across the call.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$CANCELIO replaces IOC$CANCELIO (used by OpenVMS VAX
drivers). Unlike IOC$CANCELIO, IOC_STD$CANCELIO does not preserve
R0 and R1 across the call.

9–214 System Routines

System Routines
IOC_STD$CLONE_UCB

IOC_STD$CLONE_UCB

Copies a template UCB and links it to the appropriate DDB list.

Module

UCBCREDEL

Format

status = IOC_STD$CLONE_UCB (tmpl_ucb, new_ucb_p)

Arguments

Argument Type Access Mechanism Status

tmpl_ucb UCB input reference required
new_ucb_p pointer output reference required

tmpl_ucb
Template unit control block.

new_ucb_p
Location into which IOC_STD$CLONE_UCB writes the address of the newly-
created unit control block.

Return Values

SS$_NORMAL UCB cloning was successful.
SS$_INSFMEM Insufficient nonpaged pool to copy UCB.

Context

A driver calls IOC_STD$CLONE_UCB at or below IPL$_MAILBOX with the I/O
database locked for write access.

Description

For Digital internal use only.

Macro

CALL_CLONE_UCB [interface_warning=YES]

where:

interface_warning=YES, the default, specifies that the macro generate
a compile-time warning indicating how the behavior of the macro differs
from the VAX version of the corresponding system routine. interface_
warning=NO suppresses the warning.

System Routines 9–215

System Routines
IOC_STD$CLONE_UCB

In an OpenVMS Alpha driver, CALL_CLONE_UCB calls IOC_STD$CLONE_UCB
using the current contents of R5 as the tmpl_ucb argument. CALL_CLONE_
UCB returns status in R0 and the address of the newly-created UCB in R2, but
does not return the address of the UCBs that precede and follow it on the DDB
chain in R3 and R1, respectively.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$CLONE_UCB replaces IOC$CLONE_UCB (used by OpenVMS VAX
drivers). IOC_STD$CLONE_UCB does not return the addresses of the UCBs
that precede and follow the newly-created UCB on the DDB chain.

9–216 System Routines

System Routines
IOC_STD$COPY_UCB

IOC_STD$COPY_UCB

Copies and initializes a template UCB and ORB.

Module

UCBCREDEL

Format

status = IOC_STD$COPY_UCB (src_ucb, new_ucb)

Arguments

Argument Type Access Mechanism Status

src_ucb UCB input reference required
new_ucb pointer output reference required

src_ucb
Template unit control block.

new_ucb
Location into which IOC_STD$COPY_UCB writes the address of the newly-
created duplicate unit control block.

Return Values

SS$_NORMAL UCB copy was successful.
SS$_INSFMEM Insufficient nonpaged pool to copy UCB.

Context

A driver calls IOC_STD$COPY_UCB at or below IPL$_MAILBOX with the I/O
database locked for write access.

Description

For Digital internal use only.

Macro

CALL_COPY_UCB

In an Alpha driver, CALL_COPY_UCB calls IOC_STD$COPY_UCB using the
current contents of R5 as the src_ucb argument. CALL_CLONEUCB returns the
address of the newly-created UCB in R2.

System Routines 9–217

System Routines
IOC_STD$COPY_UCB

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note that IOC_STD$COPY_
UCB replaces IOC$COPY_UCB (used by OpenVMS VAX drivers). IOC_
STD$COPY_UCB does not preserve the contents of R3 and R4 across the call.

9–218 System Routines

System Routines
IOC_STD$CREDIT_UCB

IOC_STD$CREDIT_UCB

Credits the UCB charges associated with a given UCB against the process
identified by the contents of UCB$L_CPID.

Module

UCBCREDEL

Format

IOC_STD$CREDIT_UCB (ucb)

Arguments

Argument Type Access Mechanism Status

ucb UCB input reference required

ucb
Unit control block.

Context

A driver calls IOC_STD$CREDIT_UCB at IPL$_ASTDEL.

Description

For Digital internal use only.

Macro

CALL_CREDIT_UCB

In an Alpha driver, CALL_CREDIT_UCB calls IOC_STD$CREDIT_UCB using
the current contents of R5 as the ucb argument.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$CREDIT_UCB replaces IOC$CREDIT_UCB (used by OpenVMS
VAX drivers).

System Routines 9–219

System Routines
IOC_STD$CVT_DEVNAM

IOC_STD$CVT_DEVNAM

Converts a device name and unit number to a physical device name string.

Module

IOSUBNPAG

Format

status = IOC_STD$CVT_DEVNAM (buflen, buf, form, ucb, outlen_p)

Arguments

Argument Type Access Mechanism Status

buflen integer input value required
buf address input reference required
form integer input value required
ucb UCB reference input required
outlen_p pointer output reference required

buflen
Size of output buffer in bytes.

buf
Output buffer.

form
Name string formation mode, as follows:

Mode Description

-2 (DVI$_DISPLAY_
DEVNAM)

Name suitable for displays but not suitable for
$ASSIGN: "$alloclass$ddcn: (host1[, host2])",
"node$ddcn", or "ddcn"

–1 (DVI$_DEVNAM) Name suitable for displays: "node$ddcn" for non-local
devices or "node$ddcn" or "ddcn" for local devices

0 (DVI$_
FULLDEVNAM)

Name with appropriate node information: either
"$alloclass$ddcn" or "node$ddcn"

1 (DVI$_
ALLDEVNAM)

Name with allocation class information: either
"$alloclass$ddcn" or "node$ddcn"

2 (no GETDVI item
code)

Old-fashioned name: "ddcn"

3 (no GETDVI item
code)

Secondary path name for displays (same as –1 except
secondary path name is returned)

9–220 System Routines

System Routines
IOC_STD$CVT_DEVNAM

Mode Description

4 (no GETDVI item
code)

Path controller name for displays (same as –1 except no
unit number is appended)

ucb
Unit control block for device.

outlen_p
Address of location in which IOC_STD$CVT_DEVNAM returns the length of the
conversion string.

Return Values

SS$_BUFFEROVF Successful completion, but specified buffer cannot
hold the entire device name string.

SS$_NORMAL Normal, successful completion.

Context

IOC_STD$CVT_DEVNAM is typically called at fork IPL with the corresponding
fork lock held in an OpenVMS multiprocessing system.

Description

For Digital internal use only.

Macro

CALL_CVT_DEVNAM

In an Alpha driver, the CALL_CVT_DEVNAM macro calls IOC_STD$CVT_
DEVNAM, using the current contents of R0, R1, R4, and R5 as the buflen,
buf, form, and ucb arguments, respectively. When IOC_STD$CVT_DEVNAM
returns, the macro returns status in R0 and the length of the conversion string in
R1.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$CVT_DEVNAM replaces IOC$CVT_DEVNAM (used by OpenVMS
VAX drivers). Unlike IOCCVT_DEVNAM, IOC_STDCVT_DEVNAM does
not return the length of the conversion string in R1.

System Routines 9–221

System Routines
IOC_STD$CVTLOGPHY

IOC_STD$CVTLOGPHY

Conditionally converts a logical block number to a physical disk address and
stores the result in the I/O request packet.

Module

IOSUBRAMS

Format

IOC_STD$CVTLOGPHY (lbn, irp, ucb)

Arguments

Argument Type Access Mechanism Status

lbn integer input value required
irp IRP input reference required
ucb UCB input reference required

lbn
Logical block number to be converted.

irp
I/O request packet.

ucb
Unit control block.

Context

A driver calls IOC_STD$CVTLOGPHY at fork IPL with the corresponding fork
lock held in a multiprocessing system.

Description

For Digital internal use only.

Macro

CALL_CVTLOGPHY

In an Alpha driver, the CALL_CVTLOGPHY macro calls IOC_STD$CVTLOGPHY,
using the current contents of R0, R3, and R5 as the lbn, irp and ucb arguments,
respectively.

9–222 System Routines

System Routines
IOC_STD$CVTLOGPHY

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$CVTLOGPHY replaces IOC$CVTLOGPHY (used by OpenVMS
VAX drivers). Unlike IOC$CVTLOGPHY, IOC_STD$CVTLOGPHY does not
preserve R3 across the call.

System Routines 9–223

System Routines
IOC_STD$DELETE_UCB

IOC_STD$DELETE_UCB

Deletes the specified UCB if its reference count is zero and UCB$V_DELETEUCB
is set in UCB$L_STS.

Module

UCBCREDEL

Format

IOC_STD$DELETE_UCB (ucb)

Arguments

Argument Type Access Mechanism Status

ucb UCB input reference required

ucb
Unit control block.

Context

A driver calls IOC_STD$DELETE_UCB with the I/O database locked for write
access.

Description

For Digital internal use only.

Macro

CALL_DELETE_UCB

In an Alpha driver, CALL_DELETE_UCB calls IOC_STD$DELETE_UCB using
the current contents of R5 as the ucb argument.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$DELETE_UCB replaces IOC$DELETE_UCB (used by OpenVMS
VAX drivers).

9–224 System Routines

System Routines
IOC_STD$DIAGBUFILL

IOC_STD$DIAGBUFILL

Fills a diagnostic buffer if the original $QIO request specified such a buffer.

Module

IOSUBNPAG

Format

IOC_STD$DIAGBUFILL (driver_param, ucb)

Arguments

Argument Type Access Mechanism Status

driver_param unspecified input reference required
ucb UCB input reference required

driver_param
Parameter to be passed to the driver’s register dumping routine. Typically, a
driver supplies the address of a CRAM in this register.

ucb
Unit control block. IOC_STD$DIAGBUFILL reads the final error retry count
from UCB$L_ERTCNT. It obtains the address of the current IRP from UCB$L_
IRP and reads the following IRP fields:

Field Contents

IRP$L_STS IRP$V_DIAGBUF set if a diagnostic buffer exists
IRP$L_DIAGBUF Address of diagnostic buffer, if one is present

IOC_STD$DIAGBUFILL obtains the address of the DDB from UCB$L_DDB
and the address of the DDT from DDB$L_DDT. The procedure value of driver’s
register dumping routine is obtained from DDT$L_REGDUMP.

Context

The caller of IOC_STD$DIAGBUFILL may be executing at or above fork IPL and
must hold the corresponding fork lock. IOC_STD$DIAGBUFILL returns control
to its caller at the caller’s IPL. The caller retains any spin locks it held at the
time of the call.

System Routines 9–225

System Routines
IOC_STD$DIAGBUFILL

Description

A device driver fork process calls IOC_STD$DIAGBUFILL at the end of I/O
processing but before releasing the I/O channel. IOC_STD$DIAGBUFILL stores
the I/O completion time and the final error retry count in the diagnostic buffer.
(IOC_STD$INITIATE has already placed the I/O initiation time [from EXE$GQ_
SYSTIME] in the first quadword of the buffer.) IOC_STD$DIAGBUFILL then
calls the driver’s register dumping routine, passing to it in the buffer argument
an address within the diagnostic buffer in which the routine can place the
register values it retrieves from device interface register space by means of
hardware mailbox read transactions. It also passes the contents of the driver_
param and ucb arguments. The register dumping routine fills the remainder of
the buffer, and returns to IOC_STD$DIAGBUFILL, which returns to its caller.

Macro

CALL_DIAGBUFILL

In an Alpha driver, the CALL_DIAGBUFILL macro calls IOC_
STD$DIAGBUFILL, using the current contents of R4 and R5 as the driver_
parm and ucb arguments, respectively.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$DIAGBUFILL replaces IOC$DIAGBUFILL (used by OpenVMS
VAX drivers).

• Prior to calling IOC_STD$DIAGBUFILL, the driver places a parameter,
which the routine passes to the driver’s register dumping routine, in R4.
On OpenVMS Alpha systems, this parameter is often the address of a
CRAM (obtained, for instance, from UCB$PS_CRAM or CRB$PS_CRAM). On
OpenVMS VAX systems, the parameter similarly would contain the address
of the device’s CSR.

• The contents of R2 and R3 are destroyed when the caller of IOC_
STD$DIAGBUFILL regains control; on OpenVMS VAX systems, these
registers contain the DDT address and IRP address respectively.

9–226 System Routines

System Routines
IOC_STD$FILSPT

IOC_STD$FILSPT

Fills a system page-table entry (PTE) with the transfer PTE of a buffer that is
locked in memory so that the system PTE may be directly addressed.

Module

BUFFERCTL

Format

sva = IOC_STD$FILSPT (ucb)

Arguments

Argument Type Access Mechanism Status

ucb UCB input reference required

ucb
Unit control block. IOC_STD$FILSPT reads UCB$L_SVAPTE to obtain the
system virtual address of PTE that maps the first page of the buffer.

Return Values

sva System virtual address of the first byte in the
page that contains the buffer.

Context

The caller of IOC_STD$FILSPT may be executing at fork IPL or above and must
hold the corresponding fork lock in a multiprocessing environment.

Description

For Digital internal use only.

Macro

CALL_FILSPT

In an Alpha driver, CALL_FILSPT calls IOC_STD$FILSPT, passing the current
contents of R5 as the ucb argument. It returns in R0 the system virtual address
of the first byte in the page that contains the buffer.

System Routines 9–227

System Routines
IOC_STD$FILSPT

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$FILSPT replaces IOC$FILSPT (used by OpenVMS VAX drivers).

9–228 System Routines

System Routines
IOC_STD$GETBYTE

IOC_STD$GETBYTE

Fetches a single byte of data from a user buffer.

Module

BUFFERCTL

Format

byte = IOC_STD$GETBYTE (sva, ucb, sva_p)

Arguments

Argument Type Access Mechanism Status

sva address input reference required
ucb UCB input reference required
sva_p pointer output value required

sva
System virtual address of a single-page window into the user buffer.
Prior to calling IOC_STD$GETBYTE, a driver must have called IOC_
STD$INITBUFWIND to map the system page-table entry to the user buffer.

ucb
Unit control block. IOC_STD$GETBYTE updates UCB$L_SVAPTE whenever a
page boundary is crossed.

sva_p
Location in which IOC_STD$GETBYTE writes the updated system virtual
address.

Return Values

byte One byte of data (not zero-extended) returned
from the user buffer.

Context

The caller of IOC_STD$GETBYTE may be executing at fork IPL or above and
must hold the corresponding fork lock in a multiprocessing environment.

Description

For Digital internal use only.

System Routines 9–229

System Routines
IOC_STD$GETBYTE

Macro

CALL_GETBYTE

In an Alpha driver, CALL_GETBYTE calls IOC_STD$GETBYTE, passing the
current contents of R0 and R5 as the sva and ucb arguments, respectively. It
returns in R0 the byte of data (not zero-extended) returned from the user buffer.
It returns in R1 the updated system virtual address.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note that IOC_
STD$GETBYTE replaces IOC$GETBYTE (used by OpenVMS VAX drivers).
Unlike IOC$GETBYTE, IOC_STD$GETBYTE returns the byte of data (and not
the updated system virtual address) in R0.

9–230 System Routines

System Routines
IOC_STD$INITBUFWIND

IOC_STD$INITBUFWIND

Initializes a single-page window into a user buffer.

Module

BUFFERCTL

Format

sva = IOC_STD$INITBUFWIND (ucb)

Arguments

Argument Type Access Mechanism Status

ucb UCB input reference required

ucb
Unit control block. IOC_STD$INITBUFWIND initializes UCB$L_SVAPTE with
the system virtual address of the page-table entry that maps the first page of the
buffer.

Return Values

sva System virtual address of the first byte in the
page that contains the buffer.

Context

The caller of IOC_STD$INITBUFWIND may be executing at fork IPL or above
and must hold the corresponding fork lock in a multiprocessing environment.

Description

For Digital internal use only.

Macro

CALL_INITBUFWIND

In an Alpha driver, CALL_INITBUFWIND calls IOC_STD$INITBUFWIND,
passing the current contents of R5 as the ucb argument. It returns in R0 the
system virtual address of the first byte in the page that contains the buffer.

System Routines 9–231

System Routines
IOC_STD$INITBUFWIND

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$INITBUFWIND replaces IOC$INITBUFWIND (used by OpenVMS
VAX drivers).

9–232 System Routines

System Routines
IOC_STD$INITIATE

IOC_STD$INITIATE

Initiates the processing of the next I/O request for a device unit.

Module

IOSUBNPAG

Format

IOC_STD$INITIATE (irp, ucb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
ucb UCB input reference required

irp
I/O request packet. IOC_STD$INITIATE reads the following IRP fields:

Field Contents

IRP$L_SVAPTE Address of system buffer (buffered I/O) or system
virtual address of the PTE that maps process buffer
(direct I/O).

IRP$L_BOFF Byte offset of start of buffer.
IRP$L_BCNT Size in bytes of transfer.
IRP$W_STS IRP$V_DIAGBUF set if a diagnostic buffer exists.
IRP$L_DIAGBUF Address of diagnostic buffer, if one is present. IOC_

STD$INITIATE writes the current system time from
EXE$GQ_SYSTIME into the first quadword of this
buffer.

ucb
Unit control block. IOC_STD$INITIATE reads the following UCB fields:

Field Contents

UCB$L_DDB Address of DDB.
UCB$L_DDT Address of DDT. DDT$PS_START contains the

procedure value of the driver’s start-I/O routine.
UCB$L_AFFINITY Device’s affinity mask.

IOC_STD$INITIATE writes the following UCB fields:

System Routines 9–233

System Routines
IOC_STD$INITIATE

Field Contents

UCB$L_IRP Address of IRP
UCB$L_SVAPTE IRP$L_SVAPTE
UCB$L_BOFF IRP$L_BOFF
UCB$L_BCNT IRP$L_BCNT
UCB$L_STS UCB$V_CANCEL and UCB$V_TIMOUT cleared

Context

IOC_STD$INITIATE is called at fork IPL with the corresponding fork lock held in
a multiprocessing system. Within this context, it transfers control to the driver’s
start-I/O routine.

Description

IOC_STD$INITIATE creates the context in which a driver fork process services
an I/O request. IOC_STD$INITIATE creates this context and activates the
driver’s start-I/O routine in the following steps:

1. Checks the CPU ID of the local processor against the device’s affinity mask
to determine whether the local processor can initiate the I/O operation on
the device. If it cannot, IOC_STD$INITIATE takes steps to initiate the I/O
function on another processor in a multiprocessing system. It then returns to
its caller.

2. Stores the address of the current IRP in UCB$L_IRP.

3. Copies the transfer parameters contained in the IRP into the UCB:

a. Copies the address of the system buffer (buffered I/O) or the system
virtual address of the PTE that maps process buffer (direct I/O) from
IRP$L_SVAPTE to UCB$L_SVAPTE

b. Copies the byte offset within the page from IRP$L_BOFF to UCB$L_
BOFF

c. Copies the byte count from IRP$L_BCNT to UCB$L_BCNT

4. Clears the cancel-I/O and timeout bits in the UCB status longword (UCB$V_
CANCEL and UCB$V_TIMOUT in UCB$L_STS).

5. If the I/O request specifies a diagnostic buffer, as indicated by IRP$V_
DIAGBUF in IRP$L_STS, stores the system time in the first quadword of the
buffer to which IRP$L_DIAGBUF points (the $QIO system service having
already allocated the buffer).

6. Transfers control to the driver’s start-I/O routine.

Macro

CALL_INITIATE

In an Alpha driver, the CALL_INITIATE macro calls IOC_STD$INITIATE, using
the current contents of R3 and R5 as the irp and ucb arguments, respectively.

9–234 System Routines

System Routines
IOC_STD$INITIATE

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$INITIATE replaces IOC$INITIATE (used by OpenVMS VAX
drivers).

System Routines 9–235

System Routines
IOC_STD$LINK_UCB

IOC_STD$LINK_UCB

Searches the UCB list attached to the device data block identified by the specified
UCB and links the specified UCB into the list in ascending unit number order.

Module

UCBCREDEL

Format

status = IOC_STD$LINK_UCB (ucb)

Arguments

Argument Type Access Mechanism Status

ucb UCB input reference required

ucb
Unit control block.

Return Values

SS$_NORMAL Link operation was successful.
SS$_OPINCOMPL Link operation failed due to the presence of a

UCB with the same unit number as the specified
UCB.

Context

A driver calls IOC_STD$LINK_UCB with the I/O database locked for write
access.

Description

For Digital internal use only.

Macro

CALL_LINK_UCB [interface_warning=YES]

where:

interface_warning=YES, the default, specifies that the macro generate
a compile-time warning indicating how the behavior of the macro differs
from the VAX version of the corresponding system routine. interface_
warning=NO suppresses the warning.

9–236 System Routines

System Routines
IOC_STD$LINK_UCB

In an Alpha driver, calls IOC_STD$LINK_UCB using the current contents of R5
as the ucb argument. CALL_LINK_UCB returns status in R0 and the address of
the newly created UCB in R2, but does not return the address of the UCBs that
precede and follow it on the DDB chain in R3 and R1, respectively.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$LINK_UCB replaces IOC$LINK_UCB (used by OpenVMS VAX
drivers). IOC_STD$LINK_UCB does not return the addresses of the UCBs
that precede and follow the newly-created UCB on the DDB chain.

System Routines 9–237

System Routines
IOC_STD$MAPVBLK

IOC_STD$MAPVBLK

Maps a virtual block to a logical block using a mapping window.

Module

IOSUBRAMS

Format

status = IOC_STD$MAPVBLK (vbn, numbytes, wcb, irp, ucb, lbn_p, notmapped_p,
new_ucb_p)

Arguments

Argument Type Access Mechanism Status

vbn integer input value required
numbytes integer input value required
wcb WCB input reference required
irp IRP input reference required
ucb UCB input reference required
lbn_p pointer output value required
notmapped_p pointer output value required
new_ucb_p pointer output value required

vbn
Virtual block number.

numbytes
Number of bytes to map.

wcb
Window control block.

irp
I/O request packet.

ucb
Unit control block.

lbn_p
Address at which IOC_STD$MAPVBLK writes the logical block number of the
first block it maps.

notmapped_p
Address at which IOC_STD$MAPVBLK writes the number of unmapped bytes.

new_ucb_p
Address at which IOC_STD$MAPVBLK writes the address of the updated UCB.

9–238 System Routines

System Routines
IOC_STD$MAPVBLK

Return Values

status Low bit set indicates partial map with all output
parameters valid, low bit clear indicates total
mapping failure with only the notmapped_p
parameter valid.

Context

IOC_STD$MAPVBLK raises IPL to IPL$_FILSYS and obtains the corresponding
spin lock to perform the mapping. As a result, it cannot be called by a driver
executing above IPL 8, or by a driver is executing at IPL 8 but holds the
IOLOCK8 fork lock.

Description

For Digital internal use only.

Macro

CALL_MAPVBLK

In an Alpha driver, the CALL_MAPVBLK macro calls IOC_STD$MAPVBLK,
using the current contents of R0, R1, R2, R3, and R5 as the vbn, numbytes,
wcb, irp and ucb arguments, respectively. It returns status in R0, the address
of the logical block number of the first block mapped in R1, the number of
unmapped bytes in R2, and the address of the updated UCB in R3. If the low bit
of the status value in R0 is clear, signifying failure status, only the value in R2 is
valid.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$MAPVBLK replaces IOC$MAPVBLK (used by OpenVMS VAX
drivers). Unlike IOC$MAPVBLK, IOC_STD$MAPVBLK does not preserve R3
across the call.

System Routines 9–239

System Routines
IOC_STD$MNTVER

IOC_STD$MNTVER

Assists a driver with mount verification.

Module

IOSUBNPAG

Format

IOC_STD$MNTVER (irp, ucb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
ucb UCB input reference required

irp
I/O request packet, or 0. If irp contains the address of an IRP, EXE_
STD$MNTVER inserts the IRP at the head of the pending-I/O queue in the
UCB. If it contains zero, EXE_STD$MNTVER removes the IRP from the head of
the pending-I/O queue and attempts to initiate I/O processing.

ucb
Unit control block.

Context

IOC_STD$MNTVER is called at fork IPL with the corresponding fork lock held in
a multiprocessing system.

Description

For Digital internal use only.

Macro

CALL_MNTVER

In an Alpha driver, the CALL_MNTVER macro calls IOC_STD$MNTVER, using
the current contents of R3 and R5 as the irp and ucb arguments, respectively.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$MNTVER replaces IOC$MNTVER (used by OpenVMS VAX
drivers).

9–240 System Routines

System Routines
IOC_STD$MOVFRUSER, IOC_STD$MOVFRUSER2

IOC_STD$MOVFRUSER, IOC_STD$MOVFRUSER2

Move data from a user buffer to an internal buffer.

Module

BUFFERCTL

Format

pointer = IOC_STD$MOVFRUSER (sysbuf, numbytes, ucb, sysbuf_p)

pointer = IOC_STD$MOVFRUSER2 (sysbuf, numbytes, ucb, sva, sysbuf_p)

Arguments

Argument Type Access Mechanism Status

sysbuf address input reference required
numbytes integer input value required
ucb UCB input reference required
sva address input reference required
sysbuf_p pointer output value required

sysbuf
Address of internal buffer.

numbytes
Number of bytes to move.

ucb
Unit control block. IOC_STD$MOVFRUSER and IOC_STD$MOVFRUSER2 read
the following UCB fields:

Field Contents

UCB$L_SVAPTE System virtual address of PTE that maps the first page
of the user buffer

UCB$L_SVPN System virtual page number of SPTE allocated to
driver

UCB$L_BOFF Byte offset within the first page to start of user buffer
(IOC_STD$MOVFRUSER only)

sva
System virtual address of the byte in the user buffer after the last byte moved
(IOC_STD$MOVFRUSER2 only).

buffptr
System virtual address of the byte in the user buffer after the last byte moved.
IOC_STD$MOVFRUSER and IOC_STD$MOVFRUSER2 write this field.

System Routines 9–241

System Routines
IOC_STD$MOVFRUSER, IOC_STD$MOVFRUSER2

Return Values

pointer System virtual address of the byte in the internal
buffer after the last byte moved.

Context

The caller of IOC_STD$MOVFRUSER or IOC_STD$MOVFRUSER2 may be
executing at fork IPL or above and must hold the corresponding fork lock in a
multiprocessing environment. Either routine returns control to its caller at the
caller’s IPL. The caller retains any spin locks it held at the time of the call.

Description

A driver calls IOC_STD$MOVFRUSER and IOC_STD$MOVFRUSER2 to move
data from a user buffer to a device that cannot itself map the user buffer to
system virtual addresses (for instance, a non-DMA device).

To use either routine, the driver must have set bit DPT$V_SVP in the driver
prologue table, typically by using the flags argument of the DPTAB macro.
This causes OpenVMS to allocate a a system page-table entry (SPTE) for driver
use. (See the description of the DPTAB macro in Chapter 11 for additional
information.)

In order to accomplish the move, IOC_STD$MOVFRUSER and IOC_
STD$MOVFRUSER2 first map the user buffer using the system page-table
entry (SPTE) the driver allocated in a DPTAB macro invocation. If an SPTE
has not been allocated to the driver, these routines cause an access violation
when they attempt to refer to the location addressed by the contents of the field
UCB$L_SVAPTE.

IOC_STD$MOVFRUSER2 is useful for moving blocks of data in several pieces,
each piece beginning within a page rather than on a page boundary. To begin, the
driver calls IOC_STD$MOVFRUSER. For each subsequent piece, the driver calls
IOC_STD$MOVFRUSER2.

Macro

CALL_MOVFRUSER
CALL_MOVFRUSER2

In an Alpha driver, CALL_MOVFRUSER and CALL_MOVFRUSER2 simulate
a JSB to IOC$MOVFRUSER and IOC$MOVFRUSER2 respectively. CALL_
MOVFRUSER calls IOC_STD$MOVFRUSER, and CALL_MOVFRUSER2 calls
IOC_STD$MOVFRUSER2, passing the current contents of R1, R2, and R5 as
the sysbuf, numbytes, and ucb arguments. $MOVFRUSER2 also passes the
current contents of R0 as the sva argument. Both macros return in R0 and R1,
respectively, the system virtual addresses of the bytes in the internal buffer and
user buffer after the last byte moved.

9–242 System Routines

System Routines
IOC_STD$MOVFRUSER, IOC_STD$MOVFRUSER2

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$MOVFRUSER and IOC_STD$MOVFRUSER2 replace
IOC$MOVFRUSER and IOC$MOVFRUSER2 (used by OpenVMS VAX
drivers). Unlike the corresponding OpenVMS VAX routines, both OpenVMS
Alpha routines destroy R1 across the call.

System Routines 9–243

System Routines
IOC_STD$MOVTOUSER, IOC_STD$MOVTOUSER2

IOC_STD$MOVTOUSER, IOC_STD$MOVTOUSER2

Move data from an internal buffer to a user buffer.

Module

BUFFERCTL

Format

pointer = IOC_STD$MOVTOUSER (sysbuf, numbytes, ucb, sysbuf_p)

pointer = IOC_STD$MOVTOUSER2 (sysbuf, numbytes, ucb, sva, sysbuf_p)

Arguments

Argument Type Access Mechanism Status

sysbuf address input reference required
numbytes integer input value required
ucb UCB input reference required
sva address input reference required
sysbuf_p pointer output value required

sysbuf
Address of internal buffer.

numbytes
Number of bytes to move.

ucb
Unit control block. IOC_STD$MOVTOUSER and IOC_STD$MOVTOUSER2 read
the following UCB fields:

Field Contents

UCB$L_SVAPTE System virtual address of PTE that maps the first page
of the user buffer

UCB$L_SVPN System virtual page number of SPTE allocated to
driver

UCB$L_BOFF Byte offset within the first page to start of user buffer
(IOC_STD$MOVTOUSER only)

sva
System virtual address of the byte in the user buffer after the last byte moved
(IOC_STD$MOVTOUSER2 only).

buffptr
System virtual address of the byte in the user buffer after the last byte moved.
IOC_STD$MOVTOUSER and IOC_STD$MOVTOUSER2 write this field.

9–244 System Routines

System Routines
IOC_STD$MOVTOUSER, IOC_STD$MOVTOUSER2

Return Values

pointer System virtual address of the byte in the internal
buffer after the last byte moved.

Context

The caller of IOC_STD$MOVTOUSER or IOC_STD$MOVTOUSER2 may be
executing at fork IPL or above and must hold the corresponding fork lock in a
multiprocessing environment. Either routine returns control to its caller at the
caller’s IPL. The caller retains any spin locks it held at the time of the call.

Description

A driver calls IOC_STD$MOVTOUSER and IOC_STD$MOVTOUSER2 to move
data from a device to a user buffer when the device itself (for instance, a
non-DMA device) cannot map the user buffer to system virtual addresses.

To use either routine, the driver must have set bit DPT$V_SVP in the driver
prologue table, typically by using the flags argument of the DPTAB macro.
This causes OpenVMS to allocate a a system page-table entry (SPTE) for driver
use. (See the description of the DPTAB macro in Chapter 11 for additional
information.)

In order to accomplish the move, IOC_STD$MOVTOUSER and IOC_
STD$MOVTOUSER2 first map the user buffer using the system page-table
entry (SPTE) the driver allocated in a DPTAB macro invocation. If an SPTE
has not been allocated to the driver, these routines cause an access violation
when they attempt to refer to the location addressed by the contents of the field
UCB$L_SVAPTE.

IOC_STD$MOVTOUSER2 is useful for moving blocks of data in several pieces,
each piece beginning within a page rather than on a page boundary. It handles
as many pages as you need. To begin, the driver calls IOC_STD$MOVTOUSER.
For each subsequent buffer to move, the driver calls IOC_STD$MOVTOUSER2.

Macro

CALL_MOVTOUSER
CALL_MOVTOUSER2

In an Alpha driver, CALL_MOVTOUSER calls IOC_STD$MOVTOUSER, and
CALL_MOVTOUSER2 calls IOC_STD$MOVTOUSER2, passing the current
contents of R1, R2, and R5 as the sysbuf, numbytes, and ucb arguments.
CALL_MOVTOUSER2 also passes the current contents of R0 as the sva
argument. Both macros return in R0 and R1, respectively, the system virtual
addresses of the bytes in the internal buffer and user buffer after the last byte
moved.

System Routines 9–245

System Routines
IOC_STD$MOVTOUSER, IOC_STD$MOVTOUSER2

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$MOVTOUSER and IOC_STD$MOVTOUSER2 replace
IOC$MOVTOUSER and IOC$MOVTOUSER2 (used by OpenVMS VAX
drivers). Unlike the corresponding OpenVMS VAX routines, both OpenVMS
Alpha routines destroy R1 across the call.

9–246 System Routines

System Routines
IOC_STD$PARSDEVNAM

IOC_STD$PARSDEVNAM

Parses a device name string, checking its syntax and extracting the node name,
allocation class number, and unit number.

Module

IOSUBNPAG

Format

status = IOC_STD$PARSDEVNAM (devnamlen, devnam, flags, unit_p, scslen_p,
devnamlen_p, devnam_p, flags_p)

Arguments

Argument Type Access Mechanism Status

devnamlen integer input value required
devnam address input reference required
flags integer input value required
unit_p pointer output reference required
scslen_p pointer output reference required
devnamlen_p pointer output reference required
devnam_p pointer output reference required
flags_p pointer output reference required

devnamlen
Size of the name string.

devnam
Name string.

flags
Flags.

unit_p
Address at which IOC_STD$PARSDEVNAM writes an integer representing the
unit number.

scslen_p
Address at which IOC_STD$PARSDEVNAM writes an integer representing either
the length of the SCS node name, the allocation class number, or the device type
code.

devnamlen_p
Address at which IOC_STD$PARSDEVNAM writes an integer representing the
size of the name string.

System Routines 9–247

System Routines
IOC_STD$PARSDEVNAM

devnam_p
Address at which IOC_STD$PARSDEVNAM writes the address of the name
string.

flags_p
Address at which IOC_STD$PARSDEVNAM writes an integer that contains the
flags.

Return Values

SS$_IVDEVNAM Invalid device name string.
SS$_NORMAL Valid device name string.

Context

IOC_STD$PARSDEVNAM is typically called at fork IPL with the corresponding
fork lock held in an OpenVMS multiprocessing system.

Description

For Digital internal use only.

Macro

CALL_PARSDEVNAM

In an Alpha driver, the CALL_PARSDEVNAM macro calls IOC_
STD$PARSDEVNAM, using the current contents of R8, R9, and R10 as
the devnamlen, devnam, and flags arguments, respectively. When IOC_
STD$PARSDEVNAM returns, the macro returns status in R0; the unit number
in R2; the length of the SCS node name at the beginning of the name string,
allocation class number, or device type code in R3; the size of the name string in
R8, the address of the name string in R9, and the flags in R10.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$PARSDEVNAM replaces IOC$PARSDEVNAM (used by OpenVMS
VAX drivers). Unlike IOC$PARSDEVNAM, IOC_STD$PARSDEVNAM does
not preserve the contents of R8, R9, and R10 across the call.

9–248 System Routines

System Routines
IOC_STD$POST_IRP

IOC_STD$POST_IRP

Inserts an I/O request packet in a CPU-specific I/O postprocessing queue.

Module

IOSUBNPAG

Format

IOC_STD$POST_IRP (irp)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required

irp
I/O request block.

Context

Mount verification processing calls IOC_STD$POST_IRP at or above IPL$_
ASTDEL.

Description

For Digital internal use only.

Macro

CALL_POST_IRP

In an Alpha driver, CALL_POST_IRP calls IOC_STD$POST_IRP using the
current contents of R3 as the irp argument.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$POST_IRP replaces IOC$POST_IRP (used by OpenVMS VAX
drivers).

System Routines 9–249

System Routines
IOC_STD$PTETOPFN

IOC_STD$PTETOPFN

Returns a page frame number (PFN) from a page-table entry (PTE) that has
already been determined to be invalid.

Module

BUFFERCTL

Format

pfn = IOC_STD$PTETOPFN (pte)

Arguments

Argument Type Access Mechanism Status

pte PTE input reference required

pte
Quadword page-table entry.

Return Values

pfn Page frame number (zero-extended).

Context

The caller of IOC_STD$PTETOPFN may be executing at or above IPL 0 in kernel
mode.

Description

For Digital internal use only.

Macro

CALL_PTETOPFN

In an Alpha driver, CALL_PTETOPFN extracts the quadword page-table entry
from R3 and passes a pointer to it as the pte argument to IOC_STD$PTETOPFN.
It returns the page frame number in R0.

9–250 System Routines

System Routines
IOC_STD$PTETOPFN

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$PTETOPFN replaces IOC$PTETOPFN (used by OpenVMS
VAX drivers). Note that, the page-table entry input argument is passed
by value (in R3) to IOC$PTETOPFN, but passed by reference to IOC_
STD$PTETOPFN.

System Routines 9–251

System Routines
IOC_STD$QNXTSEG1

IOC_STD$QNXTSEG1

Queues the next segment of a virtual I/O request that did not map to a single
contiguous I/O request.

Module

IOCIOPOST

Format

IOC_STD$QNXTSEG1 (vbn, bcnt, wcb, irp, pcb, ucb, ucb_p)

Arguments

Argument Type Access Mechanism Status

vbn integer output value required
bcnt integer output value required
wcb WCB output reference required
irp IRP output reference required
pcb PCB output reference required
ucb UCB output reference required
ucb_p pointer input reference required

vbn
Virtual block number of the start of the next segment.

bcnt
Required byte count of next segment.

wcb
Window control block.

irp
I/O request packet.

pcb
Process control block.

ucb
Unit control block.

ucb_p
Address at which IOC_STD$QNXTSEG1 writes the address of the unit control
block.

9–252 System Routines

System Routines
IOC_STD$QNXTSEG1

Context

The caller of IOC_STD$QNXTSEG1 typically executes at or above fork IPL.
IOC_STD$QNXTSEG1 executes at its caller’s IPL and returns control at that
IPL. The caller retains any spin locks it held at the time of the call.

Description

For Digital internal use only.

Macro

CALL_QNXTSEG1

In an Alpha driver, CALL_QNXTSEG1 calls IOC_STD$QNXTSEG1 using the
current contents of R0, R1, R2, R3, R4, and R5 as the vbn, bcnt, wcb, irp, pcb,
and ucb arguments. It returns the address of the updated UCB in R5.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$QNXTSEG1 replaces IOC$QNXTSEG1 (used by OpenVMS VAX
drivers). Unlike IOC$QNXTSEG1, IOC_STD$QNXTSEG1 does not return the
address of the updated UCB in R5.

System Routines 9–253

System Routines
IOC_STD$PRIMITIVE_REQCHANH, IOC_STD$PRIMITIVE_REQCHANL

IOC_STD$PRIMITIVE_REQCHANH, IOC_STD$PRIMITIVE_REQCHANL

Request a controller’s data channel and, if unavailable, place process in channel
wait queue.

Module

IOSUBNPAG

Format

status = IOC_STD$PRIMITIVE_REQCHANH (irp, ucb, idb_p)

status = IOC_STD$PRIMITIVE_REQCHANL (irp, ucb, idb_p)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
ucb UCB input reference required
idb_p pointer output reference required

irp
I/O request packet.

ucb
Unit control block. IOC_STD$PRIMITIVE_REQPCHANH and IOC_
STD$PRIMITIVE_REQPCHANL read the following UCB fields:

Field Contents

UCB$L_FPC Procedure value of fork routine to be executed when
the channel is granted if the channel cannot be granted
immediately

9–254 System Routines

System Routines
IOC_STD$PRIMITIVE_REQCHANH, IOC_STD$PRIMITIVE_REQCHANL

Field Contents

UCB$L_CRB Address of controller request block (CRB). IOC_
STD$REQPCHANH and IOC_STD$REQPCHANL
access the following CRB fields:

Field Contents

CRB$B_MASK CRB$V_BSY set if the
channel is busy

CRB$L_INTD+VEC$L_
IDB

Address of IDB

CRB$L_WQFL Head of queue of UCBs
waiting for the controller
channel

CRB$L_WQBL Tail of queue of UCBs
waiting for the controller
channel

IOC_STD$REQPCHANH and IOC_STD$REQPCHANL write the contents of the
irp parameter in UCB$Q_FR3, and the address of the UCB in IDB$PS_OWNER.

If the channel is busy, IOC_STD$REQPCHANH and IOC_STD$REQPCHANL
update CRB$L_WQFL and CRB$L_WQBL.

idb_p
Address of location in which IOC_STD$REQPCHANH and IOC_
STD$REQPCHANL write the address of the interrupt dispatch block (IDB).

Return Values

SS$_NORMAL Channel has been granted immediately.
0 Channel is busy and UCB fork block has been

queued on channel-wait queue.

Context

A driver calls IOC_STD$PRIMITIVE_REQCHANH or IOC_STD$PRIMITIVE_
REQCHANL at fork IPL holding the appropriate fork lock. Either IOC_
STD$PRIMITIVE_REQCHANH or IOC_STD$PRIMITIVE_REQCHANL, unlike
the corresponding OpenVMS VAX system routine, returns to its caller and not to
its caller’s caller. Each assumes that, prior to the call, its caller has placed the
procedure value of the fork routine into UCB$L_FPC.

If the requested channel is busy, either IOC_STD$PRIMITIVE_REQCHANH or
IOC_STD$PRIMITIVE_REQCHANL preserves the contents of the irp parameter
in UCB$Q_FR3 . IOC_STD$RELCHAN eventually calls the fork routine upon
granting the channel request, passing the irp, idb, and ucb parameters.

System Routines 9–255

System Routines
IOC_STD$PRIMITIVE_REQCHANH, IOC_STD$PRIMITIVE_REQCHANL

Description

A driver fork process calls IOC_STD$PRIMITIVE_REQCHANH or IOC_
STD$PRIMITIVE_REQCHANL to acquire ownership of the controller’s data
channel.

Each routine examines CRB$V_BSY in CRB$B_MASK. If the selected controller’s
data channel is idle, the routine grants the channel to the fork process, placing
its UCB address in IDB$PS_OWNER and returning successfully with the IDB
address in the location specified by the idb_p parameter.

If the data channel is busy, the routine saves process context by placing the
IRP address, as specified in the irp parameter, into the UCB fork block. IOC_
STD$REQCHANH then inserts the UCB at the head of the channel wait queue
(CRB$L_WQFL); IOC_STD$REQCHANL inserts the UCB at the tail of the queue
(CRB$L_WQBL). Finally, the routine returns control to its caller.

When the controller channel is available to a waiting fork process, IOC_
STD$RELCHAN resumes the suspended fork process at its channel grant
routine, passing to it the irp, idb, and ucb parameters.

Macro

REQCHAN

REQPCHAN

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note that the OpenVMS
VAX routines IOC$REQPCHAN and IOC$REQPCHANL are not provided on
OpenVMS Alpha systems.

9–256 System Routines

System Routines
IOC_STD$PRIMITIVE_WFIKPCH, IOC_STD$PRIMITIVE_WFIRLCH

IOC_STD$PRIMITIVE_WFIKPCH, IOC_STD$PRIMITIVE_WFIRLCH

Suspend a driver fork thread and fold its context into a fork block in anticipation
of a device interrupt or timeout.

Module

IOSUBNPAG

Format

IOC_STD$PRIMITIVE_WFIKPCH (irp, fr4, ucb, tmo, restore_ipl)

IOC_STD$PRIMITIVE_WFIRLCH (irp, fr4, ucb, tmo, restore_ipl)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
fr4 int64 input value required
ucb UCB input reference required
tmo integer input value required
restore_ipl int input value required

irp
I/O request packet.

fr4
Parameter to be passed to the interrupt service routine or timeout handling
routine.

ucb
Unit control block. IOC_STD$PRIMITIVE_WFIKPCH and IOC_
STD$PRIMITIVE_WFIRLCH read the following UCB fields:

Field Contents

UCB$L_FPC Procedure value of fork routine which may be the
destination of a JSB instruction issued by either the
driver’s interrupt service routine or EXE$TIMEOUT

UCB$B_FLCK Fork lock index

IOC_STD$PRIMITIVE_WFIKPCH and IOC_STD$PRIMITIVE_WFIRLCH write
the following UCB fields:

Field Contents

UCB$L_DUETIM Sum of timeout value and EXE$GL_ABSTIM

System Routines 9–257

System Routines
IOC_STD$PRIMITIVE_WFIKPCH, IOC_STD$PRIMITIVE_WFIRLCH

Field Contents

UCB$L_STS UCB$V_INT is set to indicate that interrupts are
expected on the device; UCB$V_TIM is set to indicate
device I/O is being timed; and UCB$V_TIMOUT is
cleared to indicate that unit has not yet timed out.

UCB$Q_FR3 R3 of caller
UCB$Q_FR4 R4 of caller

tmo
Timeout value in seconds.

restore_ipl
IPL to which to lower before returning to caller. This IPL must be the fork IPL
associated with device processing and at which the driver was executing prior to
invoking the DEVICELOCK macro.

Context

When it is called, IOC_STD$PRIMITIVE_WFIKPCH or IOC_STD$PRIMITIVE_
WFIRLCH assumes that the local processor has obtained the appropriate
synchronization with the device database by securing the appropriate device lock,
as recorded in the unit control block (UCB$L_DLCK) of the device unit from
which the interrupt is expected. This requirement also presumes that the local
processor is executing at the device IPL associated with the lock.

Before exiting, IOC_STD$PRIMITIVE_WFIKPCH or IOC_STD$PRIMITIVE_
WFIRLCH conditionally releases the device lock, so that if the caller of the
driver fork thread (the caller’s caller) previously owned the device lock, it will
continue to hold it when it regains control. IOC_STD$PRIMITIVE_WFIKPCH
or IOC_STD$PRIMITIVE_WFIRLCH also lowers the local processor’s IPL to the
IPL specified in the restore_ipl parameter.

Description

A driver fork process calls IOC_STD$PRIMITIVE_WFIKPCH to wait for an
interrupt while keeping ownership of the controller’s data channel; IOC_
STD$PRIMITIVE_WFIRLCH, by contrast, releases the channel.

Either routine performs the following operations:

1. Moves contents of the irp and fr4 parameters into the UCB fork block.

2. Sets UCB$V_INT to indicate an expected interrupt from the device unit.

3. Sets UCB$V_TIM to indicate that OpenVMS should check for timeouts from
the device unit.

4. Determines the timeout due time by adding the timeout value specified in R1
to EXE$GL_ABSTIM and storing the result in UCB$L_DUETIM.

5. Clears UCB$V_TIMOUT to indicate that the unit has not yet timed out.

6. Invokes the DEVICEUNLOCK macro to conditionally release the device
lock associated with the device unit and to lower IPL to the IPL specified in
the restore_ipl parameter. These actions presume that the DEVICELOCK
macro has been issued prior to the wait-for-interrupt invocation.

9–258 System Routines

System Routines
IOC_STD$PRIMITIVE_WFIKPCH, IOC_STD$PRIMITIVE_WFIRLCH

7. Returns to its caller.

Note that IOC_STD$PRIMITIVE_WFIRLCH exits by transferring control to IOC_
STD$RELCHAN. IOC_STD$RELCHAN releases the controller data channel and
eventually issues an RSB instruction to IOC_STD$PRIMITIVE_WFIRLCH which
returns to its caller. Because the release of the channel occurs at fork IPL, an
interrupt service routine cannot reliably distinguish between operations initiated
by IOC_STD$PRIMITIVE_WFIKPCH and IOC_STD$PRIMITIVE_WFIRLCH by
examining the ownership of the CRB.

Macro

WFIKPCH

WFIRLCH

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note that the OpenVMS
VAX routines IOC$WFIKPCH and IOC$WFIRLCH are not provided on OpenVMS
Alpha systems.

System Routines 9–259

System Routines
IOC_STD$RELCHAN

IOC_STD$RELCHAN

Releases device ownership of all controller data channels.

Module

IOSUBNPAG

Format

IOC_STD$RELCHAN (ucb)

Arguments

Argument Type Access Mechanism Status

ucb UCB input reference required

ucb
Unit control block. IOC_STD$RELCHAN reads UCB$L_CRB to obtain the
address of the controller request block (CRB) in order to access the following CRB
fields:

Field Contents

CRB$B_MASK CRB$V_BSY set if the channel is busy. IOC_
STD$RELCHAN clears this bit if no driver is waiting
for the controller channel.

CRB$L_INTD+VEC$L_
IDB

Address of IDB. IOC_STD$RELCHAN obtains the
address the UCB that owns the controller channel from
IDB$L_OWNER. IOC_STD$RELCHAN clears IDB$L_
OWNER if no driver is waiting for the controller
channel.

CRB$L_WQFL Head of queue of UCBs waiting for the controller.

Context

A driver fork process calls IOC_STD$RELCHAN at fork IPL, holding the
corresponding fork lock in a multiprocessing environment. IOC_STD$RELCHAN
returns control to its caller after resuming execution of other fork processes
waiting for a controller channel.

Description

A driver fork process calls IOC_STD$RELCHAN to release all controller data
channels assigned to a device.

If the channel wait queue contains waiting fork processes, IOC_STD$RELCHAN
dequeues a process, assigns the channel to that process and calls the suspended
fork process at its channel grant routine, passing to it the irp, idb, and ucb
parameters.

9–260 System Routines

System Routines
IOC_STD$RELCHAN

Macro

CALL_RELCHAN

In an Alpha driver, CALL_RELCHAN calls IOC_STD$RELCHAN using the
current contents of R5 as the ucb argument.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$RELCHAN replaces IOC$RELCHAN (used by OpenVMS VAX
drivers).

• IOC$RELCHAN resumes the fork routine with the address of a device’s
controller and status register (CSR) in R4. Because OpenVMS Alpha device
drivers access device CSRs by means of a controller register access mailbox
(CRAM), IOC_STD$RELCHAN provides the IDB address as input to the
reactivated fork routine. The fork routine uses the IDB address as input to
the driver macros and routines that manipulate CSRs by means of the CRAM.

System Routines 9–261

System Routines
IOC_STD$REQCOM

IOC_STD$REQCOM

Completes an I/O operation on a device unit, requests I/O postprocessing of the
current request, and starts the next I/O request waiting for the device.

Module

IOSUBNPAG

Format

IOC_STD$REQCOM (iost1, iost2, ucb)

Arguments

Argument Type Access Mechanism Status

iost1 integer input value required
iost2 integer input value required
ucb UCB input reference required

iost1
First longword of I/O status.

iost2
Second longword of I/O status.

ucb
Unit control block. IOC_STD$REQCOM accesses the following UCB fields:

Field Contents

UCB$L_ERTCNT Final error count.
UCB$L_ERTMAX Maximum error retry count.
UCB$L_EMB Address of error message buffer.
UCB$L_IRP Address of IRP. IOC_STD$REQCOM writes iost1

and iost2 into IRP$L_IOST1 and IRP$L_IOST2,
respectively.

UCB$B_DEVCLASS DC$_DISK and DC$_TAPE devices are subject to
mount verification checks.

UCB$L_IOQFL Device unit’s pending-I/O queue. IOC_STD$REQCOM
updates this field.

9–262 System Routines

System Routines
IOC_STD$REQCOM

Field Contents

UCB$L_STS If error logging is in progress (that is, UCB$V_
ERLOGIP is set), IOC_STD$REQCOM writes the
following fields in the error message buffer:

Field Contents

EMB$L_DV_STS UCB$L_STS.
EMB$L_DV_ERTCNT UCB$L_ERTCNT.
EMB$L_DV_
ERTCNT+1

UCB$L_ERTMAX.

EMB$Q_DV_IOSB Quadword of I/O status.

IOC_STD$REQCOM then clears UCB$V_BSY and
UCB$V_ERLOGIP.

UCB$L_OPCNT Unit operations count. IOC_STD$REQCOM increases
this field.

Context

A driver fork process calls IOC_STD$REQCOM at fork IPL, holding the
corresponding fork lock in a multiprocessing environment. IOC_STD$REQCOM
transfers control to IOC_STD$RELCHAN, which may call the OpenVMS fork
dispatcher to resume another driver fork process. When it regains control, IOC_
STD$REQCOM returns to the driver fork process.

Description

A driver fork process calls this routine after a device I/O operation and all
device-dependent processing of an I/O request is complete.

IOC$REQCOM performs the following tasks:

1. If error logging is in progress for the device (as indicated by UCB$V_
ERLOGIP in UCB$L_STS), writes into the error message buffer the status
of the device unit, the error retry count for the transfer, the maximum error
retry count for the driver, and the final status of the I/O operation. It then
releases the error message buffer by calling ERL_STD$RELEASEMB.

2. Increases the device unit’s operations count (UCB$L_OPCNT).

3. If UCB$B_DEVCLASS specifies a disk device (DC$_DISK) or tape device
(DC$_TAPE) and error status is reported, performs a set of checks to
determine if mount verification is necessary. Tape end-of-file (EOF) errors
(SS$_ENDOFFILE) are exempt from these checks. For a tape device with
success status, checks to determine if CRC must be generated.

4. Writes final I/O status (R0 and R1) into IRP$L_IOST1 and IRP$L_IOST2.

5. Inserts the IRP in systemwide I/O postprocessing queue.

6. Requests a software interrupt from the local processor at IPL$_IOPOST.

7. Attempts to remove an IRP from the device’s pending-I/O queue (at UCB$L_
IOQFL). If successful, it transfers control to IOC_STD$INITIATE to begin
driver processing of this I/O request. If the queue is empty, it clears the unit
busy bit (UCB$V_BSY in UCB$L_STS) to indicate that the device is idle.

System Routines 9–263

System Routines
IOC_STD$REQCOM

8. Exits by transferring control to IOC_STD$RELCHAN.

Macro

CALL_REQCOM

In an Alpha driver, the CALL_REQCOM macro calls IOC_STD$REQCOM, using
the current contents of R0, R1, and R5 as the iost1, iost2, and ucb arguments,
respectively.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$REQCOM replaces IOC$REQCOM (used by OpenVMS VAX
drivers). Unlike IOC$REQCOM, IOC_STD$REQCOM does not return the
addresses of the IRP and UCB in R3 and R5, respectively.

• The Alpha REQCOM macro returns control to the driver fork process, which
itself must issue the return to its caller.

9–264 System Routines

System Routines
IOC_STD$SEARCHDEV

IOC_STD$SEARCHDEV

Searches the I/O database for a specific physical device.

Module

IOSUBPAGD

Format

status = IOC_STD$SEARCHDEV (descr_p, ucb_p, ddb_p, sb_p)

Arguments

Argument Type Access Mechanism Status

descr_p pointer input reference required
ucb_p pointer output reference required
ddb_p pointer output reference required
sb_p pointer output reference required

descr_p
Descriptor of device logical name.

ucb_p
Address at which IOC_STD$SEARCHDEV writes the unit control block (UCB)
address.

ddb_p
Address at which IOC_STD$SEARCHDEV writes the device data block (DDB)
address.

sb_p
Address at which IOC_STD$SEARCHDEV writes the system block (SB) address.

Return Values

SS$_ACCVIO Name string is not readable.
SS$_DEVALLOC Device is allocated to another user.
SS$_DEVMOUNT Device already mounted.
SS$_DEVOFFLINE Device marked offline.
SS$_IVDEVNAM Invalid device name string.
SS$_IVLOGNAM Invalid logical name.
SS$_NODEVAVL Device exists but is not available.
SS$_NONLOCAL Nonlocal device.
SS$_NOPRIV Insufficient privilege to access device.

System Routines 9–265

System Routines
IOC_STD$SEARCHDEV

SS$_NORMAL Device found.
SS$_NOSUCHDEV Device not found.
SS$_TEMPLATEDEV Cannot allocate template device.
SS$_TOOMANYLNAM Maximum logical name recursion limit exceeded.

Context

A driver calls IOC_STD$SEARCHDEV at IPL$_ASTDEL holding the I/O
database mutex.

Description

For Digital internal use only.

Macro

CALL_SEARCHDEV

In an Alpha driver, the CALL_SEARCHDEV macro calls IOC_
STD$SEARCHDEV, using the current contents of R1 as the descr_p argument.
When IOC_STD$SEARCHDEV returns, the macro returns returns status in R0,
the UCB address in R1, the DDB address in R2, and the SB address in R3.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$SEARCHDEV replaces IOC$SEARCHDEV (used by OpenVMS
VAX drivers). Unlike IOC$SEARCHDEV, IOC_STD$SEARCHDEV does
not provide the addresses of the UCB, DDB, and SB in R1, R2, and R3,
respectively.

9–266 System Routines

System Routines
IOC_STD$SEARCHINT

IOC_STD$SEARCHINT

Searches the I/O database for the specified device, using specified search rules.

Module

IOSUBNPAG

Format

status = IOC_STD$SEARCHINT (unit, scslen, devnamlen, devnam, flags, ucb_p,
ddb_p, sb_p, lock_val_p)

Arguments

Argument Type Access Mechanism Status

unit integer input value required
scslen integer input value required
devnamlen integer input value required
devnam address input reference required
flags integer input value required
ucb_p pointer output reference required
ddb_p pointer output reference required
sb_p pointer output reference required
lock_val_p pointer output reference required

unit
Unit number.

scslen
Integer representing either the length of the SCS node name, the allocation class
number, or the device type code.

devnamlen
Size of the name string.

devnam
Name string.

flags
Flags.

ucb_p
Address at which IOC_STD$SEARCHINT writes the UCB address.

ddb_p
Address at which IOC_STD$SEARCHINT writes the DDB address.

System Routines 9–267

System Routines
IOC_STD$SEARCHINT

sb_p
Address at which IOC_STD$SEARCHINT writes the system block (SB) address.

lock_val_p
Address at which IOC_STD$SEARCHINT writes the address of the lock value
block.

Return Values

SS$_DEVMOUNT Device already mounted.
SS$_DEVOFFLINE Device marked offline.
SS$_NODEVAVL Device exists but is not available.
SS$_NOPRIV Insufficient privilege to access device.
SS$_NORMAL Device found.
SS$_NOSUCHDEV Device not found.
SS$_TEMPLATEDEV Cannot allocate template device.

Context

A driver calls IOC_STD$SEARCHINT at IPL$_ASTDEL holding the I/O database
mutex. It may be called at elevated IPL only for searches specifying IOC$V_ANY.

Description

For Digital internal use only.

Macro

CALL_SEARCHINT

In an Alpha driver, the CALL_SEARCHINT macro calls IOC_STD$SEARCHINT,
using the current contents of R2, R3, R8, R9 and R10 as the unit, scslen,
devnamlen, devnam, and flags arguments, respectively. When IOC_
STD$SEARCHINT returns, the macro returns status in R0, the UCB address in
R5, the DDB address in R6, and the SB address in R7.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$SEARCHINT replaces IOC$SEARCHINT (used by OpenVMS VAX
drivers). Unlike IOC$SEARCHINT, IOC_STD$SEARCHINT does not provide
the addresses of the UCB, DDB, and SB in R5, R6, and R7, respectively.

9–268 System Routines

System Routines
IOC_STD$SENSEDISK

IOC_STD$SENSEDISK

Copies the disk’s size in logical blocks from the device’s UCB into the second
longword of the I/O status block (IOSB) specified in a $QIO system service call,
and completes the I/O operation successfully.

Module

IOSUBRAMS

Format

status = IOC_STD$SENSEDISK (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet for the current I/O request.

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

ccb
Channel control block that describes the process-I/O channel

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_NORMAL The routine completed successfully.

System Routines 9–269

System Routines
IOC_STD$SENSEDISK

Context

FDT dispatching code in the $QIO system service calls IOC_STD$SENSEDISK
as an upper-level FDT action routine at IPL$_ASTDEL.

Description

For Digital internal use only.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The FDT routine IOC$SENSEDISK (used by OpenVMS VAX device drivers)
expects as input in R7 the number of the bit that specifies the code for the
requested I/O function from R7, and, in R8, the address of the entry in the
function decision table from which it received control.

R0, R7, and R8 are not provided as input to IOC_STD$SENSEDISK.

• IOC_STD$SENSEDISK returns control to the system service dispatcher,
passing it the final $QIO system service status (SS$_NORMAL) in R0. IOC_
STD$SENSEDISK returns to its caller, passing it SS$_FDT_COMPL status
in R0 and storing the final $QIO system service status in the FDT_CONTEXT
structure. The $QIO system service retrieves the status from this structure.

9–270 System Routines

System Routines
IOC_STD$SEVER_UCB

IOC_STD$SEVER_UCB

Removes the specified UCB from the UCB list of the device data block identified
within the specified UCB.

Module

UCBCREDEL

Format

IOC_STD$SEVER_UCB (ucb)

Arguments

Argument Type Access Mechanism Status

ucb UCB input reference required

ucb
Unit control block.

Context

A driver calls IOC_STD$SEVER_UCB with the I/O database locked for write
access.

Description

For Digital internal use only.

Macro

CALL_SEVER_UCB

In an Alpha driver, CALL_SEVER_UCB calls IOC_STD$SEVER_UCB using the
current contents of R5 as the ucb argument.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$SEVER_UCB replaces IOC$SEVER_UCB (used by OpenVMS VAX
drivers).

System Routines 9–271

System Routines
IOC_STD$SIMREQCOM

IOC_STD$SIMREQCOM

Completes an I/O operation by setting an event flag, modifying an I/O status
block (IOSB), setting an event flag, or queuing an AST to the process requesting
the I/O. The caller of this routine is responsible for checking quotas and updating
the I/O count.

Module

IOCIOPOST

Format

status = IOC_STD$SIMREQCOM (iosb, pri, efn, iost, acb, acmode)

Arguments

Argument Type Access Mechanism Status

iosb IOSB input reference optional
pri integer input value optional
efn integer input value optional
iost unspecified input unspecified required
acb ACB input reference optional
acmode integer input value optional

iosb
I/O status block. If this parameter contains the address of an IOSB, IOC_
STD$SIMREQCOM checks for write access to the IOSB. If it contains a zero,
IOC_STD$SIMREQCOM makes no IOSB modifications.

pri
Priority boost class to be passed directly to SCH$POSTEF and SCH$QAST. If an
IOSB address is supplied to the iosb parameter, this parameter has no effect. If
this parameter contains a zero, there is no priority boost.

efn
Common or local event flag to be set. If this parameter contains –1, no event flag
is set.

iost
Internal process identification (IPID) of the target process (if the iosb parameter
is zero); address of a quadword containing the new contents of the user’s IOSB (if
the iosb is non-zero).

acb
AST control block. If this parameter is zero, no AST is delivered. When the acb
parameter is non-zero and ACB$L_AST is zero, IOC_STD$SIMREQCOM checks
ACB$V_NODELETE. If ACB$V_NODELETE is clear, IOC_STD$SIMREQCOM
uses ACB$W_SIZE to return the ACB and any structure in which it is embedded
to nonpaged pool.

9–272 System Routines

System Routines
IOC_STD$SIMREQCOM

acmode
Access mode of the process originally requesting the I/O operation. IOC_
STD$SIMREQCOM uses this value to probe the IOSB (if specified) for write
access. If the iosb parameter is zero, this parameter is ignored.

Return Values

SS$_ILLEFC Illegal cluster number.
SS$_NONEXPR Nonexistent process.
SS$_NORMAL Normal, successful completion.
SS$_UNASEFC Unassigned cluster number.
SS$_WASCLR Specified event flag was clear initially.
SS$_WASSET Specified event flag was set initially.

Context

If supplying a non-zero value for the iosb parameter, the caller of IOC_
STD$SIMREQCOM must be executing in the context of the target process.

Description

For Digital internal use only.

Macro

CALL_SIMREQCOM

In an Alpha driver, the CALL_SIMREQCOM macro calls IOC_
STD$SIMREQCOM, using the current contents of R1, R2, R3, R4, R5, and
R6 as the iosb, pri, efn, iost, acb, and acmode arguments, respectively.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$SIMREQCOM replaces IOC$SIMREQCOM (used by OpenVMS
VAX drivers).

System Routines 9–273

System Routines
IOC_STD$THREADCRB

IOC_STD$THREADCRB

Threads a controller request block (CRB) onto the CRB timeout queue chain
headed by IOC$GL_CRBTMOUT.

Module

IOSUBNPAG

Format

IOC_STD$THREADCRB (crb)

Arguments

Argument Type Access Mechanism Status

crb CRB input reference required

crb
Controller request block.

Context

Mount verification processing calls IOC_STD$THREADCRB at or above IPL$_
ASTDEL.

Description

For Digital internal use only.

Macro

CALL_THREADCRB [save_r0]

where:

save_r0 indicates that the macro should preserve register R0 across the call
to IOC_STD$THREADCRB. If save_r0 is blank or save_r0=YES, the 64-bit
register is saved. (In the former case, the macro generates a compile-time
message. If save_r0=NO, R0 is not saved.)

In an Alpha driver, CALL_THREADCRB calls IOC_STD$THREADCRB using the
current contents of R3 as the crb argument. Unless you specify save_r1=NO,
the macro preserves the quadword register R1 across the call.

9–274 System Routines

System Routines
IOC_STD$THREADCRB

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• IOC_STD$THREADCRB replaces IOC$THREADCRB (used by OpenVMS
VAX drivers). Unlike IOC$THREADCRB, IOC_STD$THREADCRB routines
does not preserve R0 across the call.

System Routines 9–275

System Routines
MMG_STD$IOLOCK

MMG_STD$IOLOCK

Locks process pages in memory.

Module

IOLOCK

Format

status = MMG_STD$IOLOCK (buf, bufsize, is_read, pcb, svapte_p)

Arguments

Argument Type Access Mechanism Status

buf address input reference required
bufsize integer input value required
is_read integer input value required
pcb PCB input reference required
svapte_p pointer output reference required

buf
Buffer.

bufsize
Size of output buffer in bytes.

is_read
Transfer direction indicator, as follows:

Value Description

0 Write from memory to I/O device
1 Read into memory from I/O device
5 Write from and read into memory from I/O device

pcb
Process control block.

svapte_p
Address of location in which MMG_STD$IOLOCK returns either the system
virtual address of the first page-table entry (if the returned status is SS$_
NORMAL) or the address of a page to be faulted into memory (if the returned
status is 0).

9–276 System Routines

System Routines
MMG_STD$IOLOCK

Return Values

SS$_ACCVIO Specified buffer is not a process buffer, but does
not fully reside in system space; or process buffer
overruns balance set slots.

SS$_INSFWSL Insufficient working set list.
SS$_NORMAL Normal, successful completion.
0 Virtual address must be faulted into memory.

Context

MMG_STD$IOLOCK must be called at IPL$_ASTDEL.

Description

For Digital internal use only.

Macro

CALL_IOLOCK

In an Alpha driver, CALL_IOLOCK calls MMG_STD$IOLOCK using the current
contents of R0, R1, R2, and R4 as the buf, bufsize, is_read, and pcb arguments,
respectively.

CALL_IOLOCK returns status in R0. If R0 contains SS$_NORMAL, R1 contains
the system virtual address of the first page-table entry. If R0 contains zero, R1
contains the address of a page to be faulted into memory. R0 can also contain a
system-level status.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• MMG_STD$IOLOCK replaces MMG$IOLOCK (used by OpenVMS VAX
drivers).

System Routines 9–277

System Routines
MMG_STD$UNLOCK

MMG_STD$UNLOCK

Unlocks process pages previously locked for a direct-I/O operation.

Module

IOLOCK

Format

MMG_STD$UNLOCK (npages, svapte)

Arguments

Argument Type Access Mechanism Status

npages integer input value required
svapte integer input value required

npages
Number of buffer pages to unlock.

svapte
System virtual address of PTE for the first buffer page.

Context

Because MMG_STD$UNLOCK raises IPL to IPL$_SYNCH, and obtains the
MMG spin lock in a multiprocessing environment, its caller cannot be executing
above IPL$_SYNCH or hold any higher ranked spin locks. MMG_STD$UNLOCK
returns control to its caller at the caller’s IPL. The caller retains any spin locks it
held at the time of the call.

Description

Drivers rarely use MMG_STD$UNLOCK. At the completion of a direct-I/O
transfer, IOC_STD$IOPOST automatically unlocks the pages of both the user
buffer and any additional buffers specified in region 1 (if defined) and region 2 (if
defined) for all the IRPEs linked to the packet undergoing completion processing.

However, driver FDT routines do use MMG_STD$UNLOCK when an attempt
to lock IRPE buffers for a direct-I/O transfer fails. The buffer-locking routines
called by such a driver (EXE_STD$READLOCK, EXE_STD$WRITELOCK, and
EXE_STD$MODIFYLOCK) allow a driver to specify an error-handling callback
routine that can call MMG_STD$UNLOCK to unlock all previously locked regions
and deallocate the IRPE using EXE_STD$DEANONPAGED.

9–278 System Routines

System Routines
MMG_STD$UNLOCK

Macro

CALL_UNLOCK

In an Alpha driver, CALL_UNLOCK calls MMG_STD$UNLOCK using the
current contents of R1 and R3 as the npages and svapte arguments, respectively.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• MMG_STD$UNLOCK replaces MMG$UNLOCK (used by OpenVMS VAX
drivers).

System Routines 9–279

System Routines
MT_STD$CHECK_ACCESS

MT_STD$CHECK_ACCESS

Checks access rights for magtape control write functions.

Module

MTFDT

Format

status = MT_STD$CHECK_ACCESS (irp, pcb, ucb, ccb)

Arguments

Argument Type Access Mechanism Status

irp IRP input reference required
pcb PCB input reference required
ucb UCB input reference required
ccb CCB input reference required

irp
I/O request packet.

pcb
Process control block of the current process.

ucb
Unit control block of the device assigned to the process-I/O channel specified as
an argument to the $QIO request.

ccb
Channel control block that describes the process-I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that receives
this status can no longer safely access the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Process does not have write access to volume.
SS$_NORMAL I/O request has been successfully queued to the

driver’s start-I/O routine.
SS$_NOPRIV Process has insufficient privileges to perform a

control write function.
SS$_WRITLCK Device software is write locked.

9–280 System Routines

System Routines
MT_STD$CHECK_ACCESS

Context

FDT dispatching code in the $QIO system service calls MT_STD$CHECK_
ACCESS as an upper-level FDT action routine at IPL$_ASTDEL.

Description

For Digital internal use only.

Macro

None.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The FDT routine MT$CHECK_ACCESS (used by OpenVMS VAX device
drivers) expects as input in R7 the number of the bit that specifies the code
for the requested I/O function from R7, and, in R8, the address of the entry in
the function decision table from which it received control.

R0, R7, and R8 are not provided as input to MT_STD$CHECK_ACCESS.

• Upon a successful return from MT$CHECK_ACCESS, its OpenVMS VAX
callers needed to call EXE$ZEROPARM to queue the request to the driver’s
start-I/O routine.

If the volume is not write-locked and the requesting process has write access
to the volume. MT_STD$CHECK_ACCESS automatically invokes the CALL_
QIODRVPKT macro.

• MT$CHECK_ACCESS returns control to the system service dispatcher,
passing it the final $QIO system service status in R0. MT_STD$CHECK_
ACCESS returns to its caller, passing it SS$_FDT_COMPL status in R0 and
storing the final $QIO system service status in the FDT_CONTEXT structure.
The $QIO system service retrieves the status from this structure.

System Routines 9–281

System Routines
SCH_STD$IOLOCKR

SCH_STD$IOLOCKR

Locks the I/O database mutex on behalf of its caller for read access.

Module

MUTEX

Format

pointer = SCH_STD$IOLOCKR (pcb)

Arguments

Argument Type Access Mechanism Status

pcb PCB input reference required

pcb
Process control block.

Return Values

pointer Address of I/O database mutex.

Context

SCH_STD$IOLOCKR must be called at or below IPL$_SYNCH. It returns to its
caller at IPL$_ASTDEL.

Description

For Digital internal use only.

Macro

CALL_IOLOCKR [save_r1]

where:

save_r1 indicates that the macro should preserve register R1 across the call
to SCH_STD$IOLOCKR. If save_r1 is blank or save_r1=YES, the 64-bit
register is saved. (In the former case, the macro generates a compile-time
message. If save_r1=NO, R1 is not saved.)

In an Alpha driver, CALL_IOLOCKR calls SCH_STD$IOLOCKR using the
current contents of R4 as the pcb argument.

CALL_IOLOCKR returns the address of the I/O database mutex in R0. Unless
you specify save_r1=NO, the macro preserves R1 across the call.

9–282 System Routines

System Routines
SCH_STD$IOLOCKR

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• SCH_STD$IOLOCKR replaces SCH$IOLOCKR (used by OpenVMS VAX
drivers). Unlike SCH$IOLOCKR, SCH_STD$IOLOCKR destroys the contents
of R1 through R3 across the call.

System Routines 9–283

System Routines
SCH_STD$IOLOCKW

SCH_STD$IOLOCKW

Locks the I/O database mutex on behalf of its caller for write access.

Module

MUTEX

Format

pointer = SCH_STD$IOLOCKW (pcb)

Arguments

Argument Type Access Mechanism Status

pcb PCB input reference required

pcb
Process control block.

Return Values

pointer Address of I/O database mutex.

Context

SCH_STD$IOLOCKW must be called at or below IPL$_SYNCH. It returns to its
caller at IPL$_ASTDEL.

Description

For Digital internal use only.

Macro

CALL_IOLOCKW [save_r1]

where:

save_r1 indicates that the macro should preserve register R1 across the call
to SCH_STD$IOLOCKW. If save_r1 is blank or save_r1=YES, the 64-bit
register is saved. (In the former case, the macro generates a compile-time
message. If save_r1=NO, R1 is not saved.)

In an Alpha driver, CALL_IOLOCKW calls SCH_STD$IOLOCKW using the
current contents of R4 as the pcb argument.

CALL_IOLOCKW returns the address of the I/O database mutex in R0. Unless
you specify save_r1=NO, the macro preserves R1 across the call.

9–284 System Routines

System Routines
SCH_STD$IOLOCKW

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• SCH_STD$IOLOCKW replaces SCH$IOLOCKW (used by OpenVMS VAX
drivers). Unlike SCH$IOLOCKW, SCH_STD$IOLOCKW destroys the
contents of R1 through R3 across the call.

System Routines 9–285

System Routines
SCH_STD$IOUNLOCK

SCH_STD$IOUNLOCK

Releases ownership of the I/O database mutex and, if the mutex has thus become
available to waiting processes, reactivates the next eligible process.

Module

MUTEX

Format

SCH_STD$IOUNLOCK (pcb)

Arguments

Argument Type Access Mechanism Status

pcb PCB input reference required

pcb
Process control block.

Context

SCH_STD$IOUNLOCK must be called below IPL$_SCHED. It returns to its
caller at its caller’s IPL.

Description

For Digital internal use only.

Macro

CALL_IOUNLOCK

In an Alpha driver, CALL_IOUNLOCK calls SCH_STD$IOUNLOCK using the
current contents of R4 as the pcb argument.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• SCH_STD$IOUNLOCK replaces SCH$IOUNLOCK (used by OpenVMS VAX
drivers). Unlike SCH$IOUNLOCK, SCH_STD$IOUNLOCK destroys the
contents of R1 through R3 across the call.

9–286 System Routines

10
Data Structures

Because a driver and the operating system cooperate to process an I/O request,
they must have a common and current source of information about the request
and the components of the I/O subsystem involved in servicing the request. This
information source consists of a set of data structures collectively known as the
I/O database.

Components of the I/O database include the following:

• Structures that describe individual hardware components, such as devices,
controllers, adapters, and widgets. In this category are the following:

Structure Description
Associated
Structures

Unit control block (UCB) Records the current status of
an I/O device unit attached to
the OpenVMS system

Object rights block
(ORB), Controller
register access
mailbox (CRAM),
Fork block (FKB)

Device data block (DDB) Describes the common
characteristics of devices
of the same type connected to
a particular controller

—

Channel request block (CRB) Describes the current state of
an I/O controller

Interrupt transfer
vector block (VEC),
Fork block (FKB)

Interrupt dispatch block
(IDB)

Provides information that
supplements that contained
in the CRB, enabling the
system to correctly dispatch
and service interrupts from
a device unit attached to a
controller

Vector list extension
(VLE), Controller
register access
mailbox (CRAM)

Adapter control block (ADP) Describes the processor-
memory interconnect
(PMI), a tightly coupled
I/O interconnect, or a
multichannel I/O widget

Adapter bus array
(BUSARRAY)

• Driver tables that allow the system to load drivers, validate device functions,
and call driver routines at their entry points. In this category are the
following:

Data Structures 10–1

Data Structures

Structure Description
Associated
Structures

Driver prologue table (DPT) Contains information that
allows the driver-loading
procedure to load the driver
into memory and initialize
the I/O database according
to the number and type of
devices supported by the
driver

—

Driver dispatch table (DDT) Contains procedure values
representing all external
driver entry points (with the
exception of the interrupt
service routine) and the
address of the driver’s
function decision table (FDT)

—

Function decision table (FDT) Identifies those I/O functions
supported by a device and
associates valid function
codes with the addresses of
I/O preprocessing routines
(also known as FDT routines)

—

• Structures that describe the context of a request for I/O activity. In this
category are the following:

Structure Description
Associated
Structures

Channel control block (CCB) Describes the software I/O
channel that links a process
to the target device of an I/O
operation

—

I/O request packet (IRP) Describes a pending or in-
progress I/O request

I/O request packet
extension (IRPE)

• Miscellaneous structures, such as the following:

Structure Description
Associated
Structures

Kernel process block (KPB) Describes the scheduling
and suspension mechanisms
associated with a kernel
process and records its
suspended context

Fork block (FKB)

Counted resource allocation
block (CRAB)

Records the number and
type of a counted shared
resource, such as a set of
map registers, available to
drivers

Counted resource
context block
(CRCTX)

Controller register access
mailbox (CRAM)

Describes a read or write
transaction to device
interface register space

—

Figure 10–1 shows the relationships among the principal data structures in the
I/O database.

10–2 Data Structures

Data Structures

This chapter describes those structures referenced by driver code. It lists their
fields in the order in which they appear in the structures. All data structures
discussed in this chapter, with the exception of the channel control block (CCB),
exist in nonpaged system memory.

Notes

Fields marked ‘‘Reserved’’ or ‘‘Unused’’ are reserved by Digital unless
otherwise specified.

When referring to locations within a data structure, a driver should use
symbolic offsets, not numeric offsets, from the beginning of the structure.
Numeric offsets are likely to change with each new release of the
OpenVMS operating system. The figures in this chapter list OpenVMS
Alpha Version 6.1 numeric offsets to aid in driver debugging.

Figure 10–1 I/O Database

Describes I/O
request

x

x

Describes
requesting process

Describes
device

Describes
logical path
to device

Describes
permitted access

Describes
device type

Synchronizes
controller

Describes
interrupt parameters

Describes
driver

Locates driver
routines

Defines legal functions
and locates I/O pre−

Driver routines

Describes
adapter

x

x
x

x
x

x

DPT

DDT

FDT

ADPIDB

CRB

ORB

UCB

CCB

PCB

IRP DDB

P1 Space

processing routines

10.1 ADP (Adapter Control Block)
An adapter control block (ADP) represents a hardware block that connects one
interconnect to another. OpenVMS Alpha I/O configuration code creates an
ADP for the processor-memory interconnect (PMI), each tightly coupled I/O
interconnect, and each multichannel I/O widget.

Data Structures 10–3

Data Structures
10.1 ADP (Adapter Control Block)

The system ADP represents the PMI. Any other ADP represents either a tightly
coupled I/O interconnect or a multichannel I/O widget.

• An ADP for a tightly coupled I/O interconnect contains information related to
hardware mailbox support, system topology, adapter interrupts, and related
items. It also contains information about the I/O adapter that connects the
interconnect to the PMI or to a parent tightly coupled I/O interconnect. The
adjective parent in this context describes the tightly coupled I/O interconnect
that is closer to the PMI.

• Although information relating to an I/O widget is normally maintained only
in a widget-specific data structure defined and used by the widget’s driver,
information that is common to all loosely coupled I/O interconnects that
connect to a multichannel I/O widget is maintained in an ADP.

Table 10–1 defines the fields that appear in an ADP. Bus-specific extensions start
at offset ADP$L_XBIA_CSR in the ADP.

An ADP can have up to four auxiliary data structures:

• An adapter bus array (BUSARRAY), pointed to by ADP$PS_BUS_ARRAY

• An adapter command table (CMDTABLE), pointed to by ADP$PS_
COMMAND_TBL

• A counted resource allocation block (CRAB), pointed to by ADP$L_CRAB

• An indirect interrupt vector dispatch table, pointed to by ADP$L_VECTOR

IOC$GL_ADPLIST is the listhead for the list of all ADPs in the system. The first
ADP in the ADP list is the system ADP. Offset ADP$L_LINK in each ADP points
to the next ADP in this list. The last ADP in the list contains a zero in this field.
The SYSMAN command IO SHOW ADAPTER traverses this list and displays its
contents.

The hierarchy of tightly coupled I/O interconnects in a system is represented
by the interconnection between the ADPs in the ADP list. In conjunction with
the auxiliary BUSARRAY structure of each ADP, this information represents a
system’s configuration.

At the root of the hierarchical ADP list is the system ADP. Offset ADP$PS_
CHILD_ADP in the system ADP points to an ADP for a tightly coupled I/O
interconnect at the next level in the hierarchy — one that connects to the PMI
directly: that is, without other intervening interconnects.

Offset ADP$PS_PEER_ADP in the system ADP is always zero because the system
ADP has no peers. The DEC 4000 Alpha system local bus (L-bus) and Futurebus+
are both tightly coupled I/O interconnects that are directly connected to the C-bus
through the DEC 4000 Alpha system I/O module. Offset ADP$PS_PEER_ADP
in the L-bus ADP points to the Futurebus+ ADP, because the Futurebus+ is the
L-bus’s peer, connecting to the system at the same level as the L-bus. ADP$PS_
CHILD_ADP in each of the L-bus and Futurebus+ ADPs contains a zero.

10–4 Data Structures

Data Structures
10.1 ADP (Adapter Control Block)

Table 10–1 Contents of Adapter Control Block

Field Use

ADP$Q_CSR Address of adapter control and status register (CSR),
which marks the base of adapter register space on the
remote tightly coupled I/O interconnect. This may be
either a virtual or physical address, depending upon the
adapter.

The OpenVMS adapter initialization routine writes this
field. The IOC$CRAM_CMD uses the CSR address in
calculations that set up driver transactions to and from
remote adapter I/O space by means of hardware I/O
mailboxes.

For single-channel adapters, the contents of ADP$Q_CSR
and IDB$Q_CSR are often the same. For multichannel
adapters, ADP$Q_CSR contains the base address of the
common adapter register space, and individual IDBs point
to the specific adapter registers associated with individual
channels.

ADP$W_SIZE Size of ADP in bytes. Depending upon the type of I/O
adapter being described, the ADP size is variable and
subject to the length of the bus-specific ADP extension.
The OpenVMS adapter initialization routine writes this
field when the routine creates the ADP.

ADP$B_TYPE Type of data structure. The OpenVMS adapter
initialization routine writes the symbolic constant
DYN$C_ADP into this field when the routine creates
the ADP.

ADP$B_NUMBER Number of this type of adapter. This field is currently
unused in OpenVMS Alpha systems.

ADP$L_LINK Pointer to the next ADP in the ADP list (headed by
IOC$GL_ADPLIST). The last ADP in the list contains a
zero in this field.

ADP$L_TR Nexus number of adapter. The OpenVMS adapter
initialization routine assigns a nexus number to each
node it encounters as it probes an I/O interconnect.

When processing an SYSMAN IO CONNECT command
which specifies the /ADAPTER qualifier the driver-loading
procedure compares the specified nexus number with this
field of each ADP in the system to locate the adapter to
which the device serviced by the driver is attached.

ADP$L_ADPTYPE Type of ADP. The OpenVMS adapter initialization routine
writes a symbolic constant (defined by the $DCDEF macro
in SYS$LIBRARY:STARLET.MLB) into this field when
the routine creates an ADP.

(continued on next page)

Data Structures 10–5

Data Structures
10.1 ADP (Adapter Control Block)

Table 10–1 (Cont.) Contents of Adapter Control Block

Field Use

ADP$L_VECTOR Address of indirect interrupt vector dispatch table. For
adapters that service indirect interrupts, the OpenVMS
adapter initialization routine sets ADP$V_INDIRECT_
VECTOR in ADP$L_ADAPTER_FLAGS, and allocates
sufficient nonpaged dynamic memory for this table. Each
entry in this table consists of a longword pointer to the
VEC substructure of a CRB of a device for which the
system dispatches interrupts through this ADP.

ADPs that service indirectly-vectored device interrupts
include a VEC substructure at ADP$L_INTD (as
described in Section 10.5) that contains the code address
(VEC$PS_ISR_CODE), procedure descriptor address
(VEC$PS_ISR_PD), and parameter field (VEC$L_IDB,
which contains the address of the ADP) of the adapter’s
indirect interrupt service routine. The SCB entries
assigned to devices that interrupt indirectly contain the
code address of the common interrupt dispatcher and, as
the parameter, the address of ADP$L_INTD. The common
interrupt dispatcher issues a standard call to the ADP’s
indirect interrupt service routine, which determines the
interrupt vector of the interrupting device, using it as an
index into the indirect interrupt vector dispatch table.
The ADP’s indirect interrupt service routine thereby
locates the appropriate device driver’s interrupt service
routine and calls it, passing it the address of the IDB as
the only parameter.

ADP$L_CRB Address of controller request block (CRB) associated
with the ADP. In the case of an ADP that describes a
multichannel I/O widget, this field represents the head of
a singly-linked list of CRBs linked together by the field
CRB$PS_CRB_LINK.

ADP$PS_MBPR Virtual address of mailbox pointer register (MBPR). The
OpenVMS adapter initialization routine initializes this
field.

ADP$Q_QUEUE_TIME Timeout value for mailbox queuing operation. The
OpenVMS adapter initialization routine initializes this
field with the number of nanoseconds it takes to write the
physical address of a hardware I/O mailbox to the MBPR
without a timeout occurring.

ADP$Q_WAIT_TIME Timeout value for the completion of a hardware I/O
mailbox transaction. The OpenVMS adapter initialization
routine initializes this field with the number of
nanoseconds a thread should wait, before timing out,
for the hardware I/O mailbox DON bit to be set.

ADP$PS_PARENT_ADP Address of the ADP in the preceding level of the system’s
ADP hierarchy that is related to this ADP and its peers.
In the system ADP, this field contains a zero.

ADP$PS_PEER_ADP Address of the next ADP in the list of ADPs that are
children of a common parent ADP in the preceding
level of the system’s ADP hierarchy, and headed by
field ADP$PS_CHILD_ADP in that parent ADP. This field
contains a zero if the ADP has no peers.

(continued on next page)

10–6 Data Structures

Data Structures
10.1 ADP (Adapter Control Block)

Table 10–1 (Cont.) Contents of Adapter Control Block

Field Use

ADP$PS_CHILD_ADP Listhead of the ADPs that are related to this ADP in the
succeeding level of the ADP hierarchy, or zero if the ADP
has no children. At this lower level, the child ADPs of a
common parent ADP are linked together by the contents
of their ADP$PS_PEER_ADP fields.

ADP$L_PROBE_CMD Index into the adapter command table that EXE$TEST_
CSR uses to determine which command to use when
probing the interconnect described by this ADP.

ADP$PS_BUS_ARRAY Address of BUSARRAY describing the nodes on the tightly
coupled interconnect or the ports of a multichannel I/O
widget or controller associated with this ADP.

ADP$PS_COMMAND_TBL Address of the adapter command table specific to the
I/O interconnect described by this ADP. The OpenVMS
adapter initialization routine constructs this table.

IOC$CRAM_CMD refers to this field to locate the table
when it calculates the COMMAND, MASK, and RBADR
fields of a hardware I/O mailbox involved in a transaction
to a device interface register.

ADP$PS_SPINLOCK Address of device lock synchronizing access to the CSRs
of the devices associated with this ADP. The OpenVMS
adapter initialization routine allocates this device lock
and places its address in this field, IDB$PS_SPL, and
CRB$PS_DLCK.

ADP$W_PRIM_NODE_NUM Node number of the I/O adapter (or widget) on the local
interconnect (for instance, the node number of the DEC
7000 Alpha Model 600 system bus [PMI] to XMI bus
adapter on the PMI).

ADP$W_SEC_NODE_NUM Node number of the I/O adapter on the remote
interconnect (for instance, the node number of the DEC
7000 Alpha Model 600 system bus [PMI] to XMI bus
adapter on the XMI).

ADP$B_HOSE_NUM Hose number associated with the I/O adapter. OpenVMS
adapter initialization routine writes this field.

ADP$L_CRAB Address of CRAB used to manage map registers, if the
Alpha system provides map registers for this adapter.

ADP$L_ADAPTER_FLAGS The following bit is defined within ADP$L_ADAPTER_
FLAGS:

ADP$V_INDIRECT_
VECTOR

Adapter services
indirectly vectored
interrupts for its
associated devices.

ADP$V_ONLINE Adapter is online.

ADP$V_BOOT_ADP Adapter is boot adapter.

(continued on next page)

Data Structures 10–7

Data Structures
10.1 ADP (Adapter Control Block)

Table 10–1 (Cont.) Contents of Adapter Control Block

Field Use

ADP$L_VPORTSTS CI-VAX port status bits. The following bits are defined
within ADP$L_VPORTSTS:

ADP$V_SHUTDOWN CI-adapter microcode is
stopped.

ADP$V_PORTONLY CI-port restart only—no
adapter restart.

ADP$V_STRUCT_
ALLOCATED

CI/SCSI–adapter-wide
structures allocated.

ADP$PS_NODE_FUNCTION Procedure value of the node-specific function routine that
services driver calls to IOC$NODE_FUNCTION.

ADP$L_AVECTOR Address of first SCB vector for adapter.

ADP$Q_SCRATCH_BUF_PA Physical address of adapter scratch buffer.

ADP$PS_SCRATCH_BUF_
VA

Virtual address of a physically contiguous scratch buffer
used in an adapter-specific manner.

ADP$L_SCRATCH_BUF_
LEN

Size of adapter scratch buffer.

ADP$L_LSDUMP Address of physical contiguous memory for the adapter
memory dump.

ADP$PS_PROBE_CSR Procedure value of adapter-specific routine that checks
for the existence of devices on an I/O interconnect.
EXE$PROBE_CSR issues a standard call to this routine.

ADP$PS_PROBE_CSR_
CLEANUP

Procedure value of adapter probe CSR cleanup routine.
The adapter-specific probe CSR routine calls the cleanup
routine when an error occurs during its attempts to probe
an I/O interconnect.

ADP$PS_LOAD_MAP_REG Procedure value of adapter load map register routine.

ADP$PS_SHUTDOWN Procedure value of adapter shutdown routine.

ADP$PS_CONFIG_TABLE Pointer to autoconfiguration table.

ADP$PS_MAP_REG_BASE Base virtual address of adapter map registers.

ADP$PS_ADP_SPECIFIC Address of adapter auxiliary data structure.

ADP$PS_DISABLE_
INTERRUPTS

Address of adapter-specific interrupt disabling routine.

ADP$PS_STARTUP Address of adapter-specific startup routine.

ADP$PS_INIT Address of adapter-specific initialization routine.

ADP$Q_HARDWARE_TYPE Saved hardware device type information. The
interpretation of this information is adapter-specific.

ADP$Q_HARDWARE_REV Saved hardware device revision information. The
interpretation of this information is adapter-specific.

(continued on next page)

10–8 Data Structures

Data Structures
10.1 ADP (Adapter Control Block)

Table 10–1 (Cont.) Contents of Adapter Control Block

Field Use

ADP$L_INTD Interrupt transfer vector. For adapters that service
indirect interrupts (ADP$V_INDIRECT_VECTOR in
ADP$L_ADAPTER_FLAGS is set), this 4-longword field
(described in Section 10.5) provides information used by
OpenVMS Alpha to service a device interrupt, such as
the location of the ADP and its indirect interrupt service
routine.

See the description of the ADP$L_VECTOR field for
additional information on how the adapter services
indirect interrupts.

10.1.1 BUSARRAY (Bus Array)
The bus array (BUSARRAY) contains information about the nodes on a tightly
coupled I/O interconnect or the ports of a multichannel I/O widget. The
BUSARRAY consists of a fixed portion and an array of entries. The fixed portion
records the interconnect type, the number of nodes on the interconnect, and a
pointer to the ADP with which the BUSARRAY is associated. Each array entry
records the node number, the node’s hardware ID, and a pointer to either an ADP
or a CRB.

Table 10–2 describes the fields of the BUSARRAY structure; Table 10–3 describes
the contents of each entry in the bus array.

Table 10–2 Contents of Bus Array

Field Use

BUSARRAY$PS_PARENT_ADP Address of ADP for the tightly coupled I/O interconnect
or multichannel I/O widget the BUSARRAY describes.

BUSARRAY$W_SIZE Size of BUSARRAY in bytes. The adapter initialization
routine writes this field when it creates the
BUSARRAY.

BUSARRAY$B_TYPE Type of data structure. The adapter initialization
routine writes the symbolic constant DYN$C_MISC in
this field when it creates the BUSARRAY.

BUSARRAY$B_SUBTYPE Structure subtype. The adapter initialization routine
writes DYN$C_BUSARRAY in this field when it
creates the BUSARRAY.

BUSARRAY$L_BUS_TYPE Type of tightly coupled I/O interconnect or
multichannel I/O widget the BUSARRAY describes.
The adapter initialization routine writes this field
when it creates the BUSARRAY. The following
constants (defined by the $BUSDEF macro in
SYS$LIBRARY:LIB.MLB) represent the interconnects
supported on OpenVMS Alpha systems:

BUS$_FBUS Futurebus

BUS$_XMI XMI

BUS$_LBUS DEC 4000 Alpha LBUS

BUS$_TURBO TURBOchannel

(continued on next page)

Data Structures 10–9

Data Structures
10.1 ADP (Adapter Control Block)

Table 10–2 (Cont.) Contents of Bus Array

Field Use

BUS$_CBUS DEC 4000 Alpha system bus

BUS$_LSB DEC 7000 Alpha Model 600
system bus

BUS$_SCSI SCSI

BUS$_NI Ethernet

BUS$_CI CI

BUS$_KA0402_
CORE_IO

DEC 3000 Alpha Model 500
core I/O bus

BUS$_KDM70 KDM70

BUS$_GENXMI Generic XMI

BUS$_BUSLESS_
SYSTEM

No bus

BUSARRAY$L_BUS_NODE_
CNT

Number of entries in the bus array located at
BUSARRAY$Q_ENTRY_LIST. The OpenVMS adapter
initialization routine writes this field when it creates
the BUSARRAY.

BUSARRAY$Q_ENTRY_LIST Bus array consisting of BUSARRAY$L_BUS_NODE_
CNT entries.

Table 10–3 Contents of Bus Array

Field Use

BUSARRAY$Q_HW_ID Hardware ID. The macro $NDTDEF (in
SYS$LIBRARY:LIB.MLB) provides symbolic
definitions for the hardware IDs of all possible
OpenVMS Alpha nodes.

BUSARRAY$Q_CSR Base address of the node’s CSR. The adapter
initialization routine writes this field.

BUSARRAY$L_NODE_
NUMBER

Node number. The adapter initialization routine
writes this field.

BUSARRAY$L_FLAGS Bus array flags. The only bit that is currently defined,
BUSARRAY$V_NO_RECONNECT, when set, indicates
that a node has been configured properly. A bus-
specific routine in an IOGEN configuration building
module (ICBM) sets this bit.

BUSARRAY$PS_CRB Pointer to node’s CRB. This field must be zero if
BUSARRAY$PS_ADP is filled in.

BUSARRAY$PS_ADP Pointer to the child ADP of the parent ADP (identified
by BUSARRAY$PS_PARENT_ADP) with which this
node is associated. If there is no such child ADP, this
field must be zero.

BUSARRAY$L_AUTOCONFIG Reserved for the Autoconfiguration facility.

BUSARRAY$L_CTRLLTR A bus-specific routine in an IOGEN configuration
building modules writes this field by calling
IOGEN$ASSIGN_CONTROLLER.

10–10 Data Structures

Data Structures
10.2 CCB (Channel Control Block)

10.2 CCB (Channel Control Block)
When a process assigns an I/O channel to a device unit with the $ASSIGN
system service, EXE$ASSIGN locates a free block among the channel control
blocks (CCBs) preallocated to the process. EXE$ASSIGN then writes into the
CCB a description of the device attached to the CCB’s channel.

The channel control block is the only data structure described in this chapter
that exists in the control (P1) region of a process address space. It is described in
Table 10–4.

Table 10–4 Contents of Channel Control Block

Field Use

CCB$L_UCB Address of UCB of assigned device unit. EXE$ASSIGN
writes a value into this field. EXE$QIO reads this field
to determine that the I/O request specifies a process I/O
channel assigned to a device and to obtain the device’s
UCB address.

CCB$L_WIND Address of window control block (WCB) for file-structured
device assignment. This field is written by an ancillary
control process (ACP) or the extended QIO processor
(XQP) and read by EXE$QIO.

A file-structured device’s XQP or ACP creates a WCB
when a process accesses a file on a device assigned to a
process I/O channel. The WCB maps the virtual block
numbers of the file to a series of physical locations on the
device.

CCB$L_STS Channel status. The following bits are defined within
CCB$L_STS:

CCB$V_AMB Mailbox associated with
channel.

CCB$V_IMGTMP Temporary image.

CCB$V_RDCHKDON Read protection check
completed.

CCB$V_WRTCHKDON Write protection check
completed.

CCB$V_LOGCHKDON Logical I/O access check
done.

CCB$V_PHYCHKDON Physical I/O access check
done.

CCB$B_AMOD Access mode plus 1 of the channel. EXE$ASSIGN writes
the access mode value into this field.

CCB$L_IOC Number of outstanding I/O requests on channel.
EXE$QIO increases this field when it begins to process
an I/O request that specifies the channel. During
I/O postprocessing, the special kernel-mode AST
routine decrements this field. Some FDT routines and
EXE$DASSGN read this field.

(continued on next page)

Data Structures 10–11

Data Structures
10.2 CCB (Channel Control Block)

Table 10–4 (Cont.) Contents of Channel Control Block

Field Use

CCB$L_DIRP Address of I/O request packet (IRP) for requested
deaccess. A number of outstanding I/O requests can be
pending on the same process I/O channel at one time. If
the process that owns the channel issues an I/O request to
deaccess the device, EXE$QIO holds the deaccess request
until all other outstanding I/O requests are processed.

CCB$L_CHAN Associated channel number.

10.3 CRAM (Controller Register Access Mailbox)
The controller register access mailbox (CRAM) contains information that
describes a specific hardware I/O mailbox transaction. To facilitate mailbox
operations within the operating system, the CRAM contains information required
by the operating system as well as the hardware I/O mailbox itself. For example,
mailbox operations require the physical address of the hardware mailbox itself as
well as the virtual address of the corresponding mailbox pointer register (MBPR).
Additionally, the timeout values for both the queuing and waiting portions of a
mailbox operation are kept in the CRAM.

CRAMs are allocated from pages obtained from the memory management free
list. Once the pages have been allocated from the free list, they are managed
privately by the CRAM allocation and deallocation code. Each page of CRAMs
begins with a structure known as a controller register access mailbox header
(CRAMH); the set of pages is maintained as a linked list starting at IOC$GQ_
CRAMH_HDR.

The controller register access mailbox is described in Table 10–5.

Table 10–5 Contents of Controller Register Access Mailbox

Field Use

CRAM$L_FLINK Forward link to next CRAM in list (headed by IDB$PS_
CRAM or UCB$PS_CRAM). The driver-loading procedure
initializes this field when the driver preallocates CRAMs
by specifying the idb_crams or ucb_crams argument
to the DPTAB macro. The contents of this field are
unpredictable and must be managed by the driver when it
spontaneously allocates CRAMs.

CRAM$L_BLINK Backward link to next CRAM in list (headed by IDB$PS_
CRAM or UCB$PS_CRAM). The driver-loading procedure
initializes this field when the driver preallocates CRAMs
by specifying the idb_crams or ucb_crams argument
to the DPTAB macro. The contents of this field are
unpredictable and must be managed by the driver when it
spontaneously allocates CRAMs.

CRAM$W_SIZE Size of CRAM in bytes. IOC$ALLOCATE_CRAM writes
the symbolic constant CRAM$K_LENGTH in this field
when it initializes the CRAM.

CRAM$B_TYPE Structure type. IOC$ALLOCATE_CRAM initializes this
field to DYN$C_MISC.

(continued on next page)

10–12 Data Structures

Data Structures
10.3 CRAM (Controller Register Access Mailbox)

Table 10–5 (Cont.) Contents of Controller Register Access Mailbox

Field Use

CRAM$B_SUBTYPE Structure subtype. IOC$ALLOCATE_CRAM initializes
this field to DYN$C_CRAM.

CRAM$L_MBPR Virtual address of mailbox pointer register (MBPR). When
IOC$ALLOCATE_CRAM is called by the driver-loading
procedure, or when it is called independently with the
idb parameter, it initializes this field from the contents of
ADP$PS_MBPR. Otherwise, it places a zero in this field.

CRAM$Q_HW_MBX Physical address of hardware mailbox. IOC$ALLOCATE_
CRAM initializes this field.

CRAM$Q_QUEUE_TIME MBPR queue timeout interval in nanoseconds. If
IOC$CRAM_QUEUE or IOC$CRAM_CMD cannot
queue the hardware I/O mailbox defined in this CRAM
to the MBPR in this amount of time, it returns SS$_
INTERLOCK status to its caller.

When IOC$ALLOCATE_CRAM is called by the driver-
loading procedure, or when it is called independently
with the idb parameter, it initializes this field from the
contents of ADP$Q_QUEUE_TIME. Otherwise, it places a
zero in this field.

CRAM$Q_WAIT_TIME Mailbox transaction wait timeout interval in nanoseconds.
If IOC$CRAM_IO or IOC$CRAM_WAIT does not see the
done or error bit set in the hardware mailbox in this
interval, it returns SS$_TIMEOUT status to its caller.

When IOC$ALLOCATE_CRAM is called by the driver-
loading procedure, or when it is called independently
with the idb parameter, it initializes this field from the
contents of ADP$Q_WAIT_TIME. Otherwise, it places a
zero in this field.

CRAM$L_DRIVER Spare longword for driver use.

CRAM$L_IDB Pointer to IDB. IOC$ALLOCATE_CRAM initializes this
field when called from the driver-loading procedure, and
when called with a nonzero idb parameter. Otherwise, it
places a zero in this field.

CRAM$L_UCB Pointer to UCB. IOC$ALLOCATE_CRAM initializes
this field when called from the driver-loading procedure
(if the ucb_cram argument is supplied to the DPTAB
macro), and when called with a nonzero ucb parameter.
Otherwise, it places a zero in this field.

(continued on next page)

Data Structures 10–13

Data Structures
10.3 CRAM (Controller Register Access Mailbox)

Table 10–5 (Cont.) Contents of Controller Register Access Mailbox

Field Use

CRAM$L_CRAM_FLAGS The following bits are defined within CRAM$L_CRAM_
FLAGS:

CRAM$V_CRAM_IN_
USE

CRAM is valid. IOC$CRAM_
QUEUE and IOC$CRAM_
IO set this bit when they
have successfully posted
the hardware I/O mailbox
portion of the CRAM to the
MBPR. IOC$CRAM_IO and
IOC$CRAM_WAIT clear this bit
when the mailbox transaction is
completed (either successfully
or unsuccessfully) within the
mailbox transaction timeout
interval (CRAM$Q_WAIT_
TIME).

CRAM$V_DER Disable error reporting.

CRAM$L_COMMAND Command to the remote I/O interconnect command
specifying a read or write transaction. The local I/O
adapter delivers this command to the remote interconnect
to which the target widget is connected. The command
may also include fields such as address only, address
width, and data width.

This field, aligned on a 64-byte boundary, indicates the
beginning of the hardware I/O mailbox structure in this
CRAM. The characters "MBZ" (must be zero) indicate
that the field must contain a zero when it is supplied in a
CRAM operation.

Given a command index, IOC$CRAM_CMD initializes
this field in a manner specific to the I/O interconnect that
is to be the target of an operation using this CRAM.

CRAM$B_BYTE_MASK Byte mask that indicates which bytes within the remote
bus address (CRAM$Q_RBADR) are to be written for
mailbox write operations.

IOC$CRAM_CMD, on behalf of a device driver, writes
the size of the target location (byte, word, longword, or
quadword) in this field. Given a byte offset to an address
in remote I/O space, IOC$CRAM_CMD initializes this
field in a manner specific to the masking mode of the I/O
interconnect that is to be the target of an operation using
this CRAM.

CRAM$B_HOSE I/O bus number, or hose. This field specifies the remote
I/O interconnect to be accessed by the mailbox transaction
described by this CRAM.

When IOC$ALLOCATE_CRAM is called by the driver-
loading procedure, or when it is called independently
with the idb parameter, it initializes this field from the
contents of ADP$B_HOSE_NUM. Otherwise, it places a
zero in this field.

(continued on next page)

10–14 Data Structures

Data Structures
10.3 CRAM (Controller Register Access Mailbox)

Table 10–5 (Cont.) Contents of Controller Register Access Mailbox

Field Use

CRAM$Q_RBADR Remote bus address. A device driver calls IOC$CRAM_
CMD to write a value in this field that represents the
physical address of the device interface register to be
accessed. IOC$CRAM_CMD calculates this value from
IDB$Q_CSR (or ADP$Q_CSR if IDB$Q_CSR is not
available) and the byte_offset input argument.

CRAM$Q_WDATA Data to be written. If CRAM$L_COMMAND indicates a
write transaction to the remote interconnect, the driver
initializes this field with the data to be written to the
target device interface register. If CRAM$L_COMMAND
indicates a read transaction, this field is not used.

CRAM$Q_RDATA Returned read data. If CRAM$L_COMMAND indicates a
read transaction to the remote interconnect, the remote
adapter returns the requested data in this field. If
CRAM$L_COMMAND indicates a write transaction,
the contents of this field are unpredictable.

CRAM$W_MBX_FLAGS The following bits are defined within CRAM$W_MBX_
FLAGS:

CRAM$V_MBX_DONE Mailbox operation completed.
IOC$CRAM_WAIT and
IOC$CRAM_IO check this
bit to determine the completion
of a hardware I/O mailbox
transaction. For both read
and write commands, this
bit, when set, indicates that
the CRAM$V_MBX_ERROR,
CRAM$W_ERROR_BITS, and
CRAM$Q_RDATA fields are
valid. The mailbox structure
may then be safely modified by
software (reused). Note that
the setting of the DON bit does
not guarantee that a remote
I/O space write has actually
completed at the bridge.

CRAM$V_MBX_
ERROR

Error in operation.
IOC$CRAM_WAIT and
IOC$CRAM_IO check this bit
to determine whether an error
occurred during a hardware I/O
mailbox transaction. If set on a
read command, indicates that
an error was encountered and
that the CRAM$W_ERROR_
BITS field contains additional
information. This bit is valid
only when CRAM$V_MBX_
DONE is set.

CRAM$W_ERROR_BITS Device-specific error bits that indicate the completion
status of a mailbox transaction described by this CRAM.

Data Structures 10–15

Data Structures
10.4 CRB (Channel Request Block)

10.4 CRB (Channel Request Block)
The activity of each controller in a configuration is described in a channel request
block (CRB). This data structure contains pointers to the wait queue of driver
fork processes waiting to gain access to a device through the controller. It also
contains one interrupt transfer vector (VEC) for each of the controller’s interrupt
vectors.

The channel request block is described in Table 10–6.

Table 10–6 Contents of Channel Request Block

Field Use

CRB$L_FQFL Fork queue forward link. The link points to the next
entry in the fork queue.

Controller initialization routines write this field when
they must drop IPL to utilize certain executive routines,
such as those that allocate CRAMs or nonpaged memory,
that must be called at a lower IPL. The CRB timeout
mechanism also uses the CRB fork block to lower IPL
prior to calling the CRB timeout routine.

CRB$L_FQBL Fork queue backward link. The link points to the previous
entry in the fork queue.

CRB$W_SIZE Size of CRB in bytes. The driver-loading procedure writes
this field when it creates the CRB.

CRB$B_TYPE Type of data structure. The driver-loading procedure
writes the symbolic constant DYN$C_CRB into this field
when it creates the CRB.

CRB$B_FLCK Fork lock at which the controller’s fork operations are
synchronized. If it must use the CRB fork block, a driver
either uses a DPT_STORE macro to initialize this field or
explicitly sets its value within the controller initialization
routine.

CRB$L_FPC Procedure value of routine at which execution resumes
when the fork dispatcher dequeues the fork block.
EXE$PRIMITIVE_FORK writes this field when called
to suspend driver execution.

CRB$Q_FR3 Value of R3 at the time that the executing code
requests the operating system to create a fork block.
EXE$PRIMITIVE_FORK writes this field when called to
suspend driver execution.

CRB$Q_FR4 Value of R4 at the time that the executing code requests
OpenVMS to create a fork block. EXE$PRIMITIVE_
FORK writes this field when called to suspend driver
execution.

CRB$B_TT_TYPE Controller type.

CRB$L_REFC Unit control block (UCB) reference count. The driver-
loading procedure increases the value in this field
each time it creates a UCB for a device attached to
the controller.

(continued on next page)

10–16 Data Structures

Data Structures
10.4 CRB (Channel Request Block)

Table 10–6 (Cont.) Contents of Channel Request Block

Field Use

CRB$B_MASK Mask that describes controller status.

The following fields are defined in CRB$B_MASK:

CRB$V_BSY Busy bit. IOC$PRIMITIVE_
REQCHANy reads the busy
bit to determine whether the
controller is free and sets
this bit when it allocates the
controller data channel to a
driver. IOC$RELCHAN clears
the busy bit if no driver is
waiting to acquire the channel.

CRB$V_UNINIT Indication, when set, that
the OpenVMS driver loading
procedure has yet to call the
driver’s controller initialization
routine. The driver loading
procedure reads this bit to
determine whether to call
the controller initialization
routine and clears it when the
initialization routine completes.

CRB$PS_BUSARRAY Address of BUSARRAY that describes the devices residing
on loosely coupled I/O interconnects (for instance, a SCSI
port).

CRB$Q_AUXSTRUC Address of auxiliary data structure used by device driver
to store special controller information. A device driver
requiring such a structure generally allocates a block of
nonpaged dynamic memory in its controller initialization
routine and places a pointer to it in this field.

CRB$Q_LAN_STRUC Address of auxiliary data structure used by local area
network drivers.

CRB$Q_SSB_STRUC Address of auxiliary data structure used by system
communications services drivers.

CRB$L_TIMELINK Forward link in queue of CRBs waiting for periodic
wakeups. This field points to the CRB$L_TIMELINK
field of the next CRB in the list. The CRB$L_TIMELINK
field of the last CRB in the list contains zero. The listhead
for this queue is IOC$GL_CRBTMOUT. Use of this field is
reserved to Digital.

CRB$L_NODE Bus-slot number of the controller node. The OpenVMS
Alpha driver-loading procedure initializes this field, which
is used by IOC$NODE_FUNCTION to enable or disable
functionality for the node.

CRB$L_DUETIME Time in seconds, relative to EXE$GL_ABSTIM, at which
next periodic wakeup associated with the CRB is to be
delivered. Compute this value by raising IPL to IPL$_
POWER, adding the required number of seconds to the
contents of EXE$GL_ABSTIM, and storing the result in
this field. Use of this field is reserved to Digital.

(continued on next page)

Data Structures 10–17

Data Structures
10.4 CRB (Channel Request Block)

Table 10–6 (Cont.) Contents of Channel Request Block

Field Use

CRB$L_TOUTROUT Procedure value of routine to be called at fork IPL
(holding a corresponding fork lock if necessary) when
a periodic wakeup associated with CRB becomes due. The
routine must compute and reset the value in CRB$L_
DUETIME if another periodic wakeup request is desired.
Use of this field is reserved to Digital.

CRB$PS_DLCK Address of controller’s device lock. The driver-loading
procedure initializes this field and propagates it to each
UCB it creates for the device units associated with the
controller.

CRB$PS_CRB_LINK Pointer to next CRB on ADP.

CRB$PS_CTRLR_
SHUTDOWN

Procedure value of driver controller shutdown routine.

CRB$L_INTD Interrupt transfer vector. This 4-longword field (described
in Section 10.5) contains information used by the
operating system to service a device interrupt, such as
the location of the device’s interrupt service routine and
its associated interrupt dispatch block (IDB).

CRB$L_INTD2 Second interrupt transfer vector for devices with multiple
interrupt vectors.

10.5 VEC (Interrupt Transfer Vector Block)
An interrupt transfer vector block (VEC) exists in OpenVMS only as a
substructure of a CRB or an ADP. A VEC stores information that allows
OpenVMS to correctly dispatch and service the interrupts of devices that share
a common controller or adapter. The VEC substructures of ADPs are of interest
only to OpenVMS-supplied device drivers.

By default, the driver-loading procedure creates a single VEC within a given CRB.
(Adapter initialization code generates the VECs associated with an ADP.) You
can control the number of VECs created by specifying a value in the /NUMVEC
qualifier of an SYSMAN IO CONNECT command.

The OpenVMS driver-loading procedure initializes the contents of each VEC’s
IDB and ADP pointers and connects the VEC to the appropriate vector offsets
within the system control block (SCB). A device driver must initialize the
VEC$PS_ISR_CODE and VEC$PS_ISR_PD fields in each VEC by invoking the
DPT_STORE_ISR macro, as described in Chapter 11.

Although the OpenVMS interrupt dispatching mechanism passes the address
of the device’s IDB to a driver’s interrupt service routine as its sole parameter,
other driver routines must determine the location of the IDB by directly accessing
VEC$L_IDB in a VEC substructure. The data structure definition macro
$CRBDEF supplies symbolic offsets so that a driver can easily locate the first two
VECs. For additional VECs, the driver must employ the following formula, where
n represents the vector number:

CRB$L_INTD+((n-1)*VEC$K_LENGTH)

10–18 Data Structures

Data Structures
10.5 VEC (Interrupt Transfer Vector Block)

The following table lists the symbolic location of the first three VECs for a given
controller:

Vector Number Symbolic Offset to VEC

1 CRB$L_INTD

2 CRB$L_INTD2

3 CRB$L_INTD+<2*VEC$K_LENGTH>

Table 10–7 describes the contents of the VEC substructure.

Table 10–7 Contents of Interrupt Transfer Vector Block (VEC)

Field Use

VEC$PS_ISR_CODE Address of the code entry point of a driver interrupt
service routine (ISR). The driver specifies an ISR by using
the DPT_STORE_ISR macro, which initializes this field.

VEC$PS_ISR_PD Address of the procedure descriptor of a driver ISR. The
driver specifies an ISR by using the DPT_STORE_ISR
macro, which initializes this field.

VEC$L_IDB Address of IDB for controller. The driver-loading
procedure creates an IDB for each CRB and loads the
address of the IDB in this field. Device drivers use the
IDB address to obtain the addresses of IDB CRAMs.

When a driver’s interrupt service routine gains control, it
receives this value as its only parameter.

VEC$PS_ADP Address of ADP. The SYSMAN command IO CONNECT
must specify the nexus number of the adapter used by
a controller. The driver-loading procedure writes the
address of the ADP for the specified adapter into the
VEC$PS_ADP field.

10.6 DDB (Device Data Block)
The device data block (DDB) is a block that identifies the generic
device/controller name and driver name for a set of devices attached to a single
controller. The driver-loading procedure creates a DDB for each controller
during autoconfiguration at system startup and dynamically creates additional
DDBs for new controllers as they are added to the system using the SYSMAN
command CONNECT. The procedure initializes all fields in the DDB. All the
DDBs associated with a given system block (SB) are linked in a singly linked list
off that SB. The field DDB$L_SB points to the parent SB of any given DDB.

The device data block is described in Table 10–8.

Table 10–8 Contents of Device Data Block

Field Use

DDB$L_LINK Address of next DDB. A zero indicates that this is the last DDB
in the DDB chain.

DDB$L_UCB Address of UCB for first unit attached to controller.

(continued on next page)

Data Structures 10–19

Data Structures
10.6 DDB (Device Data Block)

Table 10–8 (Cont.) Contents of Device Data Block

Field Use

DDB$W_SIZE Size of DDB in bytes. The driver-loading procedure writes the
symbolic constant DDB$K_LENGTH in this field when it creates
the DDB.

DDB$B_TYPE Type of data structure. The driver-loading procedure writes the
constant DYN$C_DDB into this field when the procedure creates
the DDB.

DDB$L_DDT Address of driver dispatch table (DDT). OpenVMS can transfer
control to a device driver only through procedure values and
entry points listed in the DDT, CRB, and UCB fork block. The
driver-loading procedure initializes this field.

DDB$L_ACPD Name of default ACP (or XQP) for controller. ACPs that control
access to file-structured devices (or the XQP) use the high-order
byte of this field, DDB$B_ACPCLASS, to indicate the class of the
file-structured device. If the ACP_MULTIPLE system parameter
is set, the initialization procedure creates a unique ACP for each
class of file-structured device.

Drivers initialize DDB$B_ACPCLASS by invoking a DPT_
STORE macro. Values for DDB$B_ACPCLASS are as follows:

DDB$K_PACK Standard disk pack

DDB$K_CART Cartridge disk pack

DDB$K_SLOW Floppy disk

DDB$K_TAPE Magnetic tape that simulates file-
structured device

DDB$T_NAME Name of device. The first byte of this field contains the number
of characters in the device name. The remainder of the field
contains a string of up to 15 characters representing the device
name in the format ddc, where

dd = device code (up to 9 alphabetic characters)

c = controller designation (alphabetic)

DDB$PS_DPT Address of DPT of driver that supports this device.

DDB$PS_DRVLINK Address of next DDB in singly linked list, headed by DPT$PS_
DDB_LIST, of DDBs serviced by a particular driver.

DDB$L_SB Address of system block.

DDB$L_CONLINK Address of next DDB in the connection subchain.

DDB$L_ALLOCLS Allocation class of device.

DDB$L_2P_UCB Address of the first UCB on the secondary path.

10.7 DDT (Driver Dispatch Table)
Each device driver contains a driver dispatch table (DDT). The DDT lists
procedure values for driver entry points that system routines call.

A device driver creates a DDT by invoking the VAX MACRO DDTAB macro.
Table 10–9 describes the fields in the driver dispatch table.

10–20 Data Structures

Data Structures
10.7 DDT (Driver Dispatch Table)

Table 10–9 Contents of Driver Dispatch Table

Field Use

DDT$PS_START_2 Procedure value of the driver’s start-I/O routine. The
DDTAB macro inserts a procedure value in this field
when the driver specifies the routine’s address in the
start argument to the macro. All drivers must specify a
start-I/O routine.

When a device unit is idle and an I/O request is pending
for that unit, IOC$INITIATE transfers control to the
routine entry point represented by the procedure value in
this field.

A driver that employs kernel process services typically
specifies its start-I/O routine in the kp_startio argument
to the DDTAB macro, and the system routine EXE$KP_
STARTIO in the start argument. This allows OpenVMS
to set up the kernel process environment prior to
transferring control to the driver’s start-I/O routine.

DDT$PS_START_JSB Procedure value of the driver Start I/O routine when
DDTAB JSB_START is used. The DDT$PS_START field
contains a pointer to the IOC$START_C2J routine.

DDT$IW_SIZE Size of DDT in bytes. The DDTAB macro writes the
symbolic constant DDT$K_LENGTH in this field when
creating the DDT.

DDT$W_DIAGBUF Size of diagnostic buffer, as specified in the diagbf
argument to the DDTAB macro. The value is the size
in bytes of a diagnostic buffer for the device.

When EXE$QIO preprocesses an I/O request, it allocates
a system buffer of the size recorded in this field (if it
contains a nonzero value) if the process requesting the I/O
has DIAGNOSE privilege and specifies a diagnostic buffer
in the I/O request. IOC$DIAGBUFILL fills the buffer
after the I/O operation completes.

DDT$W_ERRORBUF Size of error message buffer, as specified in the erlgbf
argument to the DDTAB macro. The value is the size in
bytes of an error message buffer for the device.

If error logging is enabled and an error occurs during
an I/O operation, the driver calls ERL$DEVICERR or
ERL$DEVICTMO to allocate and write error-logging
data into the error message buffer. IOC$INITIATE and
IOC$REQCOM write values into the buffer if an error has
occurred.

DDT$W_FDTSIZE Unused on OpenVMS Alpha systems.

DDT$PS_CTRLINIT_2 Procedure value of controller initialization routine. The
DDTAB macro inserts a procedure value in this field when
the driver specifies the routine’s address in the ctrlinit
argument to the macro.

DDT$PS_UNITINIT_2 Procedure value of the device’s unit initialization routine.
The DDTAB macro inserts a procedure value in this field
when the driver specifies the routine’s address in the
unitinit argument to the macro.

(continued on next page)

Data Structures 10–21

Data Structures
10.7 DDT (Driver Dispatch Table)

Table 10–9 (Cont.) Contents of Driver Dispatch Table

Field Use

DDT$PS_CLONEDUCB_2 Procedure value of cloned UCB routine. The DDTAB
macro inserts a procedure value in this field when the
driver specifies the routine’s address in the cloneducb
argument to the macro.

DDT$PS_FDT_2 Address of the driver’s FDT. Every driver must specify
this address in the functb argument to the DDTAB
macro.

EXE$QIO refers to the FDT to validate I/O function
codes, decide which functions are buffered, and call FDT
routines associated with function codes.

DDT$PS_CANCEL_2 Procedure value of the driver’s cancel-I/O routine. The
DDTAB macro inserts a procedure value in this field
when the driver specifies the routine’s address in the
cancel argument to the macro.

Some devices require special cleanup processing when a
process or a system routine cancels an I/O request before
the I/O operation completes or when the last channel is
deassigned. The $DASSGN, $DALLOC, and $CANCEL
system services cancel I/O requests.

DDT$PS_REGDUMP_2 Procedure value of the driver’s register dumping routine.
The DDTAB macro inserts a procedure value in this field
when the driver specifies the routine’s address in the
regdmp argument to the macro.

IOC$DIAGBUFILL, ERL$DEVICERR, and
ERL$DEVICTMO call this routine to write device register
contents into a diagnostic buffer or error message buffer.

DDT$PS_ALTSTART_2 Procedure value of the driver’s alternate start-I/O routine.
The DDTAB macro inserts a procedure value in this field
when the driver specifies the routine’s address in the
altstart argument to the macro.

EXE$ALTQUEPKT transfers control to the alternate
start-I/O routine specified in this field.

DDT$PS_ALTSTART_JSB Procedure value of the driver Alternate Start I/O
routine when DDTAB JSB_ALTSTART is used. The
DDT$PS_ALTSTART field contains a pointer to the
IOC$ALTSTART_C2J routine.

DDT$PS_MNTVER_2 Procedure value of the system routine (IOC$MNTVER)
called at the beginning and end of mount verification
operation. The default value of the mntver argument to
the DPTAB macro is the procedure value of this routine.
Use of the mntver argument to specify any routine other
than IOC$MNTVER is reserved to Digital.

DDT$L_MNTV_SSSC Procedure value of the routine that is called when mount
verification is performed for a shadow-set state change.
The DDTAB macro inserts a procedure value in this field
when the driver specifies the routine’s address in the
mntv_sssc argument to the macro.

Use of this field is reserved to Digital.

(continued on next page)

10–22 Data Structures

Data Structures
10.7 DDT (Driver Dispatch Table)

Table 10–9 (Cont.) Contents of Driver Dispatch Table

Field Use

DDT$L_MNTV_FOR Procedure value of the routine that is called when mount
verification is performed for a foreign device. The DDTAB
macro inserts a procedure value in this field when the
driver specifies the routine’s address in the mntv_for
argument to the macro.

Use of this field is reserved to Digital.

DDT$L_MNTV_SQD Procedure value of the routine that is called when mount
verification is performed for a sequential device. The
DDTAB macro inserts a procedure value in this field
when the driver specifies the routine’s address in the
mntv_sqd argument to the macro.

Use of this field is reserved to Digital.

DDT$L_AUX_STORAGE Address of auxiliary storage area, as specified in the aux_
storage argument to the DDTAB macro.

Use of this field is reserved to Digital.

DDT$L_AUX_ROUTINE Procedure value of auxiliary routine in the mailbox
driver that is called by SYS$ASSIGN. The OpenVMS
VAX mailbox driver uses this routine to complete the
processing of reader-wait and writer-wait set mode
requests. (Auxiliary routines have yet to be implemented
in OpenVMS Alpha systems.) The DDTAB macro inserts
a procedure value in this field when the driver specifies
the routine’s address in the aux_routine argument to the
macro.

Use of this field is reserved to Digital.

DDT$PS_CHANNEL_
ASSIGN_2

Procedure value of routine, called by SYS$ASSIGN, to
complete channel assignment in a device-specific manner.
(Channel-assignment routines have yet to be implemented
in OpenVMS Alpha systems.) The DDTAB macro inserts
a procedure value in this field when the driver specifies
the routine’s address in the channel_assign argument to
the macro.

Use of this field is reserved to Digital.

DDT$PS_CANCEL_
SELECTIVE_2

Procedure value of the routine that cancels a list of
I/O requests from the specified channel, including both
waiting and active requests. The OpenVMS VAX terminal
driver and mailbox driver provide this capability which
is not yet implemented in OpenVMS Alpha systems. The
DDTAB macro inserts a procedure value in this field when
the driver specifies the routine’s address in the cancel_
selective argument to the macro.

Use of this field is reserved to Digital.

DDT$IS_STACK_BCNT Size in bytes of the kernel process stack, as indicated
by the kp_stack_size argument to the DDTAB macro.
EXE$KP_STARTIO uses this value, or KPB$K_MIN_IO_
STACK (currently 8KB), whichever is larger, to determine
the size of the stack created for the driver’s start I/O
kernel process thread.

(continued on next page)

Data Structures 10–23

Data Structures
10.7 DDT (Driver Dispatch Table)

Table 10–9 (Cont.) Contents of Driver Dispatch Table

Field Use

DDT$IS_REG_MASK Kernel process register save mask, as indicated by the
kp_reg_mask argument to the DDTAB macro.

Each time a kernel process is stalled and restarted, any
registers that the thread uses other than registers that
the calling standard defines as scratch must be saved.

EXE$KP_STARTIO establishes this set of registers by
merging the mask specified in this field with a register
save mask (represented by the symbolic constant
KPREG$K_MIN_IO_REG_MASK) that includes R2
through R5, R12 through R15, R26, R27, and R29. It
then specifies the resulting mask in its call to EXE$KP_
START. It is this latter mask that EXE$KP_START stores
in KPB$IS_REG_MASK for the lifetime of the kernel
process.

Note that R0, R1, R16 through R25, R28, R30, and R31
are never preserved and are illegal in a register save
mask. OpenVMS represents the set of these registers
by the symbolic constant KPREG$K_ERR_REG_MASK.
If any of these registers are indicated by the contents of
DDTIS_REG_MASK, EXEKP_START removes them
from the mask it stores in the KPB.

DDT$PS_KP_STARTIO Procedure value of the start-I/O routine of a driver that
employs the kernel process services. The DDTAB macro
inserts a procedure value in this field when the driver
specifies the routine’s address in the kp_startio argument
to the macro.

Such a driver typically specifies the system routine
EXE$KP_STARTIO in the start argument to the DDTAB
macro. EXE$KP_STARTIO calls the start-I/O routine
specified in this field after setting up the kernel process
environment.

10.8 DPT (Driver Prologue Table)
When loading a device driver and its database into virtual memory, the driver-
loading procedure finds the basic description of the driver and its device in a
driver prologue table (DPT). The DPT provides the length, name, adapter type,
and loading and reloading specifications for the driver.

A device driver creates a DPT by invoking the DPTAB macro. Table 10–10
describes the driver prologue table.

Table 10–10 Contents of Driver Prologue Table

Field Use

DPT$L_FLINK Forward link to next DPT. The driver-loading procedure writes
this field. The procedure links all DPTs in the system in a
doubly linked list.

DPT$L_BLINK Backward link to previous DPT. The driver-loading procedure
writes this field.

(continued on next page)

10–24 Data Structures

Data Structures
10.8 DPT (Driver Prologue Table)

Table 10–10 (Cont.) Contents of Driver Prologue Table

Field Use

DPT$W_SIZE Size of DPT in bytes. The DPTAB macro writes the value
DPT$K_BASE_LEN + NAM$C_MAXRSS in this field when it
creates the DPT.

DPT$B_TYPE Type of data structure. The DPTAB macro always writes the
symbolic constant DYN$C_DPT into this field.

DPT$IW_STEP OpenVMS Alpha driver step number. You must indicate that
a given driver conforms to the coding practices for a Step 2
driver by supplying step=2 in the DPTAB macro invocation.
Consequently, the DPTAB macro writes the symbol constant
DPT$K_STEP_2 in this field.

DPT$IW_STEPVER Integer signifying the version of Step 2 interface used by this
driver. An increment of this value represents a change in
the interface between Step 2 drivers and the driver loading
procedure that does not require changes in driver source code
(for example, a change in the DPT produced by a change in
the DPTAB macro). The DPTAB macro writes the symbolic
constant DPT$K_STEP2_V2 in this field.

DPT$W_DEFUNITS Number of UCBs that the OpenVMS autoconfiguration facility
will automatically create. Drivers specify this number with
the defunits argument to the DPTAB macro. If the driver
also gives a value to DPT$PS_DELIVER, this field is also the
number of times that the autoconfiguration facility calls the
unit delivery routine. The DPTAB macro writes the value 1 in
this field by default.

DPT$W_MAXUNITS Maximum number of units on controller that this driver
supports. Specify this value in the maxunits argument to the
DPTAB macro. If no value is specified, the default is eight
units.

DPT$W_UCBSIZE Size in bytes of the unit control block for a device that uses this
driver. Every driver must specify a value for this field in the
ucbsize argument to the DPTAB macro. OpenVMS supplies
the symbolic constants described in Table 10–17 to represent
UCB size. Drivers that employ their own extended UCBs use
one of these constants as a base for calculating the size of their
extended UCBs.

The driver-loading procedure allocates blocks of nonpaged
system memory of the specified size when creating UCBs for
devices associated with the driver.

DPT$IW_IDB_CRAMS Number of CRAMS to be allocated and associated with the
IDB. The driver-loading procedure allocates the number of
CRAMs specified in idb_crams argument to the DPTAB macro
and inserts them in the linked list headed by IDB$PS_CRAM.

DPT$IW_UCB_CRAMS Number of CRAMS to be allocated and associated with the
IDB. The driver-loading procedure allocates the number of
CRAMs specified in ucb_crams argument to the DPTAB
macro and inserts them in the linked list headed by UCB$PS_
CRAM.

(continued on next page)

Data Structures 10–25

Data Structures
10.8 DPT (Driver Prologue Table)

Table 10–10 (Cont.) Contents of Driver Prologue Table

Field Use

DPT$L_FLAGS Driver-loading flags. The driver can specify any of a set of
flags as the value of the flags argument to the DPTAB macro.
The driver-loading procedure modifies its loading and reloading
algorithm based on the settings of these flags.

The following bits are defined within DPT$L_FLAGS:

DPT$V_SUBCNTRL Device is a subcontroller.

DPT$V_SVP Device requires permanent system
page to be allocated during driver
loading.

DPT$V_NOUNLOAD Driver cannot be reloaded.

DPT$V_SCS SCS code must be loaded with this
driver.

DPT$V_DUSHADOW Driver is the shadowing disk class
driver.

DPT$V_SCSCI Common SCS/CI subroutines must
be loaded with this driver. This bit is
ignored on OpenVMS Alpha systems.

DPT$V_BVPSUBS Common BVP subroutines must be
loaded with this driver. This bit is
ignored on OpenVMS Alpha systems.

DPT$V_UCODE Driver has an associated microcode
image. This bit is ignored on
OpenVMS Alpha systems.

DPT$V_SMPMOD Driver has been designed to run in
an OpenVMS environment.

DPT$V_DECW_
DECODE

Driver is a DECwindows (class
input) driver.

DPT$V_TPALLOC Select the tape allocation class
parameter.

DPT$V_SNAPSHOT Driver is certified for system
snapshot.

DPT$V_NO_IDB_
DISPATCH

Tells the driver-loading procedure
not to create a list of UCB addresses
at the end of the IDB (at IDB$L_
UCBLST), regardless of the value
of the maxunits argument to the
DPTAB macro or the maximum units
specified in the SYSMAN command
IO CONNECT.

DPT$V_SCSI_PORT Driver is a SCSI port driver.

DPT$IL_ADPTYPE Type of adapter used by the devices using this driver. The
DPTAB macro uses the contents of the adapter to construct
a symbolic constant of the form AT$_adapter, the value of
which it inserts in this field.

DPT$IL_REFC Number of DDBs that refer to the driver. The driver-loading
procedure increments the value in this field each time the
procedure creates another DDB that points to the driver’s
DDT.

(continued on next page)

10–26 Data Structures

Data Structures
10.8 DPT (Driver Prologue Table)

Table 10–10 (Cont.) Contents of Driver Prologue Table

Field Use

DPT$PS_INIT_PD Procedure value of the driver initialization routine. Every
driver must specify a list of values to be written into data
structure fields at the time that the driver-loading procedure
creates the structures and loads the driver. The driver invokes
the DPT_STORE macro once for each value to be written;
the macro automatically generates an initialization routine
containing code that performs the requested writes, and places
its procedure value in this field. The driver-loading procedure
calls this initialization routine prior to calling the driver’s
controller and unit initialization routines.

DPT$PS_REINIT_PD Procedure value of the driver reinitialization routine. Every
driver must specify a list of data structure fields and values
to be written into these fields at the time that the driver-
loading procedure creates the driver’s data structures and
loads the driver, or the driver is reloaded. The driver invokes
the DPT_STORE macro once for each value to be written;
the macro automatically generates a reinitialization routine
containing code that performs the requested writes, and places
its procedure value in this field. The driver-loading procedure
calls the reinitialization routine at driver reloading prior to
calling the driver’s controller and unit initialization routines.
Note that driver reloading is not yet supported on OpenVMS
Alpha systems.

DPT$PS_DELIVER_2 Procedure value of the unit delivery routine that the OpenVMS
autoconfiguration facility calls once for each of the number of
UCBs specified in DPT$W_DEFUNITS. The DPTAB macro
inserts a procedure value in this field when the driver specifies
the routine’s address in the deliver argument to the macro.

DPT$PS_UNLOAD Procedure value of the driver routine to be called when driver
is reloaded. The DPTAB macro inserts a procedure value in
this field when the driver specifies the routine’s address in the
unload argument to the macro.

The driver-loading procedure calls the driver unloading routine
before reinitializing all device units associated with the driver.

Note that driver reloading is not yet supported on OpenVMS
Alpha systems.

DPT$PS_DDT Address of DDT.

DPT$PS_DDB_LIST Header of singly-linked list of DDBs serviced by this driver.
This field contains the address of the first DDB in the list. The
field DDB$PS_DRVLINK in each DDB points to the next DDB
in the list.

DPT$IS_BTORDER Ordering number for calls to the runtime drivers for boot
devices.

DPT$L_VECTOR Address of a driver-specific vector table. A terminal class or
port driver stores the address of its class or port entry vector
table in this field. For example, a terminal port driver uses
this cell as a pointer to a table of addresses within the driver
containing the procedure values of routines in the port driver
that are called by the terminal class driver.

(continued on next page)

Data Structures 10–27

Data Structures
10.8 DPT (Driver Prologue Table)

Table 10–10 (Cont.) Contents of Driver Prologue Table

Field Use

DPT$T_NAME Name of the device driver.

For each driver, the OpenVMS Alpha driver-loading procedure
constructs a 16-byte counted ASCII character string that
identifies a driver and stores it in this field. The first byte
records the length of the name string; the name string can be
up to 15 characters.

If you specify the /DRIVER_NAME qualifier in the SYSMAN
command IO LOAD or IO CONNECT, the driver-loading
procedure generates the name by extracting the filename from
the full driver image specification. Otherwise, it creates the
driver name from the device name (ddcu), appending the string
"DRIVER" to the 1 to 9-character device code (dd).

The driver-loading procedure compares the name of a driver
to be loaded with the values in this field in all DPTs already
loaded into system memory to ensure that it loads only one
copy of a driver at a time.

DPT$L_ECOLEVEL ECO level of driver, taken from its image header. If for any
reason this information is unavailable, the value of this field is
left as zero.

DPT$Q_LINKTIME Time and date at which driver was linked, taken from its
image header.

DPT$IQ_IMAGE_NAME Character string descriptor representing the full file
specification of the driver image that has been loaded. To
assist the driver loading procedure, this field is initialized as
a string descriptor for the entire space available to hold the
driver image file specification. The driver loading procedure
writes the appropriate descriptor into this field and the driver
image file specification in DPT$T_IMAGE_NAME.

DPT$IL_LOADER_
HANDLE

Loader handle for driver image. This field is 16-bytes long
and reserved for storing a loadable image handle returned by
the loadable executive image loading procedures. When the
unloading of loadable executive images is implemented, the
handle will be an required input to the unloading mechanism.

DPT$L_UCODE Address of associated microcode image, if DPT$V_UCODE is
set in DPT$L_FLAGS. Use of this field is reserved to Digital.

DPT$L_DECW_SNAME Offset to a counted ASCII string that allows the SET
TERMINAL/SWITCH DCL command to locate an alternate
or extension DECwindows class input (decoder) driver.

DPT$Q_LMF_1 First of eight quadwords reserved to Digital for the use of
the OpenVMS license management facility. (The others are
DPTQ_LMF_2, DPTQ_LMF_3, DPTQ_LMF_4, DPTQ_
LMF_5, DPTQ_LMF_6, DPTQ_LMF_7, and DPT$Q_LMF_8.)

DPT$T_IMAGE_NAME Full file specification of the driver image. This field is NAM$C_
MAXRSS long. The driver loading procedure inserts the file
specification in DPT$T_IMAGE_NAME, and the character
string representing it in DPT$IQ_IMAGE_NAME, when it
loads the driver image.

10–28 Data Structures

Data Structures
10.9 IDB (Interrupt Dispatch Block)

10.9 IDB (Interrupt Dispatch Block)
The interrupt dispatch block (IDB) records controller characteristics. The driver-
loading procedure creates and initializes this block when the procedure creates
a CRB. The IDB supplies the physical address of the device control and status
register (CSR) to the system routines that calculate the values that initialize I/O
mailboxes, thus allowing device drivers to access device interface registers.

Table 10–11 describes the interrupt dispatch block.

Table 10–11 Contents of Interrupt Dispatch Block

Field Use

IDB$Q_CSR Physical address of the device control and status register
(CSR). IOC$CRAM_CMD uses the CSR address in
calculations that set up driver transactions to and from
I/O space by means of hardware I/O mailboxes.

When provided with the address of a device’s CSR (for
instance, in the SYSMAN command IO CONNECT), the
driver-loading procedure writes the specified value into
this field. The driver-loading procedure does not test the
value before writing this field.

For remote DSA devices and local pseudo-devices that
require SCS (DPT$IL_ADPTYPE equals AT$_NULL and
DPT$V_SCS set in DPT$L_FLAGS), the driver-loading
procedure writes a specified SYSID into this field.

IDB$W_SIZE Size of IDB in bytes. The driver-loading procedure
determines the size of the IDB by calculating the size of
the ISB$L_UCBLST field and adding it to the symbolic
constant IDB$K_BASE_LENGTH. It writes this sum to
IDB$W_SIZE when it creates the IDB.

IDB$B_TYPE Type of data structure. The driver-loading procedure
writes the symbolic constant DYN$C_IDB into this field
when it creates the IDB.

IDB$W_UNITS Maximum number of units connected to the controller.
The maximum number of units is specified in the
defunits argument to the DPTAB macro and stored
in DPT$W_MAXUNITS. (The default is 8.) This
value can be overridden at driver-loading time by the
/MAX_UNITS qualifier to the SYSMAN command IO
CONNECT.

The driver-loading procedure uses this value to
determine the size of the IDB$L_UCBLST field.

IDB$B_TT_ENABLE Reserved for use by terminal port drivers.

(continued on next page)

Data Structures 10–29

Data Structures
10.9 IDB (Interrupt Dispatch Block)

Table 10–11 (Cont.) Contents of Interrupt Dispatch Block

Field Use

IDB$PS_OWNER Address of UCB of device that owns controller
data channel. IOC$PRIMITIVE_REQCHANH and
IOC$PRIMITIVE_REQCHANL write a UCB address
into this field when the routine allocates a controller
data channel to a driver. IOC$RELCHAN confirms that
the proper driver fork process is releasing a channel
by comparing the driver’s UCB with the UCB stored in
the IDB$PS_OWNER field. If the UCB addresses are
the same, IOC$RELCHAN allocates the channel to a
waiting driver by writing a new UCB address into the
field. If no driver fork processes are waiting for the
channel, IOC$RELCHAN clears the field.

If the controller is a single-unit controller, the unit or
controller initialization routine should write the UCB
address of the single device into this field.

IDB$PS_CRAM Header of singly linked list of CRAMs allocated to the
device controller. This field contains the address of the
first CRAM in the list. The field CRAM$L_FLINK in
each CRAM points to the next CRAM in the list.

IDB$PS_SPL Address of device lock. The driver-loading procedure
copies the value of CRB$PS_DLCK to this field.

IDB$L_ADP Address of the ADP associated with the device controller.
The SYSMAN command IO CONNECT must specify the
nexus number of the I/O adapter used by a device. The
driver-loading procedure writes the address of the ADP
for the specified I/O adapter into the IDB$L_ADP field.

IDB$L_FLAGS The following bits are defined within IDB$L_FLAGS:

IDB$V_CRAM_ALLOC The driver-loading procedure
has allocated the number of
CRAMs specified by DPT$IW_
IDB_CRAMS and has placed
them in the linked list headed
by IDB$PS_CRAM.

IDB$V_VLE IDB$L_VECTOR points to a
vector list extension (VLE)

IDB$L_DEVICE_SPECIFIC Longword field available to drivers for device-specific
purposes.

(continued on next page)

10–30 Data Structures

Data Structures
10.9 IDB (Interrupt Dispatch Block)

Table 10–11 (Cont.) Contents of Interrupt Dispatch Block

Field Use

IDB$L_VECTOR Offset of interrupt vector for this device controller, or, if
IDB$V_VLE in IDB$L_VECTOR is set, the address of a
vector list extension (VLE).

For device controllers utilizing a single interrupt vector,
the driver-loading procedure writes a value into this
field using either the autoconfiguration database or
the value specified in the /VECTOR qualifier to the
SYSMAN command IO CONNECT. This value is a byte
offset to device controller’s vector location either in the
SCB or the ADP vector table.

For device controllers utilizing multiple interrupt
vectors, the driver-loading procedure writes the address
of a vector list extension (VLE) in this field. The field
VLE$L_VECTOR_LIST in the VLE contains an array of
unsigned longwords, each of which contains a byte offset
to a vector location either in the SCB or the ADP vector
table.

Drivers for devices that utilize programmable interrupt
vectors (that is, devices that define their interrupt vector
addresses through device registers) must use this field
(and, possibly, the contents of VLE$L_VECTOR_LIST)
to load those registers during unit initialization and
reinitialization after a power failure.

IDB$L_UCBLST List of UCB addresses. The size of this field is the
maximum number of units supported by the controller,
as defined in the DPT. The maximum specified in the
DPT can be overridden at driver load time by the
/MAX_UNITS qualifier to the SYSMAN command IO
CONNECT.

The driver-loading procedure writes a UCB address at
the end of the list located at this symbolic offset in the
IDB every time it creates a new UCB associated with
the controller.

10.10 IRP (I/O Request Packet)
When a user process queues a valid I/O request by issuing a $QIO or $QIOW
system service, the service creates an I/O request packet (IRP). The IRP contains
a description of the request and receives the status of the I/O processing as it
proceeds.

The I/O request packet is described in Table 10–12. Note that the the standard
IRP is followed by fields required by system multiprocessing code and the
OpenVMS class drivers. Under no circumstances should a driver not supplied by
Digital use these fields.

Data Structures 10–31

Data Structures
10.10 IRP (I/O Request Packet)

Table 10–12 Contents of I/O Request Packet (IRP)

Field Use

IRP$L_IOQFL I/O queue forward link. EXE$INSERTIRP reads and writes
this field when the routine inserts IRPs into a pending-I/O
queue. IOC$REQCOM reads and writes this field when the
routine dequeues IRPs from a pending-I/O queue in order to
send an IRP to a device driver.

IRP$L_IOQBL I/O queue backward link. EXE$INSERTIRP and
IOC$REQCOM read and write these fields.

IRP$W_SIZE Size of IRP. EXE$QIO writes the symbolic constant IRP$K_
LENGTH into this field when the routine allocates and fills an
IRP.

IRP$B_TYPE Type of data structure. EXE$QIO writes the symbolic constant
DYN$C_IRP into this field when the routine allocates and fills
an IRP.

IRP$B_RMOD Information used by I/O postprocessing. This field contains the
same bit fields as the ACB$B_RMOD field of an AST control
block. For instance, the two bits defined at ACB$V_MODE
indicate the access mode of the process at time of the I/O
request. EXE$QIO obtains the processor access mode from the
PS and writes the value into this field.

IRP$L_PID Process identification of the process that issued the I/O request.
EXE$QIO obtains the process identification from the PCB and
writes the value into this field.

IRP$L_AST Procedure value of AST routine, if specified by the process in
the I/O request. (This field is otherwise clear.) If the process
specifies an AST routine address in the $QIO call, EXE$QIO
writes the address in this field.

During I/O postprocessing, the special kernel-mode AST
routine queues a mode-of-caller AST to the requesting process
if this field contains the address of an AST routine.

IRP$L_ASTPRM Parameter sent as an argument to the AST routine specified
by the user in the I/O request. If the process specifies an AST
routine and a parameter to that AST routine in the $QIO call,
EXE$QIO writes the parameter in this field.

During I/O postprocessing, the special kernel-mode AST
routine queues a mode-of-caller AST if the IRP$L_AST field
contains an address, and passes the value in IRP$L_ASTPRM
to the AST routine as an argument.

IRP$L_OBOFF Original byte offset into the first page of a direct-I/O transfer.
For segmented I/O transfers, I/O postprocessing must
recalculate the value of IRP$L_BOFF before transferring
each segment to account for the difference between the large
OpenVMS Alpha memory page size and the 512-byte OpenVMS
disk block size.

FDT routines store the original byte offset in IRP$L_OBOFF
(as well as in IRP$L_BOFF) so that that I/O postprocessing
can use IRP$L_OBOFF in conjunction with IRP$L_OBCNT
and IRP$L_SVAPTE to unlock the buffer pages locked for the
entire transfer.

(continued on next page)

10–32 Data Structures

Data Structures
10.10 IRP (I/O Request Packet)

Table 10–12 (Cont.) Contents of I/O Request Packet (IRP)

Field Use

IRP$L_WIND Address of window control block (WCB) that describes the file
being accessed in the I/O request. EXE$QIO writes this field
if the I/O request refers to a file-structured device. An ACP or
XQP reads this field.

When a process gains access to a file on a file-structured
device or creates a logical link between a file and a process I/O
channel, the device ACP or XQP creates a WCB that describes
the virtual-to-logical mapping of the file data on the disk.
EXE$QIO stores the address of this WCB in the IRP$L_WIND
field.

IRP$L_UCB Address of UCB for the device assigned to the I/O channel
assigned to the process. EXE$QIO copies this value from the
CCB.

IRP$B_EFN Event flag number and group specified in I/O request. If
the I/O request call does not specify an event flag number,
EXE$QIO uses event flag 0 by default. EXE$QIO writes this
field. The I/O postprocessing routine calls SCH$POSTEF to set
this event flag when the I/O operation is complete.

IRP$B_PRI Base priority of the process that issued the I/O request.
EXE$QIO obtains a value for this field from the process control
block (PCB). EXE$INSERTIRP reads this field to insert an IRP
into a priority-ordered pending-I/O queue.

IRP$B_CLN_INDEX Shadow clone membership index. Use of this field is reserved
to Digital.

IRP$B_SHD_FLAGS Shadow clone flags. Use of this field is reserved to Digital.

IRP$L_IOSB Virtual address of the process’s I/O status block (IOSB) that
receives final status of the I/O request at I/O completion.
EXE$QIO writes a value into this field if the I/O request call
specifies an IOSB address. (This field is otherwise clear.) The
I/O postprocessing special kernel-mode AST routine writes two
longwords of I/O status into the IOSB after the I/O operation is
complete.

When an FDT routine aborts an I/O request by calling
EXE$ABORTIO, EXE$ABORTIO fills the IRP$L_IOSB field
with zeros so that I/O postprocessing does not write status into
the IOSB.

IRP$L_CHAN Index number of process I/O channel for request. EXE$QIO
writes this field.

IRP$L_EXTEND Address of first IRPE, if any, linked to this IRP. FDT routines
write an extension address to this field when a device requires
more context than the IRP can accommodate. This field is read
by IOC$IOPOST. IRP$V_EXTEND in IRP$L_STS is set if this
extension address is used.

(continued on next page)

Data Structures 10–33

Data Structures
10.10 IRP (I/O Request Packet)

Table 10–12 (Cont.) Contents of I/O Request Packet (IRP)

Field Use

IRP$L_STS Status of I/O request. EXE$QIO initializes this field to 0.
EXE$QIO, FDT routines, driver fork processes, or driver
kernel processes modify this field according to the current
status of the I/O request. I/O postprocessing reads this field
to determine what sort of postprocessing is necessary (for
example, deallocate system buffers and adjust quota usage).

Bits in the IRP$L_STS field describe the type of I/O function,
as follows:

IRP$V_BUFIO Buffered-I/O function

IRP$V_FUNC Read function

IRP$V_PAGIO Paging-I/O function

IRP$V_COMPLX Complex-buffered-I/O function

IRP$V_VIRTUAL Virtual-I/O function

IRP$V_CHAINED Chained-buffered-I/O function

IRP$V_SWAPIO Swapping-I/O function

IRP$V_DIAGBUF Diagnostic buffer is present

IRP$V_PHYSIO Physical-I/O function

IRP$V_TERMIO Terminal I/O (for priority increment
calculation)

IRP$V_MBXIO Mailbox-I/O function

IRP$V_EXTEND An extended IRP is linked to this
IRP

IRP$V_FILACP File ACP I/O

IRP$V_MVIRP Mount-verification I/O function

IRP$V_SRVIO Server-type I/O

IRP$V_KEY Encrypted function (encryption key
address at IRP$L_KEYDESC)

IRP$L_STS2 Second longword of I/O request status. EXE$QIO initializes
this field to 0. EXE$QIO, FDT routines, and driver fork
processes modify this field according to the current status of
the I/O request.

Bits in the IRP$L_STS2 field describe the type of I/O function,
as follows:

IRP$V_START_PAST_
HWM

I/O starts past file highwater mark.

IRP$V_END_PAST_
HWM

I/O ends past file highwater mark.

IRP$V_ERASE Erase I/O function.

IRP$V_PART_HWM Partial file highwater mark update.

IRP$V_LCKIO Locked I/O request, as used by
DECnet direct I/O.

IRP$V_SHDIO Shadowing IRP.

IRP$V_CACHEIO I/O using VBN cache buffers.

(continued on next page)

10–34 Data Structures

Data Structures
10.10 IRP (I/O Request Packet)

Table 10–12 (Cont.) Contents of I/O Request Packet (IRP)

Field Use

IRP$L_SVAPTE For a direct-I/O transfer, virtual address of the first page-table
entry (PTE) of the I/O-transfer buffer, written here by the
FDT routine locking process pages; for a buffered-I/O transfer,
address of a buffer in system address space, written here by
the FDT routine allocating buffer.

IOC$INITIATE copies this field into UCB$L_SVAPTE before
transferring control to a device driver start-I/O routine.

I/O postprocessing uses this field to deallocate the system
buffer for a buffered-I/O transfer or to unlock pages locked for
a direct-I/O transfer.

IRP$L_BCNT Byte count of the I/O transfer. FDT routines calculate the
count value and write the field. IOC$INITIATE copies the
contents of this field into UCB$L_BCNT before calling a device
driver’s start-I/O routine.

For a buffered-I/O-read function, I/O postprocessing uses
IRP$L_BCNT to determine how many bytes of data to write to
the user’s buffer.

IRP$L_BOFF Byte offset into the first (or current) page of a direct-I/O
transfer. FDT routines calculate this offset and write its
value into this field and IRP$L_OBOFF. For a segmented
direct-I/O transfer, I/O postprocessing recalculates the value of
IRP$L_BOFF before transferring each segment to account for
difference between the large OpenVMS Alpha memory page
size and the 512-byte disk block size.

For buffered-I/O transfers, FDT routines must write the
number of bytes to be charged to the process in this field
because these bytes are being used for a system buffer.

IOC$INITIATE copies this field into UCB$L_BOFF before
calling a device driver start-I/O routine.

I/O postprocessing uses IRP$L_BOFF in conjunction with
IRP$L_BCNT and IRP$L_SVAPTE to unlock pages locked
for non-segmented direct I/O transfers. For buffered I/O, I/O
postprocessing adds the value of IRP$L_BOFF to the process
byte count quota.

IRP$PS_KPB Address of kernel process block (KPB). EXE$KP_ALLOCATE_
KPB, when called by EXE$KP_STARTIO, returns the address
of the KPB it has allocated to this field.

IRP$L_IOST1 First I/O status longword. IOC$REQCOM and
EXE$FINISHIO(C) write the contents of R0 into this field.
The I/O postprocessing routine copies the contents of this field
into the user’s IOSB.

EXE$ZEROPARM copies a 0 and EXE$ONEPARM copies p1
into this field. This field, also known as IRP$L_MEDIA, is a
good place to put a $QIO request argument. Note that, when
error logging is enabled, the contents of IRP$L_MEDIA is
copied into an EMB as the "disk size".

(continued on next page)

Data Structures 10–35

Data Structures
10.10 IRP (I/O Request Packet)

Table 10–12 (Cont.) Contents of I/O Request Packet (IRP)

Field Use

IRP$L_IOST2 Second I/O status longword. IOC$REQCOM, EXE$FINISHIO,
and EXE$FINISHIO(C) write the contents of R1 into this field.
The I/O postprocessing routine copies the contents of this field
into the user’s IOSB.

The low byte of this field is also known as IRP$B_CARCON.
IRP$B_CARCON contains carriage control instructions to the
driver. EXE$READ and EXE$WRITE copy the contents of p4
of the user’s I/O request into this field.

IRP$L_ABCNT Accumulated bytes transferred in virtual I/O transfer.
IOC$IOPOST reads and writes this field after a partial virtual
transfer.

IRP$L_OBCNT Original transfer byte count in a virtual I/O transfer.
IOC$IOPOST reads this field to determine whether a virtual
transfer is complete, or whether another I/O request is
necessary to transfer the remaining bytes.

IRP$L_SEGVBN Virtual block number of the current segment of a virtual I/O
transfer. IOC$IOPOST writes this field after a partial virtual
transfer.

IRP$L_FUNC I/O function code that identifies the function to be performed
for the I/O request. The I/O request call specifies an I/O
function code; EXE$QIO and driver FDT routines map the
code value to its most basic level (virtual! logical ! physical)
and copy the reduced value into this field.

Based on this function code, EXE$QIO calls FDT action
routines to preprocess an I/O request. Six bits of the function
code describe the basic function. The remaining 10 bits modify
the function. The upper 16 bits of this longword are reserved
to Digital.

IRP$L_DIAGBUF Address of a diagnostic buffer in system address space. If the
I/O request call specifies a diagnostic buffer and if a diagnostic
buffer length is specified in the DDT, and if the process has
diagnostic privilege, EXE$QIO copies the buffer address into
this field.

EXE$QIO allocates a diagnostic buffer in system address space
to be filled by IOC$DIAGBUFILL during I/O processing.
During I/O postprocessing, the special kernel-mode AST
routine copies diagnostic data from the system buffer into
the process diagnostic buffer.

IRP$L_SEQNUM I/O transaction sequence number. If an error is logged for the
request, this field contains the universal error log sequence
number.

IRP$L_ARB Address of access rights block (ARB). This block is located in
the PCB and contains the process privilege mask and UIC,
which are set up as follows:

ARB$Q_PRIV Quadword containing process privilege
mask

SPARE$L Unused longword

ARB$L_UIC Longword containing process UIC

IRP$L_KEYDESC Address of encryption key.

(continued on next page)

10–36 Data Structures

Data Structures
10.10 IRP (I/O Request Packet)

Table 10–12 (Cont.) Contents of I/O Request Packet (IRP)

Field Use

IRP$L_QIO_Pn Function-specific $QIO system service arguments (p1 through
p6). EXE$QIO copies these arguments to the appropriate IRP
fields.

10.11 IRPE (I/O Request Packet Extension)
I/O request packet extensions (IRPEs) hold additional I/O request information for
devices that require more context than the standard IRP can accommodate. IRP
extensions are also used when more than one buffer (region) must be locked into
memory for a direct-I/O operation, or when a transfer requires a buffer that is
larger than 64 KB. An IRPE provides space for two buffer regions, each with a
32-bit byte count.

FDT routines allocate IRPEs by calling EXE$ALLOCIRP. Driver routines link
the IRPE to the IRP, store the IRPE’s address in IRP$L_EXTEND, and set the
bit field IRP$V_EXTEND in IRP$L_STS to show that an IRPE exists for the
IRP. The FDT routine initializes the contents of the IRPE. Any fields within the
extension not described in Table 10–13 can store driver-dependent information.

If the IRPE specifies additional buffer regions, the FDT routine must explicitly
call those buffer locking routines that call back to a driver-specified error routine
if the locking procedure fails (EXE$READLOCK_ERR, EXE$WRITELOCK_ERR,
and EXE$MODIFYLOCK_ERR). If an error occurs during the locking procedure,
the driver must unlock all previously locked regions using MMG$UNLOCK and
deallocate the IRPE before returning to the buffer locking routine.

IOC$IOPOST automatically unlocks the pages in region 1 (if defined) and
region 2 (if defined) for all the IRPEs linked to the IRP undergoing completion
processing. IOC$IOPOST also deallocates all the IRPEs.

The I/O request packet extension is described in Table 10–13.

Table 10–13 Contents of I/O Request Packet Extension (IRPE)

Field Use

IRPE$W_SIZE Size of IRPE. EXE$ALLOCIRP writes the constant
IRP$K_LENGTH to this field.

IRPE$B_TYPE Type of data structure. EXE$ALLOCIRP writes the
constant DYN$C_IRP to this field.

IRPE$L_EXTEND Address of next IRPE, if any, for this IRP.

IRPE$L_STS IRPE status field. If bit IRPE$V_EXTEND is set, it
indicates that another IRPE is linked to this one.

IRPE$L_STS2 Second longword of IRPE status field. No bits are
currently defined.

IRPE$L_SVAPTE1 System virtual address of the page-table entry (PTE)
that maps the start of region 1. FDT routines write this
field. If the region is not defined, this field is zero.

IRPE$L_BCNT1 Size in bytes of region 1. FDT routines write this field.

(continued on next page)

Data Structures 10–37

Data Structures
10.11 IRPE (I/O Request Packet Extension)

Table 10–13 (Cont.) Contents of I/O Request Packet Extension (IRPE)

Field Use

IRPE$L_BOFF1 Byte offset of region 1. FDT routines write this field.

IRPE$L_SVAPTE2 System virtual address of the PTE that maps the start
of region 2. Set by FDT routines. This field contains a
value of zero if region 2 is not defined.

IRPE$L_BCNT2 Size in bytes of region 2. FDT routines write this field.

IRPE$L_BOFF2 Byte offset of region 2. This field is set by FDT routines.

10.12 KPB (Kernel Process Block)
The kernel process block (KPB) contains the saved registers, state, and stack
pointer for a kernel process.

The KPB consists of the following areas:

• Base area.

The base area includes the standard OpenVMS data structure header fields,
describes the kernel process stack, contains masks that describe the KPB
itself and its register saveset, stores the context of a suspended KPB, and
provides pointers to the other KPB areas. The KPB base area ends with
offset KPB$IS_PRM_LENGTH.

• Scheduling area

The scheduling area contains the procedure values of the routines that
execute to suspend a kernel process and to resume its execution. The
scheduling area can contain either a fork block or a timer queue entry. The
scheduling area ends with offset KPB$Q_FR4.

• Operating system special parameters area

The operating system special parameters area stores information required by
OpenVMS device drivers, such as pointers to I/O database structures, data
facilitating the selection and operation of driver macros, and driver-specific
data. The OpenVMS special parameters area ends with offset KPB$PS_
DLCK.

• Spin lock area

The spin lock area is unused at present and reserved to Digital. It ends with
offset KPB$PS_SPL_RESTRT_RTN.

• Debugging area

The debugging area stores information used in the debugging of a kernel
process. The KPB debugging area is contiguous with either the scheduling or
spin lock KPB areas.

• Parameter area

The parameter area is a variably sized area that is specified by the kernel
process creator in the call to EXE$KP_ALLOCATE_KPB. The kernel process
creator and the kernel process use this area to exchange data.

The length of each of these areas is rounded to an integral number of quadwords.

10–38 Data Structures

Data Structures
10.12 KPB (Kernel Process Block)

The KPB can be used in one of two general types: the OpenVMS executive
software type (VEST) and the fully general type (FGT). Typically, OpenVMS
software employs the VEST form of the KPB.

In a VEST KPB, the base, scheduling, OpenVMS special parameters, and spin
lock areas have a fixed position relative to the starting address of the KPB. This
allows you to access all fields in these areas as offsets from a single register
which points to the KPB’s starting address. By reducing the number of indirect
reference operations, accessing VEST KPBs in this manner provides better
performance than indirectly accessing the fields in the dynamic portions of a FGT
KPB.

You create a VEST KPB by specifying EXE$KP_STARTIO in the start argument
to the DDTAB macro, or by explicitly invoking KP_ALLOCATE_KPB or calling
EXE$KP_ALLOCATE_KPB. Typically VEST KPBs do not include the debugging
or parameter areas. If you require either of these areas in a VEST KPB, you
must use the KPB allocation macro or routine. When present, the debugging and
parameter areas are variable in size and can be located only indirectly through
the pointers provided in the base KPB.

In an FGT KPB, only the base KPB and scheduling areas have a fixed position
relative to the starting address of the KPB. You can reference fields in either
of these areas as offsets from a KPB base pointer register. Because the other
KPB areas are variably sized, you can reference them only through the pointers
provided in the base KPB.

You create an FGT KPB by explicitly invoking KP_ALLOCATE_KPB or calling
EXE$KP_ALLOCATE_KPB. An FGT KPB never includes the OpenVMS special
parameters area.

The base, scheduling, OpenVMS special parameters, and spin lock area are
described in Table 10–14. Table 10–15 describes the debugging area.

Table 10–14 Contents of Kernel Process Block (KPB)

Field Use

KPB$PS_FLINK Forward link. A driver that creates multiple kernel
processes can use this field and KPB$PS_BLINK to link
together the corresponding KPBs. Doing so facilitates
debugging, wherein a determined crash analysis can
locate each KPB and associated kernel process stack.

KPB$PS_BLINK Backward link.

KPB$IW_SIZE Size of KPB in bytes. For VEST KPBs, EXE$KP_
ALLOCATE_KPB writes a value in this field that
accounts for the presence of the base KPB, scheduling
area, and spin lock area and is rounded up to a
quadword multiple.

KPB$IB_TYPE Type of data structure. EXE$KP_ALLOCATE_KPB
writes the symbolic constant DYN$C_MISC in this field
when it creates the KPB.

KPB$IB_SUBTYPE Type of data structure. EXE$KP_ALLOCATE_KPB
writes the symbolic constant DYN$C_KPB in this field
when it creates the KPB.

(continued on next page)

Data Structures 10–39

Data Structures
10.12 KPB (Kernel Process Block)

Table 10–14 (Cont.) Contents of Kernel Process Block (KPB)

Field Use

KPB$IS_STACK_SIZE Size of kernel process stack in bytes, excluding the two
guard pages. EXE$KP_ALLOCATE_KPB computes the
size of the kernel process stack by rounding the value of
the stack_size argument up to an integral number of
CPU-specific pages, converting the result to bytes, and
storing it in this field.

Note that EXE$KP_STARTIO, prior to calling EXE$KP_
ALLOCATE_KPB, determines the size of the stack
as the maximum of the value of DDT$IS_STACK_
BCNT or the symbolic constant KPB$K_MIN_IO_
STACK (currently 8KB), rounded up to a multiple of
CPU-specific pages.

KPB$IS_FLAGS The following bits are defined within KPB$IS_FLAGS.

KPB$V_VALID KPB is valid. EXE$KP_
START sets this bit;
EXE$KP_END clears it.

KPB$V_ACTIVE KPB is in active use.
EXE$KP_START sets this
bit; EXE$KP_END clears
it. EXE$KP_STALL_
GENERAL clears this bit
when suspending a kernel
process; EXE$KP_RESTART
sets it when resuming the
kernel process.

KPB$V_VEST KPB is a VEST KPB.
EXE$KP_ALLOCATE_KPB
sets this bit in VEST KPBs.

KPB$V_DELETING KPB is being deleted.
EXE$KP_DEALLOCATE_
KPB sets this bit.

KPB$V_SCHED Scheduling area is present.
EXE$KP_ALLOCATE_KPB
sets this bit in VEST KPBs.

KPB$V_SPLOCK Spin lock area is present.
EXE$KP_ALLOCATE_KPB
sets this bit in VEST KPBs.

KPB$V_DEBUG Debug area is present.

KPB$V_PARAM Parameter area is present.

KPB$V_DEALLOC_
AT_END

KP_END should call KP_
DEALLOCATE_KPB.
EXE$KP_ALLOCATE_KPB
sets this bit in VEST KPBs.

KPB$PS_SAVED_SP Previous stack pointer. When a kernel process has been
started or resumed, this field contains the value of the
SP register when the executing thread is preempted
(but after the registers indicated by KPB$IS_REG_
MASK have been pushed onto the stack). EXE$KP_
STALL_GENERAL restores this value to the SP register
when the kernel process is suspended.

(continued on next page)

10–40 Data Structures

Data Structures
10.12 KPB (Kernel Process Block)

Table 10–14 (Cont.) Contents of Kernel Process Block (KPB)

Field Use

KPB$IS_REG_MASK Kernel process register save mask. When a kernel
process has been suspended, this field contains a mask
of the registers that must be restored when the kernel
process is resumed.

EXE$KP_STARTIO constructs this mask by merging
the driver-specified register save mask (DDT$IS_
REG_MASK) with the KPB minimal I/O register mask
(KPREG$K_MIN_IO_REG_MASK, which includes R2
through R5; the VAX AP, FP, SP, and PC [registers
R12 through R15]; and R26, R27, and R29). Registers
R0 and R1; R16 through R25; R28; and R30 and R31
(KPREG$K_ERR_REG_MASK) cannot be saved.

KPB$PS_STACK_BASE System virtual address of the start of the no-access
guard page at the base of the kernel process stack. The
kernel process stack grows negatively from this address.
EXE$KP_ALLOCATE_KPB writes this field when it
allocates the stack.

KPB$PS_STACK_SP Current kernel process SP at the time of suspension.
EXE$KP_STALL_GENERAL saves the current value
of the SP register to this field when the kernel process
is suspended, and restores to the SP register the value
in KPB$PS_SAVED_SP. When the kernel process is
started, EXE$KP_START initializes this field with the
contents of KPB$PS_STACK_BASE. When a kernel
process is resumed, EXE$KP_RESTART restores the
value in this field to the SP register.

KPB$PS_SCH_PTR Address of the KPB scheduling area. EXE$KP_
ALLOCATE_KPB writes this field when creating the
KPB. The scheduling area is contiguous with the base
KPB for both VEST KPBs and FGT KPBs, and starts
at offset KPB$PS_SCH_STALL_RTN. If you reference
fields in the scheduling area as offsets from the address
in this field, you must use the prefix KPBSCH$ in place
of KPB$ in the symbolic offsets.

KPB$PS_SPL_PTR Address of the KPB spin lock area. EXE$KP_
ALLOCATE_KPB writes this field when creating the
KPB. The spin lock area is contiguous with the base
KPB and KPB scheduling area for VEST KPBs, and
starts at offset KPB$PS_SPL_STALL_RTN. You must
use the address in this field to locate the spin lock area
for FGT KPBs, using the prefix KPBSPL$ in place of
KPB$ in the symbolic offsets to the spin lock area’s
fields.

KPB$PS_DBG_PTR Address of the KPB debugging area. EXE$KP_
ALLOCATE_KPB writes this field when creating the
KPB. See Table 10–15 for a a description of the KPB
debugging area. VEST KPBs do not typically include
the debugging area.

KPB$PS_PRM_PTR Address of the KPB parameter area. EXE$KP_
ALLOCATE_KPB writes this field when creating the
KPB. VEST KPBs do not typically include the parameter
area.

(continued on next page)

Data Structures 10–41

Data Structures
10.12 KPB (Kernel Process Block)

Table 10–14 (Cont.) Contents of Kernel Process Block (KPB)

Field Use

KPB$IS_PRM_LENGTH Length of the KPB parameter area, as indicated in the
param_length argument to EXE$KP_ALLOCATE_
KPB. EXE$KP_ALLOCATE_KPB rounds this value
up to an integral number of quadwords and writes it
to this field. VEST KPBs do not typically include the
parameter area.

KPB$PS_SCH_STALL_RTN Procedure value of the routine that has been requested
to suspend the kernel process described by this KPB. A
kernel process scheduling stall routine preserves kernel
process context not represented on the kernel process
stack. It also takes steps that allow the stalled kernel
process thread to be resumed at some later time (for
instance, by inserting a fork block on a fork queue or by
making a timer queue entry).

A driver can implicitly specify and invoke a scheduling
stall routine by calling one of the following system
routines: EXEKP_FORK, EXEKP_FORK_WAIT,
IOC$KP_REQCHAN, IOC$KP_WFIKPCH, or IOC$KP_
WFIRLCH. (The macros KP_STALL_FORK, KP_
STALL_FORK_WAIT, KP_STALL_IOFORK, KP_
STALL_REQCHAN, KP_STALL_WFIKPCH, and KP_
STALL_WFIRLCH may be used to call these routines.)
All of these routines call EXE$KP_STALL_GENERAL,
which, in turn, issues a standard call to the appropriate
scheduling stall routine.

A driver can explicitly specify and invoke a scheduling
stall routine by calling EXE$KP_STALL_GENERAL (or
invoking the KP_STALL_GENERAL macro).

KPB$PS_SCH_RESTRT_RTN Procedure value of the routine to be invoked by
EXE$KP_RESTART when a stalled kernel process is
to be resumed.

If the kernel process thread was suspended by EXE$KP_
FORK, EXEKP_FORK_WAIT, IOCKP_REQCHAN,
IOC$KP_WFIKPCH, or IOC$KP_WFIRLCH, this field
contains a zero.

A driver can explicitly specify and invoke a scheduling
restart routine by calling EXE$KP_STALL_GENERAL
(or invoking the KP_STALL_GENERAL macro).

KPB$PS_FKBLK Fork block address. Kernel process scheduling stall
routines use this field to locate the fork block in which
the kernel process thread’s context is to be stored until
it is resumed.

KPB$PS_TQFL Timer-queue forward link for embedded timer queue
entry (TQE). Alternatively, as KPB$PS_FQFL, fork-
queue forward link for embedded fork block.

KPB$PS_TQBL Timer-queue backward link. Alternatively, as KPB$PS_
FQBL, fork-queue backward link.

(continued on next page)

10–42 Data Structures

Data Structures
10.12 KPB (Kernel Process Block)

Table 10–14 (Cont.) Contents of Kernel Process Block (KPB)

Field Use

KPB$IW_TQE_SIZE Size of embedded TQE in bytes. Alternatively, as
KPB$IW_FKB_SIZE, size of embedded fork block in
bytes.

Before using this section of the KPB as a TQE or fork
block, you must write the symbolic constant DYN$C_
TQE or DYN$C_FRK, as appropriate, in this field.

KPB$IB_FKB_TYPE Type of data structure. Before using this section of
the KPB as a TQE or fork block, you must write
the symbolic constant TQE$K_LENGTH or FKB$K_
LENGTH, as appropriate, in this field.

KPB$IB_RQTYPE Type of TQE, as described in VMS for Alpha Platforms:
Internals and Data Structures. Before using this section
of the KPB as an embedded TQE, you must indicate the
TQE type in this field.

Alternatively, as KPB$IB_FLCK, this field contains the
index of the fork lock that synchronizes access to the
embedded fork block. Before using this section of the
KPB as an embedded fork block, you must write in this
field the symbolic constant (as defined by $SPLCODDEF
macro in SYS$LIBRARY:LIB.MLB) for the appropriate
spin lock index.

KPB$PS_FPC Procedure value of routine at which execution resumes
when the TQE becomes due or when the OpenVMS fork
dispatcher dequeues the fork block. (In the latter case,
EXEKP_FORK, EXEKP_IOFORK, and EXE$KP_
FORK_WAIT write this field when called to suspend
driver execution.)

KPB$Q_FR3 Value to be restored to R3 when the TQE becomes
due or when the OpenVMS fork dispatcher dequeues
the fork block. (In the latter case, EXE$KP_FORK,
EXE$KP_IOFORK, and EXE$KP_FORK_WAIT write
this field when called to suspend driver execution.)

KPB$Q_FR4 Value to be restored to R4 when the TQE becomes
due or when the OpenVMS fork dispatcher dequeues
the fork block. (In the latter case, EXE$KP_FORK,
EXE$KP_IOFORK, and EXE$KP_FORK_WAIT write
this field when called to suspend driver execution.)

KPB$IQ_TIME Quadword system time at which a particular timer
event is to occur.

KPB$PS_UCB UCB address. EXE$KP_STARTIO initializes this field,
which exists only in VEST KPBs. Note that this field
is also known as KPB$PS_LKB and contains the LKB
address when used in lock manager operations.

KPB$PS_IRP IRP address. EXE$KP_STARTIO initializes this field,
which exists only in VEST KPBs.

KPB$IS_TIMEOUT_TIME Timeout for wait-for-interrupt operation. IOC$KP_
WFIKPCH and IOC$KP_WFIRLCH initialize this field,
which is used by the corresponding scheduling stall
routine when calling the appropriate basic OpenVMS
suspension routine. Note that this field exists only in
VEST KPBs.

(continued on next page)

Data Structures 10–43

Data Structures
10.12 KPB (Kernel Process Block)

Table 10–14 (Cont.) Contents of Kernel Process Block (KPB)

Field Use

KPB$IS_RESTORE_IPL IPL to be restored, and at which execution is to resume,
when IOC$KP_WFIKPCH or IOC$KP_WFIRLCH
returns to the initiator of the kernel process (that is,
the caller of EXE$KP_START or EXE$KP_RESTART).
IOC$KP_WFIKPCH and IOC$KP_WFIRLCH initialize
this field, which is used by the corresponding scheduling
stall routine when calling the appropriate basic
OpenVMS suspension routine. Note that this field
exists only in VEST KPBs.

KPB$IS_CHANNEL_DATA Channel data passed to the request-channel scheduling
stall routine (by IOC$KP_REQCHAN) and to the wait-
for-interrupt scheduling stall routine (by IOC$KP_
WFIKPCH or IOC$KP_WFIRLCH) to determine which
basic OpenVMS suspension routine to call. Note that
only VEST KPBs contain this field.

VMS defines the following symbolic constants for this
field:

KPB$K_KEEP Keep channel as part of wait-
for-interrupt operation (that
is, call IOC$PRIMITIVE_
WFIKPCH).

KPB$K_RELEASE Release channel as part
of wait-for-interrupt
operation (that is, call
IOC$PRIMITIVE_WFIRLCH).

KPB$K_LOW Insert fork block of UCB
requesting controller channel
at the tail of the channel-wait
queue.

KPB$K_HIGH Insert fork block of UCB
requesting controller channel
at the head of the channel-
wait queue.

KPB$PS_SCSI_PTR1 Generic parameter passing field written and read by
SCSI port and class drivers. Note that this field exists
only in VEST KPBs.

KPB$PS_SCSI_PTR2 Another generic parameter passing field written and
read by SCSI port and class drivers. Note that this field
exists only in VEST KPBs.

KPB$PS_SCSI_SCDRP Address of SCDRP used in SCSI transfers. Note that
this field exists only in VEST KPBs.

KPB$IS_TIMEOUT Timeout time. Note that this field exists only in VEST
KPBs.

KPB$IS_NEWIPL Location in which the SCSI port drivers save the
current IPL when invoking the DEVICELOCK macro
to synchronize access to a device’s database, and
from which they restore IPL when invoking the
DEVICEUNLOCK macro. Note that this field exists
only in VEST KPBs.

(continued on next page)

10–44 Data Structures

Data Structures
10.12 KPB (Kernel Process Block)

Table 10–14 (Cont.) Contents of Kernel Process Block (KPB)

Field Use

KPB$PS_DLCK Address of controller’s device lock which synchronizes
access to device registers and those fields in the UCB
accessed at device IPL. SCSI port drivers initialize
this field from SPDT$L_DLCK and supply it as the
lockaddr argument when invoking the DEVICELOCK
and DEVICEUNLOCK macros. Note that this field
exists only in VEST KPBs.

KPB$PS_SPL_STALL_RTN Reserved.

KPB$PS_SPL_RESTRT_RTN Reserved.

Table 10–15 Contents of KPB Debug Area

Field Use

KPBDBG$IS_START_TIME Time at which the kernel process was started or last
restarted.

KPBDBG$IS_START_
COUNT

Number of times the kernel process has been started.

KPBDBG$IS_RESTART_
COUNT

Number of times the kernel process has been restarted.

KPBDBG$IS_VEC_INDEX PC vector index. Indicates which longword in the PC
vector index is next to be written

KPBDBG$IS_PC_VEC Last eight PCs which started, restarted, or suspended the
kernel process.

10.13 ORB (Object Rights Block)
The object rights block (ORB) is a data structure that describes the rights a
process must have to access the object with which the ORB is associated.

The ORB is usually allocated when the device is connected by means of a
SYSMAN IO CONNECT command. The driver loading procedure also sets the
address of the ORB in UCB$L_ORB at that time.

The object rights block is described in Table 10–16.

Table 10–16 Contents of Object Rights Block

Field Use

ORB$L_OWNER UIC of the object’s owner.

ORB$L_ACL_MUTEX Mutex for the object’s access control list (ACL), used to
control access to the ACL for reading and writing. The
driver-loading procedure initializes this field with –1.

ORB$W_SIZE Size of ORB in bytes. The driver-loading procedure writes
the symbolic constant ORB$K_LENGTH into this field
when it creates an ORB.

(continued on next page)

Data Structures 10–45

Data Structures
10.13 ORB (Object Rights Block)

Table 10–16 (Cont.) Contents of Object Rights Block

Field Use

ORB$B_TYPE Type of data structure. The driver-loading procedure
writes the symbolic constant DYN$C_ORB into this field
when it creates an ORB.

ORB$B_FLAGS Flags needed for interpreting portions of the ORB that
can have alternate meanings. The following fields are
defined within ORB$B_FLAGS:

ORB$V_PROT_16 The driver-loading procedure
sets this bit to 1, signifying
UIC-based protection for this
object

ORB$V_ACL_QUEUE This flag represents the
existence of an ACL queue.
The driver-loading procedure
does not set this bit.

ORB$V_MODE_
VECTOR

Use vector mode protection, not
byte mode.

ORB$V_NOACL This object cannot have an
ACL.

ORB$V_CLASS_PROT Security classification is valid.

ORB$W_REFCOUNT Reference count.

ORB$Q_MODE_PROT Mode protection vector. The low longword of this
quadword is known as ORB$L_MODE.

ORB$L_SYS_PROT System protection field. The low word of this field is
known as ORB$W_PROT and contains the standard
SOGW protection.

ORB$L_OWN_PROT Owner protection field.

ORB$L_GRP_PROT Group protection field.

ORB$L_WOR_PROT World protection field.

ORB$L_ACLFL ACL queue forward link. If ORB$V_ACL_QUEUE is 0,
this field should contain 0. This field is also known as
ORB$L_ACL_COUNT and is cleared by the driver-loading
procedure.

ORB$L_ACLBL ACL queue backward link. If ORB$V_ACL_QUEUE is
0, this field should contain 0. This field is also known as
ORB$L_ACL_DESC and is cleared by the driver-loading
procedure.

10.14 UCB (Unit Control Block)
The unit control block (UCB) is a variable-length block that describes a single
device unit. Each device unit on the system has its own UCB. The UCB describes
or provides pointers to the device type, controller, driver, device status, and
current I/O activity.

During autoconfiguration, the driver-loading procedure creates one UCB for
each device unit in the system. A privileged system user can request the driver-
loading procedure to create UCBs for additional devices with the SYSMAN
command IO CONNECT. The procedure creates UCBs of the length specified in
the DPT. The driver uses UCB storage located beyond the standard UCB fields
for device-specific data and Step 1 driver storage.

10–46 Data Structures

Data Structures
10.14 UCB (Unit Control Block)

The driver-loading procedure initializes some static UCB fields when it creates
the block. OpenVMS and device drivers can read and modify all nonstatic fields
of the UCB. The UCB fields that are present for all devices are described in
Table 10–18. The length of the basic UCB is defined by the symbol UCB$K_
LENGTH.

UCBs are variable in length depending on the type of device and whether the
driver performs error logging for the device. OpenVMS defines a number of
UCB extensions in the data structure definition macro $UCBDEF and defines a
terminal device extension in $TTYUCBDEF. Table 10–17 lists those extensions
that are most often used by device drivers, indicating where each is described in
this chapter. Note that use of the dual-path extension is reserved to Digital; its
contents should remain zero.

Table 10–17 UCB Extensions and Sizes Defined in $UCBDEF

Extension Used by Size Table

Base UCB All devices UCB$K_SIZE 10–18

Error log extension All disk and tape devices UCB$K_ERL_LENGTH 10–19

Dual-path extension Reserved to Digital UCB$K_2P_LENGTH —

Local tape extension All tape devices UCB$K_LCL_TAPE_LENGTH value
\ 10–20)

Local disk extension All disk devices UCB$K_LCL_DISK_LENGTH value
\ 10–21)

Terminal extension1 Terminal class and port
drivers

UCB$K_TT_LENGTH 10–22

1The terminal UCB extension is defined by the data structure definition macro, $TTYUCBDEF.

To use an extended UCB, a device driver must specify its length in the ucbsize
argument to the DPTAB macro. For instance:

DPTAB -,
.
.
.

UCBSIZE=UCB$K_LCL_TAPE_LENGTH,-
.
.
.

As represented in Figure 10–2, each UCB extension used in a disk or tape driver
builds upon the base UCB structure and any extension $UCBDEF defined earlier
in the structure. (Note that UCB extensions shown in bold boxes are reserved
to Digital.) For instance, if you specify a UCB size of UCB$K_LCL_TAPE_
LENGTH, the size of the resulting UCB can accommodate the base UCB, the
error log extension, the dual-path extension, and the local tape extension.

Data Structures 10–47

Data Structures
10.14 UCB (Unit Control Block)

Figure 10–2 Composition of Extended Unit Control Blocks

ZK−6620−GE

(UCB$K_ERL_LENGTH)
ExtensionError Log

(UCB$K_MB_LENGTH)
ExtensionMailbox

(UCB$K_NI_LENGTH)
NI Extension

(UCB$K_LCL_TAPE_LENGTH)

ExtensionLocal Tape

(UCB$K_LCL_DSK_LENGTH)

Local Disk Extension

ExtensionMSCP Disk/Tape

UCB$K_MSCP_TAPE_LENGTH)
(UCB$K_MSCP_DISK_LENGTH,

Legend:

Bold boxes indicate UCB extensions
 reserved for Digital.

Extension
MailboxNetwork

Base UCB

(UCB$K_LENGTH)

(UCB$K_2P_LENGTH)
ExtensionDual−Path

Extension
 DriverTerminal

A device driver can further extend a UCB by using the $DEFINI, $DEF,
$DEFEND, and _VIELD macros. For instance:

$DEFINI UCB
.=UCB$K_LCL_DISK_LENGTH

$DEF UCB$W_XX_FIELD1 .BLKW 1
$DEF UCB$W_XX_FIELD2 .BLKW 1
$DEF UCB$L_XX_FLAGS .BLKL 1

_VIELD UCB,0,<-
<XX_BIT1,,M>,-
<XX_BIT2,,M>,-
>

$DEF UCB$K_XX_LENGTH
$DEFEND UCB

In this case, too, the driver must ensure that it specifies the length of the
extended UCB in the ucbsize argument of the DPTAB macro:

10–48 Data Structures

Data Structures
10.14 UCB (Unit Control Block)

DPTAB -,
.
.
.
UCBSIZE=UCB$K_XX_LENGTH,-
.
.
.

Table 10–18 describes the contents of the unit control block.

Table 10–18 Contents of Unit Control Block

Field Use

UCB$L_FQFL Fork queue forward link. The link points to the next
entry in the fork queue. EXE$PRIMITIVE_FORK and
OpenVMS resource management routines write this field.
The queue contains addresses of UCBs that contain driver
fork process context of drivers waiting to continue I/O
processing.

UCB$L_FQBL Fork queue backward link. The link points to the previous
entry in the fork queue. EXE$PRIMITIVE_FORK and
OpenVMS resource management routines write this field.

UCB$W_SIZE Size of UCB. The DPT of every driver must specify a
value for this field. The driver-loading procedure uses the
value to allocate space for a UCB and stores the value
in each UCB created. Extra space beyond the standard
bytes in a UCB (UCB$K_LENGTH) is for device-specific
data and Step 1 storage.

UCB$B_TYPE Type of data structure. The driver-loading procedure
writes the constant DYN$C_UCB into this field when the
procedure creates the UCB.

UCB$B_FLCK Index of the fork lock that synchronizes access to this
UCB at fork level. The DPT of every driver must specify
a value for this field. The driver-loading procedure writes
the value in the UCB when the procedure creates the
UCB. All devices that are attached to a single I/O adapter
and actively compete for shared adapter resources and/or
a controller data channel must specify the same value for
this field.

When the operating system creates a driver fork process
to service an I/O request for a device, the fork process
gains control at the IPL associated with the fork
lock, holding the fork lock itself in a multiprocessing
environment. When the driver creates a fork process
after an interrupt, OpenVMS inserts the fork block into
a processor-specific fork queue based on this fork IPL. A
fork dispatcher, executing at fork IPL, obtains the fork
lock (if necessary), dequeues the fork block, and restores
control to the suspended driver fork process.

(continued on next page)

Data Structures 10–49

Data Structures
10.14 UCB (Unit Control Block)

Table 10–18 (Cont.) Contents of Unit Control Block

Field Use

UCB$L_FPC Procedure value of the driver fork routine. When an
OpenVMS routine saves driver fork context in order to
suspend driver execution, the routine stores the procedure
value of the driver entry point at which execution will
resume in this field. A system routine that reactivates
a suspended driver transfers control to the saved PC
address.

System routines that suspend driver processing include
EXE$PRIMITIVE_FORK, IOC$PRIMITIVE_REQCHANL,
IOC$PRIMITIVE_REQCHANH, IOC$PRIMITIVE_
WFIKPCH, IOC$PRIMITIVE_WFIRLCH, EXE$KP_
STALL_GENERAL, EXEKP_FORK, EXEKP_FORK_
WAIT, IOC$KP_REQCHAN, IOC$KP_WFIKPCH, and
IOC$KP_WFIRLCH. Routines that reactivate suspended
driver routines include IOC$RELCHAN, the OpenVMS
fork dispatcher, and driver interrupt service routines.

When a driver interrupt service routine determines that
a device is expecting an interrupt, the routine restores
control to the saved PC address in the device’s UCB.

UCB$Q_FR3 Value of R3 at the time that a system routine suspends a
driver fork process. The value of R3 is restored just before
a suspended driver regains control.

UCB$Q_FR4 Value of R4 at the time that a system routine suspends a
driver fork process. The value of R4 is restored just before
a suspended driver regains control.

UCB$W_BUFQUO Buffered-I/O quota if the UCB represents a mailbox.

UCB$W_INIQUO Initial buffered-I/O quota if the UCB represents a
mailbox.

UCB$L_ORB Address of ORB associated with the UCB. The driver-
loading procedure places the address in this field.

UCB$L_LOCKID Lock management lock ID of device allocation lock. A
lock management lock is used for device allocation so that
device allocation functions properly for cluster-accessible
devices in a VAXcluster (DEV$V_CLU set within UCB$L_
DEVCHAR2).

UCB$PS_CRAM Header of singly linked list of CRAMs allocated to the
device unit. This field contains the address of the first
CRAM in the list. The field CRAM$L_FLINK in each
CRAM points to the next CRAM in the list.

UCB$L_CRB Address of primary CRB associated with the device. The
driver-loading procedure writes this field. Driver fork
processes read this field to gain access to device registers.
system routines use UCB$L_CRB to locate interrupt-
dispatching code and the addresses of driver unit and
controller initialization routines.

UCB$L_DLCK Address of device lock that—in a multiprocessing
environment—synchronizes access to device registers
and those fields in the UCB accessed at device IPL. The
driver-loading routine copies the address of the device lock
in the CRB (CRB$PS_DLCK) to this field as it creates a
UCB for each device on a controller.

(continued on next page)

10–50 Data Structures

Data Structures
10.14 UCB (Unit Control Block)

Table 10–18 (Cont.) Contents of Unit Control Block

Field Use

UCB$L_DDB Address of DDB associated with device. The driver-
loading procedure writes this field when the procedure
creates the associated UCB. system routines generally
read the DDB field in order to locate device driver entry
points, the address of a driver FDT, or the ACP associated
with a given device.

UCB$L_PID Process identification number of the process that has
allocated the device. Written by the $ALLOC system
service.

UCB$L_LINK Address of next UCB in the chain of UCBs attached to a
single controller and associated with a DDB. The driver-
loading procedure writes this field when the procedure
adds the next UCB. Any system routine that examines the
status of all devices on the system reads this field. Such
routines include EXE$TIMEOUT, IOC$SEARCHDEV, and
power failure recovery routines.

UCB$L_VCB Address of volume control block (VCB) that describes the
volume mounted on the device. This field is written by
the device’s ACP and read by EXE$QIOACPPKT, ACPs,
and the XQP.

UCB$L_DEVCHAR First longword of device characteristics bits.
The DPT of every driver should specify symbolic
constant values (defined by the $DEVDEF macro in
SYS$LIBRARY:STARLET.MLB) for this field. The driver-
loading procedure writes the field when the procedure
creates the UCB. The $QIO system service reads the field
to determine whether a device is spooled, file structured,
shared, has a volume mounted, and so on.

The system defines the following device characteristics:

DEV$V_REC Record-oriented device

DEV$V_CCL Carriage control device

DEV$V_TRM Terminal device

DEV$V_DIR Directory-structured device

DEV$V_SDI Single directory-structured device

DEV$V_SQD Sequential block-oriented device
(magnetic tape, for example)

DEV$V_SPL Device spooled

DEV$V_OPR Operator device

DEV$V_RCT Device contains RCT

DEV$V_NET Network device

DEV$V_FOD File-oriented device (disk and
magnetic tape, for example)

DEV$V_DUA Dual-ported device

DEV$V_SHR Shareable device (used by more than
one program simultaneously)

DEV$V_GEN Generic device

(continued on next page)

Data Structures 10–51

Data Structures
10.14 UCB (Unit Control Block)

Table 10–18 (Cont.) Contents of Unit Control Block

Field Use

DEV$V_AVL Device available for use

DEV$V_MNT Device mounted

DEV$V_MBX Mailbox device

DEV$V_DMT Device marked for dismount

DEV$V_ELG Error logging enabled

DEV$V_ALL Device allocated

DEV$V_FOR Device mounted as foreign (not file
structured)

DEV$V_SWL Device software write-locked

DEV$V_IDV Device capable of providing input

DEV$V_ODV Device capable of providing output

DEV$V_RND Device allowing random access

DEV$V_RTM Real-time device

DEV$V_RCK Read-checking enabled

DEV$V_WCK Write-checking enabled

UCB$L_DEVCHAR2 Second longword of device characteristics. The
DPT of every driver should specify symbolic
constant values (defined by the $DEVDEF macro in
SYS$LIBRARY:STARLET.MLB) for this field. The driver-
loading procedure writes the field when the procedure
creates the UCB.

The system defines the following device characteristics:

DEV$V_CLU Device available clusterwide

DEV$V_DET Detached terminal

DEV$V_RTT Remote-terminal UCB extension

DEV$V_CDP Dual-pathed device with two UCBs

DEV$V_2P Two paths known to device

DEV$V_MSCP Disk or tape accessed using MSCP

DEV$V_SSM Shadow set member

DEV$V_SRV Served by MSCP server

DEV$V_RED Redirected terminal

DEV$V_NNM Device name has a prefix of the
format ‘‘node$’’

DEV$V_WBC Device supports write-back caching

DEV$V_WTC Device supports write-through
caching

DEV$V_HOC Device supports host caching

DEV$V_LOC Device accessible via local (non-
emulated) controller

DEV$V_DFS Device is DFS-served

DEV$V_DAP Device is DAP accessed

(continued on next page)

10–52 Data Structures

Data Structures
10.14 UCB (Unit Control Block)

Table 10–18 (Cont.) Contents of Unit Control Block

Field Use

DEV$V_NLT Device has no bad block information
on its last track

DEV$V_SEX Device (TAPE) supports serious
exception handling

DEV$V_SHD Device is a member of a host based
shadow set

DEV$V_VRT Device is a shadow set virtual unit

DEV$V_LDR Loader present (tapes)

DEV$V_NOLB Device ignores server load balancing
requests

DEV$V_NOCLU Device will never be available
clusterwide

DEV$V_VMEM Virtual member of a constituent set

DEV$V_SCSI Device is a SCSI device

DEV$V_WLG Device has write logging capability

DEV$V_NOFE Device does not support forced error

UCB$L_AFFINITY Bit mask of the CPU IDs of processors in an OpenVMS
multiprocessing system that have physical connectivity
to the device. Such processors can thereby access the
device’s registers and initiate I/O operations on the device.

UCB$L_XTRA Extra longword for SMP. This field is also known as
UCB$L_ALTIOWQ (alternate start-I/O request wait
queue).

UCB$B_DEVCLASS Device class. The DPT of every driver should specify
a symbolic constant (defined by the $DCDEF macro in
SYS$LIBRARY:STARLET.MLB) for this field. The driver-
loading procedure writes this field when it creates the
UCB.

Drivers with set mode and device characteristics functions
can rewrite the value in this field with data supplied in
the characteristics buffer, the address of which is passed
in the I/O request.

VMS defines the following device classes:

DC$_DISK Disk

DC$_TAPE Tape

DC$_SCOM Synchronous communications

DC$_CARD Card reader

DC$_TERM Terminal

DC$_LP Line printer

(continued on next page)

Data Structures 10–53

Data Structures
10.14 UCB (Unit Control Block)

Table 10–18 (Cont.) Contents of Unit Control Block

Field Use

DC$_
WORKSTATION

Workstation

DC$_REALTIME Real time. Note that the definition of
a device as a real-time device (DC$_
REALTIME) is somewhat subjective;
it implies no special treatment by
OpenVMS.

DC$_BUS Bus

DC$_MAILBOX Mailbox

DC$_REMCSL_
STORAGE

Remote console storage

DC$_MISC Miscellaneous

UCB$B_DEVTYPE Device type. The DPT of every driver should specify a
symbolic constant (defined by the $DCDEF macro in
SYS$LIBRARY:STARLET.MLB) for this field. The driver-
loading procedure writes the field when it creates the
UCB.

Drivers for devices with set mode and set characteristics
functions can rewrite the value in this field with data
supplied in the characteristics buffer, the address of which
is passed in the I/O request.

UCB$W_DEVBUFSIZ Default buffer size. The DPT can specify a value for this
field if relevant. The driver-loading procedure writes the
field when it creates the UCB.

Drivers for devices with set mode and set characteristics
functions can rewrite the value in this field with data
supplied in the characteristics buffer, the address of which
is passed in the I/O request. This field is used by RMS for
record I/O on nonfile devices.

UCB$Q_DEVDEPEND Device-descriptive data interpreted by the device driver
itself. The DPT can specify a value for this field. The
driver-loading procedure writes this field when it creates
the UCB.

Drivers for devices with set mode and set characteristics
functions can rewrite the value in this field with data
supplied in the characteristics buffer, the address of which
is passed in the I/O request.

UCB$Q_DEVDEPND2 Second quadword for device-dependent status. This field
is an extension of UCB$Q_DEVDEPEND.

UCB$L_IOQFL Pending-I/O queue listhead forward link. The queue
contains the addresses of IRPs waiting for processing
on a device. EXE$INSERTIRP inserts IRPs into the
pending-I/O queue when a device is busy. IOC$REQCOM
dequeues IRPs when the device is idle.

The queue is a priority queue that has the highest priority
IRPs at the front of the queue. Priority is determined by
the base priority of the requesting process. IRPs with the
same priority are processed first-in/first-out.

(continued on next page)

10–54 Data Structures

Data Structures
10.14 UCB (Unit Control Block)

Table 10–18 (Cont.) Contents of Unit Control Block

Field Use

UCB$L_IOQBL Pending-I/O queue listhead backward link.
EXE$INSERTIRP and IOC$REQCOM modify the
pending-I/O queue.

UCB$W_UNIT Number of the physical device unit; stored as a binary
value. The driver-loading procedure writes a value into
this field when it creates the UCB. Drivers for multiunit
controllers read this field during unit initialization to
identify a unit to the controller.

UCB$W_CHARGE Mailbox byte count quota charge, if the device is a
mailbox.

UCB$L_IRP Address of IRP currently being processed on the device
unit by the driver fork process. IOC$INITIATE writes the
address of an IRP into this field before the routine creates
a driver fork process to handle an I/O request. From this
field, a driver fork process obtains the address of the IRP
being processed.

The value contained in this field is not valid if the
UCB$V_BSY bit in UCB$L_STS is clear.

UCB$L_REFC Reference count of processes that currently have process
I/O channels assigned to the device. The $ASSIGN
and $ALLOC system services increment this field. The
$DASSGN and $DALLOC system services decrement this
field.

UCB$B_DIPL Interrupt priority level (IPL) at which the device requests
hardware interrupts. The DPT of every driver must
specify a value for this field. The driver-loading procedure
writes this field when the procedure creates the UCB.
When the driver-loading procedure subsequently creates
the device lock’s spin lock structure (SPL), it moves the
contents of this field into SPL$B_IPL.

In an OpenVMS multiprocessing environment, drivers
obtain the device lock at UCB$L_DLCK before reading
or writing device registers or accessing other fields in the
UCB synchronized at device IPL, thereby also raising IPL
to device IPL in the process.

UCB$B_AMOD Access mode at which allocation occurred, if the device is
allocated. Written by the $ALLOC and $DALLOC system
services.

UCB$L_AMB Associated mailbox UCB pointer. A spooled device uses
this field for the address of its associated device. Devices
that are nonshareable and not file oriented can use this
field for the address of an associated mailbox.

(continued on next page)

Data Structures 10–55

Data Structures
10.14 UCB (Unit Control Block)

Table 10–18 (Cont.) Contents of Unit Control Block

Field Use

UCB$L_STS Device unit status (formerly UCB$W_STS). Written
by drivers, IOC$REQCOM, IOC$CANCELIO,
IOC$INITIATE, IOC$WFIKPCH, IOC$WFIRLCH,
EXE$INSIOQ, and EXE$TIMEOUT. This field is
read by drivers, the $QIO system service routines,
IOC$REQCOM, IOC$INITIATE, and EXE$TIMEOUT.

This longword includes the following bits:

UCB$V_TIM Timeout enabled.

UCB$V_INT Interrupts expected.

UCB$V_ERLOGIP Error log in progress.

UCB$V_CANCEL Cancel I/O on unit.

UCB$V_ONLINE Device is on line.

UCB$V_POWER Power has failed while unit was
busy.

UCB$V_TIMOUT Unit is timed out.

UCB$V_INTTYPE Receiver interrupt.

UCB$V_BSY Unit is busy.

UCB$V_MOUNTING Device is being mounted.

UCB$V_DEADMO Deallocate device at dismount.

UCB$V_VALID Volume appears valid to
software.

UCB$V_UNLOAD Unload volume at dismount.

UCB$V_TEMPLATE Template UCB from which
other UCBs for this device are
made. The $ASSIGN system
service checks this bit in the
requested UCB and, if the bit
is set, creates a UCB from the
template. The new UCB is
assigned instead.

UCB$V_MNTVERIP Mount verification in progress.

UCB$V_WRONGVOL Volume name does not match
name in the VCB.

UCB$V_DELETEUCB Delete this UCB when the value
in UCB$W_REFC becomes zero.

UCB$V_LCL_VALID The volume on this device is
valid on the local node.

UCB$V_SUPMVMSG Suppress mount-verification
messages if they indicate
success.

UCB$V_
MNTVERPND

Mount verification is pending
on the device and the device is
busy.

(continued on next page)

10–56 Data Structures

Data Structures
10.14 UCB (Unit Control Block)

Table 10–18 (Cont.) Contents of Unit Control Block

Field Use

UCB$V_DISMOUNT Dismount in progress.

UCB$V_CLUTRAN VAXcluster state transition in
progress.

UCB$V_
WRTLOCKMV

Write-locked mount verification
in progress.

UCB$V_SVPN_END Last byte used from page is
mapped by a system virtual
page number.

UCB$V_ALTBSY Unit is busy via alternate
STARTIO path.

UCB$V_SNAPSHOT Restart validation is in
progress.

UCB$L_DEVSTS Device-dependent status.

The system defines the following status bits:

UCB$V_PRMMBX Device is a permanent mailbox.
OpenVMS also defines this
bitfield as UCB$V_JOB (job
controller has been notified).

UCB$V_DELMBX Mailbox is marked for deletion.

UCB$V_SHMMBX Device is shared-memory
mailbox.

UCB$V_TEMPL_BSY Template UCB is busy.

Disk drivers use bits in UCB$L_DEVSTS as follows:

UCB$V_ECC ECC correction made.

UCB$V_DIAGBUF Diagnostic buffer is
specified.

UCB$V_NOCNVRT No logical block number to
media address conversion.

UCB$V_DX_WRITE Console floppy write
operation.

UCB$V_DATACACHE Data blocks are being
cached.

Terminal class and port drivers use bits in UCB$L_
DEVSTS as follows:

UCB$V_TT_TIMO Terminal read timeout in
progress.

UCB$V_TT_NOTIF Terminal user notified of
unsolicited data.

UCB$V_TT_HANGUP Process hang up.

UCB$V_TT_NOLOGINS No logins allowed.

UCB$L_QLEN Number of entries in pending-I/O queue (pointed to by
UCB$L_IOQFL).

(continued on next page)

Data Structures 10–57

Data Structures
10.14 UCB (Unit Control Block)

Table 10–18 (Cont.) Contents of Unit Control Block

Field Use

UCB$L_DUETIM Due time for I/O completion. Stored as the low-order
32-bit absolute time (time in seconds since the operating
system was booted) at which the device will time out.
IOC$PRIMITIVE_WFIKPCH and IOC$PRIMITIVE_
WFIRLCH write this value when they suspend a driver to
wait for an interrupt or timeout.

EXE$TIMEOUT examines this field in each UCB in the
I/O database once per second. If the timeout has occurred
and timeouts are enabled for the device, EXE$TIMEOUT
calls the device driver timeout handler.

UCB$L_OPCNT Count of operations completed on device unit since
last system bootstrap. IOC$REQCOM writes this field
every time the routine inserts an IRP into the I/O
postprocessing queue.

UCB$L_SVPN Index to the virtual address of the system PTE that the
driver loading procedure has permanently allocated to the
device. The system virtual address of the page described
by this index can be calculated by the following formula:

(index * PTE$C_BYTES_PER_PTE) + MMG$GL_
SPTBASE

If a DPT specifies DPT$M_SVP in the flags argument to
the DPTAB macro, the driver-loading procedure allocates
a page of nonpaged system memory to the device. The
procedure writes the system PTE’s index into UCB$L_
SVPN when the procedure creates the UCB.

Disk drivers use this field for ECC error correction.

UCB$L_SVAPTE For a direct-I/O transfer, the virtual address of the
system PTE for the first page to be used in the transfer;
for a buffered-I/O transfer, the virtual address of the
system buffer used in the transfer.

IOC$INITIATE writes this field from IRP$L_SVAPTE
before calling a driver start-I/O routine. Drivers read this
value to compute the starting address of a transfer.

UCB$L_BCNT Count of bytes in the I/O transfer. IOC$INITIATE
copies this field from the IRP. Drivers read this field to
determine how many bytes to transfer in an I/O operation.

UCB$L_BOFF For a direct-I/O transfer, the byte offset into the first
page of the transfer buffer; for a buffered-I/O transfer, the
number of bytes charged to the process for the transfer.

IOC$INITIATE copies this field from the IRP. Drivers
read the field in calculating the starting address of a DMA
transfer. If only part of a DMA transfer succeeds, the
driver adjusts the value in this field to be the byte offset
in the first page of the data that was not transferred.

UCB$L_SOFTERRCNT Reserved to Digital.

(continued on next page)

10–58 Data Structures

Data Structures
10.14 UCB (Unit Control Block)

Table 10–18 (Cont.) Contents of Unit Control Block

Field Use

UCB$L_ERTCNT Error retry count of the current I/O transfer. The driver
sets this field to the maximum retry count each time
it begins I/O processing. Before each retry, the driver
decreases the value in this field. During error logging,
IOC$REQCOM copies the value into the error message
buffer.

UCB$L_ERTMAX Maximum error retry count allowed for single I/O transfer.
The DPT of some drivers specifies a value for this field.
The driver-loading procedure writes the field when
the procedure creates the UCB. During error logging,
IOC$REQCOM copies the value into the error message
buffer.

UCB$L_ERRCNT Number of errors that have occurred on the device since
system booted. The driver-loading procedure initializes
the field to 0 when the procedure creates the UCB.
ERL$DEVICERR and ERL$DEVICTMO increment
the value in the field and copy the value into an error
message buffer. The DCL command SHOW DEVICE
displays in its error count column the value contained in
this field.

UCB$L_PDT Address of port descriptor table (PDT) or SCSI port
descriptor table (SPD). This field is reserved for OpenVMS
SCS and SCSI port drivers.

UCB$L_DDT Address of DDT for unit. The driver load procedure writes
the contents of DDB$L_DDT for the device controller to
this field when it creates the UCB.

UCB$PS_ADP Address of ADP. The driver-loading procedure initializes
this field.

UCB$PS_CRCTX Address of CRCTX. A driver initializes this field when it
allocates a CRCTX.

UCB$L_MEDIA_ID Bit-encoded media name and type, used by MSCP devices.

UCB$PS_DTN Address of device-type name structure (DTN). Reserved to
Digital.

Table 10–19 describes the contents of the UCB error log extension.

Table 10–19 Contents of UCB Error Log Extension

UCB$L_EMB Address of error message buffer. If error logging is
enabled and a device/controller error or timeout occurs,
the driver calls ERL$DEVICERR or ERL$DEVICTMO
to allocate an error message buffer and copy the buffer
address into this field. IOC$REQCOM writes final device
status, error counters, and I/O request status into the
buffer specified by this field.

UCB$L_FUNC I/O function modifiers. This field is read and written by
drivers that log errors.

UCB$L_DPC Device-specific field. This field is reserved for driver use.

Table 10–20 describes the contents of th UCB local tape extension.

Data Structures 10–59

Data Structures
10.14 UCB (Unit Control Block)

Table 10–20 Contents of UCB Local Tape Extension

Field Name Contents

UCB$W_DIRSEQ Directory sequence number. If the high-order bit of this
word, UCB$V_AST_ARMED, is set, it indicates that the
requesting process is blocking ASTs.

UCB$B_ONLCNT Number of times the device has been placed on line
since system booted.

UCB$B_PREV_RECORD Tape position prior to the start of the last I/O operation.

UCB$L_RECORD Current tape position or frame counter.

UCB$L_TMV_RECORD Position following last guaranteed successful I/O
operation.

UCB$W_TMV_CRC1 First CRC for mount verification’s media validation.

UCB$W_TMV_CRC2 Second CRC for mount verification’s media validation.

UCB$W_TMV_CRC3 Third CRC for mount verification’s media validation.

UCB$W_TMV_CRC4 Fourth CRC for mount verification’s media validation.

Table 10–21 describes the contents of the UCB local disk extension.

Table 10–21 Contents of UCB Local Disk Extension

Field Name Contents

UCB$W_DIRSEQ Directory sequence number. If the high-order bit of this
word, UCB$V_AST_ARMED, is set, it indicates that the
requesting process is blocking ASTs.

UCB$B_ONLCNT Number of times device has been placed on line since
OpenVMS was last bootstrapped.

UCB$L_MAXBLOCK Maximum number of logical blocks on random-access
device. This field is written by a disk driver during unit
initialization and power recovery.

UCB$L_MAXBCNT Maximum number of bytes that can be transferred. A disk
driver writes this field during unit initialization and power
recovery.

UCB$L_DCCB Pointer to cache control block.

UCB$L_QLENACC Queue length accumulator.

Table 10–22 describes the contents of the UCB terminal extension.

10–60 Data Structures

Data Structures
10.14 UCB (Unit Control Block)

Table 10–22 Contents of UCB Terminal Extension

Field Use

UCB$L_TL_CTRLY Listhead of CTRL/Y AST control blocks (ACBs).

UCB$L_TL_CTRLC Listhead of CTRL/C ACBs.

UCB$L_TL_OUTBAND Out-of-band character mask.

UCB$L_TL_BANDQUE Listhead of out-of-band ACBs.

UCB$L_TL_PHYUCB Address of physical UCB.

UCB$L_TL_CTLPID Process ID of controlling process (used with SPAWN).

UCB$Q_TL_BRKTHRU Facility broadcast bit mask.

UCB$L_TL_POSIX_DATA POSIX PTC pointer

UCB$L_TL_ASIAN_DATA Pointer to Asian language data.

UCB$L_TL_A_CHARSET Character set bitmask. The lowest byte of this field is
also known as UCB$B_TL_A_MODE and represents the
current Asian modes.

UCB$L_TL_A_FI_UCB Pointer to Asian input server.

UCB$L_TT_RDUE Absolute time at which a read timeout is due.

UCB$L_TT_RTIMOU Address of read timeout routine.

UCB$L_TT_STATE1 First longword of terminal state information.

The following fields are defined within UCB$L_TT_
STATE1:

TTY$V_ST_POWER Power failure

TTY$V_ST_CTRLS Class output

TTY$V_ST_MODEM_OFF Modem off

TTY$V_ST_FILL Fill mode

TTY$V_ST_CURSOR Cursor

TTY$V_ST_SENDLF Forced line feed

TTY$V_ST_BACKSPACE Backspace

TTY$V_ST_MULTI Multi-echo

TTY$V_ST_WRITE Write in progress

TTY$V_ST_EOL End of line

TTY$V_ST_EDITREAD Editing read in progress

TTY$V_ST_RDVERIFY Read verify in progress

TTY$V_ST_RECALL Command recall

TTY$V_ST_READ Read in progress

TTY$V_ST_POSIXREAD POSIX read

UCB$L_TT_STATE2 Second longword of terminal state information.

The following fields are defined within UCB$L_TT_
STATE2:

TTY$V_ST_CTRLO Output enable

TTY$V_ST_DEL Delete

(continued on next page)

Data Structures 10–61

Data Structures
10.14 UCB (Unit Control Block)

Table 10–22 (Cont.) Contents of UCB Terminal Extension

Field Use

TTY$V_ST_PASALL Pass-all mode

TTY$V_ST_NOECHO No echo

TTY$V_ST_WRTALL Write-all mode

TTY$V_ST_PROMPT Prompt

TTY$V_ST_NOFLTR No control-character
filtering

TTY$V_ST_ESC Escape sequence

TTY$V_ST_BADESC Bad escape sequence

TTY$V_ST_NL New line

TTY$V_ST_REFRSH Refresh

TTY$V_ST_ESCAPE Escape mode

TTY$V_ST_TYPFUL Type-ahead buffer full

TTY$V_ST_SKIPLF Skip line feed

TTY$V_ST_ESC_O Output escape

TTY$V_ST_WRAP Wrap enable

TTY$V_ST_OVRFLO Overflow condition

TTY$V_ST_AUTOP Autobaud pending

TTY$V_ST_CTRLR Clock prompt and data
string from read buffer

TTY$V_ST_SKIPCRLF Skip line feed following a
carriage return

TTY$V_ST_EDITING Editing operation

TTY$V_ST_TABEXPAND Expand tab characters

TTY$V_ST_QUOTING Quote character

TTY$V_ST_OVERSTRIKE Overstrike mode

TTY$V_ST_TERMNORM Standard terminator
mask

TTY$V_ST_ECHAES Alternate echo string

TTY$V_ST_PRE Pre-type-ahead mode

TTY$V_ST_NINTMULTI Noninterrupt multi-echo
mode

TTY$V_ST_RECONNECT Reconnect operation

TTY$V_ST_CTSLOW Clear-to-send low

TTY$V_ST_TABRIGHT Check for tabs to the
right of the current
position

UCB$L_TT_LOGUCB Address of logical UCB, if the redirect bit is set (DEV$V_
RED in UCB$L_DEVCHAR2). If this UCB describes the
logical UCB, the contents of UCB$L_TT_LOGUCB are
zero.

UCB$L_TT_DECHAR First longword of default device characteristics.

(continued on next page)

10–62 Data Structures

Data Structures
10.14 UCB (Unit Control Block)

Table 10–22 (Cont.) Contents of UCB Terminal Extension

Field Use

UCB$L_TT_DECHA1 Second longword of default device characteristics.

UCB$L_TT_DECHA2 Third longword of default device characteristics.

UCB$L_TT_DECHA3 Fourth longword of default device characteristics.

UCB$L_TT_WFLINK Write queue forward link.

UCB$L_TT_WBLINK Write queue backward link.

UCB$L_TT_WRTBUF Current write buffer block.

UCB$L_TT_MULTI Address of current multi-echo buffer.

UCB$W_TT_MULTILEN Length of multi-echo string to be written.

UCB$W_TT_SMLTLEN Saved length of multi-echo string.

UCB$L_TT_SMLT Saved address of multi-echo buffer.

UCB$W_TT_DESPEE Default speed.

UCB$B_TT_DECRF Default carriage-return fill.

UCB$B_TT_DELFF Default line-feed fill.

UCB$B_TT_DEPARI Default parity/character size.

UCB$B_TT_DETYPE Default terminal type.

UCB$W_TT_DESIZE Default line size.

UCB$W_TT_SPEED Terminal line speed. This field is read and written by the
class driver, and read by the port driver. It contains the
following byte fields:

UCB$B_TT_TSPEED Transmit speed

UCB$B_TT_RSPEED Receive speed

UCB$B_TT_CRFILL Number of fill characters to be output for carriage return.

UCB$B_TT_LFFILL Number of fill characters to be output for line feed.

UCB$B_TT_PARITY Parity, frame and stop bit information to be set when the
PORT_SET_LINE service routine is called. This field is
read and written by the class driver, and read by the port
driver. It contains the following bit fields:

UCB$V_TT_XXPARITY Reserved to Digital.

UCB$V_TT_DISPARERR Reserved to Digital.

UCB$V_TT_USERFRAME Reserved to Digital.

UCB$V_TT_LEN Two bits signifying
character length (not
counting start, stop,
and parity bits), as
follows: 002 = 5 bits;
012 = 6 bits; 102 = 7
bits; and 112 = 8 bits.

UCB$V_TT_STOP Number of stop bits:
clear if one stop bit; set
if two stop bits.

(continued on next page)

Data Structures 10–63

Data Structures
10.14 UCB (Unit Control Block)

Table 10–22 (Cont.) Contents of UCB Terminal Extension

Field Use

UCB$V_TT_PARTY Parity checking. This
bit is set if parity
checking is enabled.

UCB$V_TT_ODD Parity type: clear if
even parity; set if odd
parity.

UCB$L_TT_TYPAHD Address of type-ahead buffer.

UCB$W_TT_CURSOR Current cursor position.

UCB$B_TT_LINE Current line position on page.

UCB$B_TT_LASTC Last formatted output character.

UCB$W_TT_BSPLEN Number of back spaces to output for non-ANSI terminals.

UCB$B_TT_FILL Current fill character count.

UCB$B_TT_ESC Current read escape syntax state.

UCB$B_TT_ESC_O Current write escape syntax state.

UCB$B_TT_INTCNT Number of characters in interrupt string.

UCB$W_TT_UNITBIT Enable and disable modem control.

UCB$W_TT_HOLD Port driver’s internal flags and unit holding tank. This is
read and written by the port driver, and is not accessed
by the class driver. It contains the following subfields:

TTY$B_TANK_CHAR Character.

TTY$V_TANK_PREMPT Send preempt character.

TTY$V_TANK_STOP Stop output.

TTY$V_TANK_HOLD Character stored in
TTY$B_TANK_CHAR.

TTY$V_TANK_BURST Burst is active.

TTY$V_TANK_DMA DMA transfer is active.

UCB$B_TT_PREMPT Preempt character.

UCB$B_TT_OUTYPE Amount of data to be written on a callback from the class
driver. When negative, this field indicates that there is a
burst of data ready to be returned; when zero, it signifies
that no data is to be written; and when 1, it indicates that
a single character is to be written. This field is written by
the class driver and read by the port driver.

UCB$L_TT_GETNXT Address of the class driver’s input routine. This field is
read by the port driver.

UCB$L_TT_PUTNXT Address of the class driver’s output routine. This field is
read by the port driver.

UCB$L_TT_CLASS Address of the class driver’s vector table. This field is
initialized by the CLASS_CTRL_INIT macro. The port
driver reads UCB$L_TT_CLASS whenever it must call
the class driver at an entry point other than UCB$L_TT_
GETNXT or UCB$L_TT_PUTNXT.

UCB$L_TT_PORT Address of the port driver’s vector table.

(continued on next page)

10–64 Data Structures

Data Structures
10.14 UCB (Unit Control Block)

Table 10–22 (Cont.) Contents of UCB Terminal Extension

Field Use

UCB$L_TT_OUTADR Address of the first character of a burst of data to be
written. This field is only valid when UCB$B_TT_
OUTYPE contains –1. It is read and written by the
port driver, and written by the class driver.

UCB$W_TT_OUTLEN Number of characters in a burst of data to be written.
This field is only valid when UCB$B_TT_OUTYPE
contains –1. It is read and written by the port driver,
and written by the class driver.

UCB$W_TT_PRTCTL Port driver control flags. The bits in this field indicate
features that are available to the port; the class driver
specifies which of these features are to be enabled.

The following fields are defined within UCB$W_TT_
PRTCTL.

TTY$V_PC_NOTIME No timeout. If set, the
terminal class driver is
not to set up timers for
output.

TTY$V_PC_DMAENA DMA enabled. If set,
DMA transfers are
currently enabled on
this port.

TTY$V_PC_DMAAVL DMA supported. If
set, DMA transfers are
supported for this port.

TTY$V_PC_PRMMAP Permanent map
registers. If set, the port
driver is to permanently
allocate map registers.

TTY$V_PC_MAPAVL Map registers available.
If set, the port driver has
currently allocated map
registers.

TTY$V_PC_XOFAVL Auto XOFF supported.
If set, auto XOFF is
supported for this port.

TTY$V_PC_XOFENA Auto XOFF enabled.
If set, auto XOFF is
currently enabled on this
port.

TTY$V_PC_NOCRLF No auto line feed. If
set, a line feed is not
generated following a
carriage return.

(continued on next page)

Data Structures 10–65

Data Structures
10.14 UCB (Unit Control Block)

Table 10–22 (Cont.) Contents of UCB Terminal Extension

Field Use

TTY$V_PC_BREAK Break. If set, the port
driver should generate
break character; if clear,
the port should turn off
the break feature.

TTY$V_PC_PORTFDT FDT routine. If set, the
port driver contains FDT
routines.

TTY$V_PC_NOMODEM No modem. If set, the
port cannot support
modem operations.

TTY$V_PC_
NODISCONNECT

No disconnect. If set,
the device cannot
support virtual terminal
operations.

TTY$V_PC_SMART_READ Smart read. If set, the
port contains additional
read capabilities.

TTY$V_PC_ACCPORNAM Access port name. If
set, the port supports an
access port name.

TTY$V_PC_MULTISESSION Multisession terminal. If
set, the port is part of a
multisession terminal.

UCB$L_TT_DS_ST Current modem state.

UCB$B_TT_DS_RCV Current receive modem.

UCB$B_TT_DS_TX Current transmit modem.

UCB$W_TT_DS_TIM Current modem timeout.

UCB$B_TT_MAINT Maintenance functions. This field is used as the argument
to the port driver’s PORT_MAINT routine. It is written
by the class driver and read by the port driver.

It contains several bits that allow the following
maintenance functions:

IO$M_LOOP Set loopback mode.

IO$M_UNLOOP Reset loopback mode.

(continued on next page)

10–66 Data Structures

Data Structures
10.14 UCB (Unit Control Block)

Table 10–22 (Cont.) Contents of UCB Terminal Extension

Field Use

IO$M_AUTXOF_ENA Enable the use of auto
XON/XOFF on this line.
This is the default.

IO$M_AUTXOF_DIS Disable the use of auto
XON/XOFF on this line.

IO$M_LINE_OFF Disable interrupts on this
line.

IO$M_LINE_ON Reenable interrupts on
this line.

Reference these bits by using the mask, shifted as follows:

BITB #IO$M_LOOP@-7,-
UCB$B_TT_MAINT(R5); Set loopback mode

UCB$B_TT_MAINT also defines the bit UCB$V_TT_
DSBL that, when set, indicates that the line has been
disabled.

UCB$L_TT_FBK Address of fallback block.

UCB$L_TT_RDVERIFY Address of read/verify table. Reserved for future use.

UCB$L_TT_CLASS1 First class driver longword.

UCB$L_TT_CLASS2 Second class driver longword.

UCB$L_TT_ACCPORNAM Address of counted string.

UCB$L_TT_A_GCBADR Glyph Control Block address

UCB$W_TT_A_EDSTS Multibyte line edit states

UCB$B_TT_A_STATE On-demand loading states

UCB$B_TT_A_PARSE ODL parse states

UCB$B_TT_A_TRANS JIS conversion states

UCB$B_TT_A_XEDSTS Extended line edit states

UCB$L_TT_A_DECHSET Default char set bitmask. The lowest byte of this field
is known as UCB$B_TT_A_CHAR and represents the
default Asian modes.

UCB$L_TP_MAP Map registers.

UCB$B_TP_STAT DMA port-specific status.

The following fields are defined within UCB$B_TP_STAT.

TTY$V_TP_ABORT DMA abort requested on
this line.

TTY$V_TP_ALLOC Allocate map fork in
progress.

TTY$V_TP_DLLOC Deallocate map fork in
progress.

10.15 VLE (Vector List Extension)
The driver loading mechanism (as directed by the SYSMAN command IO
CONNECT) connects a hardware device to one or more interrupt vectors.
Although most devices connected to VAX systems use preassigned vector
locations, many devices on Alpha systems use programmable interrupt vectors. It

Data Structures 10–67

Data Structures
10.15 VLE (Vector List Extension)

is the driver’s responsibility to initialize such a device to use the vector or vectors
to which it has been connected.

The driver loading mechanism passes this information to drivers in one of two
ways:

• For devices with a single interrupt vector, the cell IDB$L_VECTOR contains
the vector offset (into the SCB or the ADP vector table).

• For devices with multiple interrupt vectors, the cell IDB$L_VECTOR contains
a pointer to a vector data structure which contains a list of vectors for the
device.

The vector list extension is described in Table 10–23.

Table 10–23 Contents of the Vector List Extension

Field Use

VLE$PS_IDB Address of the IDB with which the VLE is associated.

VLE$L_NUMVEC Number of vector entries in the VLE.

VLE$W_SIZE Size of VLE. The driver-loading procedure writes this field
when it creates the VLE.

VLE$B_TYPE Structure type. The driver loading procedure writes the
constant DYN$C_MISC in this field.

VLE$B_SUBTYPE Structure subtype. The driver loading procedure writes
the constant DYN$C_VLE in this field.

VLE$L_VECTOR_LIST Beginning of interrupt vector list. This field is an array of
unsigned longwords containing the appropriate byte offset
into either the SCB or the ADP vector table.

10–68 Data Structures

11
MACRO-32 Driver Macros

This chapter describes the JSB-replacement macros, FDT completion macros, and
other macros used by OpenVMS Alpha device drivers.

Table 11–1 highlights some of the differences between OpenVMS VAX and
OpenVMS Alpha macros.

Table 11–1 New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

ADPDISP Causes a branch to a specified address
given the existence of a selected adapter
characteristic.

Not supported

CLASS_UNIT_INIT Generates the common code that must
be executed by the unit initialization
routine of all terminal port drivers.

Changed

CPUDISP Causes a branch to a specified address
according to the CPU type of the Alpha
processor executing the code generated
by the macro expansion.

Changed

CALL_ABORTIO Invokes FDT completion routine to abort
an I/O request. Replacement for JMP
EXE$ABORTIO.

New

CALL_ALTQUEPKT Invokes FDT completion routine to queue
an I/O request to the driver’s alternate
start I/O routine. Replacement for JSB
EXE$ALTQUEPKT.

New

CALL_FINISHIO Invokes FDT completion routine to finish
an I/O request. Replacement for JMP
EXE$FINISHIO.

New

CALL_FINISHIOC Invokes FDT completion routine to finish
an I/O request. Replacement for JMP
EXE$FINISHIOC.

New

CALL_IORNSWAIT Invokes FDT completion routine to
wait for a resource that is required for
this I/O request. Replacement for JMP
EXE$IORSNWAIT.

New

CALL_MODIFYLOCK_ERR Check buffer for modify access and
lock into memory. An error routine
is called on any failure before the I/O
request is aborted. Replacement for
JSB EXE$MODIFYLOCKR. See also
$DRIVER_ERRRTN_ENTRY.

New

(continued on next page)

MACRO-32 Driver Macros 11–1

MACRO-32 Driver Macros

Table 11–1 (Cont.) New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

CALL_QIOACPPKT Invokes FDT completion routine to queue
an I/O request to the XQP or an ACP.
Replacement for JMP EXE$QIOACPPKT

New

CALL_QIODRVPKT Invokes FDT completion routine to
queue an I/O request to the driver’s
start I/O routine. Replacement for JMP
EXE$QIODRVPKT.

New

CALL_READLOCK_ERR Check buffer for read access and lock
into memory. An error routine is
called on any failure before the I/O
request is aborted. Replacement for JSB
EXE$READLOCKR. See also $DRIVER_
ERRRTN_ENTRY.

New

CALL_WRITELOCK_ERR Check buffer for read access and lock
into memory. An error routine is
called on any failure before the I/O
request is aborted. Replacement for
JSB EXE$WRITELOCKR. See also
$DRIVER_ERRRTN_ENTRY.

New

CRAM_ALLOC Allocates a controller register access
mailbox.

New

CRAM_CMD Calculates the COMMAND, MASK,
and RBADR fields for a hardware I/O
mailbox according to the requirements of
a specific I/O interconnect.

New

CRAM_DEALLOC Deallocates a controller register access
mailbox.

New

CRAM_IO Queues the hardware I/O mailbox
defined within a controller register
access mailbox (CRAM) to the mailbox
pointer register (MBPR) and awaits the
completion of the mailbox transaction.

New

CRAM_QUEUE Queues the hardware I/O mailbox
defined within a controller register
access mailbox (CRAM) to the mailbox
pointer register (MBPR).

New

CRAM_WAIT Awaits the completion of a hardware I/O
mailbox transaction to a tightly coupled
I/O interconnect.

New

DDTAB Generates a driver dispatch table (DDT)
labeled devnam$DDT.

Changed

DEVICELOCK Achieves synchronized access to a
device’s database as appropriate to the
processing environment.

Changed

DPTAB Generates a driver prologue table (DPT)
in a program section called $$$105_
PROLOGUE.

Changed

(continued on next page)

11–2 MACRO-32 Driver Macros

MACRO-32 Driver Macros

Table 11–1 (Cont.) New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

DPT_STORE In the context of a DPTAB macro
invocation, generates driver structure
initialization and reinitialization routines
which the driver loading and reloading
procedures call to store values in a table
or data structure.

Changed

DPT_STORE_ISR In the context of a DPTAB macro
invocation, generates the addresses
of the code entry point and procedure
descriptor of an interrupt service routine
and stores them in the interrupt transfer
vector block (VEC).

New

DRIVER_CODE Declares the program section (psect) that
contains driver code.

New

DRIVER_DATA Declares the program section (psect) that
contains driver data.

New

$DRIVER_ALTSTART_ENTRY Defines the driver alternate start I/O
routine entry point for drivers that use
the simple fork mechanism and the
CALL-based fork routine environment.

New

$DRIVER_CANCEL_ENTRY Defines the driver cancel routine entry
point.

New

$DRIVER_CANCEL_
SELECTIVE_ENTRY

Defines the driver selective cancel
routine entry point.

New

$DRIVER_CHANNEL_ASSIGN_
ENTRY

Defines the driver channel assign routine
entry point.

New

$DRIVER_CLONEDUCB_
ENTRY

Defines the driver cloned UCB routine
entry point.

New

$DRIVER_CTRLINIT_ENTRY Defines the driver controller initialization
routine entry point.

New

$DRIVER_DELIVER_ENTRY Defines the driver unit delivery routine
entry point.

New

$DRIVER_ERRRTN_ENTRY Defines a driver error routine entry
point. Error routines are used
in conjunction with the CALL_
MODIFYLOCK_ERR, CALL_
READLOCK_ERR, and CALL_
WRITELOCK_ERR macros.

New

$DRIVER_CLONEDUCB_
ENTRY

Defines the driver cloned UCB routine
entry point.

New

$DRIVER_FDT_ENTRY Defines a driver upper-level FDT routine
entry point.

New

$DRIVER_MNTVER_ENTRY Defines the driver mount verification
routine entry point.

New

$DRIVER_START_ENTRY Defines the driver start I/O routine entry
point for drivers that use the simple fork
mechanism and the CALL-based fork
routine environment.

New

(continued on next page)

MACRO-32 Driver Macros 11–3

MACRO-32 Driver Macros

Table 11–1 (Cont.) New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

$DRIVER_UNITINIT_ENTRY Defines the driver unit initialization
routine entry point.

New

FDT_ACT Specifies an FDT action routine for set of
I/O function codes.

New

FDT_BUF Specifies the buffered functions for a
function decision table.

New

FDT_INI Initializes the function decision table. New

FORK Creates a simple fork process on the local
processor.

Changed

FORK_ROUTINE Defines a fork routine entry point. New

FORK_WAIT Inserts a fork block on the fork-and-wait
queue.

Changed

FORKLOCK Achieves synchronized access to a device
driver’s fork database as appropriate to
the processing environment.

Changed

FUNCTAB Builds a function decision table entry in
an OpenVMS VAX driver.

Replaced by FDT_INI,
FDT_BUF, FDT_ACT

INVALIDATE_TB Allows a single page-table entry (PTE) to
be modified while any translation buffer
entry that maps it is invalidated, or
invalidates the entire translation buffer.

Replaced by TBI_ALL,
TBI_DATA_64, TBI_
SINGLE, and TBI_
SINGLE_64 macros in
OpenVMS Alpha systems

IOFORK Creates a fork process on the local
processor for a device driver, disabling
timeouts from the associated device.

Changed

IFNORD, IFNOWRT, IFRD,
IFWRT

Determines the read or write
accessibility of a range of memory
locations.

Changed

KP_ALLOCATE_KPB Creates a KPB and a kernel process
stack, as required by the kernel process
services.

New

KP_DEALLOCATE_KPB Deallocates a KPB and its associated
kernel process stack.

New

KP_END Terminates the execution of a kernel
process.

New

KP_RESTART Resumes the execution of a kernel
process.

New

KP_REQCOM Invokes device-independent I/O
postprocessing from a kernel process.

New

KP_STALL_FORK, KP_STALL_
IOFORK

Stall a kernel process in such a manner
that it can be resumed by the fork
dispatcher.

New

KP_STALL_FORK_WAIT Stalls a kernel process in such a
manner that it can be resumed by the
software timer interrupt service routine’s
examination of the fork-and-wait queue.

New

KP_STALL_GENERAL Stalls the execution of a kernel process. New

(continued on next page)

11–4 MACRO-32 Driver Macros

MACRO-32 Driver Macros

Table 11–1 (Cont.) New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

KP_STALL_REQCHAN Stalls a kernel process in such a manner
that it can be resumed by the granting of
a device controller channel.

New

KP_STALL_WFIKPCH, KP_
STALL_WFIRLCH

Stalls a kernel process in such a manner
that it can be resumed by device
interrupt processing.

New

KP_START Starts the execution of a kernel process. New

KP_SWITCH_TO_KP_STACK Switches to kernel process context. New

LOADALT Loads a set of Q22–bus alternate map
registers.

Not supported

LOADMBA Loads MASSBUS map registers. Not supported

LOADUBA Loads a set of UNIBUS map registers
or a set of the first 496 Q22–bus map
registers.

Not supported

LOCK Achieves synchronized access to a system
resource as appropriate to the processing
environment.

Changed

RELALT Releases a set of Q22–bus alternate map
registers allocated to the driver.

Not supported

RELDPR Releases a UNIBUS adapter data path
register allocated to the driver.

Not supported

RELMPR Releases a set of UNIBUS map registers
or a set of the first 496 Q22–bus map
registers allocated to the driver.

Not supported

RELSCHAN Releases all secondary channels allocated
to the driver.

Not supported

REQALT Obtains a set of Q22–bus alternate map
registers.

Not supported

REQCOM Invokes device-independent I/O
postprocessing to complete an I/O
request.

Changed

REQCHAN Obtains a controller’s data channel. Not supported

REQDPR Requests a UNIBUS adapter buffered
data path.

Not supported

REQMPR Obtains a set of UNIBUS map registers
or a set of the first 496 Q22–bus map
registers.

Not supported

REQPCHAN Obtains a controller’s data channel. Not supported

REQSCHAN Obtains a secondary MASSBUS data
channel.

Not supported

SYSDISP Causes a branch to a specified address
according to the type of Alpha system
executing the code in the macro
expansion.

New

TBI_ALL Invalidates the data and instruction
translation buffers in their entirety.

New

(continued on next page)

MACRO-32 Driver Macros 11–5

MACRO-32 Driver Macros

Table 11–1 (Cont.) New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

TBI_DATA_64 Invalidates a single 64-bit virtual
address in the data translation buffer.

New

TBI_SINGLE Flushes the cached contents of a single
page-table entry (PTE) from the data and
instruction translation buffers.

New

TBI_SINGLE_64 Invalidates a single 64-bit virtual
address in both the data and instruction
translation buffers.

New

TIMEWAIT Waits for a specified bit to be cleared or
set within a specified length of time.

Not supported

TIMEDWAIT Waits a specified interval of time
for an event or condition to occur,
optionally executing a series of specified
instructions that test for various exit
conditions.

Changed

WFIKPCH, WFIRLCH Suspends a driver fork thread and
folds its context into a fork block in
anticipation of a device interrupt or
timeout.

Changed

11–6 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_ABORTIO

CALL_ABORTIO

Completes the servicing of an I/O request without returning status to the I/O
status block specified in the request.

Format

CALL_ABORTIO [do_ret=YES]

Parameters

do_ret
Indicates that the macro generates a RET instruction at the end of its expansion,
thus returning control to the caller of the routine that invokes it.

Description

A JMP to EXE$ABORTIO in the FDT routine of a VAX driver should be replaced
with the CALL_ABORTIO macro. It initializes the irp, pcb, ucb, and qio_
status parameters from the contents of R3, R4, R5, and R0, respectively, and
calls EXE_STD$ABORTIO. When EXE_STD$ABORTIO returns control to the
code generated by a default invocation of CALL_ABORTIO, a RET instruction
returns control to the caller of CALL_ABORTIO’s invoker. Status is returned in
R0 and in the FDT_CONTEXT structure.

MACRO-32 Driver Macros 11–7

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_ALLOCBUF, CALL_ALLOCIRP

CALL_ALLOCBUF, CALL_ALLOCIRP

Allocates a buffer from nonpaged pool for a buffered-I/O operation.

Format

CALL_ALLOCBUF

CALL_ALLOCIRP

Description

A JSB to EXE$ALLOCBUF and EXE$ALLOCIRP in a VAX driver should be
replaced with CALL_ALLOCBUF and CALL_ALLOCIRP, respectively. CALL_
ALLOCBUF calls EXE_STD$ALLOCBUF using the current contents of R1 as
the reqsize argument. Both CALL_ALLOCBUF and CALL_ALLOCIRP return
status in R0, the address of the allocated buffer in R2 and its size in R1. If a
resource wait occurred, these macros return the address of the PCB in R4.

11–8 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_ALLOCEMB

CALL_ALLOCEMB

Allocates an error message buffer and initializes its header.

Format

CALL_ALLOCEMB

Description

A JSB to ERL$ALLOCEMB in a VAX driver should be replaced with the CALL_
ALLOCEMB macro. CALL_ALLOCEMB calls ERL_STD$ALLOCEMB using
the current contents of R1 as the size argument. It returns status in R0, the
address of the allocated EMB in R2 and copies the error log sequence number
from EMB$W_DV_ERRSEQ to R1.

MACRO-32 Driver Macros 11–9

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_ALTQUEPKT

CALL_ALTQUEPKT

Delivers an IRP to a driver’s alternate start-I/O routine without regard for the
status of the device.

Format

CALL_ALTQUEPKT

Description

A JSB to EXE$ALTQUEPKT in a VAX driver should be replaced with the CALL_
ALTQUEPKT macro. CALL_ALTQUEPKT calls EXE_STD$ALTQUEPKT, using
the current contents of R3 and R5 as the irp and ucb arguments, respectively.

11–10 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_ALTREQCOM

CALL_ALTREQCOM

Completes an I/O request for a device using the disk or tape class drivers.

Format

CALL_ALTREQCOM

Description

A JSB to IOC$ALTREQCOM in a VAX driver should be replaced with the CALL_
ALTREQCOM macro. CALL_ALTREQCOM calls IOC_STD$ALTREQCOM, using
the current contents of R0, R1, and R5 as the iost1, iost2, and cdrp arguments,
respectively. When IOC_STD$ALTREQCOM returns, the macro returns the
address of the IRP in R3 and the address of the UCB in R4.

MACRO-32 Driver Macros 11–11

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_BROADCAST

CALL_BROADCAST

Broadcasts the specified message to a given terminal.

Format

CALL_BROADCAST [save_r1]

Parameters

save_r1
Indicates that the macro must preserve the contents of R1 across the call to
IOC_STD$BROADCAST. If save_r1 is blank or save_r1=YES, the 64-bit register
is saved. (In the former case, the macro generates a compile-time message. If
save_r1=NO, R1 is not saved.)

Description

A JSB to IOC$BROADCAST in a VAX driver should be replaced with the
CALL_BROADCAST macro. CALL_BROADCAST calls IOC_STD$BROADCAST,
using the current contents of R1, R2, and R5 as the msglen, msg_p, and ucb
arguments, respectively. It returns status in R0. Unless you specify save_
r1=NO, the macro preserves the quadword register R1 across the call.

11–12 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_CANCELIO

CALL_CANCELIO

Conditionally marks a UCB so that its current I/O request will be canceled.

Format

CALL_CANCELIO [save_r0r1]

Parameters

save_r0r1
Indicates that the macro must preserve the contents of R0 and R1 across the call
to IOC_STD$CANCELIO. If save_r0r1 is blank or save_r0r1=YES, the 64-bit
registers are saved. (In the former case, the macro generates a compile-time
message. If save_r0r1=NO, the registers are not preserved.)

Description

A JSB to IOC$CANCELIO in a VAX driver should be replaced with the CALL_
CANCELIO macro. CALL_CANCELIO calls IOC_STD$CANCELIO, using
the current contents of R2, R3, R4, and R5 as the chan, irp, pcb, and ucb
arguments, respectively. Unless you specify save_r0r1=NO, it preserves the
quadword registers R0 and R1 across the call.

MACRO-32 Driver Macros 11–13

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_CARRIAGE

CALL_CARRIAGE

Interprets the carriage control specifier in IRP$B_CARCON and converts it to a
generic prefix/suffix format.

Format

CALL_CARRIAGE

Description

A JSB to EXE$CARRIAGE in a VAX driver should be replaced with the CALL_
CARRIAGE macro. CALL_CARRIAGE calls EXE_STD$CARRIAGE, using the
current contents of R3 as the irp arguments.

11–14 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_CHKxxxACCES

CALL_CHKxxxACCES

Checks logical (CALL_CHKLOGACCES), physical (CALL_CHKPHYACCES),
read (CALL_CHKRDACCES), write (CALL_CHKWRTACCES), execute
(CALL_CHKEXEACCES), create (CALL_CHKCREACCES), or delete (CALL_
CHKDELACCES) I/O function access, based on the specified protection
information.

Format

CALL_CHKCREACCES [save_r1]

CALL_CHKDELACCES [save_r1]

CALL_CHKEXEACCES [save_r1]

CALL_CHKLOGACCES [save_r1]

CALL_CHKPHYACCES [save_r1]

CALL_CHKRDACCES [save_r1]

CALL_CHKWRTACCES [save_r1]

Parameters

save_r1
Indicates that the macro must preserve the contents of R1 across
the call to EXE_STD$CHKPHYACCES, EXE_STD$CHKLOGACCES,
EXE_STD$CHKWRTACCES, EXE_STD$CHKEXEACCES, EXE_
STD$CHKCREACCES, EXE_STD$CHKDELACCES or EXE_
STD$CHKRDACCES. If save_r1 is blank or save_r1=YES, the 64-bit register
is saved. (In the former case, the macro generates a compile-time message. If
save_r1=NO, R1 is not saved.)

Description

A JSB to EXE$CHKCREACCES, EXE$CHKDELACCES, EXE$CHKEXEACCES,
EXE$CHKPHYACCES, EXE$CHKLOGA, EXE$CHKWRTACCES, or
EXE$CHKRDACCES in a VAX driver should be replaced with the CALL_
CHKCREACCES, CALL_CHKDELACCES, CALL_CHKEXEACCES, CALL_
CHKLOGACCES, CALL_CHKPHYACCES, CALL_CHKWRTACCES, or CALL_
CHKRDACCES macros respectively. Each macro calls the corresponding access-
checking routine, using the current contents of R0, R1, R4, and R5 as the arb,
orb, pcb, and ucb arguments. Unless you specify save_r1=NO, the macro
preserves the quadword register R1 across the call. All macros return status in
R0.

MACRO-32 Driver Macros 11–15

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_CLONE_UCB

CALL_CLONE_UCB

Copies a template UCB and links it to the appropriate DDB list.

Format

CALL_CLONE_UCB [interface_warning=YES]

Parameters

[interface_warning=YES]
Specifies that the macro generate a compile-time warning indicating how the
behavior of the macro differs from the VAX version of the corresponding system
routine. To suppress the warning, specify interface_warning=NO.

Description

A JSB to IOC$CLONE_UCB in a VAX driver should be replaced with CALL_
CLONE_UCB. It calls IOC_STD$CLONE_UCB using the current contents of R5
as the tmpl_ucb argument. CALL_CLONE_UCB returns status in R0 and the
address of the newly-created UCB in R2, but does not return the address of the
UCBs that precede and follow it on the DDB chain in R3 and R1, respectively.

11–16 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_COPY_UCB

CALL_COPY_UCB

Copies and initializes a template UCB and ORB.

Format

CALL_COPY_UCB

Description

A JSB to IOC$COPY_UCB in a VAX driver should be replaced with the CALL_
COPY_UCB macro. CALL_COPY_UCB calls IOC_STD$COPY_UCB using the
current contents of R5 as the src_ucb argument. CALL_CLONEUCB returns the
address of the newly-created UCB in R2.

MACRO-32 Driver Macros 11–17

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_CREDIT_UCB

CALL_CREDIT_UCB

Credits the UCB charges associated with a given UCB against the process
identified by the contents of UCB$L_CPID.

Format

CALL_CREDIT_UCB

Description

A JSB to IOC$CREDIT_UCB in a VAX driver should be repleaced with CALL_
CREDIT_UCB. CALL_CREDIT_UCB calls IOC_STD$CREDIT_UCB using the
current contents of R5 as the ucb argument.

11–18 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_CVTLOGPHY

CALL_CVTLOGPHY

Conditionally converts a logical block number to a physical disk address and
stores the result in the I/O request packet.

Format

CALL_CVTLOGPHY

Description

A JSB to IOC$CVTLOGPHY in a VAX driver should be replaced with the CALL_
CVTLOGPHY macro. CALL_CVTLOGPHY calls IOC_STD$CVTLOGPHY, using
the current contents of R0, R3, and R5 as the lbn, irp and ucb arguments,
respectively.

MACRO-32 Driver Macros 11–19

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_CVT_DEVNAM

CALL_CVT_DEVNAM

Converts a device name and unit number to a physical device name string.

Format

CALL_CVT_DEVNAM

Description

A JSB to IOC$CVT_DEVNAM in a VAX driver should be replaced with the
CALL_CVT_DEVNAM macro. CALL_CVT_DEVNAM calls IOC_STD$CVT_
DEVNAM, using the current contents of R0, R1, R4, and R5 as the buflen, buf,
form, and ucb arguments, respectively.

The macro returns status in R0 and the length of the conversion string in R1.

11–20 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_DELATTNAST

CALL_DELATTNAST

Delivers all attention ASTs linked in the specified list.

Format

CALL_DELATTNAST [save_r0r1]

Parameters

save_r0r1
Indicates that the macro must preserve the contents of R0 and R1 across the call
to COM_STD$DELATTNAST. If save_r0r1 is blank or save_r0r1=YES, the 64-
bit registers are saved. (In the former case, the macro generates a compile-time
message. If save_r0r1=NO, the registers are not saved.)

Description

A JSB to COM$DELATTNAST in a VAX driver should be replaced with
the CALL_DELATTNAST macro. CALL_DELATTNAST calls COM_
STD$DELATTNAST using the current contents of R4 and R5 as the listhead
and ucb arguments, respectively. Unless you specify save_r0r1=NO, it preserves
the quadword registers R0 and R1 across the call.

MACRO-32 Driver Macros 11–21

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_DELATTNASTP

CALL_DELATTNASTP

Delivers all attention ASTs linked in the specified list for a given process.

Format

CALL_DELATTNASTP [save_r0r1]

Parameters

save_r0r1
Indicates that the macro must preserve the contents of R0 and R1 across the call
to COM_STD$DELATTNASTP. If save_r0r1 is blank or save_r0r1=YES, the 64-
bit registers are saved. (In the former case, the macro generates a compile-time
message. If save_r0r1=NO, the registers are not saved.)

Description

A JSB to COM$DELATTNASTP in a VAX driver should be replaced with
the CALL_DELATTNASTP macro. CALL_DELATTNASTP calls COM_
STD$DELATTNASTP using the current contents of R4, R5 and R6 as the
listhead, ucb, and ipid arguments, respectively. Unless you specify save_
r0r1=NO, the macro preserves the quadword registers R0 and R1 across the call.

11–22 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_DELCTRLAST

CALL_DELCTRLAST

Delivers all control ASTs, linked in the specified list, that match a given condition.

Format

CALL_DELCTRLAST [save_r0r1]

Parameters

save_r0r1
Indicates that the macro must preserve the contents of R0 and R1 across the call
to COM_STD$DELCTRLAST. If save_r0r1 is blank or save_r0r1=YES, the 64-
bit registers are saved. (In the former case, the macro generates a compile-time
message. If save_r0r1=NO, the registers are not saved.)

Description

A JSB to COM$DELCTRLAST in a VAX driver should be replaced with
the CALL_DELCTRLAST macro. CALL_DELCTRLAST calls COM_
STD$DELCTRLAST using the current contents of R4, R5, and R3 as
the listhead, ucb, and matchchar arguments, respectively. When
COM$DELCTRLAST returns, it moves the include character into R3. Unless
you specify save_r0r1=NO, it preserves the quadword registers R0 and R1 across
the call.

MACRO-32 Driver Macros 11–23

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_DELCTRLASTP

CALL_DELCTRLASTP

Delivers all control ASTs, linked in the specified list, that match a given condition.

Format

CALL_DELCTRLASTP [save_r0r1]

Parameters

save_r0r1
Indicates that the macro must preserve the contents of R0 and R1 across the call
to COM_STD$DELCTRLASTP. If save_r0r1 is blank or save_r0r1=YES, the 64-
bit registers are saved. (In the former case, the macro generates a compile-time
message. If save_r0r1=NO, the registers are not saved.)

Description

A JSB to COM$DELCTRLASTP in a VAX driver should be replaced with
the CALL_DELCTRLASTP macro. CALL_DELCTRLASTP calls COM_
STD$DELCTRLASTP using the current contents of R4, R5, R6, and R3 as
the listhead, ucb, ipid, and matchchar arguments, respectively. When
COM$DELCTRLASTP returns, it moves the include character into R3. Unless
you specify save_r0r1=NO, it preserves the quadword registers R0 and R1 across
the call.

11–24 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_DELETE_UCB

CALL_DELETE_UCB

Deletes the specified UCB if its reference count is zero and UCB$V_DELETEUCB
is set in UCB$L_STS.

Format

CALL_DELETE_UCB

Description

A JSB to IOC$DELETE_UCB in a VAX driver should be replaced with the CALL_
DELETE_UCB macro. CALL_DELETE_UCB calls IOC_STD$DELETE_UCB
using the current contents of R5 as the ucb argument.

MACRO-32 Driver Macros 11–25

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_DEVICEATTN, CALL_DEVICERR, CALL_DEVICTMO

CALL_DEVICEATTN, CALL_DEVICERR, CALL_DEVICTMO

Allocate an error message buffer and record in it information concerning the
error.

Format

CALL_DEVICEATTN [save_r0r1]

CALL_DEVICERR [save_r0r1]

CALL_DEVICTMO [save_r0r1]

Parameters

save_r0r1
Indicates that the macros must preserve the contents of R0 and R1 across the call
to ERL_STD$DEVICEATTN, ERL_STD$DEVICERR, or ERL_STD$DEVICTMO.
If save_r0r1 is blank or save_r0r1=YES, the 64-bit registers are saved. (In the
former case, the macro generates a compile-time message. If save_r0r1=NO, the
registers are not saved.)

Description

JSBs to ERL$DEVICEATTN, ERL$DEVICERR, and ERL$DEVICTMO in a VAX
driver should be replaced with the CALL_DEVICEATTN, CALL_DEVICERR,
and CALL_DEVICTMO macros, respectively. Each macro calls the corresponding
routine using the current contents of R4 and R5 as the driver_param and ucb
arguments, respectively. Unless you specify save_r0r1=NO, it preserves the
quadword registers R0 and R1 across the call.

11–26 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_DIAGBUFILL

CALL_DIAGBUFILL

Fills a diagnostic buffer if the original $QIO request specified such a buffer.

Format

CALL_DIAGBUFILL

Description

A JSB to IOC$DIAGBUFILL in a VAX driver should be replaced with the CALL_
DIAGBUFILL macro. CALL_DIAGBUFILL calls IOC_STD$DIAGBUFILL, using
the current contents of R4 and R5 as the driver_param and ucb arguments,
respectively.

MACRO-32 Driver Macros 11–27

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_DRVDEALMEM

CALL_DRVDEALMEM

Deallocates system dynamic memory.

Format

CALL_DRVDEALMEM [save_r0r1]

Parameters

save_r0r1
Indicates that the macro must preserve the contents of R0 and R1 across the call
to COM_STD$DRVDEALMEM. If save_r0r1 is blank or save_r0r1=YES, the 64-
bit registers are saved. (In the former case, the macro generates a compile-time
message. If save_r0r1=NO, the registers are not saved.)

Description

A JSB to COM$DRVDEALMEM in a VAX driver should be replaced with
the CALL_DRVDEALMEM macro. CALL_DRVDEALMEM calls COM_
STD$DRVDEALMEM using the current contents of R0 as the ptr argument.
Unless you specify save_r0r1=NO, the macro preserves the quadword registers
R0 and R1 across the call.

11–28 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_FILSPT

CALL_FILSPT

Fills a system page-table entry (PTE) with the transfer PTE of a buffer that is
locked in memory so that the system PTE may be directly addressed.

Format

CALL_FILSPT

Description

A JSB to IOC$FILSPT in a VAX driver should be replaced with the CALL_
FILSPT macro. CALL_FILSPT calls IOC_STD$FILSPT, passing the current
contents of R5 as the ucb argument. It returns in R0 the system virtual address
of the first byte in the page that contains the buffer.

MACRO-32 Driver Macros 11–29

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_FINISHIO, CALL_FINISHIOC, CALL_FINISHIO_NOIOST

CALL_FINISHIO, CALL_FINISHIOC, CALL_FINISHIO_NOIOST

Complete the servicing of an I/O request and return status to the I/O status block
specified in the original call to the $QIO system service.

Format

CALL_FINISHIO [do_ret=YES]

CALL_FINISHIOC [do_ret=YES]

CALL_FINISHIO_NOIOST [do_ret=YES]

Parameters

do_ret
Indicates that the macro generates a RET instruction at the end of its expansion,
thus returning control to the caller of the routine that invokes it.

Description

JMPs to EXE$FINISHIO, EXE$FINISHIOC, and EXE$FINISHIO_NOIOST in
a VAX driver should be replaced with the CALL_FINISHIO, CALL_FINISHIOC,
and CALL_FINISHIO_NOIOST macros, respectively. CALL_FINISHIO moves
the current contents of R0 and R1 into IRP$L_IOST1 and IRP$L_IOST2,
respectively; CALL_FINISHIOC initializes IRP$L_IOST1 from R0 and clears
IRP$L_IOST2; and CALL_FINISHIO_NOIOST fills in neither IRP field. The
macros initialize the irp and ucb parameters from the contents of R3 and R5,
respectively before calling EXE_STD$FINISHIO. When EXE_STD$FINISHIO
returns control to the code generated by a default invocation of CALL_FINISHIO,
CALL_FINISHIOC, or CALL_FINISHIO_NOIOST, a RET instruction returns
control to the caller of the macro’s invoker.

Status is returned in R0 and in the FDT_CONTEXT structure.

11–30 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_FLUSHATTNS

CALL_FLUSHATTNS

Removes specified ASTs from an attention AST list.

Format

CALL_FLUSHATTNS

Description

A JSB to COM$FLUSHATTNS in a VAX driver should be replaced with
the CALL_FLUSHATTNS macro. CALL_FLUSHATTNS calls COM_
STD$FLUSHATTNS using the current contents of R4, R5, R6, and R7 as the
pcb, ucb, chan, and acb_lh arguments, respectively. It returns status in R0.

MACRO-32 Driver Macros 11–31

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_FLUSHCTRLS

CALL_FLUSHCTRLS

Removes specified ASTs from a control AST list.

Format

CALL_FLUSHCTRLS

Description

A JSB to COM$FLUSHCTRLS in a VAX driver should be replaced with
the CALL_FLUSHCTRLS macro. CALL_FLUSHCTRLS calls COM_
STD$FLUSHCTRLS using the current contents of R2, R4, R5, R6, and R7 as
the mask, pcb, ucb, chan, and acb_lh arguments, respectively. It returns
status in R0.

11–32 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_GETBYTE

CALL_GETBYTE

Fetches a single byte of data from a user buffer.

Format

CALL_GETBYTE

Description

A JSB to IOC$GETBYTE in a VAX driver should be replaced with the CALL_
GETBYTE macro. CALL_GETBYTE calls IOC_STD$GETBYTE, passing the
current contents of R0 and R5 as the sva and ucb arguments, respectively. It
returns in R0 the byte of data (not zero-extended) returned from the user buffer.
It returns in R1 the updated system virtual address. (Note that this differs from
the behavior of IOC$GETBYTE, which returns the byte of data in R1 and the
updated system virtual address in R0.)

MACRO-32 Driver Macros 11–33

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_INITBUFWIND

CALL_INITBUFWIND

Initializes a single-page window into a user buffer.

Format

CALL_INITBUFWIND

Description

A JSB to IOC$INITBUFWIND in a VAX driver should be replaced with
the CALL_INITBUFWIND macro. CALL_INITBUFWIND calls IOC_
STD$INITBUFWIND, passing the current contents of R5 as the ucb argument.
It returns in R0 the system virtual address of the first byte in the page that
contains the buffer.

11–34 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_INITIATE

CALL_INITIATE

Initiates the processing of the next I/O request for a device unit.

Format

CALL_INITIATE

Description

A JSB to IOC$INITIATE in a VAX driver should be replaced with the CALL_
INITIATE macro. CALL_INITIATE calls IOC_STD$INITIATE, using the current
contents of R3 and R5 as the irp and ucb arguments, respectively.

MACRO-32 Driver Macros 11–35

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_INSERT_IRP

CALL_INSERT_IRP

Inserts an I/O request packet (IRP) into the specified queue of IRPs according to
the base priority of the process that issued the I/O request.

Format

CALL_INSERT_IRP

Description

A JSB to EXE$INSERT_IRP in a VAX driver should be replaced with the CALL_
INSERT_IRP macro. CALL_INSERT_IRP calls EXE_STD$INSERT_IRP, using
the current contents of R2 and R3 as the irp_lh and irp arguments, respectively.
It returns status in R0.

11–36 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_IOLOCK

CALL_IOLOCK

Locks process pages in memory.

Format

CALL_IOLOCK

Description

A JSB to MMG$IOLOCK in a VAX driver should be replaced with the CALL_
IOLOCK macro. CALL_IOLOCK calls MMG_STD$IOLOCK using the current
contents of R0, R1, R2, and R4 as the buf, bufsize, is_read, and pcb arguments,
respectively.

CALL_IOLOCK returns status in R0. If R0 contains SS$_NORMAL, R1 contains
the system virtual address of the first page-table entry. If R0 contains zero, R1
contains the address of a page to be faulted into memory. R0 can also contain a
system-level status.

MACRO-32 Driver Macros 11–37

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_IOLOCKR

CALL_IOLOCKR

Locks the I/O database mutex on behalf of its caller for read access.

Format

CALL_IOLOCKR save_r1

Parameters

save_r1
Indicates that the macro must preserve the contents of R1 across the call to
SCH_STD$IOLOCKR. If save_r1 is blank or save_r1=YES, the 64-bit register
is saved. (In the former case, the macro generates a compile-time message. If
save_r1=NO, R1 is not saved.)

Description

A JSB to SCH$IOLOCKR in a VAX driver should be replaced with the CALL_
IOLOCKR macro. CALL_IOLOCKR calls SCH_STD$IOLOCKR using the current
contents of R4 as the pcb argument.

CALL_IOLOCKR returns the address of the I/O database mutex in R0. Unless
you specify save_r1=NO, the macro preserves R1 across the call.

11–38 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_IOLOCKW

CALL_IOLOCKW

Locks the I/O database mutex on behalf of its caller for write access.

Format

CALL_IOLOCKW save_r1

Parameters

save_r1
Indicates that the macro must preserve the contents of R1 across the call to
SCH_STD$IOLOCKW. If save_r1 is blank or save_r1=YES, the 64-bit register
is saved. (In the former case, the macro generates a compile-time message. If
save_r1=NO, R1 is not saved.)

Description

A JSB to SCH$IOLOCKW in a VAX driver should be replaced with the CALL_
IOLOCKW macro. CALL_IOLOCKW calls SCH_STD$IOLOCKW using the
current contents of R4 as the pcb argument.

CALL_IOLOCKW returns the address of the I/O database mutex in R0. Unless
you specify save_r1=NO, the macro preserves R1 across the call.

MACRO-32 Driver Macros 11–39

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_IORSNWAIT

CALL_IORSNWAIT

Places a process in a resource wait state if it has enabled resource waits.

Format

CALL_IORSNWAIT [do_ret=YES]

Parameters

do_ret
Indicates that the macro generates a RET instruction at the end of its expansion,
thus returning control to the caller of the routine that invokes it.

Description

A JMP to EXE$IORSNWAIT in a VAX driver should be replaced with the CALL_
IORSNWAIT macro. CALL_IORSNWAIT calls EXE_STD$IORSNWAIT using
the current contents of R3, R4, R5, R6, R0, and R1 as the irp, pcb, ucb, ccb,
qio_status, and rsn arguments, respectively. When EXE_STD$IORSNWAIT
returns control to the code generated by a default invocation of $IORSNWAIT,
a RET instruction returns control to the caller of the macro’s invoker. Status is
returned in R0 and in the FDT_CONTEXT structure.

11–40 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_IOUNLOCK

CALL_IOUNLOCK

Releases ownership of the I/O database mutex and, if the mutex has thus become
available to waiting processes, reactivates the next eligible process.

Format

CALL_IOUNLOCK

Description

A JSB to SCH$IOUNLOCK in a VAX driver should be replaced with the CALL_
IOUNLOCK macro. CALL_IOUNLOCK calls SCH_STD$IOUNLOCK using the
current contents of R4 as the pcb argument.

MACRO-32 Driver Macros 11–41

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_LINK_UCB

CALL_LINK_UCB

Searches the UCB list attached to the device data block identified by the specified
UCB and links the specified UCB into the list in ascending unit number order.

Format

CALL_LINK_UCB [interface_warning=YES]

Parameters

[interface_warning=YES]
Specifies that the macro generate a compile-time warning indicating how the
behavior of the macro differs from the VAX version of the corresponding system
routine. interface_warning=NO suppresses the warning.

Description

A JSB to IOC$LINK_UCB in a VAX driver should be replaced with the CALL_
LINK_UCB macro. CALL_LINK_UCB calls IOC_STD$LINK_UCB using the
current contents of R5 as the ucb argument. CALL_LINK_UCB returns the
status in R0 and address of the newly-created UCB in R2, but does not return the
address of the UCBs that precede and follow it on the DDB chain in R3 and R1,
respectively.

11–42 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_MAPVBLK

CALL_MAPVBLK

Maps a virtual block to a logical block using a mapping window.

Format

CALL_MAPVBLK

Description

A JSB to IOC$MAPVBLK in a VAX driver should be replaced with the CALL_
MAPVBLK macro. CALL_MAPVBLK calls IOC_STD$MAPVBLK, using the
current contents of R0, R1, R2, R3, and R5 as the vbn, numbytes, wcb, irp and
ucb arguments, respectively. It returns status in R0, the address of the logical
block number of the first block mapped in R1, the number of unmapped bytes in
R2, and the address of the updated UCB in R3. If the low bit of the status value
in R0 is clear, signifying failure status, only the value in R2 is valid.

MACRO-32 Driver Macros 11–43

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_MNTVER

CALL_MNTVER

Assists a driver with mount verification.

Format

CALL_MNTVER

Description

A JSB to IOC$MNTVER in a VAX driver should be replaced with the CALL_
MNTVER macro. CALL_MNTVER calls IOC_STD$MNTVER, using the current
contents of R3 and R5 as the irp and ucb arguments, respectively.

11–44 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_MNTVERSIO

CALL_MNTVERSIO

Processes I/O functions that affect the online count and local valid status of a
disk.

Format

CALL_MNTVERSIO

Description

A JSB to EXE$MNTVERSIO in a VAX driver should be replaced with the CALL_
MNTVERSIO macro. CALL_MNTVERSIO calls EXE_STD$MNTVERSIO, using
the current contents of R0, R3, and R5 as the rout, irp, and ucb arguments,
respectively.

MACRO-32 Driver Macros 11–45

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_MODIFYLOCK, CALL_MODIFYLOCK_ERR

CALL_MODIFYLOCK, CALL_MODIFYLOCK_ERR

Validate and prepare a user buffer for a direct-I/O, DMA read/write operation.

Format

CALL_MODIFYLOCK

CALL_MODIFYLOCK_ERR [interface_warning=YES]

Parameters

[interface_warning=YES]
Specifies that the macro generate a compile-time warning indicating how the
behavior of the macro differs from the VAX version of the corresponding system
routine. interface_warning=NO suppresses the warning.

Description

A JSB to EXE$MODIFYLOCK in a VAX driver should be replaced with the
CALL_MODIFYLOCK macro. A JSB to EXE$MODIFYLOCK_ERR should be
replaced with the CALL_MODIFYLOCK_ERR macro. CALL_MODIFYLOCK
calls EXE_STD$MODIFYLOCK, specifying 0 as the err_rout argument; CALL_
MODIFYLOCK_ERR also calls EXE_STD$MODIFYLOCK, using the contents of
R2 as the err_rout argument. Both macros supply the current contents of R3,
R4, R5, R6, R0, and R1 as the irp, pcb, ucb, ccb, buf, and bufsize arguments,
respectively.

When EXE_STD$MODIFYLOCK or EXE_STD$MODIFYLOCK_ERR returns,
code generated by the macro examines the return status:

• If success status (SS$_NORMAL) is returned, the macro moves the contents
of IRP$L_SVAPTE into R1 and writes a 5 into R2 to indicate a modify
operation. Status is returned in R0 and in the FDT_CONTEXT structure.

• If failure status (SS$_FDT_COMPL) is returned, the macro writes a 5 to R2
to indicate a modify operation and and returns to FDT dispatching code in
the $QIO system service.

11–46 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_MOUNT_VER

CALL_MOUNT_VER

During I/O postprocessing, determines whether mount verification should be
initiated on a given disk or tape device on behalf of the I/O request being
completed.

Format

CALL_MOUNT_VER [save_r0r1]

Parameters

save_r0r1
Indicates that the macro must preserve the contents of R0 and R1 across the call
to EXE_STD$MOUNT_VER. If save_r0r1 is blank or save_r0r1=YES, the 64-bit
registers are saved. (In the former case, the macro generates a compile-time
message. If save_r0r1=NO, the registers are not saved.)

Description

A JSB to EXE$MOUNT_VER in a VAX driver should be replaced with the CALL_
MOUNT_VER macro. CALL_MOUNT_VER calls EXE_STD$MOUNT_VER,
using the current contents of R0, R1, R3, and R5 as the iost1, iost2, irp, and
ucb arguments, respectively. When EXE_STD$MOUNT_VER returns, code
generated by this macro copies return status from R0 to R2. Unless you specify
save_r0r1=NO, the macro preserves the quadword registers R0 and R1 across
the call.

MACRO-32 Driver Macros 11–47

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_MOVFRUSER, CALL_MOVFRUSER2

CALL_MOVFRUSER, CALL_MOVFRUSER2

Move data from a user buffer to a device.

Format

CALL_MOVFRUSER

CALL_MOVFRUSER2

Description

JSBs to IOC$MOVFRUSER and IOC$MOVFRUSER2 in a VAX driver should
be replaced with CALL_MOVFRUSER and CALL_MOVFRUSER2, respectively.
CALL_MOVFRUSER calls IOC_STD$MOVFRUSER, and CALL_MOVFRUSER2
calls IOC_STD$MOVFRUSER2, passing the current contents of R1, R2, and
R5 as the sysbuf, numbytes, and ucb arguments. CALL_MOVFRUSER2 also
passes the current contents of R0 as the sva argument. Both macros return in
R0 and R1, respectively, the system virtual addresses of the bytes in the internal
buffer and user buffer after the last byte moved.

11–48 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_MOVTOUSER, CALL_MOVTOUSER2

CALL_MOVTOUSER, CALL_MOVTOUSER2

Move data from an internal buffer to a user buffer.

Format

CALL_MOVTOUSER

CALL_MOVTOUSER2

Description

JSBs to IOC$MOVTOUSER and IOC$MOVTOUSER2 in a VAX driver should
be replaced with CALL_MOVTOUSER and CALL_MOVTOUSER2, respectively.
CALL_MOVTOUSER calls IOC_STD$MOVTOUSER, and CALL_MOVTOUSER2
calls IOC_STD$MOVTOUSER2, passing the current contents of R1, R2, and
R5 as the sysbuf, numbytes, and ucb arguments. CALL_MOVTOUSER2 also
passes the current contents of R0 as the sva argument. Both macros return in
R0 and R1, respectively, the system virtual addresses of the bytes in the internal
buffer and user buffer after the last byte moved.

MACRO-32 Driver Macros 11–49

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_PARSDEVNAM

CALL_PARSDEVNAM

Parses a device name string, checking its syntax and extracting the node name,
allocation class number, and unit number.

Format

CALL_PARSDEVNAM

Description

A JSB to IOC$PARSDEVNAM in a VAX driver should be replaced with
the CALL_PARSDEVNAM macro. CALL_PARSDEVNAM calls IOC_
STD$PARSDEVNAM, using the current contents of R8, R9, and R10 as
the devnamsiz, devnam, and flags arguments, respectively. When IOC_
STD$PARSDEVNAM returns, the macro returns status in R0; the unit number
in R2; the length of the SCS node name at the beginning of the name string,
allocation class number, or device type code in R3; the size of the name string in
R8, the address of the name string in R9, and the flags in R10.

11–50 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_POST, CALL_POST_NOCNT

CALL_POST, CALL_POST_NOCNT

Initiate device-independent postprocessing of an I/O request independent of the
status of the device unit.

Format

CALL_POST [save_r1]

CALL_POST_NOCNT [save_r1]

Parameters

save_r1
Indicates that the macro must preserve the contents of R1 across the call to
COM_STD$POST or COM_STD$POST_NOCNT. If save_r1 is blank or save_
r1=YES, the 64-bit register is saved. (In the former case, the macro generates a
compile-time message. If save_r1=NO, R1 is not saved.)

Description

A JSB to COM$POST in a VAX driver should be replaced with the CALL_POST
macro. CALL_POST calls COM_STD$POST using the current contents of R3
and R5 as the irp and ucb arguments, respectively. CALL_POST_NOCNT calls
COM_STD$POST_NOCNT using the current contents of R3 as the irp argument.
Unless you specify save_r1=NO, the macro preserves the quadword register R1
across the call.

MACRO-32 Driver Macros 11–51

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_POST_IRP

CALL_POST_IRP

Inserts an I/O request packet in a CPU-specific I/O postprocessing queue.

Format

CALL_POST_IRP

Description

A JSB to IOC$POST_IRP in a VAX driver should be replaced with the CALL_
POST_IRP macro. CALL_POST_IRP calls IOC_STD$POST_IRP using the
current contents of R3 as the irp argument.

11–52 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_PTETOPFN

CALL_PTETOPFN

Returns a page frame number (PFN) from a page-table entry (PTE) that has
already been determined to be invalid.

Format

CALL_PTETOPFN

Description

A JSB to IOC$PTETOPFN in a VAX driver should be replaced with the CALL_
PTETOPFN macro. CALL_PTETOPFN extracts the quadword page-table entry
from R3 and passes a pointer to it as the pte argument to IOC_STD$PTETOPFN.
It returns the page frame number in R0.

MACRO-32 Driver Macros 11–53

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_QIOACPPKT

CALL_QIOACPPKT

Delivers an IRP to the appropriate ACP or XQP.

Format

CALL_QIOACPPKT [do_ret=YES]

Parameters

do_ret
Indicates that the macro generates a RET instruction at the end of its expansion,
thus returning control to the caller of the routine that invokes it.

Description

A JMP to EXE$QIOACPPKT in a VAX driver should be replaced with the CALL_
QIOACPPKT macro. CALL_QIOACPPKT calls EXE_STD$QIOACPPKT using
the current contents of R3, R4, and R5 as the irp, pcb, and ucb arguments,
respectively. When EXE_STD$QIOACPPKT returns control to the code generated
by a default invocation of $QIOACPPKT, a RET instruction returns control to the
caller of the macro’s invoker. Status is returned in R0 and in the FDT_CONTEXT
structure.

11–54 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_QIODRVPKT

CALL_QIODRVPKT

Delivers an IRP to the driver’s start-I/O routine or pending-I/O queue.

Format

CALL_QIODRVPKT [do_ret=YES]

Parameters

do_ret
Indicates that the macro generates a RET instruction at the end of its expansion,
thus returning control to the caller of the routine that invokes it.

Description

A JMP to EXE$QIODRVPKT in a VAX driver should be replaced with the CALL_
QIODRVPKT macro. CALL_QIODRVPKT clears IRP$PS_FDT_CONTEXT and
calls EXE_STD$INSIOQ, using the current contents of R3 and R5 as the irp and
ucb arguments, respectively. When EXE_STD$INSIOQ returns control to the
code generated by a default invocation of CALL_QIODRVPKT, a RET instruction
returns control to the caller of the macro’s invoker. Status is returned in R0.

MACRO-32 Driver Macros 11–55

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_QNXTSEG1

CALL_QNXTSEG1

Queues the next segment of a virtual I/O request that did not map to a single
contiguous I/O request.

Format

CALL_QNXTSEG1

Description

A JSB to IOC$QNXTSEG1 in a VAX driver should be replaced with the CALL_
QNXTSEG1 macro. CALL_QNXTSEG1 calls IOC_STD$QNXTSEG1 using the
current contents of R0, R1, R2, R3, R4, and R5 as the vbn, bcnt, wcb, irp, pcb,
and ucb arguments. It returns the address of the updated UCB in R5.

11–56 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_QXQPPKT

CALL_QXQPPKT

Inserts an IRP on the end of the XQP work queue and initiates its processing if it
is the only request on the queue.

Format

CALL_QXQPPKT

Description

A JMP to EXE$QXQPPKT in a VAX driver should be replaced with the CALL_
QXQPPKT macro. CALL_QXQPPKT calls EXE_STD$QXQPPKT using the
current contents of R4 and R5 as the pcb and acb arguments, respectively.
Status is returned in R0 and in the FDT_CONTEXT structure.

MACRO-32 Driver Macros 11–57

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_READCHK, CALL_READCHKR

CALL_READCHK, CALL_READCHKR

Verifies that a process has write access to the pages in the buffer specified in a
$QIO request.

Format

CALL_READCHK

CALL_READCHKR

Description

A JSB to EXE$READCHK in a VAX driver should be replaced with the CALL_
READCHK macro. A JSB to EXE$READCHKR should be replaced with the
CALL_READCHKR macro. Both macros call EXE_STD$READCHK using the
current contents of R3, R4, R5, R0, and R1 as the irp, pcb, ucb, buf, and
bufsize arguments, respectively.

When EXE_STD$READCHK returns, CALL_READCHK and CALL_READCHKR
move 1 into R2 to indicate a read operation and examines the return status:

• If success status (SS$_NORMAL) is returned, CALL_READCHK and CALL_
READCHKR copy the contents of IRP$L_BCNT into R1. CALL_READCHK
writes the starting address of the I/O buffer in R0; CALL_READCHKR
preserves the return status value in R0.

• If failure status (SS$_FDT_COMPL) is returned, CALL_READCHK returns
to FDT dispatching code in the $QIO system service. CALL_READCHKR
does not return control to $QIO.

11–58 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_READLOCK, CALL_READLOCK_ERR

CALL_READLOCK, CALL_READLOCK_ERR

Validate and prepare a user buffer for a direct-I/O, DMA write operation.

Format

CALL_READLOCK

CALL_READLOCK_ERR [interface_warning=YES]

Parameters

[interface_warning=YES]
Specifies that the macro generate a compile-time warning indicating how the
behavior of the macro differs from the VAX version of the corresponding system
routine. interface_warning=NO suppresses the warning.

Description

A JSB to EXE$READLOCK in a VAX driver should be replaced with the CALL_
READLOCK macro. A JSB to EXE$READLOCK_ERR in a VAX driver should
be replaced with CALL_READLOCK_ERR. CALL_READLOCK calls EXE_
STD$READLOCK, specifying 0 as the err_rout argument; CALL_READLOCK_
ERR also calls EXE_STD$READLOCK, using the contents of R2 as the err_rout
argument. Both macros supply the current contents of R3, R4, R5, R6, R0, and
R1 as the irp, pcb, ucb, ccb, buf, and bufsize arguments, respectively.

When EXE_STD$READLOCK or EXE_STD$READLOCK_ERR returns, code
generated by the macro examines the return status:

• If success status (SS$_NORMAL) is returned, the macro copies the contents
of IRP$L_SVAPTE into R1 and writes a 1 to R2 to indicate a read operation.
Status is returned in R0 and in the FDT_CONTEXT structure.

• If failure status (SS$_FDT_COMPL) is returned, the macro writes a 1 to R2
to indicate a read operation and returns to FDT dispatching code in the $QIO
system service.

MACRO-32 Driver Macros 11–59

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_RELCHAN

CALL_RELCHAN

Releases device ownership of all controller data channels.

Format

CALL_RELCHAN

Description

A JSB to IOC$RELCHAN in a VAX driver should be replaced with the CALL_
RELCHAN macro. CALL_RELCHAN calls IOC_STD$RELCHAN using the
current contents of R5 as the ucb argument.

11–60 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_RELEASEMB

CALL_RELEASEMB

Releases an error message buffer to the error-logging process.

Format

CALL_RELEASEMB

Description

A JSB to ERL$RELEASEMB in a VAX driver should be replaced with the CALL_
RELEASEMB macro. CALL_RELEASEMB calls ERL_STD$RELEASEMB using
the current contents of R2 as the embdv argument.

MACRO-32 Driver Macros 11–61

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_REQCOM

CALL_REQCOM

Completes an I/O operation on a device unit, requests I/O postprocessing of the
current request, and starts the next I/O request waiting for the device.

Format

CALL_REQCOM

Description

A JSB to IOC$REQCOM in a VAX driver should be replaced with the CALL_
REQCOM macro. CALL_REQCOM calls IOC_STD$REQCOM, using the current
contents of R0, R1, and R5 as the iost1, iost2, and ucb arguments, respectively.

11–62 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_SEARCHDEV

CALL_SEARCHDEV

Searches the I/O database for a specific physical device.

Format

CALL_SEARCHDEV

Description

A JSB to IOC$SEARCHDEV in a VAX driver should be replaced with the CALL_
SEARCHDEV macro. CALL_SEARCHDEV calls IOC_STD$SEARCHDEV,
using the current contents of R1 as the descr_p argument. When IOC_
STD$SEARCHDEV returns, the macro returns returns status in R0, the UCB
address in R1, the DDB address in R2, and the SB address in R3.

MACRO-32 Driver Macros 11–63

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_SEARCHINT

CALL_SEARCHINT

Searches the I/O database for the specified device, using specified search rules.

Format

CALL_SEARCHINT

Description

A JSB to IOC$SEARCHINT in a VAX driver should be replaced with the the
CALL_SEARCHINT macro. CALL_SEARCHINT calls IOC_STD$SEARCHINT,
using the current contents of R2, R3, R8, R9 and R10 as the unit, scslen,
devnamlen, devnam, and flags arguments, respectively. When IOC_
STD$SEARCHINT returns, the macro returns status in R0, the UCB address in
R5, the DDB address in R6, and the SB address in R7.

11–64 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_SETATTNAST

CALL_SETATTNAST

Enables or disables attention ASTs.

Format

CALL_SETATTNAST

Description

A JSB to COM$SETATTNAST in a VAX driver should be replaced with
the CALL_SETATTNAST macro. CALL_SETATTNAST calls COM_
STD$SETATTNAST using the current contents of R3, R4, R5, R6, and R7, as
the irp, pcb, ucb, ccb, and acb_lh arguments, respectively. It returns status in
R0 and in the FDT_CONTEXT structure.

MACRO-32 Driver Macros 11–65

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_SETCTRLAST

CALL_SETCTRLAST

Enables or disables control ASTs.

Format

CALL_SETCTRLAST

Description

A JSB to COM$SETCTRLAST in a VAX driver should be replaced with
the CALL_SETCTRLAST macro. CALL_SETCTRLAST calls COM_
STD$SETCTRLAST using the current contents of R3, R4, R5, R7, and R2, as
the irp, pcb, ucb, acb_lh, and mask arguments, respectively. It returns the
TAST block in R2. It returns status in R0 and in the FDT_CONTEXT structure.

11–66 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_SEVER_UCB

CALL_SEVER_UCB

Removes the specified UCB from the UCB list of the device data block identified
within the specified UCB.

Format

CALL_SEVER_UCB

Description

A JSB to IOC$SEVER_UCB in a VAX driver should be replaced with the CALL_
SEVER_UCB macro. CALL_SEVER_UCB calls IOC_STD$SEVER_UCB using
the current contents of R5 as the ucb argument.

MACRO-32 Driver Macros 11–67

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_SIMREQCOM

CALL_SIMREQCOM

Completes an I/O operation by setting an event flag, modifying an I/O status
block (IOSB), setting an event flag, or queuing an AST to the process requesting
the I/O. The caller of this routine is responsible for checking quotas and updating
the I/O count.

Format

CALL_SIMREQCOM

Description

A JSB to IOC$SIMREQCOM in a VAX driver should be replaced with the CALL_
SIMREQCOM macro. CALL_SIMREQCOM calls IOC_STD$SIMREQCOM, using
the current contents of R1, R2, R3, R4, R5, and R6 as the iosb, pri, efn, iost,
acb, and acmode arguments, respectively.

11–68 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_SNDEVMSG

CALL_SNDEVMSG

Builds and sends a device-specific message to the mailbox of a system process,
such as the job controller or OPCOM.

Format

CALL_SNDEVMSG [save_r1]

Parameters

save_r1
Indicates that the macro must preserve the contents of R1 across the call to
COM_STD$POST. If save_r1 is blank or save_r1=YES, the 64-bit register is
saved. (In the former case, the macro generates a compile-time message. If
save_r1=NO, R1 is not saved.)

Description

A JSB to EXE$SNDEVMSG in a VAX driver should be replaced with the the
CALL_SNDEVMSG macro. CALL_SNDEVMSG calls EXE_STD$SNDEVMSG,
using the current contents of R3, R4, and R5 as the mb_ucb, msgtyp, and
ucb arguments, respectively. It returns status in R0. Unless you specify save_
r1=NO, the macro preserves the R1 across the call.

MACRO-32 Driver Macros 11–69

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_THREADCRB

CALL_THREADCRB

Threads a controller request block (CRB) onto the due-time chain headed by
IOC$GL_CRBTMOUT.

Format

CALL_THREADCRB [save_r0]

Parameters

save_r0
Indicates that the macro must preserve the contents of R0 across the call to IOC_
STD$THREADCRB. If save_r0 is blank or save_r0=YES, the 64-bit register
is saved. (In the former case, the macro generates a compile-time message. If
save_r0=NO, R0 is not saved.)

Description

A JSB to IOC$THREADCRB in a VAX driver should be replaced with the CALL_
THREADCRB macro. CALL_THREADCRB calls IOC_STD$THREADCRB using
the current contents of R3 as the crb argument. Unless you specify save_r1=NO,
the macro preserves the quadword register R1 across the call.

11–70 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_UNLOCK

CALL_UNLOCK

Unlocks process pages previously locked for a direct-I/O operation.

Format

CALL_UNLOCK

Description

A JSB to MMG$UNLOCK in a VAX driver should be replaced with the CALL_
UNLOCK macro. CALL_UNLOCK calls MMG_STD$UNLOCK using the current
contents of R1 and R3 as the npages and svapte arguments, respectively.

MACRO-32 Driver Macros 11–71

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_WRITECHK, CALL_WRITECHKR

CALL_WRITECHK, CALL_WRITECHKR

Verify that a process has read access to the pages in the buffer specified in a
$QIO request.

Format

CALL_WRITECHK

CALL_WRITECHKR

Description

A JSB to EXE$WRITECHK in a VAX driver should be replaced with the CALL_
WRITECHK macro. A JSB to EXE$READCHKR in a VAX driver should
be replaced with the CALL_READCHKR macro. Both macros call EXE_
STD$READCHK using the current contents of R3, R4, R5, R0, and R1 as the
irp, pcb, ucb, buf, and bufsize arguments, respectively.

When EXE_STD$WRITECHK returns, CALL_WRITECHK and CALL_
WRITECHKR clear R2 to indicate a write operation and examines the return
status:

• If success status (SS$_NORMAL) is returned, CALL_WRITECHK and CALL_
WRITECHKR copy the contents of IRP$L_BCNT into R1. CALL_WRITECHK
writes the starting address of the I/O buffer in R0; CALL_WRITECHKR
preserves the return status value in R0.

• If failure status (SS$_FDT_COMPL) is returned, CALL_WRITECHK returns
to FDT dispatching code in the $QIO system service. CALL_WRITECHKR
does not return control to $QIO.

11–72 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_WRITELOCK, CALL_WRITELOCK_ERR

CALL_WRITELOCK, CALL_WRITELOCK_ERR

Validate and prepare a user buffer for a direct-I/O, DMA read operation.

Format

CALL_WRITELOCK

CALL_WRITELOCK_ERR [interface_warning=YES]

Parameters

[interface_warning=YES]
Specifies that the macro generate a compile-time warning indicating how the
behavior of the macro differs from the VAX version of the corresponding system
routine. interface_warning=NO suppresses the warning.

Description

A JSB to EXE$WRITELOCK in a VAX driver should be replaced with the CALL_
WRITELOCK macro. A JSB to EXE$WRITELOCK_ERR in a VAX driver should
be replaced with the CALL_WRITELOCK_ERR macro. CALL_WRITELOCK
calls EXE_STD$WRITELOCK, specifying 0 as the err_rout argument; CALL_
WRITELOCK_ERR also calls EXE_STD$WRITELOCK, using the contents of
R2 as the err_rout argument. Both macros supply the current contents of R3,
R4, R5, R6, R0, and R1 as the irp, pcb, ucb, ccb, buf, and bufsize arguments,
respectively.

When EXE_STD$WRITELOCK or EXE_STD$WRITELOCK_ERR returns, code
generated by the macro examines the return status:

• If success status (SS$_NORMAL) is returned, the macro moves the contents
of IRP$L_SVAPTE into R1 and clears R2 to indicate a write operation. Status
is returned in R0 and in the FDT_CONTEXT structure.

• If failure status (SS$_FDT_COMPL) is returned, the macro clears R2 to
indicate a write operation and returns to FDT dispatching code in the $QIO
system service.

MACRO-32 Driver Macros 11–73

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CALL_WRTMAILBOX

CALL_WRTMAILBOX

Sends a message to a mailbox.

Format

CALL_WRTMAILBOX [save_r1]

Parameters

save_r1
Indicates that the macro must preserve the contents of R1 across the call to
COM_STD$POST. If save_r1 is blank or save_r1=YES, the 64-bit register is
saved. (In the former case, the macro generates a compile-time message. If
save_r1=NO, R1 is not saved.)

Description

A JSB to EXE$WRTMAILBOX in a VAX driver should be replaced with
the CALL_WRTMAILBOX macro. CALL_WRTMAILBOX calls EXE_
STD$WRTMAILBOX, using the current contents of R5, R3, and R4 as the
mb_ucb, msgsiz, and msg arguments, respectively. It returns status in R0.
Unless you specify save_r1=NO, the macro preserves the R1 across the call.

11–74 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CLASS_UNIT_INIT

CLASS_UNIT_INIT

Generates the common code that must be executed by the unit initialization
routine of all terminal port drivers.

Format

CLASS_UNIT_INIT [ucb=R5] [,port_vector=R0]

Parameters

[ucb=R5]
Address of UCB.

[port_vector=R0]
Address of port driver vector table.

Description

A terminal port driver’s unit initialization routine invokes the CLASS_UNIT_
INIT macro to perform initialization tasks common to all port drivers. To use
the CLASS_UNIT_INIT macro, the driver must include an invocation of the
$TTYMACS definition macro (from SYS$LIBRARY:LIB.MLB).

The CLASS_UNIT_INIT macro binds the terminal port and class driver into a
single, complete driver by initializing the following fields as indicated:

Field Contents

UCB$L_TT_CLASS Class driver vector table address
UCB$L_TT_PORT Port driver vector table address
UCB$L_TT_GETNXT Procedure value of the class driver’s get-next-

character routine (CLASS_GETNXT)
UCB$L_TT_PUTNXT Procedure value of the class driver’s put-next-

character routine (CLASS_PUTNXT)
UCB$B_TT_PARITY Current parity, frame, and stop bit information

(from TTY$GB_PARITY)
UCB$B_TT_DEPARI Default parity, frame, and stop bit information (from

TTY$GB_PARITY)
DDT$PS_START Procedure value of the class driver’s start-I/O

routine
DDT$PS_FDT Address of the class driver’s function-decision table
DDT$PS_CANCEL Procedure value of the class driver’s cancel-I/O

routine
DDT$PS_ALTSTART Procedure value of the class driver’s alternate

start-I/O routine

MACRO-32 Driver Macros 11–75

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CLASS_UNIT_INIT

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

Because an OpenVMS Alpha terminal port driver cannot share a single DDT
with the OpenVMS Alpha terminal class driver, the CLASS_UNIT_INIT macro
does not write the address of the class_driver’s DDT into UCB$L_DDT. Rather,
it assumes that the port driver has created its own DDT with entries for its
controller initialization routine (DDT$PS_CTRLINIT) and unit initialization
routine (DDT$L_UNITINIT). CLASS_UNIT_INIT further initializes the port
driver’s DDT (the address of which it obtains from UCB$L_DDT) by copying to
it from the class driver’s DDT the procedure values of the class driver’s start-
I/O routine, function-decision table, cancel-I/O routine, and alternate start-I/O
routine.

11–76 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CPUDISP

CPUDISP

Causes a branch to a specified address according to the CPU type of the Alpha
processor executing the code generated by the macro expansion.

Format

CPUDISP list [,continue=YES]

Parameters

list
List containing one or more pairs of arguments in the following format:

<CPU-type, destination>

The CPU-type parameter identifies the type of an Alpha processor for which the
macro is to generate a case table entry.

The CPUDISP macro identifies the following Alpha systems:

EV3 Reduced functionality Alpha system
EV4 Fully functional Alpha system
MANNEQUIN Alpha simulator

continue=YES
Specifies whether execution should continue at the line immediately after the
CPUDISP macro if the value at EXE$GQ_CPUTYPE does not correspond to any
of the values specified as the CPU-type in the list argument. A fatal bugcheck
of UNSUPRTCPU occurs if the dispatching code does not find the executing
processor identified in the list and the value of continue is NO.

Description

The CPUDISP macro provides a means for transferring control to a specified
destination depending on the CPU type of the executing processor.

CPUDISP constructs appropriate symbolic constants for each CPU-type listed
in list, and compares them against the contents of EXE$GQ_CPUTYPE. These
constants have the form HWRPB$_CPU_TYPE$K_CPU-type.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• With the presence of the new SYSDISP macro, the operation of the CPUDISP
macro becomes less complex. The OpenVMS Alpha version of CPUDISP
provides a means for transferring control to a routine entry point based solely
on the type of processor chip employed in the Alpha system. The ability to
dispatch specifically on the Alpha system type (or subtype, as this parameter
is called in descriptions of the OpenVMS VAX version of CPUDISP) is
provided on OpenVMS Alpha systems by the SYSDISP macro.

• The default value of the continue argument on OpenVMS Alpha systems
is YES. In other words, CPUDISP does not request the UNSUPRTCPU
bugcheck by default, should you not specify the executing CPU-type in the
list argument.

MACRO-32 Driver Macros 11–77

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CRAM_ALLOC

CRAM_ALLOC

Allocates a controller register access mailbox.

Format

CRAM_ALLOC cram [,idb] [,ucb] [,adp]

Parameters

cram
Location to which the address of the allocated CRAM is returned.

[idb]
Address of IDB for device.

[ucb]
Address of UCB for device.

[adp]
Address of ADP for device.

Description

CRAM_ALLOC allocates a controller register access mailbox (CRAM) by calling
IOC$ALLOCATE_CRAM. Code must be executing at or below IPL$_SYNCH
and not be holding spin locks ranked higher than IO_MISC when invoking the
CRAM_ALLOC macro. For example:

CRAM_ALLOC CRAM=PDT$L_R_XBE(R4),-
IDB=R3,-
UCB=R5,-
ADP=R2

11–78 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CRAM_CMD

CRAM_CMD

Calculates the COMMAND, MASK, and RBADR fields for a hardware I/O mailbox
according to the requirements of a specific I/O interconnect.

Format

CRAM_CMD index ,offset ,adp [,cram] [,command]

Parameters

index
Command index. IOC$CRAM_CMD uses this index to generate a mailbox
command that is specific to the tightly-coupled interconnect that is to be the
target of a request using this CRAM. You can specify any of the following values
(defined by the $CRAMDEF macro), although which of these I/O operations is
supported depends on the I/O interconnect that is to be the object of the mailbox
operation.

Command Index Description

CRAMCMD$K_RDQUAD32 Quadword read in 32-bit space
CRAMCMD$K_RDLONG32 Longword read in 32-bit space
CRAMCMD$K_RDWORD32 Word read in 32-bit space
CRAMCMD$K_RDBYTE32 Byte read in 32-bit space
CRAMCMD$K_WTQUAD32 Quadword write in 32-bit space
CRAMCMD$K_WTLONG32 Longword write in 32-bit space
CRAMCMD$K_WTWORD32 Word write in 32-bit space
CRAMCMD$K_WTBYTE32 Byte write in 32-bit space
CRAMCMD$K_RDQUAD64 Quadword read in 64 bit space
CRAMCMD$K_RDLONG64 Longword read in 64 bit space
CRAMCMD$K_RDWORD64 Word read in 64 bit space
CRAMCMD$K_RDBYTE64 Byte read in 64 bit space
CRAMCMD$K_WTQUAD64 Quadword write in 64 bit space
CRAMCMD$K_WTLONG64 Longword write in 64 bit space
CRAMCMD$K_WTWORD64 Word write in 64 bit space
CRAMCMD$K_WTBYTE64 Byte write in 64 bit space

offset
Byte offset of the field to be written or read from the base of device interface
register (CSR) space. Calculation of the RBADR and MASK fields of the hardware
mailbox depends on the addressing and masking mechanisms provided by the
remote bus. The byte_offset parameter is used by IOC$CRAM_CMD to calculate
the RBADR, and for write operations, is used to calculate the MASK as well.

adp
Address of ADP associated with this command. IOC$CRAM_CMD uses this
parameter to determine which tightly-coupled I/O interconnect is the object of the
mailbox transaction and to construct the mailbox command accordingly.

MACRO-32 Driver Macros 11–79

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CRAM_CMD

[cram]
Address of CRAM. If this parameter is specified, IOC$CRAM_CMD returns the
command, mask, and remote bus address values in the corresponding fields of
the hardware I/O mailbox. You must specify the cram argument, command
argument, or both.

[command]
Address of buffer, two quadwords in length. If this parameter is specified,
IOC$CRAM_CMD returns the command, mask, and remote bus address values in
the specified buffer. You must specify the cram argument, command argument,
or both.

Description

CRAM_CMD calls IOC$CRAM_CMD to generate bus-specific values for the
command, mask, and remote bus fields of the hardware I/O mailbox that is the
target of the mailbox operation, inserting these values into the indicated mailbox,
buffer, or both.

CRAM_CMD INDEX=#CRAMCMD$K_RDLONG32,-
OFFSET=#XMI$L_XDEV,-
ADP=R2,-
CRAM=PDT$L_R_XDEV(R4)

11–80 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CRAM_DEALLOC

CRAM_DEALLOC

Deallocates a controller register access mailbox.

Format

CRAM_DEALLOC cram

Parameters

cram
Address of CRAM to be deallocated by IOC$DEALLOCATE_CRAM.

Description

CRAM_DEALLOC deallocates a controller register access mailbox. When
invoking the CRAM_DEALLOC macro, a device driver must be executing at or
below IPL 8 and not be holding spin locks ranked higher than IO_MISC.

MACRO-32 Driver Macros 11–81

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CRAM_IO

CRAM_IO

Queues the hardware I/O mailbox defined within a controller register access
mailbox (CRAM) to the mailbox pointer register (MBPR) and awaits the
completion of the mailbox transaction.

Format

CRAM_IO cram

Parameters

cram
Address of CRAM associated with the hardware I/O mailbox transaction.

Description

The CRAM_IO macro calls IOC$CRAM_IO to perform an entire hardware I/O
mailbox transaction from the queuing of the hardware I/O mailbox to the MBPR
to the transaction’s completion. Invoking the CRAM_IO macro is the equivalent
to successive invocations of the CRAM_QUEUE and CRAM_WAIT macros.
Prior to invoking CRAM_IO, a driver typically invokes CRAM_CMD to insert a
command, mask, and remote interconnect address into the hardware I/O mailbox
portion of the CRAM. For CRAMs involved in writes to device interface registers,
the driver must also insert the data to be written into CRAM$Q_WDATA.

11–82 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CRAM_QUEUE

CRAM_QUEUE

Queues the hardware I/O mailbox defined within a controller register access
mailbox (CRAM) to the mailbox pointer register (MBPR).

Format

CRAM_QUEUE cram

Parameters

cram
Address of CRAM to be queued.

Description

The CRAM_QUEUE macro calls IOC$CRAM_QUEUE to initiate an I/O operation
to a device in remote I/O space by writing the physical address of the hardware
I/O mailbox portion of a CRAM to the MBPR. Prior to invoking CRAM_QUEUE,
a driver typically invokes CRAM_CMD to insert a command, mask, and remote
interconnect address into the hardware I/O mailbox portion of the CRAM. For
CRAMs involved in writes to device interface registers, the driver must also
insert the data to be written into CRAM$Q_WDATA,

It is expected that the driver will eventually invoke CRAM_WAIT to await
completion of the request.

MACRO-32 Driver Macros 11–83

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
CRAM_WAIT

CRAM_WAIT

Awaits the completion of a hardware I/O mailbox transaction to a tightly-coupled
I/O interconnect.

Format

CRAM_WAIT cram

Parameters

cram
Address of CRAM associated with a previously queued hardware I/O mailbox
transaction.

Description

The CRAM_WAIT macro calls IOC$CRAM_WAIT to check the done bit in the
hardware I/O mailbox (CRAM$V_MBX_DONE in CRAM$W_MBX_FLAGS) and
return status. It is expected that the caller has previously called IOC$CRAM_
QUEUE to post to the MBPR the hardware I/O mailbox defined within the
specified CRAM for an I/O operation.

11–84 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DDTAB

DDTAB

Generates a driver dispatch table (DDT) labeled devnam$DDT.

Format

DDTAB devnam ,[start=IOC$RETURN_SUCCESS]
,[ctrlinit=IOC$RETURN_SUCCESS] ,functb
[,cancel=IOC$RETURN_SUCCESS] [,regdmp=IOC$RETURN_SUCCESS]
[,diagbf=0] [,erlgbf=0] [,unitinit=IOC$RETURN_SUCCESS]
[,altstart=IOC$RETURN_SUCCESS] [,mntver=IOC_STD$MNTVER]
[,cloneducb=IOC$RETURN_SUCCESS]
[,mntv_sssc=IOC$RETURN_SUCCESS]
[,mntv_for=IOC$RETURN_SUCCESS]
[,mntv_sqd=IOC$RETURN_SUCCESS]
[,channel_assign=IOC$RETURN_SUCCESS]
[,cancel_selective=IOC$RETURN_SUCCESS] [,kp_stack_size=0]
[,kp_reg_mask=0] [,kp_startio=IOC$RETURN_SUCCESS] [,aux_storage=0]
[,aux_routine=IOC$RETURN_SUCCESS] [,step]

Parameters

devnam
Generic name of the device.

[start=IOC$RETURN_SUCCESS]
Address of the driver’s start-I/O routine. For drivers that use the kernel process
services, this is the address of the kernel process start-I/O routine (EXE_
STD$KP_STARTIO).

[ctrlinit=IOC$RETURN_SUCCESS]
Address of the controller initialization routine.

functb
Address of the driver’s function decision table (FDT).

[cancel=IOC$RETURN_SUCCESS]
Address of the cancel-I/O routine. Many drivers specify the address of the system
cancel-I/O routine (IOC_STD$CANCELIO) in this argument.

[regdmp=IOC$RETURN_SUCCESS]
Address of the routine that dumps the device registers to an error message buffer
or to a diagnostic buffer.

[diagbf=0]
Length in bytes of the diagnostic buffer.

[erlgbf=0]
Length in bytes of the error message buffer.

[unitinit=IOC$RETURN_SUCCESS]
Address of the unit initialization routine.

[altstart=IOC$RETURN_SUCCESS]
Address of the alternate start-I/O routine.

MACRO-32 Driver Macros 11–85

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DDTAB

[mntver=IOC_STD$MNTVER]
Address of the system-provided routine that is called at the beginning and end of
a mount verification operation. The default, IOC_STD$MNTVER, is suitable for
all single-stream disk drives. This argument is reserved to Digital.

[cloneducb=IOC$RETURN_SUCCESS]
Address of the routine called when a UCB is cloned by the $ASSIGN system
service.

[mntv_sssc=IOC$RETURN_SUCCESS]
Address of the routine called when the system performs mount verification for a
shadow set state change. This argument is reserved to Digital.

[mntv_for=IOC$RETURN_SUCCESS]
Address of the routine called when the system performs mount verification for a
foreign device. This argument is reserved to Digital.

[mntv_sqd=IOC$RETURN_SUCCESS]
Address of the routine called when the system performs mount verification for a
sequential device. This argument is reserved to Digital.

[channel_assign=IOC$RETURN_SUCCESS]
Address of the routine, called by SYS$ASSIGN, to complete channel assignment
in a device-specific manner. This argument is reserved to Digital. (Channel-
assignment routines are not yet implemented on OpenVMS Alpha systems.)

[cancel_selective=IOC$RETURN_SUCCESS]
Address of the routine that cancels a list of I/O requests from the specified
channel, including both waiting and active requests. This argument is reserved
to Digital. (Cancel selective routines are not yet implemented on OpenVMS
Alpha systems.)

[kp_stack_size=0]
Size in bytes of the kernel process stack. EXE_STD$KP_STARTIO uses this
value, or KPB$K_MIN_IO_STACK (currently 8KB), whichever is larger, to
determine the size of the stack created for the driver’s start I/O kernel process
thread.

[kp_reg_mask=0]
Kernel process register save mask.

This mask represents those registers used by a kernel process that must be
preserved across kernel process context switches. R12 through R15, R26, R27,
and R29 (KPREG$K_MIN_REG_MASK) are always preserved across kernel
process context switches, and that EXE$KP_STARTIO additionally includes R2
through R5 in this register set (KPREG$K_MIN_IO_REG_MASK). R0, R1, R16
through R25, R27, R28, R30, and R31 (KPREG$K_ERR_REG_MASK) are never
preserved and are illegal in a register save mask.

[kp_startio=IOC$RETURN_SUCCESS]
Address of the start-I/O routine of a driver that uses the kernel process services.
Such a driver typically specifies the system routine EXE_STD$KP_STARTIO in
the start argument to the DDTAB macro. EXE_STD$KP_STARTIO calls the
start-I/O routine specified in this argument after setting up the kernel process
environment.

11–86 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DDTAB

[aux_storage=0]
Address of auxiliary storage area. This argument is reserved to Digital.
(Auxiliary storage areas are not yet implemented on OpenVMS Alpha systems.)

[aux_routine=IOC$RETURN_SUCCESS]
Address of an auxiliary routine in the OpenVMS VAX mailbox driver that is
called by SYS$ASSIGN. This argument is reserved to Digital. (Auxiliary routines
are not yet implemented on OpenVMS Alpha systems.)

[step]
OpenVMS Alpha driver step number. You may indicate that a given driver
conforms to the coding practices for an VAX OpenVMS Alpha device driver by
supplying step=2 in the DDTAB macro invocation. If you previously specified the
step argument to the DPTAB macro, you need not repeat it here.

If you supply the step argument, but specify a value other than 1 or 2, the
DPTAB macro generates the following message:

%MACRO-E-GENERR, Generated ERROR: DDTAB must declare driver STEP=1 or STEP=2

Alpha drivers typically supply a value for the step argument of the DPTAB
macro. If the step values given the DPTAB and DDTAB macros conflict, the
DDTAB macro generates the error:

%MACRO-E-GENERR, Generated ERROR: DDTAB STEP=x conflicts with prior declaration.

Description

The DDTAB macro creates a driver dispatch table (DDT), using the DRIVER_
DATA macro to place it within the driver’s data program section ($$$110_DATA).
The macro assigns the table a label in the form of devnam$DDT.

The DDTAB macro writes the address of the universal executive routine vector
IOC$RETURN_SUCCESS into routine address fields of the DDT that are not
supplied in the macro invocation (with the exception of the mntver argument).
IOC$RETURN_SUCCESS places success status in R0 and issues an RSB
instruction.

Example

DDTAB - ;DDT-creation macro
DEVNAM=XX, - ;Name of device
START=XX_START,- ;Start-I/O routine
FUNCTB=XX_FUNCTABLE,- ;FDT address
CANCEL=IOC_STD$CANCELIO,- ;Cancel-I/O routine
REGDMP=XX_REGDUMP,- ;Register dumping routine
DIAGBF=<<15*4>+<<3+5+1>*4>>,- ;Diagnostic buffer size
ERLGBF=<<15*4>+<1*4>+<EMB$L_DV_REGSAV>> ;Error message buffer size

This code excerpt uses the DDTAB macro to create a driver dispatch table for the
XX device type.

MACRO-32 Driver Macros 11–87

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DDTAB

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• The OpenVMS Alpha version of the DDTAB macro does not automatically
define the code psect $$$115_DRIVER; rather, it invokes the DRIVER_DATA
macro to include the DDT in data psect $$$110_DATA. On OpenVMS Alpha
systems, you must explicitly invoke the DRIVER_CODE macro to define the
$$$115_DRIVER code psect prior to the first line of executable code.

• The number and order of the arguments to the DDTAB macro are different on
OpenVMS Alpha systems than on OpenVMS VAX systems.

• On OpenVMS Alpha systems, you do not distinguish (by use of the plus
sign (+)) entry points of OpenVMS routines that are at absolute addresses
from entry points at relative locations within the driver. For instance, an
OpenVMS Alpha device driver could specify the following argument to the
DDTAB macro:

CANCEL=IOC_STD$CANCELIO,-

It is the equivalent of the following argument specification in an OpenVMS
VAX device driver:

CANCEL=+IOC$CANCELIO,-

• An OpenVMS Alpha device driver that uses the kernel process services
specifies the name of EXE_STD$KP_STARTIO in start argument, and the
procedure value of the driver’s start-I/O routine in the kp_startio argument.

• An OpenVMS Alpha device driver that uses the kernel process services
indicates the size of the kernel mode stack in the kp_stack_size, and
specifies a mask of registers to be preserved across kernel process context
switches in the kp_reg_mask argument.

• Because the procedure value of the controller initialization routine is stored
in the DDT (DDT$PS_CTRLINIT) in OpenVMS Alpha systems, you specify
its location by using the new ctrlinit argument to the DDTAB macro. (On
OpenVMS VAX systems, you specify the location of the controller initialization
by issuing a DPT_STORE macro to VEC$L_INITIAL.)

• The OpenVMS Alpha version of the DDTAB macro does not provide the
unsolic argument.

• Although the channel_assign, cancel_selective, aux_storage, and aux_
routine arguments are allowed in the macro invocation, the functionality
they represent has not yet been implemented in OpenVMS Alpha systems.

• An OpenVMS Alpha terminal port driver cannot share a single DDT with
the OpenVMS Alpha terminal class driver. The terminal port driver must
invoke the DDTAB macro specifying the ctrlinit and unitinit arguments.
The CLASS_UNIT_INIT macro, when invoked by the port driver, initializes
the remainder of the port driver’s DDT from the class driver’s DDT.

11–88 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DEVICELOCK

DEVICELOCK

Achieves synchronized access to a device’s database as appropriate to the
processing environment.

Format

DEVICELOCK [lockaddr] [,lockipl] [,savipl] [,condition] [,preserve=YES]

Parameters

[lockaddr]
Address of the device lock to be obtained. If lockaddr is not present,
DEVICELOCK presumes that R5 contains the address of the UCB and uses
the value at UCB$L_DLCK(R5) as the lock address.

[lockipl]
Synchronization IPL. OpenVMS Alpha always obtains this IPL from the device
lock’s data structure and, thus, ignores this argument.

[savipl]
Location at which to save the current IPL.

[condition]
Indication of a special use of the macro. The only defined condition is
NOSETIPL, which causes the macro to omit setting IPL. In some instances,
setting IPL is undesirable or unnecessary when a driver obtains a device lock.
For example, when an interrupt service routine issues the DEVICELOCK macro,
the dispatching of the device interrupt has already raised IPL to device IPL.

[preserve=YES]
Indication that the macro should preserve R0 across the invocation. If you do not
need to retain the contents of R0, specifying preserve=NO can enhance system
performance.

Description

In a uniprocessing environment, the DEVICELOCK macro raises IPL to the IPL
indicated by the device lock’s data structure (if condition=NOSETIPL is not
specified).

In a multiprocessing environment, the DEVICELOCK macro performs the
following actions:

• Preserves R0 through the macro call (if preserve=YES is specified).

• Stores the address of the device lock in R0.

• Calls either SMP$ACQUIREL or SMP$ACQNOIPL, depending upon the
presence of condition=NOSETIPL. SMP$ACQUIREL raises IPL to device
IPL prior to obtaining the lock, determining appropriate IPL from the device
lock’s data structure (SPL$B_IPL).

MACRO-32 Driver Macros 11–89

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DEVICELOCK

In both processing environments, the DEVICELOCK macro performs the
following tasks:

• Preserves the current IPL at the specified location (if savipl is specified)

• Sets the SMP-modified bit in the driver prologue table (DPT$V_SMPMOD in
DPT$L_FLAGS)

Example

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ;Lock device access
SAVIPL=-(SP),- ;Save current IPL
PRESERVE=YES ;Save R0

SETIPL #31 ;Disable all interrupts
BBC #UCB$V_POWER,- ;If clear - no power failure

UCB$L_STS(R5),L1 ;...
;Service power failure!

.

.

.
DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK(R5),- ;Unlock device access
NEWIPL=(SP)+,- ;Restore IPL
PRESERVE=YES ;Save R0

BRW RETREG ;Exit
L1: ;Return for no power failure

.

.

.
WFIKPCH RETREG,#2 ;Wait for interrupt

This start-I/O routine invokes the DEVICELOCK macro to synchronize access
to the device’s registers and UCB fields. Thus synchronized at device IPL, and
holding the device lock in a VMS multiprocessing environment, the routine raises
IPL to IPL$_POWER (IPL 31) to check for a power failure on the local processor.
If a power failure has occurred, the routine releases the device lock and pops
the saved IPL from the stack before servicing the failure. If a power failure has
not occurred, the routine branches to set up the I/O request. Note that, in this
instance, it is the wait-for-interrupt routine, invoked by the WFIKPCH macro,
that issues the DEVICEUNLOCK macro and restores the saved IPL.

11–90 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DPTAB

DPTAB

Generates a driver prologue table (DPT) in a program section called $$$105_
PROLOGUE.

Format

DPTAB [end] ,adapter ,[flags=0] ,ucbsize ,[unload] ,[maxunits=8]
,[defunits=1] ,[deliver] ,[vector] [,name] ,[smp=NO] ,[decode] ,step=0,
[,idb_crams=0] [,ucb_crams=0] [,bt_order] [,ddt=DDT$BASE]
[,struc_init=DRIVER$STRUC_INIT] [,struc_reinit=DRIVER$STRUC_REINIT]
[,psect=$$$105_PROLOGUE] [,dpt=DRIVER$DPT]

Parameters

end
Unused in OpenVMS Alpha device drivers.

adapter
Type of adapter. You can supply any name that, when appended to the
string "AT$_", results in a symbol defined by the $DCDEF macro in
SYS$LIBRARY:STARLET.MLB. Of these symbols, the driver-loading procedure
takes special action only when the keyword NULL is present. The driver-
loading procedure creates no ADP for a null adapter (AT$_NULL) and clears the
VEC$PS_ADP and IDB$L_ADP fields.

[flags=0]
Flags used in loading the driver. Drivers use the following flags:

DPT$M_SVP Indicates that the driver requires a permanently
allocated system page. Disk drivers use this
SPTE during ECC correction and when using the
system routines IOC_STD$MOVFRUSER and IOC_
STD$MOVTOUSER.
When this flag is set, the driver-loading procedure
allocates a permanent system page-table entry
(SPTE) for the device. It stores an index to the
virtual address of the SPTE in UCB$L_SVPN when
it creates the UCB. A driver can calculate the system
virtual address of the page corresponding to this
index by using the following formula:

SVA = SEXT((LEFT_SHIFT(ucbl_svpn, mmggl_
vpn_to_va)) OR va$m_system)

DPT$M_NOUNLOAD Indicates that the driver cannot be reloaded. When
this bit is set, the driver can be unloaded only by
rebooting the system. Driver unloading and reloading
are not supported on OpenVMS Alpha systems.

MACRO-32 Driver Macros 11–91

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DPTAB

DPT$M_SMPMOD Indicates that the driver has been designed to execute
within an OpenVMS multiprocessing environment.
Use of any of the multiprocessing synchronization
macros (DEVICELOCK/DEVICEUNLOCK,
FORKLOCK/FORKUNLOCK, or LOCK/UNLOCK)
automatically sets this flag, as long as the code
using the macro resides in the same module as the
invocation of DPTAB.

DPT$M_DECW_
DECODE

Indicates that the driver is a DECwindows class
input (decoding) driver

DPT$M_NO_IDB_
DISPATCH

Tells the driver-loading procedure not to create a list
of UCB addresses at the end of the IDB (at IDB$L_
UCBLST), regardless of the value of the maxunits
argument or the maximum units specified in the
/MAX_UNITS qualifier of the System Management
(SYSMAN) utility command IO CONNECT.

ucbsize
Size in bytes of each UCB the driver-loading procedure creates for devices
supported by the driver. This required argument allows drivers to extend the
UCB to store device-dependent data describing an I/O operation.

[unload]
Address of the driver routine invoked by the driver-loading procedure before it
unloads an old version of the driver to load a new version.

Note

The OpenVMS Alpha operating system does not yet permit driver
reloading and does not support driver-unloading routines.

[maxunits=8]
Maximum number of units that this driver supports on a controller. If you omit
the maxunits argument, the default is eight units. You can override the value
specified in the DPT at driver-loading time by using the /MAX_UNITS qualifier
to the SYSMAN command IO CONNECT. If DPT$M_NO_IDB_DISPATCH is not
specified in the flags argument to the DPTAB macro, these values affect the size
of the UCB list the driver-loading procedure generates at the end of the IDB.

[defunits=1]
Maximum number of UCBs to be created by the autoconfiguration facility (one
for each device unit to be configured). The unit numbers assigned are zero to
defunits–1.

If you do not specify the deliver argument, the autoconfiguration facility creates
the number of units specified by defunits. If you specify the address of a unit
delivery routine in the deliver argument, the autoconfiguration facility calls that
routine to determine whether to create each UCB automatically.

[deliver]
Address of the driver unit delivery routine. The unit delivery routine determines
which device units supported by this driver the autoconfiguration facility should
configure automatically. If you omit the deliver argument, the autoconfiguration
facility creates the number of units specified by the defunits argument.

11–92 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DPTAB

[vector]
Address of a driver-specific transfer vector. A terminal port driver specifies the
address of its vector table in this argument.

[name]
Name of the device driver. Because the OpenVMS Alpha driver-loading procedure
automatically generates a driver name and writes it to the DPT, it effectively
ignores this argument.

[smp=NO]
Indication of whether the driver is suitably synchronized to execute in an
OpenVMS multiprocessing system. Use of any of the spin lock synchronization
macros in a device driver causes the DPTAB macro to indicate multiprocessing
synchronization. All OpenVMS Alpha drivers must specify smp=YES.

[decode]
Address of counted ASCII string that identifies a DECwindows class input
(decoding) driver to serial-line switching code.

step
OpenVMS Alpha driver step number. You must indicate that a given driver
conforms to the coding practices for an VAX OpenVMS Alpha device driver by
supplying step=2 in the DPTAB macro invocation. If you specify step=1, the
macro generates the following message:

%MACRO-E-GENERR, Generated ERROR: *CAUTION* VAX drivers will be obsolete in V2.0

If you omit the step argument entirely, or specify a value other than 1 or 2, the
DPTAB macro generates the message:

%MACRO-E-GENERR, Generated ERROR: DPTAB must declare driver STEP=1 or STEP=2

Alpha drivers may also optionally supply a value for the step argument of the
DDTAB macro. If the step values given the DPTAB and DDTAB macros conflict,
the DPTAB macro generates an error of the form:

%MACRO-E-GENERR, Generated ERROR: DPTAB STEP=x conflicts with prior declaration.

idb_crams
Number of CRAMS to be allocated and associated with the IDB. The driver-
loading procedure allocates the number of CRAMs specified in idb_crams
argument to the DPTAB macro and inserts them in the linked list headed by
IDB$PS_CRAM. These CRAMs are therefore available to the driver’s controller
and unit initialization routine.

ucb_crams
Number of CRAMS to be allocated and associated with the UCB. The driver-
loading procedure allocates the number of CRAMs specified in ucb_crams
argument to the DPTAB macro and inserts them in the linked list headed by
UCB$PS_CRAM. These CRAMs are therefore available to the driver’s unit
initialization routine.

[bt_order]
Ordering number for call to the runtime drivers for boot devices.

[ddt=DDT$BASE]
Address of DDT. The default is required for all devices not supplied by Digital.
drivers.

MACRO-32 Driver Macros 11–93

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DPTAB

[struc_init=DRIVER$STRUC_INIT]
Address of the driver I/O database initialization routine automatically generated
by an invocation of the DPT_STORE macro with the INIT label. This routine
initializes those data structure fields indicated by the invocations of the DPT_
STORE macro that follow the DPT_STORE INIT and precede the DPT_STORE
REINIT. The driver-loading procedure calls this initialization routine when it
creates the structures and loads the driver, prior to calling the driver’s controller
and unit initialization routines.

The default value of this argument is required for all OpenVMS Alpha device
drivers.

[struc_reinit=DRIVER$STRUC_REINIT]
Address of the driver I/O database reinitialization routine automatically
generated by an invocation of the DPT_STORE macro with the REINIT label.
This routine initializes those data structure fields indicated by the invocations of
the DPT_STORE macro that follow the DPT_STORE INIT and precede the DPT_
STORE END. The driver-loading procedure calls this reinitialization routine
when the driver is first loaded into the system, and whenever the driver is
reloaded, prior to calling the driver’s controller and unit initialization routines.

The default value of this argument is required for all Alpha OpenVMS Alpha
device drivers.

Note that driver unloading and reloading are not supported on OpenVMS Alpha
systems.

[psect=$$$105_PROLOGUE]
Program section in which the DPT is created. The default value of this argument
is required for all devices not supplied by Digital.

[,dpt=DRIVER$DPT]
Global symbol for DPT location. The default value of this argument is required
for all non-Digital-supplied device drivers.

Description

The DPTAB macro, in conjunction with invocations of the DPT_STORE macro,
creates a driver prologue table (DPT). The DPTAB macro places information in
the DPT that allows the driver-loading procedure to identify the driver and the
devices it supports. The DPTAB macro, in invoking the $SPLCODDEF definition
macro, also defines the spin lock indexes used in the DPT_STORE, FORKLOCK,
and LOCK macros.

Example

11–94 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DPTAB

DPTAB STEP=2,- ;OpenVMS Alpha driver
ADAPTER=CI,- ;Adapter type
UCBSIZE=UCB$C_PASIZE,- ;UCB size
NAME=PNDRIVER,- ;Driver name
SMP=YES,- ;SMP capable
FLAGS=<DPT$M_SCS!- ;Driver requires SCS load,

DPT$M_NOUNLOAD> ; cannot be reloaded
DPT_STORE INIT
DPT_STORE UCB,UCBB_FLCK,B,SPLC_SCS ;SCS spinlock
DPT_STORE UCB,UCB$L_DEVCHAR,L,<- ;Device characteristics:

DEV$M_SHR!- ; Sharable
DEV$M_AVL!- ; Available
DEV$M_ELG!- ; Error logging device
DEV$M_IDV!- ; Input device
DEV$M_ODV> ; Output device

DPT_STORE UCB,UCB$B_DIPL,B,PN_BR_LEVEL+16 ;Device interrupt IPL
DPT_STORE UCB,UCB$B_DEVCLASS,B,- ;Device class =

DC$_BUS ; bus
DPT_STORE UCB,UCB$L_ERTMAX,L,50 ;Retry count is 50 times
DPT_STORE UCB,UCB$L_ERTCNT,L,50 ; without reboot of system
DPT_STORE REINIT
DPT_STORE DDB,DDBL_DDT,D,PNDDT ;DDT address
DPT_STORE_ISR CRBL_INTD,PNMISC_INTERRUPT ; ISR address
DPT_STORE_ISR CRB$L_INTD+<CRB$S_INTD>,PN$RSP_INTERRUPT
DPT_STORE END

This excerpt from PNDRIVER.MAR contains the DPTAB macro and the series of
DPT_STORE and DPT_STORE macros that create its driver prologue table.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• You must indicate that a given driver conforms to the coding practices for an
OpenVMS Alpha device driver by supplying step=2 in the step argument.

• A driver can request the driver-loading procedure to allocate CRAMs and
associate them with the IDB or UCB by specifying the idb_crams and ucb_
crams arguments.

• The OpenVMS Alpha driver-loading procedure does not support the reloading
of VAX OpenVMS Alpha device drivers. It therefore ignores the unload
argument to the DPTAB macro.

• Because the OpenVMS Alpha driver-loading procedure automatically
generates a driver name and writes it to the DPT, it effectively ignores
the name argument.

• OpenVMS Alpha ignores the end argument.

• The DPTAB macro, in conjunction with invocations of the DPT_STORE macro
which specify the INIT, REINIT, and END labels, automatically generates
driver structure initialization and reinitialization routines, storing their
procedure values in the DPT. The default global symbol name fot the DPT
location is now DRIVER$DPT instead of EVMS$DRIVER_DPT.

MACRO-32 Driver Macros 11–95

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DPT_STORE

DPT_STORE

In the context of a DPTAB macro invocation, generates driver structure
initialization and reinitialization routines which the driver loading and reloading
procedures call to store values in a table or data structure.

Format

DPT_STORE str_type ,str_off ,oper ,exp [,pos] [,size]

Parameters

str_type
Type of data structure (CRB, DDB, IDB, ORB, or UCB) into which the driver-
loading procedure is to store the specified data, or a label denoting a table marker.
Table marker labels indicate the start of a list of DPT_STORE macro invocations
that store information for the driver-loading procedure in the driver initialization
table and driver reinitialization table sections of the DPT. If this argument is a
table marker label, no other argument is allowed. The following labels are used:

INIT Indicates the start of fields to initialize when the driver is loaded
REINIT Indicates the start of additional fields to initialize when the driver is

loaded and reinitialized when the driver is reloaded
END Indicates the end of the two lists

str_off
Unsigned offset into the data structure in which the data is to be stored. This
value cannot be more than 65,535 bytes.

oper
Type of storage operation, one of the following:

Type Meaning

B Write a byte value.
W Write a word value.
L Write a longword value.
D Write an address relative to the beginning of the driver.
V Write a bit field. If you specify a V in the oper argument, the

driver-loading procedure uses the exp, pos, and size arguments in
the bit insertion operation.

If an at sign (@) precedes the oper argument, the exp argument indicates the
address of the data that is to be stored and not the data itself.

exp
Expression indicating the value with which the driver-loading procedure is to
initialize the indicated field. If an at sign character (@) precedes the oper
argument, the exp argument indicates the address of the data with which to
initialize the field. For example, the following macro indicates that the contents
of the location DEVICE_CHARS are to be written into the DEVCHAR field of the
UCB.

DPT_STORE UCB,UCB$L_DEVCHAR,@L,DEVICE_CHARS

11–96 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DPT_STORE

[pos]
Starting bit position within the specified field; used only if oper=V.

[size]
Number of bits to be written; used only if oper=V.

Description

The DPT_STORE macro provides a mechanism for a driver to initialize specific
data structure fields when the driver is first loaded and when the driver is
reloaded. A driver typically contains a series of DPT_STORE invocations which,
together, automatically create a driver I/O database initialization routine and
a driver I/O database reinitialization routine. The DPTAB macro writes the
locations of these routines in the DPT. The driver-loading routine calls the
initialization routine when a driver is first loaded; it calls the reinitialization
routine both when the driver is first loaded and when the driver is reloaded.
OpenVMS Alpha device drivers cannot be reloaded.

A driver constructs the initialization tables by following the DPTAB macro with
one or more invocations of the DPT_STORE macro.

Drivers use the DPT_STORE macro with the INIT table marker label to begin a
list of DPT_STORE invocations that supply initialization data for the following
fields:

UCB$B_FLCK Index of the fork lock under which the driver
performs fork processing. Fork lock indexes are
defined by the $SPLCODDEF definition macro
(invoked by DPTAB) as follows:

IPL Fork Lock Index

8 SPL$C_IOLOCK8
9 SPL$C_IOLOCK9
10 SPL$C_IOLOCK10
11 SPL$C_IOLOCK11

UCB$B_DIPL Device interrupt priority level

Other commonly initialized fields are as follows:

UCB$L_DEVCHAR Device characteristics
UCB$B_DEVCLASS Device class
UCB$B_DEVTYPE Device type
UCB$W_DEVBUFSIZ Default buffer size
UCB$Q_DEVDEPEND Device-dependent parameters

Drivers use the DPT_STORE macro with the REINIT table marker label to begin
a list of DPT_STORE and DPT_STORE_ISR invocations that supply initialization
and reinitialization data. The following fields are declared with the DPT_STORE_
ISR macro:

CRB$L_INTD Interrupt service routine
CRB$L_INTD2 Interrupt service routine for second interrupt vector

For an example of the use of the DPT_STORE macro, see the description of the
DPTAB macro.

MACRO-32 Driver Macros 11–97

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DPT_STORE

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

• Because the OpenVMS Alpha driver-loading procedure automatically stores
the address of the DDT in the DDB, an OpenVMS Alpha device driver does
not invoke the DPT_STORE macro to write this address. For instance, the
following line should be removed from an existing OpenVMS VAX driver that
is to be moved to OpenVMS Alpha:

DPT_STORE DDB,DDBL_DDT,D,XADDT ;Address of DDT

• Because the procedure value of the controller and unit initialization routines
are stored in the DDT (DDT$PS_CTRLINIT and DDT$L_UNITINIT,
respectively) in OpenVMS Alpha systems, you specify their location by using
the ctrlinit and unitinit arguments to the DDTAB macro. The following
uses of the DPT_STORE macro do not work on OpenVMS Alpha systems:

DPT_STORE CRB,VEC$L_INITIAL,D,XA$CTRL_INIT ;Address of controller init routine
DPT_STORE CRB,VEC$L_UNITINIT,D,XA$UNIT_INIT ;Address of unit init routine

• Because the interrupt dispatcher requires the addresses of both the code
entry point and the procedure descriptor of an interrupt service routine, you
must use the new DPT_STORE_ISR macro (which generates both) to declare
the routine. For instance, you should use:

DPT_STORE_ISR CRB$L_INTD, XA_INTERRUPT
;Address of interrupt service routine

instead of:

DPT_STORE CRB,CRB$L_INTD+VEC$L_ISR,D,-
XA_INTERRUPT ;Address of interrupt service routine

• The DPTAB macro, in conjunction with invocations of the DPT_STORE macro
which specify the INIT, REINIT, and END labels, automatically generates
driver structure initialization and reinitialization routines, storing their
procedure values in the DPT.

• Be aware that certain data structure fields (such as UCB$B_FIPL) have
been made obsolete in OpenVMS Alpha. The names of other fields may have
changed, typically to reflect a change in size of the datum.

11–98 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DPT_STORE_ISR

DPT_STORE_ISR

In the context of a DPTAB macro invocation, generates the addresses of the code
entry point and procedure descriptor of an interrupt service routine and stores
them in the interrupt transfer vector block (VEC).

Format

DPT_STORE_ISR vec_off ,entry

Parameters

vec_off
Symbolic offset to interrupt transfer vector within the CRB. These offsets are of
the following form:

Symbolic Offset Description

CRB$L_INTD First interrupt transfer vector
CRB$L_INTD2 Second interrupt transfer vector
CRB$L_
INTD+<2*VEC$K_
LENGTH>

Third interrupt transfer vector

entry
Procedure value of an interrupt service routine.

Description

The DPT_STORE_ISR macro provides a mechanism for a driver to initialize
the VEC$PS_ISR_PD and VEC$PS_ISR_CODE fields of an interrupt transfer
vector block (VEC) with the addresses of an interrupt service routine’s procedure
descriptor and code entry point, respectively. Like invocations of the DPT_STORE
macro, you invoke the DPT_STORE_ISR macro within the context of the DPTAB
macro.

Typically, you use DPT_STORE_ISR within the reinitialization section of the DPT
(following DPT_STORE REINIT), so that the VEC fields are initialized at both
driver loading and reloading.

Example
DPT_STORE_ISR CRB$L_INTD, XA_INTERRUPT

This invocation of the DPT_STORE_ISR macro locates the first interrupt transfer
vector associated with the device controller, and places the address of XA_
INTERRUPT’s procedure descriptor in VEC$PS_ISR_PD and the address of its
code entry point in VEC$PS_ISR_CODE.

MACRO-32 Driver Macros 11–99

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
$DRIVER_ALTSTART_ENTRY

$DRIVER_ALTSTART_ENTRY

Format

$DRIVER_ALTSTART_ENTRY PRESERVE=<R2,R3,R4,R5>,FETCH=YES

$OFFDEF ALTARG, < -
irp, -
ucb >

Parameter offsets:
MOVL ALTARG$_IRP(AP), R3
MOVL ALTARG$_UCB(AP), R5

11–100 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
$DRIVER_CANCEL_ENTRY

$DRIVER_CANCEL_ENTRY

Format

$DRIVER_CANCEL_ENTRY PRESERVE=<R2,R3,R4>, FETCH=YES

$OFFDEF CANARG, < -
chan,-
irp,-
pcb,-
ucb,-
reason >

Parameter offsets:
MOVL CANARG$_CHAN(AP), R2
MOVL CANARG$_IRP(AP), R3
MOVL CANARG$_PCB(AP), R4
MOVL CANARG$_UCB(AP), R5
MOVL CANARG$_REASON(AP), R8

MACRO-32 Driver Macros 11–101

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
$DRIVER_CANCEL_SELECTIVE

$DRIVER_CANCEL_SELECTIVE

Format

$DRIVER_CANCEL_SELECTIVE_ENTRY PRESERVE, FETCH=YES

$OFFDEF CANSARG, < -
pcb, -
ucb, -
chan, -
iosb_vector, -
iosb_count >

Parameter offsets:

MOVL #SS$_UNSUPPORTED, R0
MOVL CANSARG$_PCB(AP), R4
MOVL CANSARG$_UCB(AP), R5
MOVL CANSARG$_CHAN(AP), R6
MOVL CANSARG$_IOSB_VECTOR(AP), R7
MOVL CANSARG$_IOSB_COUNT(AP), R8

11–102 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
$DRIVER_CHANNEL_ASSIGN

$DRIVER_CHANNEL_ASSIGN

Format

$DRIVER_CHANNEL_ASSIGN_ENTRY PRESERVE, FETCH=YES

$OFFDEF CHANARG, < -
ucb, -
ccb >

Parameter offsets:
MOVL CHANARG$_UCB(AP), R5
MOVL CHANARG$_CCB(AP), R8

MACRO-32 Driver Macros 11–103

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
$DRIVER_CLONEDUCB

$DRIVER_CLONEDUCB

Format

$DRIVER_CLONEDUCB PRESERVE=R3, FETCH=YES

$OFFDEF CLONEARG, < -
cloned_ucb,-
ddt,-
pcb,-
template_ucb >

Parameter offsets:
MOVL #SS$_NORMAL, R0

MOVL CLONEARG$_CLONED_UCB(AP), R2
MOVL CLONEARG$_DDT(AP), R3
MOVL CLONEARG$_PCB(AP), R4
MOVL CLONEARG$_TEMPLATE_UCB(AP), R5

11–104 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DRIVER_CODE

DRIVER_CODE

Declares the program section (psect) that contains driver code.

Format

DRIVER_CODE [pname=$$$115_DRIVER]

Parameters

[pname=$115_DRIVER]
Name of driver psect that contains driver code. The default psect name, $115_
DRIVER, is suitable for most temporary OpenVMS Alpha drivers, although you
can specify an alternative name.

Description

The DRIVER_CODE macro generates a psect for driver code, with attributes that
allow the Linker utility (linker) to properly and compatibly collect driver image
sections into a loadable executive image.

You must precede the first line of executable code in a Step 1 OpenVMS Alpha
device driver with an invocation of the DRIVER_CODE macro. If the driver
consists of multiple source modules, you should replace each explicit setting of the
$$$115_DRIVER psect with an invocation of this macro to ensure that the correct
standard psect for driver code sections is always used.

OpenVMS driver macros that construct driver code automatically invoke the
DRIVER_CODE macro prior to creating the code. For instance, the DPT_STORE
macro automatically invokes the DRIVER_CODE macro prior to constructing the
driver initialization and reinitialization routines.

Note

Use of the DRIVER_CODE macro requires that you define the symbol
‘‘EVAX’’.

MACRO-32 Driver Macros 11–105

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
$DRIVER_CRTLINIT

$DRIVER_CRTLINIT

Format

$DRIVER_CTRLINIT_ENTRY PRESERVE=R2, FETCH=YES

$OFFDEF CTRLARG, < -
idb, -
ddb, -
crb >

Parameter offsets:
MOVL #SS$_NORMAL, R0

MOVL CTRLARG$_IDB(AP), R4
MOVL CTRLARG$_IDB(AP), R5
MOVL CTRLARG$_DDB(AP), R6
MOVL CTRLARG$_CRB(AP), R8

11–106 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
$DRIVER_DELIVER_ENTRY

$DRIVER_DELIVER_ENTRY

Format

$DRIVER_DELIVER_ENTRY PRESERVE=<R2>, FETCH=YES

$OFFDEF DLVRARG, < -
idb, -
unit_number, -
scratch_area, -
adp >

Parameter offsets:
MOVL DLVRARG$_IDB(AP), R3
MOVL DLVRARG$_IDB(AP), R4
MOVL DLVRARG$_UNIT_NUMBER(AP), R5
MOVL DLVRARG$_SCRATCH_AREA(AP), R7
MOVL DLVRARG$_ADP(AP), R8

MACRO-32 Driver Macros 11–107

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
$DRIVER_ERRRTN

$DRIVER_ERRRTN

Format

$DRIVER_ERRRTN_ENTRY PRESERVE, FETCH=YES

$OFFDEF ERRARG, < -
irp, -
pcb, -
ucb, -
ccb, -
status>

Parameter offsets:
MOVL ERRARG$_IRP(AP),R3
MOVL ERRARG$_PCB(AP),R4
MOVL ERRARG$_UCB(AP),R5
MOVL ERRARG$_CCB(AP),R6
MOVL ERRARG$_STATUS(AP),R0

11–108 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
$DRIVER_FDT_ENTRY

$DRIVER_FDT_ENTRY

Format

$DRIVER_FDT_ENTRY PRESERVE=<R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,
R13,R14,R15>, FETCH=YES

Parameter offsets:
MOVL FDTARG$_IRP(AP),R3
MOVL FDTARG$_PCB(AP),R4
MOVL FDTARG$_UCB(AP),R5
MOVL FDTARG$_CCB(AP),R6

MACRO-32 Driver Macros 11–109

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
$DRIVER_MNTVER

$DRIVER_MNTVER

Format

$DRIVER_MNTVER_ENTRY PRESERVE, FETCH=YES

$OFFDEF MNTARG, < -
irp, -
ucb >

Parameter offsets:
MOVL MNTARG$_IRP(AP), R3
MOVL MNTARG$_UCB(AP), R5

11–110 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
$DRIVER_REGDUMP

$DRIVER_REGDUMP

Format

$DRIVER_REGDUMP_ENTRY PRESERVE=<R2>, FETCH=YES

$OFFDEF REGARG, < -
buffer, -
cram, -
ucb >

Parameter offsets:
MOVL REGARG$_BUFFER(AP), R0
MOVL REGARG$_CRAM(AP), R4
MOVL REGARG$_UCB(AP), R5

MACRO-32 Driver Macros 11–111

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
$DRIVER_START_ENTRY

$DRIVER_START_ENTRY

Format

$DRIVER_START_ENTRY PRESERVE=<R2,R4>, FETCH=YES

$OFFDEF STARTARG, < -
irp, -
ucb >

Parameter offsets:
MOVL STARTARG$_IRP(AP), R3
MOVL STARTARG$_UCb(AP), R5

11–112 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
$DRIVER_UNITINIT

$DRIVER_UNITINIT

Format

$DRIVER_UNITINIT_ENTRY PRESERVE=<R2>, FETCH=YES

$OFFDEF UNITARG, < -
idb, -
ucb >

Parameter offsets:
MOVL #SS$_NORMAL, R0

MOVL UNITARG$_IDB(AP), R4
MOVL UNITARG$_UCB(AP), R5

MACRO-32 Driver Macros 11–113

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
DRIVER_DATA

DRIVER_DATA

Declares the program section (psect) that contains driver data.

Format

DRIVER_DATA [pname=$$$110_DATA]

Parameters

[pname=$110_DATA]
Name of driver psect that contains driver data. The default psect name, $110_
DATA, is suitable for most temporary OpenVMS Alpha drivers, although you can
specify an alternative name.

Description

The DRIVER_DATA macro generates a psect for driver data, with attributes that
allow the Linker to properly and compatibly collect driver image sections into a
loadable executive image. You must precede any driver data by an invocation of
this macro.

OpenVMS driver macros that construct data, such as DDTAB and FUNCTAB,
automatically invoke the DRIVER_DATA macro prior to creating the data.

11–114 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
$FDTARGDEF

$FDTARGDEF

Format

$FDTARGDEF

$OFFDEF FDTARG,<IRP,PCB,UCB,CCB>

MACRO-32 Driver Macros 11–115

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
FDT_ACT

FDT_ACT

Initializes the FDT action routine vector slot corresponding to one or more
specified I/O function codes with the procedure value of the specified upper-level
FDT action routine.

Format

FDT_ACT action, codes

Parameters

action
Action routine that services the I/O function codes identified by the codes
argument.

codes
List of codes (enclosed within angle brackets and separated by commas) for I/O
functions serviced by the specified upper-level FDT action routine. The macro
expansion prefixes each code with the string IO$_; for example, READVBLK
expands to IO$_READVBLK.

Description

The FDT_ACT macro identifies the upper-level FDT action routine that processes
one or more specified I/O function codes. If, at the time it invokes FDT_ACT,
the driver has not yet invoked the FDT_INI macro, FDT_ACT invokes it on the
driver’s behalf, creating an FDT with the label DRIVER$FDT.

An OpenVMS Alpha device driver specifies one or more legal I/O functions by
supplying the address of an upper-level FDT action routine for that function to
the FDT_ACT macro. The FDT_ACT macro initializes the slot in the FDT action
routine vector corresponding to each supplied function code with the procedure
value of the specified routine.

Multiple invocations of the FDT_ACT macro, in sum, define the full set of I/O
functions serviced by the driver. An illegal I/O function is one that the driver
does not list in any FDT_ACT macro invocations. Its vector slot contains the
procedure value of the illegal I/O function processing routine (EXE$ILLIOFUNC).

Note, however, only one upper-level FDT action routine can service any given
I/O function. If you reuse an I/O function code in an FDT_ACT invocation, the
compiler generates an error of the form:

%MACRO-E-GENERR, Generated ERROR: Multiple actions defined for function IO$_xxxxxx

A consequence of this limitation is that, if the preprocessing of a given function
requires that several routines be executed, the upper-level FDT action routine
must set up the appropriate call chain.

11–116 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
FDT_ACT

Example

XX_FUNCTABLE: ;Function decision table
FDT_INI XX$FDT
FDT_BUF - ;Buffered-I/O functions

<READLBLK,- ;Read logical block
READPBLK,- ;Read physical block
READVBLK,- ;Read virtual block
SENSEMODE,- ;Sense reader mode
SENSECHAR,- ;Sense reader characteristics
SETMODE,- ;Set reader mode
SETCHAR,- ;Set reader characteristics
>

FDT_ACT XX_READ,- ;Read function FDT routine
<READLBLK,- ;Read logical block
READPBLK,- ;Read physical block
READVBLK,- ;Read virtual block
>

FDT_ACT EXE_STD$SETMODE,- ;Set mode/characteristics FDT routine
<SETCHAR,- ;Set reader characteristics
SETMODE,- ;Set reader mode
>

FDT_ACT EXE_STD$SENSEMODE,- ;Sense mode/characteristics FDT routine
<SENSECHAR,- ;Sense reader characteristics
SENSEMODE,- ;Sense reader mode
>

This function decision table (FDT) specifies that the routine XX_READ be called
for all read functions that are valid for the device. XX_READ appears later in the
driver module. System I/O preprocessing will call routines EXE_STD$SETMODE
and EXE_STD$SENSEMODE for the device’s set-characteristics and sense-mode
functions.

MACRO-32 Driver Macros 11–117

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
FDT_BUF

FDT_BUF

Builds the buffered function mask within a driver’s function decision table (FDT)
from the specified list of I/O functions.

Format

FDT_BUF [codes]

Parameters

[codes]
List of codes (enclosed within angle brackets and separated by commas) for I/O
functions supported by the driver that require an intermediate system buffer.
The macro expansion prefixes each code with the string IO$_; for example,
READVBLK expands to IO$_READVBLK.

Description

The FDT_BUF macro builds the buffered function mask within an FDT from the
specified list of I/O functions.

An OpenVMS Alpha device driver invokes the FDT_BUF macro to indicate which
of the I/O functions it supports require a system buffer. If the driver has not yet
invoked the FDT_INI macro, FDT_BUF invokes it on the driver’s behalf, creating
an FDT with the label DRIVER$FDT.

A driver specifies a legal I/O function by supplying the address of an upper-
level FDT action routine for that function to the FDT_ACT macro. Beware
of specifying a function code in an FDT_BUF invocation that you do not also
specify in an FDT_ACT invocation. The FDT action routine vector slot for
such a function contains a pointer to the illegal I/O function processing routine
(EXE$ILLIOFUNC).

An example of the use of FDT_BUF appears in the description of the FDT_ACT
macro.

11–118 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
FDT_INI

FDT_INI

Creates, labels, and initializes a function decision table (FDT).

Format

FDT_INI [fdt=DRIVER$FDT]

Parameters

[fdt=DRIVER$FDT]
Label of the start of the FDT.

Description

The FDT_INI macro creates an FDT, using the DRIVER_DATA macro to place
it within the driver’s data program section ($$$110_DATA). The macro properly
aligns the FDT in memory, assigning it the label specified by the fdt argument.

FDT_INI initializes the FDT by clearing the buffered function mask and entering
the address of the illegal I/O function processing routine (EXE$ILLIOFUNC) in
all FDT action routine vector slots.

An OpenVMS Alpha device driver invokes the FDT_BUF macro to indicate which
of the I/O functions it supports require a system buffer. A driver specifies a legal
I/O function by supplying the address of an upper-level FDT action routine for
that function to the FDT_ACT macro.

An example of the use of FDT_INI appears in the description of the FDT_ACT
macro.

MACRO-32 Driver Macros 11–119

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
FORK

FORK

Creates a simple fork process on the local processor.

Format

FORK [routine] [,continue] [environment=JSB | CALL]

Parameters

[routine]
Name of the routine to be executed in fork context. If you omit this argument, the
FORK macro assumes that the fork routine immediately follows the invocation.

[,continue]
Label where execution continues after the fork block has been inserted on the
fork queue. If you omit this argument, control returns to the caller of the routine
that invoked the FORK macro.

[,environment
Keyword that specifies the fork routine environment as either JSB or CALL.
The default is JSB. If specified as JSB, then EXE$PRIMITIVE_FORK is called
and a .JSB_ENTRY directive is used to generate the fork routine. If specified as
CALL, then EXE_STD$PRIMITIVE_FORK is called, a .CALL_ENTRY directive
is used to generate the fork routine, the FR3, FR4, and FKB parameters in the
fork routine are copied into R3, R4, and R5.

Description

The FORK macro creates a fork process. When the FORK macro is invoked, the
following registers must contain the values listed:

Register Contents

R3 Contains the 64-bit value to pass to the fork routine via FKB$Q_
FR3(R5)

R4 Contains the 64-bit value to pass to the fork routine via FKB$Q_
FR4(R5)

R5 Contains a pointer to the fork block

Unlike the IOFORK macro, the FORK macro does not disable device timeouts by
clearing the UCB$V_TIM bit in the field UCB$L_STS.

11–120 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
FORK

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

Implicit outputs to caller:

ENVIRONMENT=CALL

R0,R1 are scratched.

ENVIRONMENT=JSB

R3,R4 outputs from EXE$PRIMITIVE_FORK.

R0,R1 are preserved.

Implicit outputs to fork routine, i.e. entry conditions:

ROUTINE=routine_name

If the routine name is specified then the fork
entry point is assumed to be at the named
location and no fork entry point is defined here.
The named fork routine can use either the new
standard call interface or the traditional JSB
interface as described in section 4.2 regardless
of the setting of the ENVIRONMENT keyword.

ROUTINE=<not specified>,ENVIRONMENT=CALL

A fork routine entry point is generated for a
routine using the new standard call interface as
described in section 4.2.

R3,R4,R5 contain traditional fork routine parameter values
copied from the standard call interface actual
parameters,

R0,R1 can be scratched.

ROUTINE=<not specified>,ENVIRONMENT=JSB

A fork routine entry point is generated for a
routine using the traditional JSB interface as
described in section 4.2.

R3,R4,R5 contain traditional fork routine parameters,

R0-R4 can be scratched.

MACRO-32 Driver Macros 11–121

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
FORK_ROUTINE

FORK_ROUTINE

Defines the entry point of a fork routine.

Format

FORK_ROUTINE [name=fork_routine_name] [,symbol=LOCAL | GLOBAL]
[,environment=JSB | CALL] [,fetch=YES | NO]

Parameters

[name]
Name of the fork routine.

[,symbol]
Specifies if the routine name should be declared as a local or global symbol. The
default is for a local symbol.

[,environment]
Specifies the fork routine environment as either JSB or CALL. If specified as
JSB, then a .JSB_ENTRY directive is used to define the fork routine entry point.
If specified as CALL, then a .CALL_ENTRY directive is used to define the fork
routine entry point. The default is JSB.

[,fetch]
Specifies if the fork routine parameters for an ENVIRONMENT=CALL fork
routine should be copied into the traditional R3. R4. and R5 register The default
is YES.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

Implicit inputs:

None.

Implicit outputs, i.e. fork routine entry conditions:

ENVIRONMENT=CALL

FORKARG$_FR3(AP), FORKARG$_FR4(AP), FORKARG$_FKB(AP)
the symbolic parameter offsets are defined and
can be used to access the fork routine
parameters,

R3,R4,R5 contain traditional fork routine parameters if
FETCH=YES,

R0,R1 can be scratched.

ENVIRONMENT=JSB

R3,R4,R5 contain traditional fork routine parameters,

R0-R4 can be scratched.

11–122 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
FORK_WAIT

FORK_WAIT

Inserts a fork block on the fork-and-wait queue.

Format

FORK_WAIT [routine] [,continue] [,environment=JSB | CALL]

Parameters

[routine]
Name of the routine to be executed in fork context. If you omit this argument,
the FORK_WAIT macro assumes that the fork routine immediately follows the
invocation.

[,continue]
Label where execution continues after the fork block has been inserted on the
fork-and-wait queue. If you omit this argument, control returns to the caller of
the routine that invoked the FORK_WAIT macro.

[,environment]
Specifies the fork routine environment as either JSB or CALL. The default is
JSB. If specified as JSB, then EXE$PRIMITIVE_FORK_WAIT is called and a
.JSB_ENTRY directive is used to generate the fork routine. If specified as CALL,
then EXE_STD$PRIMITIVE_FORK_WAIT is called, a .CALL_ENTRY directive is
used to generate the fork routine, the FR3, FR4, and FKB parameters in the fork
routine are copied into R3, R4, and R5.

Description

The FORK_WAIT macro inserts a fork block on the system fork-and-wait queue.
When the FORK_WAIT macro is invoked, the following registers must contain
the values listed:

Register Contents

R3 Contains the 64-bit value to pass to the fork routine via FKB$Q_
FR3(R5)

R4 Contains the 64-bit value to pass to the fork routine via FKB$Q_
FR4(R5)

R5 Contains a pointer to the fork block

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

Implicit outputs to caller:

ENVIRONMENT=CALL

R0,R1 are scratched.

ENVIRONMENT=JSB

R0,R1 are preserved.

Implicit outputs to fork routine, i.e. entry conditions:

ROUTINE=routine_name

MACRO-32 Driver Macros 11–123

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
FORK_WAIT

If the routine name is specified then the fork
entry point is assumed to be at the named
location and no fork entry point is defined here.
The named fork routine can use either the new
standard call interface or the traditional JSB
interface as described in section 4.2 regardless
of the setting of the ENVIRONMENT keyword.

ROUTINE=<not specified>,ENVIRONMENT=CALL

A fork routine entry point is generated for a
routine using the new standard call interface as
described in section 4.2.

R3,R4,R5 contain traditional fork routine parameter values
copied from the standard call interface actual
parameters,

R0,R1 can be scratched.

ROUTINE=<not specified>,ENVIRONMENT=JSB
A fork routine entry point is generated for a
routine using the traditional JSB interface as
described in section 4.2.

R3,R4,R5 contain traditional fork routine parameters,

R0-R4 can be scratched.

11–124 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
FORKLOCK

FORKLOCK

Achieves synchronized access to a device driver’s fork database as appropriate to
the processing environment.

Format

FORKLOCK [lock] [,lockipl] [,savipl] [,preserve=YES]

Parameters

[lock]
Index of the fork lock to be obtained. If the lock argument is not present in the
macro invocation, FORKLOCK presumes that R5 contains the address of the fork
block and uses the value at FKB$B_FLCK(R5) as the lock index.

[lockipl]
Synchronization IPL. OpenVMS Alpha obtains this IPL from the spin lock data
structure or spin lock IPL vector and ignores this argument.

[savipl]
Location at which to save the current IPL.

[preserve=YES]
Indication that the macro should preserve R0 across the invocation. If you do not
need to retain the contents of R0, specifying preserve=NO can enhance system
performance.

Description

In a uniprocessing environment, the FORKLOCK macro raises IPL to the IPL
indicated by the entry in the spin lock IPL vector (SMP$AL_IPLVEC) that
corresponds to the fork lock index.

In a multiprocessing environment, the FORKLOCK macro stores the fork lock
index in R0 and calls SMP$ACQUIRE. SMP$ACQUIRE uses the value in R0
to locate the fork lock structure in the system spin lock database (a pointer
to which is located at SMP$AR_SPNLKVEC). Prior to securing the fork lock,
SMP$ACQUIRE raises IPL to its associated IPL (SPL$B_IPL).

In both processing environments, the FORKLOCK macro performs the following
tasks:

• Preserves R0 through the macro call (if preserve=YES is specified)

• Preserves the current IPL at the specified location (if savi pl is specified)

• Sets the SMP-modified bit in the driver prologue table (DPT$V_SMPMOD in
DPT$L_FLAGS)

MACRO-32 Driver Macros 11–125

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
FORKLOCK

Notes for Converting VAX Drivers

If you are converting an OpenVMS VAX driver to an Alpha driver, note the
following:

• Because OpenVMS Alpha obtains this IPL from the spin lock IPL vector or
the spin lock data structure that corresponds to the fork lock index, it ignores
the lockipl argument, if specified.

• Because OpenVMS Alpha drivers must use multiprocessing synchronization
semantics, the fipl argument to the FORKLOCK macro has been removed.

11–126 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
IOFORK

IOFORK

Creates a fork process on the local processor for a device driver, disabling
timeouts from the associated device.

Format

IOFORK [routine] [,continue] [,ENVIRONMENT=JSB | CALL]

Parameters

[routine]
Name of the routine to be executed in fork context. If you omit this argument, the
IOFORK macro assumes that the fork routine immediately follows the invocation.

[,continue]
Label where execution continues after the fork block has been inserted on the
fork queue. If you omit this argument, control returns to the caller of the routine
that invoked the IOFORK macro.

[,environment
Keyword that specifies the fork routine environment as either JSB or CALL.
The default is JSB. If specified as JSB, then EXE$PRIMITIVE_FORK is called
and a .JSB_ENTRY directive is used to generate the fork routine. If specified as
CALL, then EXE_STD$PRIMITIVE_FORK is called, a .CALL_ENTRY directive
is used to generate the fork routine, the FR3, FR4, and FKB parameters in the
fork routine are copied into R3, R4, and R5.

Description

The IOFORK macro disables device timeouts by clearing the UCB$V_TIM bit in
the field UCB$L_STS and creates a fork process. When the IOFORK macro is
invoked, the following registers must contain the values listed:

Register Contents

R3 Contents to be placed in R3 of the fork process (64 bits)
R4 Contents to be placed in R4 of the fork process (64 bits)
R5 Address of fork block

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

Implicit outputs to caller:

ENVIRONMENT=CALL

R0,R1 are scratched.

ENVIRONMENT=JSB

R3,R4 outputs from EXE$PRIMITIVE_FORK.

R0,R1 are preserved.

Implicit outputs to fork routine, i.e. entry conditions:

ROUTINE=routine_name

MACRO-32 Driver Macros 11–127

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
IOFORK

If the routine name is specified then the fork
entry point is assumed to be at the named
location and no fork entry point is defined here.
The named fork routine can use either the new
standard call interface or the traditional JSB
interface as described in section 4.2 regardless
of the setting of the ENVIRONMENT keyword.

ROUTINE=<not specified>,ENVIRONMENT=CALL

A fork routine entry point is generated for a
routine using the new standard call interface as
described in section 4.2.

R3,R4,R5 contain traditional fork routine parameter values
copied from the standard call interface actual
parameters,

R0,R1 can be scratched.

ROUTINE=<not specified>,ENVIRONMENT=JSB

A fork routine entry point is generated for a
routine using the traditional JSB interface as
described in section 4.2.

R3,R4,R5 contain traditional fork routine parameters,

R0-R4 can be scratched.

11–128 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
IFNORD, IFNOWRT, IFRD, IFWRT

IFNORD, IFNOWRT, IFRD, IFWRT

Determine the read or write accessibility of a range of memory locations.

Format
8><
>:

IFNORD
IFNOWRT
IFRD
IFWRT

9>=
>;

siz ,adr ,dest ,[mode=#0] [,prvmod] [,page] [,page_store]

Parameters

siz
Offset of the last byte to check from the first byte to check, a number less than or
equal to 512.

adr
Address of first byte to check.

dest
Address to which the macro transfers control, according to the following
conditions:

Macro Condition

IFNORD If either of the specified bytes cannot be read in the specified
access mode

IFNOWRT If either of the specified bytes cannot be written in the specified
access mode

IFRD If both bytes can be read in the specified access mode
IFWRT If both bytes can be written in the specified access mode

[mode=#0]
Mode in which access is to be checked; zero, the default, causes the check to be
performed in the mode contained in the previous-mode field of the current PSL.

[prvmod]
Known previous mode of the processor, extracted from the processor status (PS).

[page]
Shifted base address of a known accessible page. The value you specify for the
page argument can either be zero, or the value returned in the buffer specified
as the page_store argument in a previous invocation of the macro.

[page_store]
Address of location in which the macro returns the shifted base address of the
last page probed.

MACRO-32 Driver Macros 11–129

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
IFNORD, IFNOWRT, IFRD, IFWRT

Description

The IFNORD and IFRD macros use the PROBER instruction to check the read
accessibility of the specified range of memory by checking the accessibility of
the first and last bytes in that range. The IFNORD macro passes control to
the specified destination if either of the specified bytes cannot be read in the
specified access mode. The IFRD macro transfers control if both bytes can be read
in the specified access mode. Otherwise, the macros transfer to the next inline
instruction.

The IFNOWRT and IFWRT macros use the PROBEW instruction to check the
write accessibility of the specified range of memory by checking the accessibility
of the first and last bytes in that range. The IFNOWRT macro passes control
to the specified destination if either of the specified bytes cannot be written in
the specified access mode. The IFWRT macro transfers control to the specified
destination if both bytes can be written in the specified access mode. Otherwise,
the macros transfer to the next in-line instruction.

On OpenVMS Alpha systems each VAX PROBE instruction generates two
PALcode calls—one to read the processor status (PS) to obtain the previous
processor mode and one to perform the actual probe. In modules that perform
many probes—for instance, code that verifies the accessibility of an item list—
these macros provide the following opimizations:

• Because the previous PS does not change in single-threaded kernel mode
code, such code can store the previous mode value and reuse it for each probe
operation. The prvmod argument is available for this purpose.

• Because all of the user’s buffers are within the same CPU-specific page,
particularly when processing item lists, modules that store the base address
of a known accessible page, can compare buffer addresses against this base
and avoid any PALcode calls. The page and page_store arguments are
available for this purpose.

When processing an item list, specify the same storage location for both the
page and page_store arguments in each probe macro invocation. This keeps the
known accessible page base updated. If the item list does cross a page boundary,
the probe operation will be performed only the one item that actually crosses the
boundary; subsequent items will share the updated page base value and do not
require probing.

When probing a buffer specified by an item descriptor, use the page argument
with the known probed page, but do not use the page_store argument. Other
items in the item list are likely to reside within the last known probed page.
If the buffer is not, omitting the page_store argument allows you to avoid
overwriting the last known probed page and issuing an Alpha PALcode call when
you process subsequent items in the item list.

If you specify zero in the page argument as the page base address, these macros
skip page base comparison. This is useful in routines that probe a number of
input parameters which may or may not be present.

If a routine is probing a number of input parameters which may or may not be
present, it should specify a zero in the page argument and clear the location
pointed to by the page_store argument. When the page argument is zero,
the macros skip page base comparison. In the event an argument is missing,
the cleared page_store location allows subsequent probe macro invocationss to
forego checking that location before using its value in the page argument.

11–130 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
IFNORD, IFNOWRT, IFRD, IFWRT

CAUTION

These macros expect you to keep known readable pages separate from
known writable pages.

Example

MOVZWL $SS_ACCVIO,R0 ;Assume read access failure
MOVL ENTRY_LIST(AP),R11 ;Get address of entry point list
IFRD #4*4,(R11),50$;Branch forward if process

; has read access
BRW ERROR ;Otherwise stop with error

.

.

.

The connect-to-interrupt driver uses the IFRD macro to verify that the process
has read access to the four longwords that make up the entry point list. The
address of the entry point list was specified in the p2 argument of the $QIO
request to the driver.

Notes for Converting VAX Drivers

If you are converting an OpenVMS VAX driver to an Alpha driver, note that the
OpenVMS Alpha versions of these macros provide optional arguments (prvmod,
page, and page_store) that allow you to optimize code that performs many
probes.

MACRO-32 Driver Macros 11–131

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
KP_ALLOCATE_KPB

KP_ALLOCATE_KPB

Creates a KPB and a kernel process stack, as required by the Open VMS kernel
process services.

Format

KP_ALLOCATE_KPB kpb [,stack=#1024] [,flags] [,param]

Parameters

kpb
Address of KPB.

[stack=#1024]
Requested size (in bytes) of kernel process stack.

[flags]
Flags indicating the type, size, and configuration of the KPB to be created. KP_
ALLOCATE_KPB accepts only the following flags:

KPB$V_VEST KPB is a VEST KPB. (See Chapter 10 for a
description of VEST KPBs.)

KPB$V_SPLOCK Spin lock area is present. (EXE$KP_ALLOCATE_
KPB automatically sets this bit when KPB$V_VEST
is set.)

KPB$V_DEBUG Debug area is present.
KPB$V_DEALLOC_AT_
END

KP_END should call KP_DEALLOCATE.

[param]
Size in bytes of KPB parameter area, if any.

Description

The KP_ALLOCATE_KPB macro calls EXE$KP_ALLOCATE_KPB to create the
KPB and the kernel process stack needed by a kernel process. When a driver
invokes KP_ALLOCATE_KPB it cannot be executing above IPL$_SYNCH or be
holding any spin locks that have higher rank than the MMG spin lock.

11–132 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
KP_DEALLOCATE_KPB

KP_DEALLOCATE_KPB

Deallocates a KPB and its associated kernel process stack.

Format

KP_DEALLOCATE_KPB kpb

Parameters

kpb
Address of KPB.

Description

The KP_DEALLOCATE_KPB macro calls EXE$KP_DEALLOCATE_KPB to
deallocate the KPB and the associated kernel process stack. When a driver
invokes KP_DEALLOCATE_KPB, it cannot be executing above IPL$_SYNCH or
be holding any spin locks of higher rank than MMG.

MACRO-32 Driver Macros 11–133

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
KP_END

KP_END

Terminates the execution of a kernel process.

Format

KP_END kpb

Parameters

kpb
Address of KPB.

Description

The KP_END macro calls EXE$KP_END to terminate the execution of a kernel
process and, if KPB$V_DEALLOC_AT_END in KPB$IS_FLAGS is set, to
deallocate its KPB. When a driver invokes the KP_END macro, it must be
executing at IPL$_RESCHED or above.

11–134 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
KP_RESTART

KP_RESTART

Resumes the execution of a kernel process.

Format

KP_RESTART kpb

Parameters

kpb
Address of KPB.

Description

The KP_RESTART macro calls EXE$KP_RESTART to restart a kernel process.
The caller of EXE$KP_RESTART, usually a kernel process scheduling stall
routine, must be executing at IPL$_RESCHED or above.

MACRO-32 Driver Macros 11–135

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
KP_REQCOM

KP_REQCOM

Invokes OpenVMS device-independent I/O postprocessing from a kernel process.

Format

KP_REQCOM

Description

The KP_REQCOM macro issues a JSB instruction to IOC$REQCOM to complete
the processing of an I/O request after a kernel process within a driver has
finished its portion of I/O postprocessing. (The REQCOM macro cannot be used
within the context of a kernel process.)

When the KP_REQCOM macro is invoked, the following registers must contain
the following values:

Register Contents

R0 First longword of I/O status
R1 Second longword of I/O status
R5 Address of UCB

The KP_REQCOM macro destroys the contents of R0 through R3. All other
registers are also destroyed if the action of the macro initiates the processing of a
waiting I/O request for the device.

11–136 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
KP_STALL_FORK, KP_STALL_IOFORK

KP_STALL_FORK, KP_STALL_IOFORK

Stall a kernel process in such a manner that it can be resumed by the OpenVMS
fork dispatcher.

Format

KP_STALL_FORK kpb [,fkb=KPB$PS_FQFL]

KP_STALL_IOFORK [kpb=IRP$PS_KPB] [,fkb=UCB$L_FQFL]

Parameters

kpb
Address of KPB (which must be a VEST KPB). KPB$PS_UCB must contain the
address of a UCB and KPB$PS_IRP must contain the address of an IRP.

KP_STALL_FORK requires a value for this argument.

[fkb]
Address of a fork block.

Description

The KP_STALL_FORK and KP_STALL_IOFORK macros stall a kernel process by
calling EXE$KP_FORK.

Prior to calling IOC$KP_FORK, the KP_STALL_IOFORK macro disable timeouts
from the device represented by the UCB associated with the kernel process by
clearing UCB$V_TIM in UCB$L_STS.

The macros can only be called by a kernel process.

MACRO-32 Driver Macros 11–137

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
KP_STALL_FORK_WAIT

KP_STALL_FORK_WAIT

Stalls a kernel process so that it can be resumed by the software timer interrupt
service routine’s examination of the fork-and-wait queue.

Format

KP_STALL_FORK_WAIT kpb [,fkb]

Parameters

kpb
Address of the caller’s KPB.

[fkb]
Address of a fork block. If this argument is omitted, EXE$KP_FORK_WAIT uses
the fork block within the KPB (KPB$PS_FKBLK).

Description

The KP_STALL_FORK_WAIT macro stalls a kernel process by calling EXE$KP_
FORK_WAIT. Only a kernel process executing at or above IPL$_SYNCH can
invoke KP_STALL_FORK_WAIT.

11–138 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
KP_STALL_GENERAL

KP_STALL_GENERAL

Stalls the execution of a kernel process.

Format

KP_STALL_GENERAL kpb ,stall_routine [,resume_routine]

Parameters

kpb
Register containing address of the caller’s KPB.

stall_routine
Procedure value of the routine to be called requested to suspend the kernel
process described by the specified kpb.

A kernel process scheduling stall routine preserves kernel process context not
represented on the kernel process stack and takes steps that allow the stalled
kernel process thread to be resumed at some later time (for instance, by inserting
a fork block on a fork queue or by making a timer queue entry).

At the time a kernel process scheduling stall routine is called, kernel process
context has been stored in the KPB and on the kernel process stack. The stall
routine can thus immediately resume the kernel process thread.

[resume_routine]
Procedure value of the routine to be invoked by EXE$KP_RESTART when a
stalled kernel process is to be resumed.

Description

The KP_STALL_GENERAL macro calls EXE$KP_STALL_GENERAL to suspend
execution of the current kernel process. A kernel process invokes KP_STALL_
GENERAL directly — instead of KP_STALL_FORK, KP_STALL_FORK_WAIT,
KP_STALL_IOFORK, KP_STALL_REQCHAN, KP_STALL_WFIKPCH, or KP_
STALL_WFIRLCH — when it requires a specialized scheduling stall routine or
scheduling restart routine.

Only a kernel process can invoke the KP_STALL_GENERAL macro.

MACRO-32 Driver Macros 11–139

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
KP_STALL_REQCHAN

KP_STALL_REQCHAN

Stalls a kernel process in such a manner that it can be resumed by the granting
of a device controller channel.

Format

KP_STALL_REQCHAN [pri=LOW] [,kpb=IRP$PS_KPB] [,idb=YES]

Parameters

[pri=LOW]
Priority of the request for the controller channel. You can specify one of the
following keywords:

Keyword Meaning

LOW Insert fork block of UCB requesting controller channel at the
tail of the channel-wait queue.

HIGH Insert fork block of UCB requesting controller channel at the
head of the channel-wait queue.

[kpb=IRP$PS_KPB]
Address of the caller’s KPB (which must be a VEST KPB). KPB$PS_UCB must
contain the address of a UCB and KPB$PS_IRP must contain the address of an
IRP.

[idb=YES]
Flag requesting the return of the IDB address in R4. idb=YES, the default,
assuming that the address of the UCB is in R5 at the time the macro is invoked,
causes the address of the IDB to be placed in R4 after the channel request has
been granted.

R4. If your driver does not require KP_STALL_REQCHAN to emulate the IDB
returned in R4 behavior of REQCHAN (or REQPCHAN), you can save two
inline MACRO-32 instructions by adding IDB=NO to the KP_STALL_REQCHAN
invocation.

Description

The KP_STALL_REQCHAN macro calls IOC$KP_REQCHAN to request
ownership of the controller channel. If the channel is not busy, the kernel
process acquires the channel immediately and does not stall. If the channel is
busy, the kernel process is placed in the channel-wait-queue to be later resumed
by IOC$RELCHAN when it grants the channel request.

Only a kernel process executing at fork IPL and holding the appropriate fork lock
can invoke the KP_STALL_REQCHAN macro.

11–140 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
KP_STALL_WFIKPCH, KP_STALL_WFIRLCH

KP_STALL_WFIKPCH, KP_STALL_WFIRLCH

Stall a kernel process in such a manner that it can be resumed by device
interrupt processing.

Format

KP_STALL_WFIKPCH excpt ,time=65536 [,newipl=(SP)+] [,kpb=IRP$PS_KPB]

KP_STALL_WFIRLCH excpt ,time=65536 [,newipl=(SP)+] [,kpb=IRP$PS_KPB]

Parameters

excpt
Label of the timeout handling code. When the excpt argument is present, the
macro expands to use a BLBC to transfer to that routine in the event that SS$_
TIMEOUT status is returned. A driver writer may choose to omit the excpt
argument and decode the R0 status directly.

[time=65536]
Timeout interval, expressed as the number of seconds to wait for an interrupt
before a device timeout is considered to exist. A value equal to or greater than 2
is required because the timeout detection mechanism is accurate only to within
one second.

[newipl=(SP)+]
IPL to which to lower before returning to caller. Typically this is the fork IPL
associated with device processing that was pushed on the stack by a prior
invocation of the DEVICELOCK macro.

[kpb=IRP$PS_KPB]
Address of the caller’s KPB (which must be a VEST KPB). KPB$PS_UCB must
contain the address of a UCB and KPB$PS_IRP must contain the address of an
IRP.

Description

The KP_STALL_WFIKPCH and KP_STALL_WFIRLCH macros call IOC$KP_
WFIKPCH and IOC$KP_WFIRLCH respectively to initiate a stall of the kernel
process: These macros can only be invoked by a kernel process.

When invoked, KP_STALL_WFIKPCH or KP_STALL_WFIRLCH assumes that
the local processor has obtained the appropriate synchronization with the device
database by securing the appropriate device lock, as recorded in the unit control
block (UCB$L_DLCK) of the device unit from which the interrupt is expected.
This requirement also presumes that the local processor is executing at the device
IPL associated with the lock.

MACRO-32 Driver Macros 11–141

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
KP_START

KP_START

Starts the execution of a kernel process.

Format

KP_START kpb ,routine [,registers]

Parameters

kpb
Address of KPB.

routine
Procedure value of the routine to be started as the top-level routine in the kernel
process.

[registers]
Optional register save mask, indicating which registers must be preserved across
kernel process context switches. Registers R0, R1, R16 through R25, R27, R28,
R30, and R31 are never preserved across context switches; a reg-mask that
indicates any of these registers is illegal. Registers R12 through R15, R26, and
R29 are always saved and need not be specified.

Description

The KP_START macro calls EXE$KP_START to create a kernel process and start
its execution.

When invoking the KP_START macro, code must be executing at IPL$_
RESCHED or above.

11–142 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
KP_SWITCH_TO_KP_STACK

KP_SWITCH_TO_KP_STACK

Switch to kernel process context.

Format

KP_SWITCH_TO_KP_STACK [kpb=R6] [,return=RSB]
[,registers=<R0,R1,R2,R3,R4,R5,R6>]

Parameters

[kpb=R6]
Address of KPB.

[return=RSB]
Return semantic to be used when the kernel process stalls or completes. Valid
keywords are RSB and RET.

[,registers=<R0,R1,R2,R3,R4,R5,R6>]
Register save mask, indicating which registers are to be preserved across context
switches between the kernel process and the main thread.

Description

The KP_SWITCH_TO_KP_STACK macro creates a kernel process by calling
EXE$KP_START, supplying a routine embedded in the macro as the top-level
kernel process routine. Execution proceeds in kernel process context, with the
address of the KPB in the location indicated by the kpb parameter and the
kernel process stack active.

MACRO-32 Driver Macros 11–143

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
LOCK

LOCK

Achieves synchronized access to a system resource as appropriate to the
processing environment.

Format

LOCK lockname [,lockipl] [,savipl] [,condition] [,preserve=YES]

Parameters

lockname
Name of the resource to lock.

[lockipl]
Synchronization IPL. OpenVMS Alpha obtains this IPL from the spin lock data
structure corresponding to the lockname and, thus, ignores this argument.

[savipl]
Location at which to save the current IPL.

[condition]
Indication of a special use of the macro. The only defined condition is
NOSETIPL, which causes the macro to omit setting IPL.

[preserve=YES]
Indication that the macro should preserve R0 across the invocation. If you do not
need to retain the contents of R0, specifying preserve=NO can enhance system
performance.

Description

In a uniprocessing environment, the LOCK macro sets IPL to the IPL indicated
by the entry in the spin lock IPL vector (SMP$AL_IPLVEC) that corresponds to
the spin lock index SPL$C_lockname.

In a multiprocessing environment, the LOCK macro performs the following
actions:

• Preserves R0 through the macro call (if preserve=YES is specified).

• Generates a spin lock index of the form SPL$C_lockname and stores it in
R0.

• Calls SMP$ACQUIRE to obtain the specified spin lock. SMP$ACQUIRE
indexes into the system spin lock database (a pointer to this database is
located at SMP$AR_SPNLKVEC) to obtain the spin lock. Prior to securing
the spin lock, SMP$ACQUIRE raises IPL to the IPL associated with the spin
lock, determining the appropriate IPL from the spin lock structure (SPL$B_
IPL).

In either processing environment, the LOCK macro performs the following tasks:

• Preserves the current IPL at the specified location (if savipl is specified)

• Sets the SMP-modified bit in the driver prologue table (DPT$V_SMPMOD in
DPT$L_FLAGS)

11–144 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
LOCK

Notes for Converting VAX Drivers

If you are converting an OpenVMS VAX driver to an Alpha driver, note that
because OpenVMS Alpha obtains the synchronization IPL from the spin lock data
structure corresponding to the lockname, it ignores the lockipl argument, if
specified.

MACRO-32 Driver Macros 11–145

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
RELCHAN

RELCHAN

Releases all controller data channels allocated to a device.

Format

RELCHAN

Description

The RELCHAN macro releases all controller data channels allocated to a device.
When the RELCHAN macro is invoked, R5 must contain the address of the UCB.
RELCHAN destroys the contents of R0 through R1.

11–146 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
REQCHAN

REQCHAN

Requests exclusive use of the CRB and defines the channel grant routine entry
point.

Format

REQCHAN [pri=LOW | HIGH] [,ENVIRONMENT=JSB | CALL]

Parameters

[pri=LOW]
Priority of request. If the priority is HIGH, REQCHAN calls IOC_
STD$PRIMITIVE_REQCHANH; otherwise it calls IOC_STD$PRIMITIVE_
REQCHANL.

[,environment]
Specifies the callers and grant routine environments as either JSB or CALL.
The default is JSB. If specified as JSB, then an RSB is used to return from the
current routine if the channel is not granted immediately and a .JSB_ENTRY
directive is used to generate the grant routine. If specified as CALL, then an
RET is used to return from the current routine if the channel is not granted
immediately, a .CALL_ENTRY directive is used to generate the grant routine,
and the grant routine parameters are copied into R3, R4, and R5.

Description

The REQCHAN macro obtains a controller’s data channel.

If the channel is granted immediately, execution continues at the line of code that
immediately follows the macro invocation. If no channel is available, the UCB
is placed in a channel-wait queue, and the macro returns control to its caller’s
caller. When the channel request is granted, execution resumes at the line of code
following the macro execution.

When the REQCHAN macro is invoked, R5 must contain the address of the UCB.

The REQCHAN macro returns the address of the IDB in R4 and destroys the
contents of R0 through R2.

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

Implicit inputs:

R3 contains a pointer to the IRP which if necessary is
passed to the grant routine via UCB$Q_FR3(R5),

R5 contains a pointer to the UCB,

Implicit outputs to caller:

R4 contains the IDB address,

R0-R2 are scratched.

Implicit outputs to grant routine, that is, entry conditions:

ENVIRONMENT=CALL

MACRO-32 Driver Macros 11–147

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
REQCHAN

A driver channel grant routine entry point is
generated for a routine using the new standard call
interface as described in section 4.3.

R3,R4,R5 contain traditional channel grant routine parameter
values copied from the standard call interface
actual parameters,

R0,R1 can be scratched.

ENVIRONMENT=JSB

A driver channel grant routine entry point is
generated for a routine using the traditional JSB
interface.

R3,R4,R5 contain traditional channel grant routine
parameters,

R0-R5 can be scratched.

11–148 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
REQCOM

REQCOM

Places the current IRP on the post processing queue and to logically end the
driver fork thread that began on entry into the start I/O or alternate start I/O
routines.

Format

REQCOM [,environment=JSB | CALL]

Parameters

[,environment]
Specifies the fork routine environment as either JSB or CALL. The default is
JSB. If specified as JSB, then an RSB is used to return from the current routine.
If specified as CALL, then an RET is used to return from the current routine.

Description

The REQCOM macro completes the processing of an I/O request after the driver
has finished its portion of the processing.

When the REQCOM macro is invoked, the following registers must contain the
following values:

Register Contents

R0 First longword of I/O status
R1 Second longword of I/O status
R5 Address of UCB

The REQCOM macro destroys the contents of R0 through R1. All other registers
are also destroyed if the action of the macro initiates the processing of a waiting
I/O request for the device.

MACRO-32 Driver Macros 11–149

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
REQPCHAN

REQPCHAN

Obtains a controller’s data channel.

Format

REQPCHAN [pri=LOW] [,environment=JSB | CALL]

Parameters

[pri=LOW]
Priority of request. If the priority is HIGH, REQPCHAN calls IOC$PRIMITIVE_
REQCHANH; otherwise it calls IOC$PRIMITIVE_REQCHANL.

[,environment=JSB | CALL]
Specifies the fork routine environment as either JSB or CALL. The default is
JSB. If specified as JSB, then an RSB is used to return from the current routine.
If specified as CALL, then an RET is used to return from the current routine.

Description

The REQPCHAN macro calls obtains a controller’s data channel.

If the channel is granted immediately, execution continues at the line of code that
immediately follows the macro invocation. If no channel is available, the UCB
is placed in a channel-wait queue, and the macro returns control to its caller’s
caller. When the channel request is granted, execution resumes at the line of code
following the macro execution.

When the REQPCHAN macro is invoked, R5 must contain the address of the
UCB.

The REQPCHAN macro returns the address of the IDB in R4 and destroys the
contents of R0 through R2.

11–150 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
SYSDISP

SYSDISP

Causes a branch to a specified address according to the type of Alpha system
executing the code in the macro expansion.

Format

SYSDISP list [,continue=YES]

Parameters

list
List containing one or more pairs of parameters in the following format:

<system-type, destination>

The system-type parameter identifies the type of Alpha system for which the
macro is to generate a case table entry. The SYSDISP macro identifies the
following Alpha systems:

ADU Prototype Alpha system
DEC 4000-600 Alpha deskside system
LASER Alpha mid-range system
DEC 3000-300 Alpha workstation
MANNEQUIN Alpha simulator

[continue=YES]
Specifies whether execution should continue at the line immediately after the
SYSDISP macro if the value at EXE$GQ_SYSTYPE does not correspond to any of
the values specified as the system-type in the list argument. A fatal bugcheck of
UNSUPRTCPU occurs if the dispatching code does not find the executing system
identified in the list and the value of continue is NO.

Description

The SYSDISP macro provides a means for transferring control to a specified
destination depending on the type of the executing system.

SYSDISP constructs appropriate symbolic constants for each system-type listed
in list, and compares them against the contents of EXE$GQ_SYSTYPE. These
constants have the form HWRPB$_SYSTYPE$K_system-type.

MACRO-32 Driver Macros 11–151

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
TBI_ALL

TBI_ALL

Invalidates the data and instruction translation buffers in their entirety.

Format

TBI_ALL [environ=MP]

Parameters

[environ=MP]
Context of translation buffer invalidation. When environ=LOCAL, the macro
invalidates the translation buffer only in the context of the local processor. When
environment is not specified or does not equal LOCAL, the macro extends to
all system components (that is, processors and device controllers) that may have
cached PTEs.

Description

The TBI_ALL macro flushes the entire contents of the data and instruction
translation buffers.

The Alpha architecture specifies that whenever a PTE is modified in a way
that results in a reduction of access to a virtual address, software must ensure
that any cached copies of the previous PTE contents are flushed from the
translation buffer before the new PTE contents can be accessed. For example,
code must invalidate a translation buffer cache entry if it clears the valid bit
of the associated PTE, increases its page protection, or sets one of its memory
management fault bits.

If the fault-on-execute bit in the modified PTE is set, the page was never used in
execution. For such pages, code can achieve better performance by avoiding an
instruction translation buffer flush and invoke the TBI_DATA_64 macro to flush
only the data translation buffer.

11–152 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
TBI_DATA_64

TBI_DATA_64

Invalidates a single 64-bit virtual address in the data translation buffer.

Format

TBI_DATA_64 addr [,environ=MP]

Parameters

addr
64-bit virtual address described by the translation buffer entry to be invalidated.

The TBI_DATA_64 macro assumes that the virtual address supplied in the addr
argument will normally be in a register. Although it also accepts a memory
address, you should quadword align it to avoid the performance degradation
caused by the servicing of an alignment fault.

[environ=MP]
Context of translation buffer invalidation. When environ=LOCAL, the macro
invalidates the translation buffer only in the context of the local processor. When
environment is not specified or does not equal LOCAL, the macro extends to
all system components (that is, processors and device controllers) that may have
cached PTEs.

Description

As specified by the Alpha architecture, the TBI_DATA_64 macro invalidates a
single 64-bit virtual address in the data translation buffer only. The instruction
translation buffer is not affected.

The Alpha architecture specifies that whenever a PTE is modified in a way
that results in a reduction of access to a virtual address, software must ensure
that any cached copies of the previous PTE contents are flushed from the
translation buffer before the new PTE contents can be accessed. For example,
code must invalidate a translation buffer cache entry if it clears the valid bit
of the associated PTE, increases its page protection, or sets one of its memory
management fault bits.

If R2 is not specified as the addr argument, it is preserved across the macro call.

The TBI_DATA_64 macro and its callers depend on the MTPR instruction to save
and restore the registers it destroys. If a MACRO compiler built-in is ever used
again, those registers must be specifically preserved.

MACRO-32 Driver Macros 11–153

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
TBI_SINGLE

TBI_SINGLE

Flushes the cached contents of a single page-table entry (PTE) from the data and
instruction translation buffers.

Format

TBI_SINGLE addr [,environ=MP]

Parameters

addr
32-bit virtual address to be invalidated.

[environ=MP]
Context of translation buffer invalidation. When environ=LOCAL, the macro
invalidates the translation buffer only in the context of the local processor. When
environment is not specified or does not equal LOCAL, the macro extends to
all system components (that is, processors and device controllers) that may have
cached PTEs.

Description

As specified by the Alpha architecture, the TBI_SINGLE macro flushes the cached
contents of a single page-table entry (PTE) from both the data and instruction
translation buffers.

The Alpha architecture specifies that whenever a PTE is modified in a way
that results in a reduction of access to a virtual address, software must ensure
that any cached copies of the previous PTE contents are flushed from the
translation buffer before the new PTE contents can be accessed. For example,
code must invalidate a translation buffer cache entry if it clears the valid bit
of the associated PTE, increases its page protection, or sets one of its memory
management fault bits.

If the fault-on-execute bit in the modified PTE is set, the page was never used in
execution. For such pages, code can achieve better performance by avoiding an
instruction translation buffer flush and invoke the TBI_DATA_64 macro to flush
only the data translation buffer.

11–154 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
TBI_SINGLE_64

TBI_SINGLE_64

Invalidates a single 64-bit virtual address in both the data and instruction
translation buffers.

Format

TBI_SINGLE_64 addr [,environ=MP]

Parameters

addr
64-bit virtual address to be invalidated.

The TBI_SINGLE_64 macro assumes that the virtual address supplied in the
addr argument will normally be in a register. Although the TBI_DATA_64
macro also accepts a memory address, you should quadword align it to avoid the
performance degradation caused by the servicing of an alignment fault.

[environ=MP]
Context of translation buffer invalidation. When environ=LOCAL, the macro
invalidates the translation buffer only in the context of the local processor. When
environment is not specified or does not equal LOCAL, the macro extends to
all system components (that is, processors and device controllers) that may have
cached PTEs.

Description

As specified by the Alpha architecture, the TBI_SINGLE_64 macro invalidates a
single 64-bit virtual address in both the data and instruction translation buffers.

The Alpha architecture specifies that whenever a PTE is modified in a way
that results in a reduction of access to a virtual address, software must ensure
that any cached copies of the previous PTE contents are flushed from the
translation buffer before the new PTE contents can be accessed. For example,
code must invalidate a translation buffer cache entry if it clears the valid bit
of the associated PTE, increases its page protection, or sets one of its memory
management fault bits.

If R2 is not specified as the addr argument, it is preserved across the macro call.

MACRO-32 Driver Macros 11–155

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
TIMEDWAIT

TIMEDWAIT

Waits a specified interval of time for an event or condition to occur, optionally
executing a series of specified instructions that test for various exit conditions.

Format

TIMEDWAIT time [,ins1] [,ins2] [,ins3] [,ins4] [,ins5] [,ins6] [,donelbl] [,imbedlbl]
[,ublbl] [,nsec] [,bus] [,userins]

Parameters

time
Delay time specified in 10-microsecond intervals. Actual delay time depends on
number and type of loop instructions, clock frequency, and other variables.

Note that the time and nsec arguments are mutually exclusive.

[ins1]
First instruction to be executed in the delay loop.

[ins2]
Second instruction to be executed in the delay loop.

[ins3]
Third instruction to be executed in the delay loop.

[ins4]
Fourth instruction to be executed in the delay loop.

[ins5]
Fifth instruction to be executed in the delay loop.

[ins6]
Sixth instruction to be executed in the delay loop.

[donelbl]
Label placed after the instruction at the end of the TIMEDWAIT loop; embedded
instructions can pass control to this label in order to pass control to the
instruction following the invocation of the TIMEDWAIT macro.

[imbedlbl]
Label placed at the first of the embedded instructions; after executing a processor-
specific delay, the TIMEDWAIT macro passes control here to retest for the
condition.

[ublbl]
Label placed at the instruction that performs the processor-specific delay after
each execution of the loop of embedded instructions; embedded instructions can
pass control here in order to skip the execution of the rest of the embedded
instructions in a given execution of the embedded loop.

[nsec]
Delay time in nanoseconds. Actual delay time depends on number and type of
loop instructions, clock frequency, and other variables.

Note that the nsec and time arguments are mutually exclusive.

11–156 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
TIMEDWAIT

[bus]
Address of ADP of the bus, if a bus-specific delay should be added to the delay
loop. You would add a bus-specific delay, for instance, to avoid saturating a bus
with CSR references in the instruction loop.

[userins]
Additional instructions to be executed in the delay loop. This list can be of
indefinite length and is executed after (or in place of) the instructions specified in
the ins1 through ins6 arguments.

Description

The TIMEDWAIT macro provides the ability to write code that is based on specific
time intervals and is independent of system-specific timer implementations. You
can use the TIMEDWAIT macro for the following tasks:

• Timeout handling. The macro generates a time delay in which a number
of instructions tests for the occurence of a specific event or condition. In
this case, either the specified time delay is completed or an exit condition is
met. A device driver uses this mechanism to establish time bounds for the
execution of a given instruction sequence.

• Simple delay. The macro generates a time delay with no embedded
instructions. When the delay has completed, the code thread continues.

• Optimistic polling. If a device is known to respond quickly, a driver might
invoke the TIMEDWAIT macro with a short time delay to check for device
completion and potentially avoid the overhead of device interrupt servicing. If
the instructions supplied to the delay loop determine that the operation has
completed, an interrupt has been saved. Otherwise, the delay completes and
the suspended code thread continues.

The TIMEDWAIT macro returns a status code (SS$_NORMAL or SS$_TIMEOUT)
in R0. Note that the embedded instructions can overwrite SS$_NORMAL status,
although SS$_TIMEOUT status cannot be overwritten. The macro destroys the
contents of R1, and preserves all other registers.

Examples

1.
TIMEDWAIT TIME=#600*1000,- ;6-second wait loop

INS1=<TSTB RL_CS(R4)>,- ;Is controller ready?
INS2=<BLSS 15$>,- ;If LSS - yes
DONELBL=15$;Label to exit wait loop

BLBC R0,25$;Time expired - exit

2.
TIMEDWAIT NSEC=#<100*1000>,-

DONELBL=10$,- ;Label to exit wait loop
USERINS=<<BITB #1,CSR(R4)>,<BNEQ 10$>> ;Check CSR

MACRO-32 Driver Macros 11–157

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
TIMEDWAIT

Notes for Converting VAX Drivers

If you are converting an OpenVMS VAX driver to an Alpha driver, note the
following:

• The OpenVMS Alpha TIMEDWAIT macro, unlike the OpenVMS VAX version,
does read a processor register. As such, the interval it waits corresponds very
closely with the delay specified in the time or nsec argument, and is not
affected by the number or complexity of the imbedded instructions that may
be specified as arguments.

• The OpenVMS Alpha TIMEDWAIT macro does not automatically adjust the
time (or nsec) argument to accommodate a bus-specific or CPU-specific delay
factor. If a bus-specific delay is needed, you can request one by specifying the
address of the bus’s ADP in the bus.

• The OpenVMS Alpha TIMEDWAIT macro allows you to specify the delay
time in either 10-microsecond intervals (using the time argument) or in
nanosecond units (using the nsec argument).

• The OpenVMS Alpha TIMEDWAIT macro allows you to specify, in the
userins argument, instructions to execute within the delay loop and test for
exit conditions. These instructions execute within the loop after (or in place
of) the instructions specified in the ins1 through ins6 arguments.

11–158 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
WFIKPCH, WFIRLCH

WFIKPCH, WFIRLCH

Suspends a driver fork thread and folds its context into a fork block in
anticipation of a device interrupt or timeout. When WFIKPCH is invoked, the
fork thread keeps ownership of the controller channel while waiting; when
WFIRLCH is invoked, the fork thread releases ownership of the controller
channel.

Format
n

WFIKPCH
WFIRLCH

o
excpt [,time=65536] [,newipl] [environment=JSB | CALL] [,toutrout]

Parameters

excpt
Label of the timeout handling code within the driver.

[time=65536]
Timeout interval, expressed as the number of seconds to wait for an interrupt
before a device timeout is considered to exist. A value equal to or greater than 2
is required because the timeout detection mechanism is accurate only to within 1
second.

[newipl=(SP)+]
IPL to which to lower before returning to caller. Typically this is the fork IPL
associated with device processing that was pushed on the stack by a prior
invocation of the DEVICELOCK macro.

[,environment]
Specifies the current and interrupt resume routine environments are either
JSB or CALL. The default is JSB. If specified as JSB, then the return from the
current procedure is via a RSB, and a .JSB_ENTRY directive is used to generate
the resume routine entry point. If specified as CALL, then the return from the
current procedure is via a RET, a .CALL_ENTRY directive is used to generate
the resume routine entry point, and the IRP, FR4, and UCB parameters in the
resume routine are copied into R3, R4, and R5.

[,toutrout]
Specifies the timeout routine entry point. The timeout routine is a fork routine
that can either use the traditional or the new standard call interface. If not
specified then the resume routine entry point is also used as the timeout routine
entry point. The timeout routine procedure value is loaded into UCB$PS_
TOUTROUT(R5) for potential use by EXE$TIMEOUT. This parameter cannot be
specified together with the EXCPT parameter.

Description

The WFIKPCH and WFIRLCH macros construct an inline entry point for the code
that follows the macro invocation (normally called the fork routine). They insert
an instruction at the beginning of the fork routine that tests UCB$V_TIMOUT in
UCB$L_STS and branches to the label of the timeout code (specified in the excpt
argument) if it is set.

MACRO-32 Driver Macros 11–159

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
WFIKPCH, WFIRLCH

Finally, WFIKPCH and WFIRLCH place the procedure value of the fork routine
(at the instruction following the macro invocation) in UCB$L_FPC, insert the
time value in R1 and newipl value in R2, and call the appropriate wait-for-
interrupt routine (either IOC$PRIMITIVE_WFIKPCH or IOC$PRIMITIVE_
WFIRLCH).

When the wait-for-interrupt routine returns control, the WFIKPCH or WFIRLCH
macro issues an RSB instruction to the caller of the routine which invoked it
(that is, the caller of the start-I/O routine).

Either the device interrupt servicing routine or the software timer interrupt
servicing routine will eventually issue a JSB instruction to the fork routine. In
both instances, code can assume that only R3 and R4 have been preserved across
the suspension.

IOC$WFIKPCH and IOC$WFIRLCH assume that, prior to the invocation of the
macro, a DEVICELOCK macro has been issued to synchronize with other device
activity.

When the WFIKPCH or WFIRLCH macro is invoked, the following locations must
contain the values listed:

Location Contents

R5 Address of UCB
00(SP) IPL at which control is passed to the caller’s caller (if the newipl

argument is not specified)

Notes for Converting VAX Drivers

If you are converting a VAX driver to an Alpha driver, note the following:

Implicit inputs:

R3 contains a pointer to the IRP which is passed to
the interrupt resume routine via UCB$Q_FR3(R5),

R4 contains the 64-bit value to pass to the interrupt
resume routine via UCB$Q_FR4(R5),

R5 contains a pointer to the UCB,

Implicit outputs to caller:

R0,R1,R2 are scratched.

Implicit outputs to resume routine, i.e. entry conditions:

ENVIRONMENT=CALL

An entry point is generated that conforms to both
the new standard call interface for a driver resume
from interrupt routine as described in section 4.7
and the new standard call interface for a fork
routine as described in section 4.2.

R3,R4,R5 contain traditional resume from interrupt routine
parameter values (64-bit value for R4) copied from
the standard call interface actual parameters,

R0,R1 can be scratched.

ENVIRONMENT=JSB

11–160 MACRO-32 Driver Macros

OpenVMS Macros Used by OpenVMS Alpha Device Drivers
WFIKPCH, WFIRLCH

An entry point is generated that conforms to both
the traditional JSB interface for a driver resume
from interrupt routine
and the traditional JSB interface for a fork
routine..

R3,R4,R5 contain traditional resume from interrupt routine
parameters (64-bit value for R4),

R0-R4 can be scratched.

MACRO-32 Driver Macros 11–161

Index

A
ACB$V_QUOTA, 9–37
ACB (AST control block), 9–20 to 9–21, 9–22 to

9–23, 9–30 to 9–31
contents, 9–36 to 9–38

Accessing shared data, 5–3 to 5–4
ACP$ACCESSNET routine, 6–7, 6–14
ACP$ACCESS routine, 6–7, 6–14
ACP$DEACCESS routine, 6–7, 6–14
ACP$MODIFY routine, 6–7, 6–14
ACP$MOUNT routine, 6–7, 6–14
ACP$READBLK routine, 6–7, 6–14
ACP$WRITEBLK routine, 6–7, 6–14
ACP_STD$ACCESSNET routine, 6–7, 9–8 to 9–9
ACP_STD$ACCESS routine, 6–7, 9–6 to 9–7
ACP_STD$DEACCESS routine, 6–7, 9–10 to 9–11
ACP_STD$MODIFY routine, 6–7, 9–12 to 9–13
ACP_STD$MOUNT routine, 6–7, 9–14 to 9–15
ACP_STD$READBLK routine, 6–7, 9–16 to 9–17
ACP_STD$WRITEBLK routine, 6–7, 9–18 to 9–19
ADP (adapter control block), 10–3 to 10–10

child, 10–4
parent, 10–4
peer, 10–4

ADP list, 10–4
Alternate start I/O routine, 9–82 to 9–83
Alternate start-I/O routines, 8–2 to 8–3
AST (asynchronous system trap), 9–36 to 9–38,

9–39 to 9–41
delivering, 9–20 to 9–21, 9–22 to 9–23, 9–77
for aborted I/O request, 9–77
process-requested, 9–37

Attention AST
delivering, 9–20 to 9–21, 9–22 to 9–23
disabling, 9–36 to 9–38
enabling, 9–36 to 9–38
flushing, 9–30 to 9–31

B
BLISS drivers

converting to OpenVMS Alpha, 1–4
Branches

when legal between local routines, 7–11

Buffer
allocating, 9–79 to 9–81
deallocating, 9–28 to 9–29
locking, 9–103 to 9–106, 9–107 to 9–111, 9–127

to 9–130, 9–135 to 9–140, 9–148 to 9–151,
9–156 to 9–161, 9–276 to 9–277

moving data to from system to user, 9–244 to
9–246, 11–49

moving data to from user to system, 9–241 to
9–243, 11–48

testing accessibility of, 9–103 to 9–106, 9–107
to 9–111, 9–127 to 9–130, 9–131 to 9–134,
9–135 to 9–140, 9–148 to 9–151, 9–152 to
9–155, 9–156 to 9–161

unlocking, 9–278 to 9–279
BUSARRAY, 10–9 to 10–10
Bus array entry, 10–10
BYTCNT (byte count) quota

debiting, 9–80
Byte data

accessing, 5–3 to 5–4
BYTLM (byte limit) quota

debiting, 9–80

C
Call-based system routine

interface, 1–3
naming, 1–3

CALL_ABORTIO macro, 6–11, 6–15, 11–7
CALL_ACCESS macro, 6–14
CALL_ACCESSNET macro, 6–14
CALL_ACP_MODIFY macro, 6–14
CALL_ALLOCBUF macro, 6–15, 11–8
CALL_ALLOCEMB macro, 6–14, 11–9
CALL_ALLOCIRP macro, 6–15, 11–8
CALL_ALTQUEPKT macro, 6–11, 6–15, 11–10
CALL_ALTREQCOM macro, 6–16, 11–11
CALL_BROADCAST macro, 6–16, 11–12
CALL_CANCELIO macro, 6–16, 11–13
CALL_CARRIAGE macro, 6–15, 11–14
CALL_CHECK_ACCESS macro, 6–17
CALL_CHKCREACCES macro, 6–15, 11–15
CALL_CHKDELACCES macro, 6–15, 11–15
CALL_CHKEXEACCES macro, 6–15, 11–15

Index–1

CALL_CHKLOGACCES macro, 6–15, 11–15
CALL_CHKPHYACCES macro, 6–15, 11–15
CALL_CHKRDACCES macro, 6–15, 11–15
CALL_CHKWRTACCES macro, 6–15, 11–15
CALL_CLONE_UCB macro, 6–16, 11–16
CALL_COPY_UCB macro, 6–16, 11–17
CALL_CREDIT_UCB macro, 6–16, 11–18
CALL_CVTLOGPHY macro, 6–16, 11–19
CALL_CVT_DEVNAM macro, 6–16, 11–20
CALL_DEACCESS macro, 6–14
CALL_DELATTNAST macro, 6–14, 11–21
CALL_DELATTNASTP macro, 6–14, 11–22
CALL_DELCTRLAST macro, 6–14, 11–23
CALL_DELCTRLASTP macro, 6–14, 11–24
CALL_DELETE_UCB macro, 6–16, 11–25
CALL_DEVICEATTN macro, 6–14, 11–26
CALL_DEVICERR macro, 6–15, 11–26
CALL_DEVICTMO macro, 6–15, 11–26
CALL_DIAGBUFILL macro, 6–16, 11–27
CALL_DRVDEALMEM macro, 6–14, 11–28
CALL_EXE_MODIFY macro, 6–15
CALL_FILSPT macro, 6–16, 11–29
CALL_FINISHIOC macro, 6–11, 6–15, 11–30
CALL_FINISHIO macro, 6–11, 6–15, 11–30
CALL_FINISHIO_NOIOST macro, 6–11, 11–30
CALL_FLUSHATTNS macro, 6–14, 11–31
CALL_FLUSHCTRLS macro, 6–14, 11–32
CALL_GETBYTE macro, 6–16, 11–33
CALL_INITBUFWIND macro, 6–16, 11–34
CALL_INITIATE macro, 6–16, 11–35
CALL_INSERT_IRP macro, 6–15, 11–36
CALL_INSIOQC macro, 6–15
CALL_INSIOQ macro, 6–15
CALL_IOLOCK macro, 6–17, 11–37
CALL_IOLOCKR macro, 6–17, 11–38
CALL_IOLOCKW macro, 6–17, 11–39
CALL_IORSNWAIT macro, 6–11, 6–15, 11–40
CALL_IOUNLOCK macro, 11–41
CALL_LCLDSKVALID macro, 6–15
CALL_LINK_UCB macro, 6–16, 11–42
CALL_MAPVBLK macro, 6–16, 11–43
CALL_MNTVER macro, 6–16, 11–44
CALL_MNTVERSIO macro, 6–15, 11–45
CALL_MODIFYLOCK macro, 6–12, 6–15, 11–46
CALL_MODIFYLOCK_ERR macro, 6–12, 6–15,

11–46
CALL_MOUNT macro, 6–14
CALL_MOUNT_VER macro, 6–15, 11–47
CALL_MOVFRUSER2 macro, 6–16, 11–48
CALL_MOVFRUSER macro, 6–16, 11–48
CALL_MOVTOUSER2 macro, 6–16, 11–49
CALL_MOVTOUSER macro, 6–16, 11–49
CALL_ONEPARM macro, 6–15
CALL_PARSDEVNAM macro, 6–16, 11–50
CALL_POST macro, 6–14, 11–51
CALL_POST_IRP macro, 6–17, 11–52

CALL_POST_NOCNT macro, 6–14, 11–51
CALL_PTETOPFN macro, 6–17, 11–53
CALL_QIOACPPKT macro, 6–11, 6–15, 11–54
CALL_QIODRVPKT macro, 6–11, 6–15, 11–55
CALL_QNXTSEG1 macro, 6–17, 11–56
CALL_QXQPPKT macro, 6–15, 11–57
CALL_READBLK macro, 6–14
CALL_READCHK macro, 6–12, 6–15, 11–58
CALL_READCHKR macro, 6–12, 6–15, 11–58
CALL_READLOCK macro, 6–12, 6–16, 11–59
CALL_READLOCK_ERR macro, 6–12, 6–16,

11–59
CALL_RELCHAN macro, 11–60
CALL_RELEASEMB macro, 6–15, 11–61
CALL_REQCOM macro, 11–62
CALL_SEARCHDEV macro, 6–17, 11–63
CALL_SEARCHINT macro, 6–17, 11–64
CALL_SENSEMODE macro, 6–16
CALL_SETATTNAST macro, 6–12, 11–65
CALL_SETCHAR macro, 6–16
CALL_SETCTRLAST macro, 6–12, 6–14, 11–66
CALL_SETMODE macro, 6–16
CALL_SEVER_UCB macro, 6–17, 11–67
CALL_SIMREQCOM macro, 6–17, 11–68
CALL_SNDEVMSG macro, 6–16, 11–69
CALL_SSETATTNAST macro, 6–14
CALL_THREADCRB macro, 6–17, 11–70
CALL_UNLOCK macro, 6–17, 11–71
CALL_WRITEBLK macro, 6–14
CALL_WRITECHK macro, 6–12, 6–16, 11–72
CALL_WRITECHKR macro, 6–12, 6–16, 11–72
CALL_WRITELOCK macro, 6–12, 6–16, 11–73
CALL_WRITELOCK_ERR macro, 6–12, 6–16,

11–73
CALL_WRITE macro, 6–16
CALL_WRTMAILBOX macro, 6–16, 11–74
CALL_ZEROPARM macro, 6–16
Cancel I/O routine

flushing ASTs in, 9–30 to 9–31
Cancel-I/O routines, 8–4 to 8–6
Cancel selective routines, 8–7 to 8–8
CCB (channel control block), 10–11 to 10–12
Channel assign routines, 8–9 to 8–10
Channel index number, 9–214
CLASS_UNIT_INIT macro, 11–75 to 11–76
Cloned UCB routines, 8–11 to 8–13
COM$DELATTNASTP routine, 6–14
COM$DELATTNAST routine, 6–14
COM$DELCTRLASTP routine, 6–14
COM$DELCTRLAST routine, 6–14
COM$DRVDEALMEM routine, 6–14
COM$FLUSHATTNS routine, 6–14
COM$FLUSHCTRLS routine, 6–14
COM$POST routine, 6–14
COM$POST_NOCNT routine, 6–14
COM$SETATTNAST routine, 6–12, 6–14

Index–2

COM$SETCTRLAST routine, 6–12, 6–14
Common interrupt dispatcher

use of memory barriers, 5–2
Compiling a device driver, 6–1 to 6–35
COM_STD$DELATTNASTP routine, 9–22 to 9–23
COM_STD$DELATTNAST routine, 9–20 to 9–21
COM_STD$DELCTRLASTP routine, 9–26 to 9–27
COM_STD$DELCTRLAST routine, 9–24 to 9–25
COM_STD$DRVDEALMEM routine, 9–28 to 9–29
COM_STD$FLUSHATTNS, 9–37
COM_STD$FLUSHATTNS routine, 9–30 to 9–31
COM_STD$FLUSHCTRLS routine, 9–32 to 9–33
COM_STD$POST routine, 9–34 to 9–35
COM_STD$POST_NOCNT routine, 9–34 to 9–35
COM_STD$SETATTNAST routine, 6–12, 9–36 to

9–38
COM_STD$SETCTRLAST routine, 6–12, 9–39 to

9–41
Control AST

disabling, 9–39 to 9–41
enabling, 9–39 to 9–41

Controller channels
obtaining, 3–7 to 3–8
releasing, 3–8 to 3–10

Controller initialization routines, 8–14 to 8–16
returning status from, 6–6
specifying, 6–2 to 6–4

Coroutines, 6–32 to 6–34
Counted resource

defined, 4–1, 9–173
Counted resource items

allocating, 4–1 to 4–54–6
deallocating, 4–6

CPUDISP macro, 11–77
CRAB (counted resource allocation block), 4–1
CRAM (controller register access mailbox), 10–12

to 10–15
allocating, 2–4 to 2–5
initializing, 2–6
using, 2–7

CRAM_ALLOC macro, 11–78
CRAM_CMD macro, 11–79 to 11–80
CRAM_DEALLOC macro, 11–81
CRAM_IO macro, 11–82
CRAM_QUEUE macro, 11–83
CRAM_WAIT macro, 11–84
CRB (channel request block), 10–16 to 10–18
CRCTX (counted resource context block), 4–2

allocating, 4–2
deallocating, 4–6
initializing, 4–3

CSR (control and status register)
defined, 2–2

D
Data granularity, 5–3 to 5–4
$$$110_DATA psect, 6–1
Data transfer

zero byte count, 9–105, 9–129, 9–150
DDB (device data block), 10–19 to 10–20
DDT (driver dispatch table), 10–20 to 10–24
DDTAB macro, 3–13, 6–2, 11–85 to 11–88
Device

disk, 9–144, 9–263
tape, 9–263

Device affinity, 9–234
Device characteristics

retrieving, 9–141 to 9–142
setting, 9–143 to 9–145

Device controller data channel
releasing, 9–260 to 9–261, 11–146

Device controller data channel wait queue, 9–260
DEVICELOCK macro, 5–1, 11–89 to 11–90
Device locks, 5–1
Device registers

accessing, 2–1 to 2–7
using hardware I/O mailbox to access, 2–4

Device unit
operations count, 9–263

DEVICEUNLOCK macro, 5–1
Diagnostic buffer, 9–234

filling, 9–225 to 9–226
Direct I/O

checking accessibility of process buffer for,
9–131 to 9–134, 9–152 to 9–155

locking a process buffer for, 9–103 to 9–106,
9–107 to 9–111, 9–127 to 9–130, 9–135 to
9–140, 9–148 to 9–151, 9–156 to 9–161

unlocking process buffer, 9–278 to 9–279
Disk driver, 9–98 to 9–100
DMA (direct memory I/O) transfer, 4–1 to 4–6
DMA transfer

for read operation, 9–127 to 9–130, 9–135 to
9–140

for read/write operation, 9–103 to 9–106
for write operation, 9–107 to 9–111, 9–148 to

9–151, 9–156 to 9–161
DPT$V_SVP, 9–242, 9–245
DPT (driver prologue table), 10–24 to 10–28
DPTAB macro, 6–2, 11–91 to 11–95

used to identify OpenVMS Alpha device driver,
6–2

DPT_STORE macro, 11–96 to 11–98
DPT_STORE_ISR macro, 11–99
Driver entry points, 7–11 to 8–48
Driver macros, 11–1 to Index–1
$$$115_DRIVER psect, 6–1
Driver unloading routines, 8–21

Index–3

$DRIVER_ALTSTART_ENTRY macro, 6–5, 8–2
$DRIVER_CANCEL_ENTRY macro, 6–5, 8–4
$DRIVER_CANCEL_SELECTIVE_ENTRY macro,

6–5, 8–7
$DRIVER_CHANNEL_ASSIGN_ENTRY macro,

6–5, 8–9
$DRIVER_CLONEDUCB_ENTRY macro, 6–5,

8–12
DRIVER_CODE macro, 6–1 to 6–2, 11–105
$DRIVER_CTRLINIT_ENTRY macro, 6–5, 8–14
DRIVER_DATA macro, 6–1 to 6–2, 11–114
$DRIVER_DELIVER_ENTRY macro, 6–5, 8–44
$DRIVER_ERRRTN_ENTRY macro, 6–5, 7–3,

8–25
$DRIVER_FDT_ENTRY macro, 6–5, 6–9, 7–10,

8–22
$DRIVER_MNTVER_ENTRY macro, 6–5, 8–31
$DRIVER_REGDUMP_ENTRY macro, 6–5, 8–33
$DRIVER_START_ENTRY macro, 6–5, 8–35
$DRIVER_UNITINIT_ENTRY macro, 6–5, 8–46

E
Entry points

defining, 6–5
returning from, 6–5

ERL$ALLOCEMB routine, 6–14
ERL$DEVICEATTN routine, 6–14
ERL$DEVICERR routine, 6–15
ERL$DEVICTMO routine, 6–15
ERL$RELEASEMB routine, 6–15
ERL_STD$ALLOCEMB routine, 9–42 to 9–43
ERL_STD$DEVICEATTN routine, 9–44 to 9–46
ERL_STD$DEVICERR routine, 9–44 to 9–46
ERL_STD$DEVICTMO routine, 9–44 to 9–46
ERL_STD$RELEASEMB routine, 9–47
Error logging, 9–44 to 9–46
Error message buffer

releasing, 9–263
Error routine callback, 7–3
EVAX_IMB built-in, 5–5
EVAX_MB built-in, 5–3
Event flag

handling for aborted I/O request, 9–77
EXE$ABORTIO routine, 6–11, 6–15
EXE$ALLOCBUF routine, 6–15
EXE$ALLOCIRP routine, 6–15
EXE$ALTQUEPKT routine, 6–11, 6–15
EXE$BUS_DELAY, 9–48 to 9–49
EXE$CARRIAGE routine, 6–15
EXE$CHKCREACCES routine, 6–15
EXE$CHKDELACCES routine, 6–15
EXE$CHKEXEACCES routine, 6–15
EXE$CHKLOGACCES routine, 6–15
EXE$CHKPHYACCES routine, 6–15
EXE$CHKRDACCES routine, 6–15

EXE$CHKWRTACCES routine, 6–15
EXE$DELAY, 9–50
EXE$FINISHIOC routine, 6–11, 6–15
EXE$FINISHIO routine, 6–11, 6–15
EXE$FORK, 3–3
EXE$FORK_WAIT, 3–3
EXE$ILLIOFUNC, 9–90 to 9–91
EXE$ILLIOFUNC routine, 6–7
EXE$INSERT_IRP routine, 6–15
EXE$INSIOQC routine, 6–15
EXE$INSIOQ routine, 6–15
EXE$IOFORK, 3–3
EXE$IORSNWAIT routine, 6–11, 6–15
EXE$KP_ALLOCATE_KPB, 3–13, 3–14 to 3–15,

9–51 to 9–53
EXE$KP_DEALLOCATE_KPB, 3–13, 9–54 to

9–55
EXE$KP_END, 3–13, 9–56 to 9–57
EXE$KP_FORK, 3–13, 9–58 to 9–59
EXE$KP_FORK_WAIT, 3–13, 9–60 to 9–61
EXE$KP_RESTART, 3–13, 9–62 to 9–63
EXE$KP_STALL_GENERAL, 3–13, 9–64 to 9–66
EXE$KP_START, 3–13, 3–14 to 3–15, 9–67 to

9–69
EXE$KP_STARTIO, 9–70 to 9–71
EXE$LCLDSKVALID routine, 6–7, 6–15
EXE$MNTVERSIO routine, 6–15
EXE$MODIFYLOCK routine, 6–12
EXE$MODIFYLOCK_ERR, 6–12
EXE$MODIFYLOCK_ERR routine, 6–15
EXE$MODIFY routine, 6–7, 6–15
EXE$MOUNT_VER routine, 6–15
EXE$ONEPARM routine, 6–7, 6–15
EXE$PRIMITIVE_FORK, 3–2, 3–3, 3–6
EXE$PRIMITIVE_FORK routine, 6–15
EXE$PRIMITIVE_FORK_WAIT, 3–2, 3–3, 3–6
EXE$PRIMITIVE_FORK_WAIT routine, 6–15
EXE$QIOACPPKT routine, 6–11, 6–15
EXE$QIODRVPKT routine, 6–11, 6–15
EXE$QXQPPKT routine, 6–15
EXE$READCHK routine, 6–12, 6–15
EXE$READCHKR routine, 6–12, 6–15
EXE$READLOCK routine, 6–12, 6–16
EXE$READLOCK_ERR routine, 6–12, 6–16
EXE$READ routine, 6–7
EXE$SENSEMODE routine, 6–7, 6–16
EXE$SETCHAR routine, 6–7, 6–16
EXE$SETMODE routine, 6–7, 6–16
EXE$SNDEVMSG routine, 6–16
EXE$TIMEDWAIT_COMPLETE, 9–72 to 9–73
EXE$TIMEDWAIT_SETUP, 9–74 to 9–75
EXE$TIMEDWAIT_SETUP_10US, 9–74 to 9–75
EXE$WRITECHK routine, 6–12, 6–16
EXE$WRITECHKR routine, 6–12, 6–16
EXE$WRITELOCK routine, 6–12, 6–16
EXE$WRITELOCK_ERR routine, 6–12, 6–16

Index–4

EXE$WRITE routine, 6–7, 6–16
EXE$WRTMAILBOX routine, 6–16, 9–162 to

9–163
EXE$ZEROPARM routine, 6–7, 6–16
EXE_STD$ABORTIO, 9–144
EXE_STD$ABORTIO routine, 6–11
EXE_STD$ABORTIO system routine, 9–76 to

9–78
EXE_STD$ALLOCBUF routine, 9–79 to 9–81
EXE_STD$ALLOCIRP routine, 9–79 to 9–81
EXE_STD$ALTQUEPKT routine, 6–11, 9–82 to

9–83
EXE_STD$CARRIAGE routine, 9–84
EXE_STD$CHKCREACCES routine, 9–85 to

9–86
EXE_STD$CHKDELACCES routine, 9–85 to

9–86
EXE_STD$CHKEXEACCES routine, 9–85 to 9–86
EXE_STD$CHKLOGACCES routine, 9–85 to

9–86
EXE_STD$CHKPHYACCES routine, 9–85 to 9–86
EXE_STD$CHKRDACCES routine, 9–85 to 9–86
EXE_STD$CHKWRTACCES routine, 9–85 to

9–86
EXE_STD$FINISHIO, 9–99, 9–100
EXE_STD$FINISHIO routine, 6–11, 9–87 to 9–89,

9–145
EXE_STD$INSERT_IRP routine, 9–92 to 9–93
EXE_STD$INSIOQ, 9–123
EXE_STD$INSIOQC routine, 9–94 to 9–95
EXE_STD$INSIOQ routine, 9–94 to 9–95
EXE_STD$IORSNWAIT routine, 6–11, 9–96 to

9–97
EXE_STD$KP_STARTIO, 3–12, 3–13, 3–14 to

3–15, 3–16
EXE_STD$LCLDSKVALID routine, 6–7, 9–98 to

9–100
EXE_STD$MNTVERSIO routine, 9–101 to 9–102
EXE_STD$MODIFYLOCK, 9–278
EXE_STD$MODIFYLOCK routine, 6–12, 9–107

to 9–111
EXE_STD$MODIFY routine, 6–7, 9–103 to 9–106
EXE_STD$MOUNT_VER routine, 9–112 to 9–113
EXE_STD$ONEPARM routine, 6–7, 9–114 to

9–115
EXE_STD$PRIMITIVE_FORK, 3–2, 3–3
EXE_STD$PRIMITIVE_FORK routine, 9–116 to

9–117
EXE_STD$PRIMITIVE_FORK_WAIT, 3–2, 3–3
EXE_STD$PRIMITIVE_FORK_WAIT routine,

9–118 to 9–119
EXE_STD$QIOACPPKT routine, 6–11, 9–120 to

9–121
EXE_STD$QIODRVPKT, 9–100, 9–105, 9–115,

9–129, 9–165

EXE_STD$QIODRVPKT routine, 6–11, 9–122 to
9–124, 9–145, 9–150

EXE_STD$QXQPPKT routine, 9–125 to 9–126
EXE_STD$READCHK routine, 6–12, 9–131 to

9–134
EXE_STD$READLOCK, 9–278
EXE_STD$READLOCK routine, 6–12, 9–135 to

9–140
EXE_STD$READ routine, 6–7, 9–127 to 9–130
EXE_STD$SENSEMODE routine, 6–7, 9–141 to

9–142
EXE_STD$SETCHAR routine, 6–7, 9–143 to

9–145
EXE_STD$SETMODE routine, 6–7, 9–143 to

9–145
EXE_STD$SNDEVMSG routine, 9–146 to 9–147
EXE_STD$WRITECHK routine, 6–12, 9–152 to

9–155
EXE_STD$WRITELOCK, 9–278
EXE_STD$WRITELOCK routine, 6–12, 9–156 to

9–161
EXE_STD$WRITE routine, 6–7, 9–148 to 9–151
EXE_STD$WRTMAILBOX routine, 9–147
EXE_STD$ZEROPARM, 9–164 to 9–165
EXE_STD$ZEROPARM routine, 6–7

F
FDT (function decision table)

defining, 6–6
$FDTARGDEF macro, 6–9
FDT error handling callback routines, 8–25 to

8–27
FDT routine

adjusting process quotas in, 9–80
completing an I/O operation in, 9–87 to 9–89
for direct I/O, 9–103 to 9–106, 9–127 to 9–130,

9–148 to 9–151
for disk I/O, 9–98 to 9–100
setting attention ASTs in, 9–36 to 9–38
setting control ASTs in, 9–39 to 9–41
unlocking process buffers in, 9–278

FDT routines, 8–22 to 8–24
composite, 7–1
exit, 6–10
support, 6–11, 7–3
upper-level action, 6–7, 6–8

FDT_ACT macro, 6–6, 11–116 to 11–117
FDT_BUF macro, 6–6, 11–118
FDT_CONTEXT structure, 6–11
FDT_INI macro, 6–611–29, 11–119
Forking, 3–1 to 3–10
Fork IPL, 5–1
Fork lock, 5–1
FORKLOCK macro, 5–1, 11–125 to 11–126
FORK macro, 3–2, 3–3 to 3–6, 11–120 to 11–121

Index–5

Fork process
See Simple fork process
creation by IOC_STD$INITIATE, 9–233 to

9–235
FORKUNLOCK macro, 5–1
FORK_routine, 11–122
FORK_ROUTINE macro, 11–122
FORK_WAIT macro, 3–2, 3–3 to 3–6, 11–123 to

11–124
Full duplex device driver

I/O completion for, 9–34 to 9–35
FUNCTAB macro, 6–6

G
Granularity of memory access, 5–3 to 5–4

H
Hardware I/O mailboxes

commands, 2–6
defined, 2–1
using, 2–7

Hardware interface registers
defined, 2–1

I
I/O database, 10–1 to 10–3
I/O function

legal, 6–7
I/O postprocessing

for aborted I/O request, 9–77
for full duplex device driver, 9–34 to 9–35
for I/O request involving no device activity,

9–87 to 9–89
I/O postprocessing queue, 9–34 to 9–35, 9–263
I/O request

aborting, 9–76 to 9–78
canceling, 9–213 to 9–214
completing, 9–262 to 9–264, 9–272 to 9–273
with no parameters, 9–164 to 9–165
with one parameter, 9–114 to 9–115

IDB (interrupt dispatch block), 10–29 to 10–31
IFNORD macro, 11–129 to 11–131
IFNOWRT macro, 11–129 to 11–131
IFRD macro, 11–129 to 11–131
IFWRT macro, 11–129 to 11–131
Instruction memory barriers, 5–5
Interface registers

defined, 2–1
Interlocked instructions

and data access granularity, 5–4
and memory barriers, 5–3

Interrupt dispatcher
use of memory barriers, 5–2

Interrupts
waiting for, 3–8 to 3–10

Interrupt service routines, 8–28 to 8–30
Interrupt vectors

programmable, 6–27
IO$_AVAILABLE function

servicing, 9–100
IO$_PACKACK function

servicing, 9–99
IO$_SENSECHAR function

servicing, 9–141 to 9–142
IO$_SENSEMODE function

servicing, 9–141 to 9–142
IO$_SETCHAR function

servicing, 9–143 to 9–145
IO$_SETMODE function

servicing, 9–143 to 9–145
IO$_UNLOAD function

servicing, 9–100
IOC$ALLOCATE_CRAM, 2–4, 2–5, 9–176 to

9–177
IOC$ALLOC_CNT_RES, 4–3 to 4–5, 9–168 to

9–171
IOC$ALLOC_CRAB, 9–172 to 9–173
IOC$ALLOC_CRCTX, 4–2, 9–174 to 9–175
IOC$ALOALTMAP, 9–166
IOC$ALOALTMAPN, 9–166
IOC$ALOALTMAPSP, 9–166
IOC$ALOUBAMAP, 9–167
IOC$ALOUBAMAPN, 9–167
IOC$ALTREQCOM routine, 6–16
IOC$BROADCAST routine, 6–16
IOC$CANCELIO routine, 6–2, 6–16
IOC$CANCEL_CNT_RES, 4–4, 9–170, 9–178 to

9–179
IOC$CLONE_UCB routine, 6–16
IOC$COPY_UCB routine, 6–16
IOC$CRAM_CMD, 2–4, 2–6, 9–180 to 9–182
IOC$CRAM_IO, 2–4, 2–7, 9–183 to 9–184

use of memory barriers, 5–2
IOC$CRAM_QUEUE, 9–185 to 9–186

use of memory barriers, 5–2
IOC$CRAM_WAIT, 9–187 to 9–188

use of memory barriers, 5–2
IOC$CREDIT_UCB routine, 6–16
IOC$CVTLOGPHY routine, 6–16
IOC$CVT_DEVNAM routine, 6–16
IOC$DEALLOCATE_CRAM, 2–4, 9–193
IOC$DEALLOC_CNT_RES, 4–6, 9–189 to 9–190
IOC$DEALLOC_CRAB, 9–191
IOC$DEALLOC_CRCTX, 4–6, 9–192
IOC$DELETE_UCB routine, 6–16
IOC$DIAGBUFILL routine, 6–16
IOC$FILSPT routine, 6–16
IOC$GETBYTE routine, 6–16
IOC$INITBUFWIND routine, 6–16

Index–6

IOC$INITIATE routine, 6–16
IOC$KP_REQCHAN, 3–13, 9–194 to 9–195
IOC$KP_WFIKPCH, 3–13, 9–196 to 9–197
IOC$KP_WFIRLCH, 3–13, 9–196 to 9–197
IOC$LINK_UCB routine, 6–16
IOC$LOAD_MAP, 4–5, 9–198 to 9–199
IOC$MAPVBLK routine, 6–16
IOC$MAP_IO, 9–200
IOC$MNTVER routine, 6–2, 6–16
IOC$MOVFRUSER2 routine, 6–16
IOC$MOVFRUSER routine, 6–16
IOC$MOVTOUSER2 routine, 6–16
IOC$MOVTOUSER routine, 6–16
IOC$NODE_FUNCTION, 9–202 to 9–204
IOC$PARSDEVNAM routine, 6–16
IOC$POST_IRP, 6–17
IOC$PRIMITIVE_REQCHANH routine, 6–17
IOC$PRIMITIVE_REQCHANL routine, 6–17
IOC$PRIMITIVE_WFIKPCH routine, 6–17
IOC$PRIMITIVE_WFIRLCH, 3–3, 3–8 to 3–10
IOC$PRIMITIVE_WFIRLCH routine, 6–17
IOC$PTETOPFN routine, 6–17
IOC$QNXTSEG1 routine, 6–17
IOC$RELCHAN routine, 6–17, 11–146
IOC$REQCOM routine, 6–17, 11–149
IOC$REQPCHANH, 3–3
IOC$REQPCHANL, 3–3
IOC$SEARCHDEV routine, 6–17
IOC$SEARCHINT routine, 6–17
IOC$SEVER_UCB routine, 6–17
IOC$SIMREQCOM routine, 6–17
IOC$THREADCRB routine, 6–17
IOC$WFIKPCH, 3–3
IOC$WFIRLCH, 3–3
IOC_ _STD$PRIMITIVE_REQCHANL, 3–3
IOC_STD$ALTREQCOM routine, 9–209 to 9–210
IOC_STD$BROADCAST routine, 9–211 to 9–212
IOC_STD$CANCELIO routine, 6–2, 9–213 to

9–214
IOC_STD$CLONE_UCB routine, 9–215 to 9–216
IOC_STD$COPY_UCB routine, 9–217 to 9–218
IOC_STD$CREDIT_UCB routine, 9–219
IOC_STD$CVTLOGPHY routine, 9–222 to 9–223
IOC_STD$CVT_DEVNAM routine, 9–220 to

9–221
IOC_STD$DELETE_UCB routine, 9–224
IOC_STD$DIAGBUFILL routine, 9–225 to 9–226
IOC_STD$FILSPT routine, 9–227 to 9–228
IOC_STD$GETBYTE routine, 9–229 to 9–230
IOC_STD$INITBUFWIND routine, 9–231 to

9–232
IOC_STD$INITIATE routine, 9–233 to 9–235
IOC_STD$IOPOST

unlocking process buffers, 9–278
IOC_STD$LINK_UCB routine, 9–236 to 9–237
IOC_STD$MAPVBLK routine, 9–238 to 9–239

IOC_STD$MNTVER routine, 6–2, 9–240
IOC_STD$MOVFRUSER2 routine, 9–241 to

9–243
IOC_STD$MOVFRUSER routine, 9–241 to 9–243
IOC_STD$MOVTOUSER2 routine, 9–244 to

9–246
IOC_STD$MOVTOUSER routine, 9–244 to 9–246
IOC_STD$PARSDEVNAM routine, 9–247 to

9–248
IOC_STD$POST_IRP routine, 9–249
IOC_STD$PRIMITIVE_REQCHANH, 3–3, 3–7 to

3–8
IOC_STD$PRIMITIVE_REQCHANH routine,

9–254 to 9–256
IOC_STD$PRIMITIVE_REQCHANL, 3–3, 3–7 to

3–8
IOC_STD$PRIMITIVE_REQCHANL routine,

9–254 to 9–256
IOC_STD$PRIMITIVE_WFIKPCH, 3–3, 3–8 to

3–10
IOC_STD$PRIMITIVE_WFIKPCH routine, 9–257

to 9–259
IOC_STD$PRIMITIVE_WFIRLCH, 3–3
IOC_STD$PRIMITIVE_WFIRLCH routine, 9–257

to 9–259
IOC_STD$PTETOPFN routine, 9–250 to 9–251
IOC_STD$QNXTSEG1 routine, 9–252 to 9–253
IOC_STD$RELCHAN routine, 9–260 to 9–261
IOC_STD$REQCOM, 9–80
IOC_STD$REQCOM routine, 9–262 to 9–264
IOC_STD$SEARCHDEV routine, 9–265 to 9–266
IOC_STD$SEARCHINT routine, 9–267 to 9–268
IOC_STD$SENSEDISK routine, 9–269 to 9–270
IOC_STD$SEVER_UCB routine, 9–271
IOC_STD$SIMREQCOM routine, 9–272 to 9–273
IOC_STD$THREADCRB routine, 9–274 to 9–275
IOFORK macro, 3–2, 3–3 to 3–6, 11–127 to

11–128
IOSB (I/O status block), 9–263
$IOUNLOCK macro, 6–17
IPL$_ASTDEL, 9–97, 9–120, 9–123, 9–125
IPL$_IOPOST, 9–35, 9–77, 9–88, 9–263
IPL$_MAILBOX, 9–147, 9–162
IRP$B_CARCON, 9–104, 9–128, 9–149
IRP$L_BCNT, 9–233, 9–234
IRP$L_BOFF, 9–233, 9–234
IRP$L_CHAN, 9–214
IRP$L_DIAGBUF, 9–233, 9–234
IRP$L_MEDIA, 9–115, 9–145, 9–165
IRP$L_PID, 9–214
IRP$L_SVAPTE, 9–234
IRP$V_DIAGBUF, 9–233, 9–234
IRP$V_FUNC, 9–128
IRP (I/O request packet), 10–31 to 10–37

insertion in pending-I/O queue, 9–92 to 9–93,
9–94 to 9–95

unlocking buffers specified in, 9–278

Index–7

IRPE (I/O request packet extension), 10–37 to
10–38

deallocation, 9–278
unlocking buffers specified in, 9–278

J
JIB$L_BYTCNT, 9–80
JIB$L_BYTLM, 9–80
Job controller

sending a message to, 9–147, 9–162 to 9–163
Job quota

byte count, 9–80
byte limit, 9–80

JSB-based system routine
naming, 1–3

K
Kernel process, 3–10 to 3–26

creating, 3–14 to 3–15
defined, 3–1
exchanging data with its creator, 3–16
flow example, 3–17 to 3–25
mixing with simple fork process, 3–25
suspending, 3–15 to 3–16
synchronizing with its initiator, 3–17
terminating, 3–16

Kernel process private stack, 3–10, 3–12
KPB (kernel process block), 3–10 to 3–11, 10–38

to 10–45
KP_ALLOCATE_KPB macro, 3–13, 11–132
KP_DEALLOCATE_KPB macro, 3–13, 11–133
KP_END macro, 3–13, 11–134
KP_REQCOM macro, 3–12, 3–16, 11–136
KP_RESTART macro, 3–13, 11–135
KP_STALL_FORK, KP_STALL_IOFORK macro,

11–137
KP_STALL_FORK macro, 3–13, 3–15
KP_STALL_FORK_WAIT macro, 3–13, 3–15,

11–138
KP_STALL_GENERAL macro, 3–13, 11–139
KP_STALL_IOFORK macro, 3–13, 3–15
KP_STALL_REQCHAN macro, 3–13, 3–15,

11–140
KP_STALL_WFIKPCH macro, 3–13, 3–16, 11–141
KP_STALL_WFIRLCH macro, 3–13, 3–16, 11–141
KP_START macro, 3–13, 11–142
KP_SWITCH_TO_KP_STACK macro, 3–16,

11–143

L
Legal I/O function, 6–7
Local disk

online count, 9–98
valid bit, 9–98

Local disk UCB extension
required for EXE_STD$LCLDSKVALID routine,

9–100
LOCK macro, 5–1, 11–144 to 11–145
Logical I/O function

translation to physical function, 9–103, 9–127,
9–148

Longword data
accessing, 5–3 to 5–4

M
Macro-32 compiler

EVAX_IMB built-in, 5–5
MACRO-32 compiler, 6–1 to 6–35

EVAX_MB built-in, 5–3
.SYMBOL_ALIGNMENT directive, 5–4

Mailbox
sending a message to, 9–146 to 9–147, 9–162

to 9–163
Mailboxes

See Hardware I/O mailboxes
MAILBOX spin lock, 9–147, 9–162
Map registers

allocating, 4–1 to 4–6
loading, 4–5

Memory barriers, 5–2
See also Instruction memory barriers
inserting, 5–3, 5–5
instruction, 5–5

MMG$IOLOCK routine, 6–17
MMG$UNLOCK routine, 6–17
MMG spin lock, 9–278
MMG_STD$IOLOCK routine, 9–276 to 9–277
MMG_STD$UNLOCK routine, 9–278 to 9–279
Mount verification routines, 8–31 to 8–32
MT$CHECK_ACCESS routine, 6–8, 6–17
MT_STD$CHECK_ACCESS routine, 6–8, 9–280

to 9–281
Multiprocessing synchronization requirement, 5–1
Mutex

locking, 9–282 to 9–283, 9–284 to 9–285,
11–38, 11–39

unlocking, 9–286, 11–41

N
Nonpaged pool

allocating, 9–79 to 9–81
deallocating, 9–28 to 9–29
lookaside list, 9–80

Index–8

O
OPCOM process

sending a message to, 9–147, 9–162 to 9–163
OpenVMS Alpha device driver

program sections, 6–1 to 6–2
OpenVMS Alpha device drivers

definition, 1–1 to 1–3
identifying, 6–2
optimizing, 7–9 to 7–11

ORB (object rights block), 10–45 to 10–46

P
PCB$L_PID, 9–214
Pending-I/O queue, 9–92 to 9–93, 9–94 to 9–95,

9–122 to 9–124, 9–263
bypassing, 9–82 to 9–83

Performance of OpenVMS Alpha drivers, 7–9 to
7–11

PMI (processor-memory interconnect), 10–3
Port drivers

terminal, 6–27
Program sections

$$$110_DATA, 6–1
$$$115_DRIVER, 6–1
of OpenVMS Alpha device driver, 6–1 to 6–2
$$$105_PROLOGUE, 6–1

$$$105_PROLOGUE psect, 6–1
Psects

See Program sections

Q
Quadword data

accessing, 5–3 to 5–4
QUEUEAST spin lock, 9–37

R
Read operation

ordering with other I/O operations, 5–2 to 5–3
Read/write ordering

enforcing, 5–2 to 5–3
Register dumping routines, 8–33 to 8–34
Registers

See Device registers
RELCHAN macro, 11–146
REQCHAN macro, 3–3, 3–7 to 3–8, 11–147 to

11–148
REQCOM macro, 11–149
REQPCHAN macro, 3–3, 11–150
Resource wait mode, 9–80
Return addresses

modifying, 6–31
pushing onto stack, 6–30
removing from stack, 6–30

S
SCH$IOLOCKR routine, 6–17
SCH$IOLOCKW routine, 6–17
SCH$IOUNLOCK routine, 6–17
SCH_STD$IOLOCKR routine, 9–282 to 9–283
SCH_STD$IOLOCKW routine, 9–284 to 9–285
SCH_STD$IOUNLOCK routine, 9–286
Shared data

accessing, 5–3 to 5–4
Simple fork process, 3–1 to 3–10

defined, 3–1
mixing with kernel process, 3–25

SMP (symmetric multiprocessing) synchronization
requirement, 5–1

Spin locks, 5–1
use of memory barriers, 5–2

SS$_ACCVIO, 9–144
SS$_FDT_COMPL status, 6–11
SS$_ILLIOFUNC, 9–144
Stack

pushing return address onto, 6–30
references to data on, 6–28
removing return address from, 6–30
unaligned references to, 6–28

Stalling a driver, 3–1 to 3–26
Start I/O routine

activating, 9–94 to 9–95
checking for zero length buffer, 9–105, 9–129,

9–150
transferring control to, 9–122 to 9–124, 9–233

to 9–235
Start-I/O routines

kernel process, 8–38 to 8–39
Simple Fork, CALL Environment, 8–35

Suspending a driver, 3–1 to 3–26
.SYMBOL_ALIGNMENT directive, 5–4
Synchronization issues, 5–1 to 5–5
SYSDISP macro, 11–151
System page-table entry

allocating permanent, 9–242, 9–245

T
TBI_ALL macro, 11–152
TBI_DATA_64 macro, 11–153
TBI_SINGLE macro, 11–154
TBI_SINGLE_64 macro, 11–155
Terminal port drivers, 6–27
Timed delays

implementing, 6–26
TIMEDWAIT macro, 6–26, 11–156 to 11–158
Timed waits

implementing, 6–26
Timeout handling code

kernel process, 8–42 to 8–43
traditional, 8–40 to 8–41

Index–9

TIMEWAIT macro, 6–26

U
UCB$B_DEVCLASS, 9–145
UCB$B_DEVTYPE, 9–145
UCB$B_ONLCNT, 9–98
UCB$L_AFFINITY, 9–234
UCB$L_BCNT, 9–234
UCB$L_BOFF, 9–234
UCB$L_DEVDEPEND, 9–142
UCB$L_IRP, 9–234
UCB$L_SVAPTE, 9–234, 9–242, 9–245
UCB$L_SVPN, 9–241, 9–244
UCB$V_BSY, 9–214
UCB$V_CANCEL, 9–214, 9–234
UCB$V_ERLOGIP, 9–263
UCB$V_LCL_VALID, 9–98
UCB$V_TIMOUT, 9–234
UCB$W_BUFQUO

in mailbox UCB, 9–163
UCB$W_DEVBUFSIZ, 9–145

in mailbox UCB, 9–163
UCB (unit control block), 10–46 to 10–67

error log extension, 10–59
local disk extension, 9–100, 10–60
local tape extension, 10–59 to 10–60
terminal extension, 10–60 to 10–67

UCBLQ_DEVDEPEND, 9–145
Unit delivery routines, 8–44 to 8–45
Unit initialization routines, 8–46 to 8–48

returning status from, 6–6
specifying, 6–2 to 6–3

UNLOCK macro, 5–1
Upper-level FDT action routines, 6–8

defining, 6–7

V
VEC (interrupt transfer vector block), 10–18 to

10–19
VLE (vector list extension), 10–67 to 10–68

W
Waits

See Timed waits
WFIKPCH macro, 3–3, 3–8 to 3–10, 11–159 to

11–161
WFIRLCH macro, 3–3, 3–8 to 3–10, 11–159 to

11–161
Word data

accessing, 5–3 to 5–4
Write operation

ordering with other I/O operations, 5–2 to 5–3

Index–10

