HP OpenVMS RTL Library (LIB$)
Manual

Order Number: AA-QSBHE-TE

January 2005

This manual documents the library routines contained in the LIB$ and
CVT$ facilities of the OpenVMS Run-Time Library.

Revision/Update Information: This manual supersedes HP OpenVMS
RTL Library (LIB$) Manual,
OpenVMS Alpha Version 7.3.

Software Version: OpenVMS 164 Version 8.2
OpenVMS Alpha Version 8.2

Hewlett-Packard Company
Palo Alto, California

PS Conditioner
Processed on 10/19/2004

Black and white submission.

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Printed in the US

7ZK5932
The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface Xi
Part| LIB$ Overview Section

1 Overview of the LIB$ Facility

1.1 Run-Time Library LIB$ Routines 1-1
1.1.1 64-Bit Addressing Support (Alpha and 164 Only). 1-2
1.1.2 The LIBS Routines oo v et e e e e e e e 1-2
1.2 Translated Version of LIB$ Facility (Alpha and 164 Only) 1-9
1.3 Run-Time Library CVT$ Facility 0. .. 1-10

Part Il LIB$ Reference Section

LIBSADAWI . . .o lib—-3
LIBSADDX . . . oottt lib—5
LIBSADD TIMES e e e lib—8
LIBSANALYZE SDESC . . . ottt e e e e lib—10
LIB$ANALYZE_SDESC_64 (Alpha and 164 Only) lib—12
LIBSASN_WTH_MBXt e lib—14
LIBSAST IN PROGttt e e e lib—17
LIBSATTACH. . . o oottt e e e e e e e lib—19
LIBEBBCCI . . .ottt e e lib—21
LIBEBBSSI . ..ottt lib—23
LIB$BUILD_NODESPEC e lib—25
LIBSCALLG . . . o ottt ettt e e e e e e e e e lib—28
LIB$CALLG_64 (Alpha and 164 Only) lib—29
LIBSCHAR . . . oottt e e e lib—30
LIBSCOMPARE _NODENAMEttt lib—32
LIBSCOMPRESS NODENAME. lib—34
LIBSCONVERT_DATE STRINGttt lib—37
LIBECRC . . oottt e e e e lib—41
LIBSCRC_TABLE e lib—43
LIBSCREATE DIR.t e e e lib—46
LIBSCREATE USER VM ZONE. lib—50
LIB$CREATE_USER_VM_ZONE_64 (Alpha and 164 Only) lib—54
LIBSCREATE_ VM _ZONE e lib—57
LIB$CREATE_VM_ZONE_64 (Alpha and 164 Only) lib—63
LIBSCRF_INS KEYot lib—69
LIBSCRF_INS REF e lib—71

LIBSCRF _OUTPUTt i
LIBSCURRENCYttt e e
LIB$CVTF_FROM_INTERNAL_TIME
LIB$CVTS_FROM_INTERNAL_TIME (Alpha and 164 Only)
LIB$CVTF_TO_INTERNAL_TIME
LIB$CVTS_TO_INTERNAL_TIME (Alpha and 164 Only)
LIBSCVT DX DX .ttt ittt e e e e e e e e e e e
LIB$CVT FROM_INTERNAL_TIME
LIB$SCVT _TO_INTERNAL_TIME
LIBSCVT_VECTIMttt e
LIBSCVT XTB . . .o e i
LIB$CVT xTB_64 (Alphaand 164 Only)covvuinn...
LIBSDATE_TIME e
LIBODAY . . e
LIBSDAY OF WEEK e e
LIBSDECODE _FAULT i
LIBSDEC_OVER e
LIB$DELETE_FILE.ttt
LIB$DELETE_LOGICALt e
LIB$DELETE_SYMBOLt
LIBSDELETE_VM_ZONE e
LIB$DELETE_VM_ZONE_64 (Alpha and 164 Only)
LIBSDIGIT_SEP i e e e
LIBSDISABLE_CTRLttt
LIBSDO_COMMANDot e
LIBSEDIV . ..
LIBSEMODDottt e
LIBSEMODEF
LIBSEMODGo e
LIBSEMODH e
LIBSEMODS (Alpha and 164 Only),
LIBSEMODT (Alpha and 164 Only)
LIBSEMUL e e
LIBSENABLE _CTRL e
LIBSESTABLISH e
LIB$EXPAND _NODENAME 0ttt
LIBSE X TV . .
LIBSEXTZV . e
LI B ..o e
LIBSFID_TO_NAME e e
LIBSFILE _SCAN e e
LIB$FILE_SCAN_ENDttt
LIBSFIND_FILE e
LIB$FIND_FILE_END. i
LIBSFIND_IMAGE_SYMBOL e
LIB$FIND_VM_ZONE e
LIB$FIND_VM_ZONE_64 (Alpha and 164 Only)

lib—74
lib—78
lib—80
lib—82
lib—84
lib—86
lib—88
lib—94
lib—97
lib—99
lib—101
lib—103
lib—105
lib—107
lib—109
lib—111
lib—130
lib—132
lib—141
lib—143
lib—145
lib—147
lib—149
lib—151
lib—153
lib—155
lib—157
lib—159
lib—161
lib—163
lib—165
lib—167
lib—169
lib—171
lib—173
lib—175
lib—178
lib—181
lib—183
lib—185
lib—188
lib—190
lib—192
lib—196
lib—197
lib—201
lib—203

LIBSFIT NODENAMEttt lib—205

LIBSFIXUP FLT . .. ottt e e e lib—208
LIBSFLT UNDER e lib—210
LIBSFORMAT DATE TIME lib—212
LIBSFORMAT SOGW _PROT. lib—215
LIBSFREE DATE TIME CONTEXTc..iuiuiniiinnannn.. lib—217
LIBSFREE EF e lib—218
LIBSFREE_LUN e lib—219
LIBSFREE _TIMER e lib—220
LIBSFREE_VM e lib—221
LIB$FREE_VM 64 (Alpha and 164 Only) lib—224
LIBSFREE VM _PAGE e lib—227
LIB$FREE_VM_PAGE_64 (Alpha and 164 Only) lib—229
LIBSGETDVI . . . oottt e e e e e lib—231
LIBSGETIPI e lib—237
LIBSGETQULIo e e e e e e lib—242
LIBSGETSYI . . .ottt e e e lib—247
LIBSGET ACCNAMottt e e lib—251
LIBSGET_ACCNAM BY CONTEXToitiiieieanann. lib—253
LIBSGET COMMANDottt e e e lib—255
LIBSGET _COMMONo lib—258
LIB$GET_CURR_INVO_CONTEXT (Alpha and 164 Only) lib—260
LIBSGET DATE _FORMATt lib—261
LIBSGET EFo e e e lib—263
LIBSGET FOREIGNt lib—265
LIB$GET FULLNAME OFFSET00t lib—268
LIBSGET HOSTNAME e lib—270
LIBSGET INPUT.ottt e e e e e lib—273
LIB$GET_INVO_CONTEXT (Alpha and 164 Only) lib—276
LIB$GET_INVO_HANDLE (Alpha and 164 Only) lib—277
LIBSGET LOGICALottt e e e e lib—278
LIBSGET LUN . ..ttt e e e e e lib—281
LIB$GET MAXIMUM DATE LENGTHcooiuo.... lib—283
LIB$GET_PREV_INVO_CONTEXT (Alpha and 164 Only). lib—285
LIB$GET _PREV_INVO_HANDLE (Alpha and 164 Only). lib—286
LIBSGET SYMBOLottt e e e lib—287
LIBSGET UIB_INFO e e lib—290
LIBSGET USERS_LANGUAGE lib—292
LIBSGET VM e e e e lib—293
LIB$GET VM 64 (Alpha and 164 Only). lib—295
LIBSGET VM PAGE e lib—297
LIB$GET _VM_PAGE 64 (Alpha and 164 Only) lib—299
LIB$I64_CREATE_INVO_CONTEXT (I64 Only) lib—301
LIB$164_FREE_INVO_CONTEXT (I64 Only)c....... lib—303
LIB$I164_GET_CURR_INVO_CONTEXT (I64 Only) lib—304
LIB$164_GET_CURR_INVO_HANDLE (164 Only). lib—305
LIB$I64 GET FR(I64 Only)ttt lib—306

LIB$I64 GET _GR (I64 Only)o oottt lib—308

LIB$I64_GET _INVO_CONTEXT (I64 Only)c.ouuuo.... lib—310
LIB$I64_GET_INVO_HANDLE (I64 Only)c.c.ouuiu. .. lib—312
LIB$164_GET_PREV_INVO_CONTEXT (164 Only) lib—313
LIB$164_GET_PREV_INVO_HANDLE (I64Only) lib—314
LIB$I64_GET _UNWIND_HANDLER_FV (I64Only) lib—-315
LIB$164_GET_UNWIND_LSDA (I64 Only)uuvuuo.... lib—316
LIB$I64_GET UNWIND_OSSD (I64Only)ccouuu ... lib—317
LIB$I64_INIT_INVO_CONTEXT (I64 Only)o...... lib—318
LIB$164_IS_AST DISPATCH_FRAME (I64Only) lib—320
LIB$164_IS_EXC_DISPATCH_FRAME (164 Only) lib—321
LIB$I64_PREV_INVO_END (I64Only) lib—322
LIB$164_PUT INVO_REGISTERS (I64 Only) lib—323
LIB$I64_SET FR (I64 Only) ot lib—326
LIB$I64_ SET GR (I64 Only) oo lib—328
LIB$I64_SET PC (I64 Only)ttt lib—330
LIBSICHARttt e e e e e e e e e lib—331
LIBSINDEXt lib—333
LIB$SINIT DATE_TIME_CONTEXT.t lib—335
LIBSINIT TIMER e e lib—339
LIBSINSERT TREE i lib—341
LIB$INSERT TREE_64 (Alpha and 164 Only)...................... lib—350
LIBSINSQHI lib—359
LIB$INSQHIQ (Alpha and 164 Only), .. lib—362
LIBSINSQTIt e e e e lib—365
LIB$INSQTIQ (Alpha and 164 Only)t ... lib—368
LIBSINSV .o lib—371
LIBSINT OVER e e e e lib—373
LIBSLEN . ..o e lib—375
LIBSLOCC . . . oot lib—376
LIBSLOCK IMAGE e lib—379
LIBSLOOKUP_KEYt lib—380
LIBSLOOKUP_TREE. lib—384
LIB$LOOKUP_TREE_64 (Alpha and 164 Only) lib—386
LIBSLP_LINES e e e e lib—388
LIBSMATCHCottt et e e e e e e e e [ib—390
LIBSMATCH_CONDttt e e e e e lib—392
LIBESMOVCS . .. lib—395
LIBSMOVCS . .o lib—397
LIBSMOVTC . .. o e lib—399
LIBSMOVTUCo e lib—416
LIBSMULT DELTA TIME.ttt e lib—419
LIBSMULTF_DELTA_TIME, lib—420
LIB$MULTS_DELTA_TIME (Alpha and 164 Only) lib—421
LIB$PARSE_ACCESS_CODE lib—422
LIB$PARSE_SOGW_PROT lib—425

LIBSPAUSE . . . oot e lib—428

LIBSPOLYDottt ettt e e e e e e e e lib—429

LIBSPOLYF lib—431
LIBSPOLYGot e lib—434
LIBSPOLYH lib—436
LIB$POLYS (Alpha and 164 Only) oo oo e e lib—438
LIB$POLYT (Alpha and 164 Only) lib—440
LIBSPUT_COMMON lib—442
LIB$PUT_INVO_REGISTERS (Alpha and 164 Only) lib—444
LIBSPUT_OUTPUTottt e e e e e lib—446
LIBSRADIX POINTttt e e lib—448
LIBSREMQHI e lib—450
LIBSREMQHIQ (Alpha and 164 Only)cc...... lib—453
LIBSREMQTI. e lib—456
LIB$REMQTIQ (Alpha and 164 Only) lib—459
LIBSRENAME_FILE i lib—462
LIBSRESERVE_EF i lib—471
LIBSRESET VM _ZONE lib—473
LIB$RESET VM_ZONE_64 (Alpha and 164 Only) lib—475
LIBSREVERT e lib—477
LIBSRUN_PROGRAM i lib—478
LIBESCANC . . . oot lib—480
LIBESCOPY _DXDX . .\ttt ittt e e e e e e e lib—482
LIBSSCOPY_R_DX ... e lib—484
LIB$SCOPY_R_DX 64 (Alphaand 164 Only)....................... lib—486
LIBSSET LOGICALttt e e lib—488
LIBSSET SYMBOLttt et e e lib—491
LIBSSFREEL_DD e lib—494
LIBSSFREEN_DD e e e lib—495
LIBSSGET1 DD. . ..ttt e e e lib—497
LIB$SGET1_DD_64 (Alphaand 164 Only) lib—499
LIB$SHOW_TIMERo e lib—501
LIBESHOW VM e lib—505
LIB$SHOW_VM_64 (Alpha and 164 Only) lib—508
LIB$SHOW_VM_ZONE e lib—511
LIB$SHOW_VM_ZONE_64 (Alpha and 164 Only) lib-517
LIBSSIGNALottt e e e lib—523
LIBSSIG_TO_RETt e i lib—528
LIBSSIG_TO_STOP e lib—530
LIBSSIM_TRAP lib—532
LIBESKPCot lib—534
LIBESPANCo lib—536
LIBSSPAWN . . lib—540
LIBSSTAT_TIMERttt e e e e lib—547
LIBSSTAT VM . . . oottt e e e e e e lib—551
LIB$STAT_VM_64 (Alpha and 164 Only) lib—553
LIBSSTOP . . .t e lib—555
LIBESUBX . ..t lib—557

Vii

Part Il

Index

Figures

viii

lib—1
lib—2
lib—3

lib—4
lib—5
lib—6
lib—7
lib—8
lib—9
lib—10
lib—11
lib—12
lib—13
lib—14
lib—15
lib—16
lib—17
lib—18
lib—19

LIBSSUB_TIMES ottt e
LIBSSYS_ASCTIM . . . oottt e e e e e e e e e e e e e
LIBSSYS_FAO . ..o e e e e
LIBSSYS FAOLot
LIB$SYS_FAOL_64 (Alphaand 164 Only)ccovviinn...
LIB$SYS_GETMSG . . .o oottt e e e
LIB$STPARSE/LIBSTABLE_PARSE
LIBSTRAVERSE_TREE e e e
LIB$TRAVERSE_TREE_64 (Alpha and 164 Only)
LIBSTRA_ASC_EBC . .. it e e s
LIBSTRA_EBC_ASC . . .t e e e e
LIB$TRIM_FILESPEC. e
LIB$TRIM_FULLNAME e
LIBSUNLOCK_IMAGE (Alpha and 164 Only)
LIBSVERIFY VM _ZONE e
LIB$VERIFY_VM_ZONE_64 (Alpha and 164 Only)
LIBEWALT . . e

CVT$ Reference Section

CVTSCONVERT _FLOATottt e
CVTSFTOF . .o e e

Structure of a Protection Mask
Summary of Symbol Names and Values........................

Summary of Symbol Names, Values, and Names of Referring
Modules e

Summary Indicating Defining Modules
Keyword Table e
LIBSAB_ASC_ EBC e e
LIBSAB_ASC_EBC_REV i
LIBSAB_EBC_ASC i e
LIBSAB_EBC_ASC_REV i
LIBSAB_CVTPT O ... e
LIBSAB_CVTPT U e
LIBSAB_CVTTP_O ...t e
LIBSAB_CVTTP_Ut
LIBSAB_CVT_O _U. ...ttt
LIBSAB_CVT _U_O. ..ot e e
LIBSAB_CVTPT _Z oot e e e e
LIBSAB_CVTTP_Z oot e e e
LIBSAB_UPCASE e
LIBSAB_LOWERCASE e

lib—559
lib—561
lib—563
lib—565
lib—567
lib—569
lib—572
lib—632
lib—634
lib—636
lib—640
lib—643
lib—646
lib—649
lib—650
lib—651
lib—652

cvi-3
cvi-9

lib—47
lib—76

lib—76

lib—77
lib—381
lib—401
lib—402
lib—403
lib—404
lib—405
lib—406
lib—407
lib—408
lib—409
lib—410
lib—411
lib—412
lib—413
lib—414

lib—20
lib—21

lib—22
lib—23
lib—24
lib—25

Tables

1-1
1-2
1-3
lib—1

lib—2
lib—3

lib—4
lib—5
lib—6
lib—7
lib—8
lib—9
lib—10
lib—11
lib—12

lib—13

lib—14

LIB$T[ABLE_JPARSE 32-Bit Argument Block

LIB$T[ABLE_JPARSE 64-Bit Argument Block (Alpha and 164
Only) .o

Transition Diagram for a Hypothetical Utility
Tabular Diagram of a Hypothetical Utility
LIBSAB_ASC_EBC e
LIBSAB_EBC_ASC e

LIBS RoUtineSo vt ettt e e e
Translated LIB$ Routines (Alpha Only)
CVTS ROULINES . -« . o v et e e e e e e e e e e e s s

OpenVMS Descriptor Class and Data Type Combinations Accepted by
LIBSCVT DX DX ..ttt e e

LIB$CVT DX DX Destination NBDS Formats

Symbols for Fields and Values for Operand Access and Data Types
Using LIB$DECODE_FAULT

Formats Used for LIBSGETDVI Stringsc.cuuuuuun...
Item Code Formats for LIBSGETJIPI
Item Code Formats for LIB§GETQUI,
LIB$SHOW_VM_ZONE Error and Warning Messages
LIB$SHOW_VM_ZONE_64 Error and Warning Messages
The Alphabet of LIB$T[ABLE_JPARSE
LIB$T[ABLE_JPARSE Argument Block Fields...................
Keyword Abbreviation Flags
Binary Representation of a LIB$T[ABLE_]PARSE State

Transition
ASCII Graphics Not Translated to EBCDIC Equivalent by
LIB$STRA_ASC_EBCottt
EBCDIC Graphics Not Translated to ASCII Equivalent by
LIBSTRA_EBC_ASCt i

lib—586

lib—587
lib—592
lib—593
lib—637
lib—641

1-2
1-9
1-10

lib—90
lib—92

lib—116
lib—235
lib—239
lib—245
lib—513
lib-519
lib—576
lib—588
lib—602

lib—608

lib—637

lib—641

Preface

This manual provides users of the HP OpenVMS operating system with detailed
usage and reference information on library routines supplied in the LIB$ and
CVT$ facilities of the Run-Time Library (RTL).

Intended Audience

This manual is intended for system and application programmers who write
programs that call LIB$ and CVT$ Run-Time Library routines.

Document Structure

This manual is organized into three parts as follows:

e The overview chapter provides a brief overview of the LIB$ and CVT$ Run-
Time Library facility and lists the LIB$ routines and their functions. It also
provides guidelines and information on using the LIB$ facility with VAX and
Alpha platforms.

e The LIB$ reference section describes each library routine contained in the
LIB$ Run-Time Library facility. This information is presented using the
documentation format described in HP OpenVMS Programming Concepts
Manual. Routine descriptions appear alphabetically by routine name.

e The CVT$ reference section describes the routines contained in the
CVT$ Run-Time Library facility. This information is presented using the
documentation format described in HP OpenVMS Programming Concepts
Manual.

Related Documents

The Run-Time Library (RTL) routines are documented in a series of reference
manuals.

General descriptions of OpenVMS RTL routines appear in the following manual:

e HP OpenVMS Programming Concepts Manual—A description of OpenVMS
features and functionality available through calls to the LIB$ Run-Time
Library

Specific descriptions of the other RTL facilities and their corresponding routines
appear in the following manuals:

e Compaq Portable Mathematics Library
e OpenVMS VAX RTL Mathematics (MTH$) Manual
e OpenVMS RTL DECtalk (DTK$) Manuall

! This manual has been archived but is available on the OpenVMS documentation

CD-ROM.

Xi

® HP OpenVMS RTL General Purpose (OTS$) Manual
e OpenVMS RTL Parallel Processing (PPL$) Manualt

e OpenVMS RTL Screen Management (SMG$) Manual
e OpenVMS RTL String Manipulation (STR$) Manual

Application programmers using any language can refer to the Guide to Creating
OpenVMS Modular Procedures for writing modular and reentrant code.

High-level language programmers will find additional information on calling
Run-Time Library routines in their language reference manuals. Additional
information may also be found in the language user’s guide provided with your
OpenVMS language software.

For a complete list and description of the manuals in the OpenVMS
documentation set, see the HP OpenVMS Version 8.2 New Features and
Documentation Overview.

For additional information about HP OpenVMS products and services, see the
following World Wide Web address:

http://www.hp.com/products/openvms

Reader’s Comments

HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Mail Hewlett-Packard Company
OSSG Documentation Group, ZK0O3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation

For information on how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions

Xii

In this manual, every use of DECwindows and DECwindows Motif refers to HP
DECwindows Motif for OpenVMS software.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

O

{}

bold text

italic text

UPPERCASE TEXT

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

A horizontal ellipsis in examples indicates one of the following
possibilities:

e Additional optional arguments in a statement have been
omitted.

e The preceding item or items can be repeated one or more
times.

e Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that you
must enclose the options in parentheses if you choose more
than one.

In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.

Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

In command format descriptions, braces indicate required
choices; you must choose at least one of the options listed. Do
not type the braces on the command line.

This typeface represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Italic text indicates important information, complete titles

of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines /PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

xii

Xiv

Monospace text

numbers

Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names

of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

Partl

LIB$ Overview Section

This part contains one chapter that provides a brief overview of the LIB$ and
CVT$ Run-Time Library facilities and lists the LIB$ and CVT$ routines and their
functions. It also provides guidelines and information on using the LIB$ facility
with VAX, Alpha, and HP OpenVMS Industry Standard 64 for Integrity Servers
(I64) platforms.

1

Overview of the LIB$ Facility

This section describes the OpenVMS Run-Time Library (LIB$) facility and lists
the function of each routine within the LIB$ facility.

1.1 Run-Time Library LIB$ Routines

This manual discusses the Run-Time Library (RTL) LIB$ routines that perform
general purpose (library) functions. One of the functions of the LIB$ facility is to
provide a callable interface to components of OpenVMS operating systems that
are difficult to use in a high-level language. LIB$ routines allow access to the
following:

e System services

¢ The command language interpreter (CLI)

e Some VAX machine instructions or the equivalent Alpha or 164 instructions
In addition, LIB$ routines allow you to perform the following operations:

e Allocate resources that your process needs, such as virtual memory and event
flags

e Convert data types for I/O

e Enable detection of hardware exceptions (VAX only)

e Establish condition handlers (VAX only)

e Generate and display timing statistics while your program is running
¢ Get and put strings in the process common storage area
e Obtain records from devices

e Obtain the system date and time in various formats

® Process cross-reference data

¢ Process HP DECnet-Plus for OpenVMS full names

e Search for specified files

e Set up and use binary trees

e Signal exceptions

Overview of the LIB$ Facility 1-1

Overview of the LIB$ Facility
1.1 Run-Time Library LIB$ Routines

1.1.1 64-Bit Addressing Support (Alpha and 164 Only)

On Alpha and 164 systems, the Run-Time Library (LIB$) routines provide 64-bit
virtual addressing capabilities as follows:

Most routines now accept 64-bit addresses for arguments passed by reference.
Footnotes in the Reference Section of this manual indicate those routines that
do not.

Most routines also accept either 32-bit or 64-bit descriptors for arguments
passed by descriptor. Footnotes in the Reference Section of this manual
indicate those routines that do not.

In some cases, a new routine was added to support a 64-bit addressing or
data capability. These routines carry the same name as the original routine
but with a _64 suffix. In general, both versions of the routine support 64-bit
addressing, but the routine with the _64 suffix also supports additional 64-bit
capability. The 32-bit capabilities of the original routine are unchanged.

Specialized routines create and manipulate storage zones in the 64-bit virtual
address space. The names of these routines are the same as their 32-bit
counterparts but with a _64 suffix. One example is LIBSCREATE_VM_
ZONE and LIBSCREATE_VM_ZONE_64. LIBS§CREATE_VM_ZONE creates
a storage zone in the 32-bit vitual address space, and LIBSCREATE_VM_
ZONE_64 creates a storage zone in the 64-bit virtual address space. The
function of the original routine is unchanged.

See the HP OpenVMS Programming Concepts Manual for more information about
64-bit virtual addressing capabilities.

1.1.2 The LIB$ Routines
Table 1-1 lists all of the LIB$ routines and their functions.

Table 1-1 LIB$ Routines

Routine Name

Function

LIB$ADAWI Add adjacent word with interlock.
LIB$ADDX Add two multiple-precision binary numbers.
LIB$ADD_TIMES Add two quadwords times.
LIB$ANALYZE_SDESC Analyze a string descriptor.
LIB$ANALYZE_SDESC_64 Analyze a string descriptor.’
LIB$ASN_WTH_MBX Assign a channel to a mailbox.

LIB$AST IN_PROG

Check for active AST.

LIB$ATTACH Attach a terminal to a process.

LIB$BBCCI Test and clear a bit with interlock.
LIB$BBSSI Test and set a bit with interlock.
LIB$BUILD_NODESPEC Build a node-name specification.

LIB$CALLG Call a procedure with a general argument list.

LIB$CALLG_64

Call a procedure with a general argument list.!

IAlpha and 164 specific.

(continued on next page)

1-2 Overview of the LIB$ Facility

Table 1—1 (Cont.) LIB$ Routines

Overview of the LIB$ Facility
1.1 Run-Time Library LIB$ Routines

Routine Name

Function

LIB$CHAR
LIB$COMPARE_NODENAME
LIB$COMPRESS_NODENAME
LIB$CONVERT DATE_STRING
LIB$CRC

LIB$CRC_TABLE

LIB$CREATE_DIR
LIB$CREATE_USER_VM_ZONE
LIB$CREATE_USER_VM_ZONE_64
LIB$CREATE_VM_ZONE
LIB$CREATE_VM_ZONE 64
LIB$CRF_INS_KEY
LIB$CRF_INS_REF
LIB$CRF_OUTPUT

LIB$CURRENCY
LIB$CVTF_FROM_INTERNAL_TIME
LIB$CVTS_FROM_INTERNAL_TIME

LIB$CVTF_TO_INTERNAL_TIME
LIB$CVTS_TO_INTERNAL_TIME

LIB$CVT_DX_DX
LIB$CVT_FROM_INTERNAL_TIME
LIB$CVT TO_INTERNAL_TIME
LIB$CVT VECTIM

LIB$CVT «TB

LIB$CVT xTB_64
LIB$DATE_TIME

LIB$DAY

LIB$DAY_OF WEEK
LIB$DECODE_FAULT
LIB$DEC_OVER
LIB$DELETE_FILE
LIB$DELETE_LOGICAL
LIB$DELETE _SYMBOL
LIB$DELETE_VM_ZONE
LIB$DELETE_VM_ZONE_64

Transform a byte to the first character of a string.
Compare two node names.

Compress a node name to its short form equivalent.
Convert a date string to a quadword.

Calculate a cyclic redundancy check (CRC).

Construct a cyclic redundancy check (CRC) table.
Create a directory.

Create a user-defined storage zone.

Create a user-defined storage zone. !

Create a new storage zone.

Create a new storage zone.

Insert a key in the cross-reference table.

Insert a reference to a key in the cross-reference table.
Output some cross-reference table information.

Get the system currency symbol.

Convert internal time to external time (F-floating value).

Convert internal time to external time (IEEE S-floating
value).

Convert external time to internal time (F-floating value).

Convert external time to internal time (IEEE S-floating
value).

Convert the specified data type.

Convert internal time to external time.
Convert external time to internal time.
Convert 7-word vector to internal time.
Convert numeric text to binary.

Convert numeric text to binary.!

Return the date and time as a string.

Return the day number as a longword integer.
Return the numeric day of the week.

Decode instruction stream during a fault.?
Enable or disable decimal overflow detection.?
Delete one or more files.

Delete a logical name.

Delete a CLI symbol.

Delete a virtual memory zone.

Delete a virtual memory zone.!

1Alpha and 164 specific.

2Available only on OpenVMS VAX systems and for translated VAX applications running on OpenVMS Alpha or 164

systems.

(continued on next page)

Overview of the LIB$ Facility 1-3

Overview of the LIB$ Facility

1.1 Run-Time Library LIB$ Routines

Table 1-1 (Cont.) LIB$ Routines

Routine Name

Function

LIB$DIGIT_SEP
LIB$DISABLE_CTRL
LIB$DO_COMMAND
LIB$EDIV
LIB$EMODD

LIB$EMODF
LIB$EMODG
LIB$EMODH
LIB$EMODS
LIB$EMODT

LIB$EMUL
LIB$ENABLE_CTRL
LIB$ESTABLISH
LIB$EXPAND NODENAME
LIB$EXTV

LIB$EXTZV

LIB$FFx
LIB$FID_TO_NAME
LIB$FILE_SCAN
LIB$FILE_SCAN_END
LIB$FIND_FILE
LIB$FIND_FILE END
LIB$FIND_IMAGE_SYMBOL
LIB$FIND_VM_ZONE
LIB$FIND_VM_ZONE_64
LIB$FIT NODENAME
LIB$FIXUP_FLT

LIB$FLT UNDER
LIB$FORMAT DATE_TIME
LIB$FORMAT SOGW_PROT

LIB$FREE_DATE_TIME_CONTEXT

Get the digit separator symbol.

Disable CLI interception of control characters.
Execute the specified command.

Perform an extended-precision divide.

Perform extended multiply and integerize for D-floating
values.

Perform extended multiply and integerize for F-floating
values.

Perform extended multiply and integerize for G-floating
values.

Perform extended multiply and integerize for H-floating
values.?

Perform extended multiply and integerize for IEEE S-floating
values.

Perform extended multiply and integerize for IEEE T-floating
values.

Perform an extended-precision multiply.

Enable CLI interception of control characters.
Establish a condition handler.? 3

Expand a node name to its full name equivalent.
Extract a field and sign-extend.

Extract a zero-extended field.

Find the first clear or set bit.

Convert a device and file ID to a file specification.
Perform a file scan.

End a file scan.

Find a file.

End of find file.

Merge activate an image symbol.

Find the next valid zone.

Find the next valid zone.!

Fit a node name into an output field.

Fix floating reserved operand.?

Detect a floating-point underflow.?

Format a date and/or time.

Format protection mask.*

Free the context used to format a date.

LAlpha and 164 specific.

2Available only on OpenVMS VAX systems and for translated VAX applications running on OpenVMS Alpha or 164

systems.

3This routine or an equivalent mechanism is supplied by compilers on OpenVMS Alpha and 164 systems.

4VAX specific.

1-4 Overview of the LIB$ Facility

(continued on next page)

Table 1—1 (Cont.) LIB$ Routines

Overview of the LIB$ Facility
1.1 Run-Time Library LIB$ Routines

Routine Name

Function

LIB$FREE_EF
LIB$FREE_LUN
LIB$FREE_TIMER
LIB$FREE_VM
LIB$FREE_VM_64
LIB$FREE_VM_PAGE
LIB$FREE_VM_PAGE 64
LIB$GETDVI
LIB$GETJPI
LIB$GETQUI
LIB$GETSYI
LIB$GET_ACCNAM

LIB$GET ACCNAM_BY CONTEXT

LIB$GET_COMMAND
LIB$GET_COMMON
LIB$GET_CURR_INVO_CONTEXT
LIB$GET _DATE_FORMAT
LIB$GET _EF

LIB$GET _FOREIGN
LIB$GET_FULLNAME_OFFSET

LIB$GET _HOSTNAME
LIB$GET_INPUT
LIB$GET_INVO_CONTEXT
LIB$GET_INVO_HANDLE
LIB$GET_LUN

LIB$GET _MAXIMUM_DATE_LENGTH

LIB$GET _PREV_INVO_CONTEXT
LIB$GET _PREV_INVO_HANDLE
LIB$GET_SYMBOL

LIB$GET _USERS_LANGUAGE
LIB$GET VM

LIB$GET VM _64
LIB$GET_VM_PAGE

LIB$GET _VM_PAGE_64
LIB$ICHAR

Free an event flag.

Free a logical unit number.

Free timer storage.

Free virtual memory from the program region.
Free virtual memory from the program region.!
Free a virtual memory page.

Free a virtual memory page.’

Get device/volume information.

Get job/process information.

Get queue information.

Get systemwide information.

Get access name table for a security object identified by
name.*

Get access name table for a security object identified by
$GET SECURITY or $SET SECURITY context.*

Get line from SYS§COMMAND.
Get string from common area.

Get current invocation context. !
Return the user’s date input format.
Get an event flag.

Get foreign command line.

Get the offset to the starting position of the most significant
part of a full name.

Get host node name.

Get line from SYS$INPUT.

Get invocation context.

Get invocation handle.!

Get logical unit number.

Get the maximum possible date/time string length.
Get previous invocation context.!
Get previous invocation handle.
Get the value of a CLI symbol.
Return the user’s language choice.
Allocate virtual memory.

Allocate virtual memory.’

Get a virtual memory page.

Get a virtual memory page.’

Convert the first character of a string to an integer.

1Alpha and 164 specific.
4VAX specific.

(continued on next page)

Overview of the LIB$ Facility 1-5

Overview of the LIB$ Facility

1.1 Run-Time Library LIB$ Routines

Table 1-1 (Cont.) LIB$ Routines

Routine Name

Function

LIB$164_CREATE_INVO_CONTEXT
LIB$I64_GET_CURR_INVO_CONTEXT
LIB$I64 FREE_INVO_CONTEXT
LIB$I64_GET_CURR_INVO_HANDLE
LIB$I64_GET_FR

LIB$I64_GET_GR

LIB$I64_GET _INVO_HANDLE
LIB$164_GET_INVO_CONTEXT
LIB$I64_GET_PREV_INVO_CONTEXT
LIB$I64_GET_PREV_INVO_END
LIB$164 GET PREV_INVO _HANDLE
LIB$I64_GET_UNWIND_HANDLER _FV

LIB$I64_GET_UNWIND_LSDA
LIB$I64_GET_UNWIND_OSSD
LIB$I64_INIT INVO_CONTEXT
LIB$I64 IS _AST DISPATCH FRAME
LIB$I64_IS_EXC_DISPATCH_FRAME

LIB$I64_PUT INVO_REGISTERS
LIB$164_PREV_INVO_END
LIB$I64_SET FR
LIB$I64_SET GR
LIB$164_SET PC

LIB$INDEX

LIB$INIT DATE_TIME_CONTEXT
LIB$INIT_TIMER

LIB$INSERT TREE
LIB$INSERT TREE_64
LIB$INSQHI

LIB$INSQHIQ

LIB$INSQTI

LIB$INSQTIQ

LIB$INSV

Allocate and initialize an invocation context block.?
Get current invocation context.?

Deallocate an invocation context block.’?

Get current invocation handle.’

Get floating-point register value.?

Get general register value.’

Get invocation handle.’

Get invocation context.?

Get previous invocation context.?

Free memory used to process unwind descriptors.’
Get previous invocation handle.’?

Given a pc_value, find the function value (address of the
procedure descriptor) for the condition handler, if present,
and write it to handler_fv. °

Find A5ddress of Unwind Information Block Language-Specific
Data.

Find address of the unwind information block operating
system-specific data area.’

Initialize an invocation context block that has already been
allocated.?

Determine whether a given PC value represents an AST
dispatch frame. °

Determine whether a given PC value represents an exception
dispatch frame. °

Update register contetnts using a given invocation context.’
Free memory used tp process unwind descriptors.’

Write context of invocation context block.’?

Write invocation block general register value.?

Write pc_copy value of invocation context block.?

Index to relative position of substring.

Initialize the context used in formatting date/time strings.
Initialize times and counts.

Insert entry in a balanced binary tree.

Insert entry in a balanced binary tree.!

Insert entry at the head of a queue.

Insert entry at the head of a queue.!

Insert entry at the tail of a queue.

Insert entry at the tail of a queue.’

Insert a variable bit field.

1 Alpha and 164 specific.
5164 specific.

1-6 Overview of the LIB$ Facility

(continued on next page)

Table 1—1 (Cont.) LIB$ Routines

Overview of the LIB$ Facility
1.1 Run-Time Library LIB$ Routines

Routine Name

Function

LIB$INT_OVER

LIB$LEN

LIB$LOCC

LIB$LOCK
LIB$LOOKUP_KEY
LIB$LOOKUP_TREE
LIB$LOOKUP_TREE_64
LIB$LP_LINES
LIB$MATCHC
LIB$MATCH_COND
LIB$MOVC3

LIB$MOVC5

LIB$MOVTC
LIB$MOVTUC
LIB$MULTF_DELTA_TIME
LIB$MULTS_DELTA_TIME
LIB$MULT DELTA_TIME
LIB$PARSE_ACCESS_CODE
LIB$PARSE_SOGW_PROT
LIB$PAUSE

LIB$POLYD

LIB$POLYF

LIB$POLYG

LIB$POLYH

LIB$POLYS

LIB$POLYT
LIB$PUT_COMMON
LIB$PUT_INVO_REGISTERS
LIB$PUT_OUTPUT
LIB$RADIX_POINT
LIB$REMQHI
LIB$REMQHIQ
LIB$REMQTI
LIB$REMQTIQ
LIB$RENAME_FILE
LIB$RESERVE_EF

Detect integer overflow.?

Return the length of a string as a longword.
Locate a character.

Lock a specified image in the process’s working set.
Look up keyword in table.

Look up an entry in a balanced binary tree.

Look up an entry in a balanced binary tree.!
Specify the number of lines on each printer page.
Match characters, return relative position.

Match condition values.

Move characters.

Move characters with fill.

Move translated characters.

Move translated until character.

Multiply delta time by F-floating scalar.

Multiply delta time by IEEE S-floating scalar.
Multiply delta time by scalar.

Parse access-encoded name string.*

Parse protection string.*

Pause program execution.

Evaluate polynomials for D-floating values.
Evaluate polynomials for F-floating values.
Evaluate polynomials for G-floating values.
Evaluate polynomials for H-floating values.?
Evaluate polynomials for IEEE S-floating values.
Evaluate polynomials for IEEE T-floating values.
Put string into common area.
Put invocation registers.!

Put line to SYS$OUTPUT.
Radix point symbol.

Remove entry from head of queue.
Remove entry from head of queue.’
Remove entry from tail of queue.
Remove entry from tail of queue.’
Rename one or more files.

Reserve an event flag.

1Alpha and 164 specific.

2 Available only on OpenVMS VAX systems and for translated VAX applications running on OpenVMS Alpha or 164

systems.
4VAX specific.

(continued on next page)

Overview of the LIB$ Facility 1-7

Overview of the LIB$ Facility

1.1 Run-Time Library LIB$ Routines

Table 1-1 (Cont.) LIB$ Routines

Routine Name

Function

LIB$RESET_VM_ZONE
LIB$RESET VM_ZONE_64
LIB$REVERT
LIB$RUN_PROGRAM
LIB$SCANC
LIB$SCOPY_DXDX
LIB$SCOPY R DX
LIB$SCOPY_R_DX 64
LIB$SET_LOGICAL
LIB$SET_SYMBOL
LIB$SFREE1 DD
LIB$SFREEN_DD
LIB$SGET1_DD
LIB$SGET1_DD_64
LIB$SHOW_TIMER
LIB$SHOW_VM
LIB$SHOW_VM_64
LIB$SHOW_VM_ZONE
LIB$SHOW_VM_ZONE_64
LIB$SIGNAL
LIB$SIG_TO_RET
LIB$SIG_TO_STOP
LIB$SIM_TRAP
LIB$SKPC

LIB$SPANC
LIB$SPAWN

LIB$STAT _TIMER
LIB$STAT VM
LIB$STAT VM_64
LIB$STOP

LIB$SUBX
LIB$SUB_TIMES
LIB$SYS_ASCTIM
LIB$SYS_FAO
LIB$SYS_FAOL
LIB$SYS_FAOL_64

Reset virtual memory zone.
Reset virtual memory zone.'

Revert to the handler of the procedure activator.? 3
Run new program.

Scan for characters and return relative position.
Copy source string by descriptor to destination.
Copy source string by reference to destination.
Copy source string by reference to destination.!
Set logical name.

Set the value of a CLI symbol.

Free one or more dynamic strings.

Free n dynamic strings.

Get one dynamic string.

Get one dynamic string.’

Show accumulated times and counts.

Show virtual memory statistics.

Show virtual memory statistics.’

Display information about a virtual memory zone.
Display information about a virtual memory zone.
Signal exception condition.

Convert a signaled message to a return status.
Convert a signaled condition to a signaled stop.
Simulate floating trap.?

Skip equal characters.

Skip selected characters.

Spawn a subprocess.

Return accumulated time and count statistics.
Return virtual memory statistics.

Return virtual memory statistics.?

Stop execution and signal the condition.

Perform multiple-precision binary subtraction.
Subtract two quadword times.

Invoke $ASCTIM to convert binary time to ASCII.
Invoke $FAO system service to format output.
Invoke $FAOL system service to format output.

Invoke $FAOL system service to format output.’

1Alpha and 164 specific.

2Available only on OpenVMS VAX systems and for translated VAX applications running on OpenVMS Alpha or 164

systems.

3This routine or an equivalent mechanism is supplied by compilers on OpenVMS Alpha and 164 systems.

1-8 Overview of the LIB$ Facility

(continued on next page)

Table 1—1 (Cont.) LIB$ Routines

Overview of the LIB$ Facility
1.1 Run-Time Library LIB$ Routines

Routine Name

Function

LIB$SYS_GETMSG
LIB$TABLE_PARSE
LIB$TPARSE
LIB$TRAVERSE_TREE
LIB$TRAVERSE_TREE_64
LIB$TRA_ASC_EBC
LIB$TRA EBC_ASC
LIB$TRIM_FILESPEC
LIB$TRIM_FULLNAME
LIB$§UNLOCK
LIB$VERIFY VM _ZONE
LIB$VERIFY_VM_ZONE_64
LIB$WAIT

Invoke $GETMSG system service to get message text.
Implement a table-driven, finite-state parser.
Implement a table-driven, finite-state parser.?
Traverse a balanced binary tree.

Traverse a balanced binary tree.!

Translate ASCII to EBCDIC.

Translate EBCDIC to ASCII.

Fit a long file specification into a fixed field.

Trim a full name to fit into a desired output field.
Unlock a specified image in the process’s working set.
Verify a virtual memory zone.
Verify a virtual memory zone.!

Wait a specified period of time.

1Alpha and 164 specific.

2Available only on OpenVMS VAX systems and for translated VAX applications running on OpenVMS Alpha or 164

systems.

1.2 Translated Version of LIB$ Facility (Alpha and 164 Only)

The RTL LIB$ facility exists in two forms on OpenVMS Alpha and 164 systems:
native and translated. The translated LIB$ library contains routines specific to
VAX systems only, and are executed in the Translated Image Environment (TIE).
These routines are not available to native OpenVMS Alpha and 164 programs.
See Migrating an Application from OpenVMS VAX to OpenVMS Alphal for
additional information on using translated images and the TIE.

Table 1-2 lists the translated LIB$ routines.

Table 1-2 Translated LIB$ Routines (Alpha Only)

Routine Name

Restriction

LIB$DECODE_FAULT

LIB$DEC_OVER
LIB$ESTABLISH
LIB$FIXUP_FLT
LIB$FLT_UNDER
LIB$INT OVER
LIB$REVERT
LIB$SIM_TRAP

Decodes VAX instructions.

Applies to VAX PSL only.

Supported by compilers on OpenVMS Alpha systems.
Applies to VAX PSL only.

Applies to VAX PSL only.

Applies to VAX PSL only.

Supported by compilers on OpenVMS Alpha systems.
Applies to VAX code.

(continued on next page)

1

CD-ROM.

This manual has been archived but is available on the OpenVMS Documentation

Overview of the LIB$ Facility 1-9

Overview of the LIB$ Facility
1.2 Translated Version of LIB$ Facility (Alpha and 164 Only)

Table 1-2 (Cont.) Translated LIB$ Routines (Alpha Only)

Routine Name Restriction

LIB$TPARSE Requires action routine interface changes. Replaced by
LIB$TABLE_PARSE.

LIB$ routines that are called using JSB linkages may function differently on
OpenVMS VAX and OpenVMS Alpha systems. See OpenVMS Programming
Interfaces: Calling a System Routine® for more information on using JSB
linkages.

1.3 Run-Time Library CVTS$ Facility

This manual describes the Run-Time Library CVT$ facility and its routines:
CVT$CONVERT_FLOAT and CVT$FTOF. The CVTS$ facility lets you convert
data stored in one OpenVMS data type into data of another data type. Table 1-3
lists the routines in the CVT$ facility.

Table 1-3 CVT$ Routines

Routine Name Function

CVT$CONVERT_FLOAT Converts data in one of several floating-point data types to
another floating-point data type.

CVT$FTOF Enhanced version of CVT$CONVERT_FLOAT that

provides better performance and more output options than
CVT$CONVERT_FLOAT, and also enhances portability
between HP-supported platforms.

1 This manual has been archived but is available on the OpenVMS Documentation

CD-ROM.

1-10 Overview of the LIB$ Facility

Part I

LIB$ Reference Section

This part contains detailed descriptions of the routines provided by the OpenVMS
RTL Library (LIB$) facility.

LIBS$ Routines
LIBSADAWI

LIBSADAWI
Add Aligned Word with Interlock

The Add Aligned Word with Interlock routine allows the user to perform an
interlocked add operation using an aligned word.

Format
LIBSADAW! add ,sum ,sign
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
add
OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by reference

The addend operand to be added to the value of sum. The add argument is the
address of a signed word that contains the addend operand.

sum

OpenVMS usage: word_signed

type: word integer (signed)
access: modify

mechanism: by reference

The word to which add is added. The sum argument is the address of a signed
word integer containing this value. The add operand is added to the sum
operand, and the value of the sum argument is replaced by the result of this
addition. The sum argument must be word-aligned; in other words, its address
must be a multiple of 2.

sign

OpenVMS usage: word_signed

type: word integer (signed)
access: write only
mechanism: by reference

Sign of the sum argument. The sign argument is the address of a signed word
integer that is assigned the value -1, 0, or 1, depending on whether the new
value of sum is negative, 0, or positive.

lib—3

LIBS$ Routines

LIBSADAWI

Description

LIB$SADAWI allows the user to perform an interlocked add operation using an
aligned word, and makes the VAX ADAWI! instruction available as a callable
routine. This routine also enables the user to implement synchronization
primitives for multiprocessing.

The add operation is interlocked against similar operations on other processors in
a multiprocessor environment. This provides an atomic addition operation. The
destination must be aligned on a word boundary; that is, bit 0 of the address of
the sum operand must be 0.

If the addend and the sum operand overlap, the result of the addition, the value
of the sign argument, and the associated condition codes are unpredictable.

The value of the sign argument is useful when LIB$ADAWI is used to implement
locking in a multiprocessing program. For example, a process that is waiting to
seize a lock or a resource calls LIBSADAWI to add 1 to the sum. When the call
returns, the waiting process checks the value of sign.

One possible algorithm would interpret the value of sign as follows:

Value of sign

Argument Status of Lock or Resource

-1 Open lock or free resources

0 Closed lock or no free resources, with no processes waiting
+1 Closed lock or no free resources, with processes waiting

In this algorithm, if the value of the sign argument is -1, that indicates that
the process successfully seized the lock or resource, and other free resources are
available. A value of 0 indicates that the process successfully seized the lock or
the last available resource. A value of 1 indicates that the process was unable to
seize the lock.

It is not sufficient for a waiting process to test the value of sum. The result
is unpredictable because other processes can alter the value of sum after the
original process executes the ADAWI instruction but before it tests the value
of sum. However, a process can safely test the value of sign because its value
is determined by the ADAWI instruction and is unaffected by other processes’
activities.

Condition Values Returned

lib—4

LIB$_NORMAL Routine successfully completed.
LIB$_INTOVF Integer overflow error.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

LIBS$ Routines
LIBSADDX

LIBSADDX
Add Two Multiple-Precision Binary Numbers

The Add Two Multiple-Precision Binary Numbers routine adds two signed two’s
complement integers of arbitrary length.

Format

LIBSADDX addend-array ,augend-array ,resultant-array [,array-length]
Returns

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value
Arguments

addend-array
OpenVMS usage: vector_longword_signed

type: unspecified
access: read only
mechanism: by reference, array reference

First multiple-precision, signed two’s complement integer that LIBSADDX adds
to the second two’s complement integer. The addend-array argument is the
address of the array containing the two’s complement number to be added.

augend-array
OpenVMS usage: vector_longword_signed

type: unspecified
access: read only
mechanism: by reference, array reference

Second multiple-precision, signed two’s complement integer that LIBSADDX
adds to the first two’s complement integer. The augend-array argument is the
address of the array containing the two’s complement number.

resultant-array
OpenVMS usage: vector_longword_signed

type: unspecified
access: write only
mechanism: by reference, array reference

Multiple-precision, signed two’s complement integer result of the addition. The
resultant-array argument is the address of the array into which LIB§ADDX
writes the result of the addition.

array-length
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

lib—5

LIBS$ Routines

LIBSADDX
Length in longwords of the arrays to be operated on; each array is of length
array-length. The array-length argument is the address of a signed longword
integer containing the length. The array-length argument must not be negative.
This is an optional argument. If omitted, the default is 2.

Description

LIB$ADDX adds two signed two’s complement integers of arbitrary length.

The integers are located in arrays of longwords. The higher addresses of

these longwords contain the higher precision parts of the values. The highest-
addressed longword contains the sign and 31 bits of precision. The remaining
longwords contain 32 bits of precision in each. The number of longwords in each
array is specified in the optional argument array-length. The default array
length is 2, which corresponds to the OpenVMS quadword data type.

Any two or all three of the first three arguments can be the same.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

SS$_INTOVF Integer overflow. The result is correct, except
that the sign bit is lost.

Example

C+
C This Fortran example program shows the use
C of LIBSADDX.

C-
INTEGER A(2),B(2),C(2),RETURN
DATA A/'00000001'x, ' TFFF407F'x/
DATA B/'FFFFFFFF'x,'8000BF80'x/
c+

C The highest addressed longword of "A" is A(2).

C So, "A" represents the integer value ('7FFF407F’'x) * 16**7 + 1.
C That is, A(2) is 576447592255193089.

C "B" is the twos complement representation of "-A".

C-

RETURN = LIB$ADDX(A,B,C)
TYPE *,'Let A = 576447592255193089."
TYPE *,'Then A + B is 0.’
TYPE 1,C(2),C(1)
1 FORMAT(' "A" - "A" is ',1H’,I1,I1,3H'x.)
TYPE *,’'Note that C is C(2) concatenated with C(1).-’

C+
C Let "A" have the value 72057594037927937 = '1000000000000001"'x.
C Let "B" have the value 4294967295 = '00000000FFFFFFFF'x.

C-
A(1) = '00000001'x
A(2) = '10000000'x
B(1) = 'FFFFFFFF’x
B(2) = '00000000'x
c+
C Then "A" + "B" is 72057598332895232.
C-

lib—6

LIBS$ Routines
LIBSADDX

RETURN = LIBSADDX(A,B,C)
TYPE *,' '
TYPE *,'LET A = 72057594037927937 and B = 4294967295’
TYPE *,'Then A + B is ',C
TYPE 2,C(2),C(1)
2 FORMAT (' 72057598332895232 is represented as ',1H’,Z%8.8,%28.8,3H'x.)

TYPE *,’'Recall that 72057598332895232 is C(2) concatenated

1 with c(1).”
END

This Fortran example demonstrates how to call LIBSADDX. The output generated
by this program is as follows:

Let A = 576447592255193089.

Then A + B is 0.

IIAII - "A" iS IOOIx.

Note that C is C(2) concatenated with C(1).

LET A = 72057594037927937 and B = 4294967295

Then A + B is 0 268435457

72057598332895232 is represented as 10000001 0'x.
Recall that 72057598332895232 is C(2) concatenated with C(1).

lib—7

LIBS$ Routines
LIBSADD TIMES

LIBSADD TIMES
Add Two Quadword Times

Format

Returns

Arguments

lib—8

The Add Two Quadword Times routine adds two internal format times.

LIBSADD_TIMES time1 ,time2 ,resultant-time

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

time1

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

First time that LIBSADD_TIMES adds to the second time. The timel argument
is the address of an unsigned quadword containing the first time to be added.
The timel argument may be either a delta time or an absolute time; however, at
least one of the arguments, timel or time2, must be a delta time.

time2

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

Second time that LIB$ADD_TIMES adds to the first time. The time2 argument

is the address of an unsigned quadword containing the second time to be added.

The time2 argument may be either a delta time or an absolute time; however, at
least one of the arguments, timel or time2, must be a delta time.

resultant-time
OpenVMS usage: date_time

type: quadword (unsigned)
access: write only
mechanism: by reference

The result of adding timel and time2. The resultant-time argument is the
address of an unsigned quadword containing the result. If both timel and time2
are delta times, then resultant-time is a delta time. Otherwise, resultant-time
is an absolute time.

LIBS$ Routines
LIBSADD TIMES

Description

LIB$ADD_TIMES adds two OpenVMS internal times. It can add two delta times
or a delta time and an absolute time. LIB$ADD_TIMES cannot add two absolute
times.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_IVTIME Invalid time.

LIB$ ONEDELTIM At least one delta time is required.
LIB$ WRONUMARG Incorrect number of arguments.

lib—9

LIBS$ Routines
LIBSANALYZE SDESC

LIBSANALYZE_SDESC
Analyze String Descriptor

Format

The Analyze String Descriptors routine extracts the length and the address at
which the data starts for a variety of 32-bit string descriptor classes.

LIBSANALYZE_SDESC input-descriptor ,data-length ,data-address

Corresponding JSB Entry Point

Returns

Arguments

lib—10

LIBSANALYZE_SDESC_R2

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

input-descriptor
OpenVMS usage: descriptor

type: quadword (unsigned)
access: read only
mechanism: by reference

Input descriptor from which LIBSANALYZE_SDESC extracts the length of the
data and the address at which the data starts. The input-descriptor argument
is the address of a descriptor pointing to the input data.

data-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the data; LIBSANALYZE_SDESC extracts this length value from the
input descriptor. The data-length argument is the address of an unsigned word
integer into which LIBSANALYZE_SDESC writes the length.

data-address
OpenVMS usage: address

type: longword (unsigned)
access: write only
mechanism: by reference

Starting address of the data; LIBSANALYZE_SDESC extracts this address from
the input descriptor. The data-address argument is the address of an unsigned
longword into which LIBSANALYZE_SDESC writes the starting address of the
data.

LIBS$ Routines
LIBSANALYZE SDESC

Description

LIB$SANALYZE_SDESC extracts the length and the address at which the data
starts for a variety of 32-bit string descriptor classes. Following is a description
of the classes of string descriptors.

Class Description Restrictions/Notes

A Array DSC$L_ARSIZE must be less than
65,536 bytes.

D Decimal string Treated as class S.

NCA Noncontiguous array Same as class A.

S Scalar, string None.

SD Decimal scalar Treated as class S.

VS Varying string Length returned is CURLEN.

Z Unspecified Treated as class S.

See STR$ANALYZE_SDESC for a similar routine that signals an error rather
than returning a status.

Condition Values Returned

SS$ NORMAL Routine successfully completed.

LIB$_INVSTRDES Invalid string descriptor. An array descriptor
has an ARSIZE greater than 65,535 bytes, or the
class is unsupported.

lib—11

LIBS$ Routines
LIBSANALYZE_SDESC_64 (Alpha and 164 Only)

LIBSANALYZE_SDESC_64 (Alpha and 164 Only)
Analyze String Descriptor

Format

The Analyze String Descriptor routine extracts the length and the address at

which the data starts for a variety of 32-bit and 64-bit string descriptor classes.

LIBSANALYZE_SDESC_64 input-descriptor ,data-length ,data-address [,descriptor-type]

Corresponding JSB Entry Point

Returns

Arguments

lib—12

LIBSANALYZE_SDESC_R2 Refer to the LIBSANALYZE_SDESC routine for information about the JSB
entry point, LIBSANALYZE_SDESC_R2. This JSB entry point returns 64-bit
results on Alpha and 164 systems.

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

input-descriptor
OpenVMS usage: descriptor

type: longword (unsigned) or quadword (unsigned)
access: read only
mechanism: by reference

Input descriptor from which LIBSANALYZE_SDESC_64 extracts the length of the
data and the address at which the data starts. The input-descriptor argument
is the address of a descriptor pointing to the input data. The input descriptor can
be a longword (unsigned) or a quadword (unsigned).

data-length

OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: write only
mechanism: by reference

Length of the data; LIBSANALYZE_SDESC_64 extracts this length value from
the input descriptor. The data-length argument is the address of an unsigned
quadword integer into which LIB§ANALYZE_SDESC_64 writes the length.

data-address
OpenVMS usage: address

type: quadword (unsigned)
access: write only
mechanism: by reference

Starting address of the data; LIBSANALYZE_SDESC_64 extracts this address
from the input descriptor. The data-address argument is the address of an
unsigned quadword into which LIBSANALYZE_SDESC_64 writes the starting
address of the data.

LIBS$ Routines
LIBSANALYZE_SDESC_64 (Alpha and 164 Only)

descriptor-type
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by reference

Flag value indicating the type of input descriptor. The descriptor-type
argument contains the address of an unsigned longword integer to which
LIB$ANALYZE_SDESC_64 writes a 0 for a 32-bit input descriptor or a 1 for
a 64-bit descriptor.

This argument is optional.

Description

LIB$SANALYZE_SDESC_64 extracts the length and the address at which the data
starts for a variety of 32-bit and 64-bit string descriptor classes. Following is a
description of the classes of string descriptors:

Class Description Restrictions/Notes

A Array For 32-bit descriptors, DSC$L_ARSIZE
must be less than 218, or 65,536, bytes.
For 64-bit descriptors, DSC64$Q_
ARSIZE must be less than 264 bytes.

D Decimal string Treated as class S.

NCA Noncontiguous array Same as class A.

S Scalar, string None.

SD Decimal scalar Treated as class S.

VS Varying string Length returned is CURLEN.
Z Unspecified Treated as class S.

See STR$ANALYZE_SDESC_64 for a similar routine that signals an error rather
than returning a status.

Condition Values Returned

SS$ NORMAL Routine successfully completed.

LIB$_INVSTRDES Invalid string descriptor. An array descriptor
has an ARSIZE greater than 65,535 bytes, or the
class is unsupported.

lib—13

LIBS$ Routines
LIBSASN WTH_ MBX

LIBSASN_WTH_MBX
Assign Channel with Mailbox

Format

Returns

Arguments

lib—14

The Assign Channel with Mailbox routine assigns a channel to a specified device
and associates a mailbox with the device. It returns both the device channel and
the mailbox channel.

LIBSASN_WTH_MBX device-name [,maximum-message-size] [,buffer-quota] ,device-channel
,mailbox-channel

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

device-name
OpenVMS usage: device_name

type: character string
access: read only
mechanism: by descriptor

Device name that LIBSASN_WTH_MBX passes to the $ASSIGN service. The
device-name argument is the address of a descriptor pointing to the device
name.

maximum-message-size
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Maximum message size that can be sent to the mailbox; LIBSASN_WTH_MBX
passes this argument to the $§CREMBX service. The maximum-message-size
argument is the address of a signed longword integer containing this maximum
message size.

buffer-quota
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Number of system dynamic memory bytes that can be used to buffer messages
sent to the mailbox; LIBSASN_WTH_MBX passes this argument to the
$CREMBX service. The buffer-quota argument is the address of a signed
longword integer containing this buffer quota.

Description

LIBS$ Routines
LIBSASN WTH_MBX

device-channel
OpenVMS usage: word_unsigned

type: word integer (unsigned)
access: write only
mechanism: by reference

Device channel that LIBSASN WTH _MBX receives from the $ASSIGN service.
The device-channel argument is the address of an unsigned word integer into
which $ASSIGN writes the device channel.

mailbox-channel
OpenVMS usage: channel

type: word integer (unsigned)
access: write only
mechanism: by reference

Mailbox channel that LIBSASN WTH _MBX receives from the $CREMBX service.
The mailbox-channel argument is the address of an unsigned word integer into
which $CREMBX writes the mailbox channel.

A mailbox is a virtual device used for communication between processes. A
channel is the communication path that a process uses to perform I/O operations
to a particular device. LIB§ASN_WTH_MBX assigns a channel to a device and
associates a mailbox with the device. It returns both the device channel and the
mailbox channel to the mailbox.

Normally, a process calls the $CREMBX system service to create a mailbox and
assign a channel and logical name to it. Any process running in the same job and
using the same logical name uses the same mailbox.

LIB$ASN_WTH_MBX associates the physical mailbox name with the channel
assigned to the device. To create a temporary mailbox for itself and other
processes cooperating with it, your program calls LIBSASN_WTH_MBX. The
Run-Time Library routine assigns the channel and creates the temporary mailbox
by using the system services $GETDVIW, $ASSIGN, and $CREMBX. Instead of
a logical name, the mailbox is identified by a physical device name of the form
MBcu. The physical device name MBcu is made up of the following elements:

MB Indicates that the device is a mailbox

c Is the controller

u Is the unit number

The routine returns the channel for this device name to the calling program,
which then must pass the mailbox channel to the other programs with which

it cooperates. In this way, the cooperating processes access the mailbox by its
physical name, instead of by a logical name.

The calling program passes the routine a device name, which specifies the device
to which the channel is to be assigned. For this argument (called device-name),
you may use a logical name. If you do so, the routine attempts one level of logical
name translation.

lib—15

LIBS$ Routines
LIBSASN WTH_ MBX

The privilege restrictions and process quotas required for using this routine are
those required by the $GETDVIW, $CREMBX, and $ASSIGN system services.
Note

This routine calls LIB§GET_EF. Please read the note in the Description
section of that routine.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

Any condition value returned by the called system services $ASSIGN, $CREMBX,
$GETDVI, or the RTL routines LIBSGET_EF and LIB$FREE_EF.

lib—16

LIBS$ Routines
LIBSAST IN PROG

LIBSAST_IN_PROG
AST in Progress

Format

Returns

Arguments

Description

The AST in Progress routine indicates whether an AST is currently in progress.

LIBSAST_IN_PROG

OpenVMS usage: boolean

type: boolean
access: write only
mechanism: by value

Truth value that indicates whether an AST is currently in progress (value = 1) or
not (value = 0).

None.

An asynchronous system trap (AST) is an OpenVMS mechanism for providing

a software interrupt when an external event occurs, such as the user pressing
Ctrl/C. When an external event occurs, the OpenVMS operating system interrupts
the execution of the current process and calls a routine that you supply. While
that routine is active, the AST is said to be in progress, and the process is said to
be executing at AST level. When your AST routine returns control to the original
process, the AST is no longer active, and execution continues where it left off.

LIB$AST IN_PROG indicates to the calling program whether an AST is currently
in progress. Your program can call LIBSAST_IN_PROG to determine whether it
is executing at AST level and then take appropriate action. This routine is useful
if you are writing AST-reentrant code, which takes different actions depending
on whether an AST is in progress. For example, the routine might have two
separate statically allocated storage areas, one for AST level and one for non-AST
level.

LIB$AST IN_PROG calls the RTL routines LIB§FREE_EF and LIB$GET_EF,
and the $GETJPI system service. If LIBSAST IN_PROG or any of these routines
encounters an error, LIB§AST IN_PROG calls LIB$STOP.

Condition Values Returned

None.

lib—17

LIBS$ Routines
LIBSAST IN PROG

Example

PROGRAM AST IN PROGRESS(INPUT, OUTPUT);
FUNCTION LIBSAST IN PROG : INTEGER; EXTERN;

VAR
ASTVALUE : INTEGER;

BEGIN
ASTVALUE := LIBSAST IN PROG;
CASE ASTVALUE OF

0 : WRITELN('AN AST IS NOT IN PROGRESS');
1 : WRITELN('AN AST IS IN PROGRESS');
END { of the case statement }

END.

This Pascal program determines whether or not an AST is in progress.

lib—18

LIBS$ Routines
LIBSATTACH

LIBSATTACH
Attach Terminal to Process

Format

Returns

Argument

Description

The Attach Terminal to Process routine requests the calling process’s command
language interpreter (CLI) to detach the terminal of the calling process and to
reattach it to a different process.

LIBSATTACH process-id

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

process-id

OpenVMS usage: process_id

type: longword integer (unsigned)
access: read only

mechanism: by reference

Identification of the process to which LIBSATTACH requests the calling process
to attach its terminal. The process-id argument is the address of an unsigned
longword integer containing the process identification. The specified process must
be currently detached (by means of a SPAWN or ATTACH command or by a call
to LIB$SPAWN or LIBSATTACH) and must be part of the caller’s job.

LIB$ATTACH requests the calling process’s command language interpreter (CLI)
to detach the terminal of the calling process and reattach it to a different process.
The calling process then hibernates. LIBSATTACH provides the same function
as the DCL command ATTACH. For more information on ATTACH, see the HP
OpenVMS DCL Dictionary.

LIB$ATTACH is supported for use with the DCL CLI. If used with the Monitor
Control Routine (MCR) CLI, the error status LIB$_NOCLI is returned. If an

image is run directly as a subprocess or detached process, no CLI is present to
perform this function. In such cases, the error status LIB$_NOCLI is returned.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

SS$_NONEXPR Nonexistent process. The process specified by
process-id does not exist.

LIB$_ATTREQREF Attach request refused. The specified process

could not be attached to. Either it was not
detached or it did not belong to the caller’s job.

lib—19

LIBS$ Routines
LIBSATTACH

lib—20

LIB$_NOCLI

LIB$_UNECLIERR

No CLI present to perform function. The calling
process did not have a CLI to perform the
function, or the CLI did not support the request
type. Note that an image run as a subprocess or
detached process does not have a CLI.

Unexpected CLI error. The CLI returned an
error status, which was not recognized. This
error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL
CLI, please report the problem to your HP
support representative.

LIBS$ Routines
LIB$BBCCI

LIB$BBCCI
Test and Clear Bit with Interlock

Format

Returns

Arguments

Description

The Test and Clear Bit with Interlock routine tests and clears a selected bit under
memory interlock. LIB$BBCCI makes the VAX BBCCI instruction available as a
callable routine. 1

LIB$BBCCI position ,bit-zero-address

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by value

State of the bit before it was cleared by LIB$BBCCI: 1 if the bit was previously
set, and 0 if the bit was previously clear.

position

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Bit position, relative to bit-zero-address, of the bit that LIB§BBCCI tests and
clears. The position argument is the address of a signed longword integer
containing the bit position. A position of zero denotes the low-order bit of the
byte base. The bit position is equal to the offset of the bit chosen from the base
position. This offset may span the entire range of a signed longword integer;
negative offsets access bits in lower addressed bytes.

bit-zero-address
OpenVMS usage: unspecified

type: address
access: read only
mechanism: by value

Address of the byte containing bit 0 of the field that LIB§BBCCI references.
The bit-zero-address argument is the location of the base position. The bit
that LIB$BBCCI tests and clears is position bits offset from the low bit of
bit-zero-address.

The single bit specified by position and bit-zero-address is tested, the previous
state of the bit remembered, and the bit cleared. The reading of the state of the
bit and its clearing are interlocked against similar operations by other processors
or devices in the system. The remembered previous state of the bit is then
returned as the function value of LIB$§BBCCI.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib—21

LIBS$ Routines
LIB$SBBCCI

Condition Values Returned

None.

Example

C+
C This Fortran program demonstrates the use of
C LIBS$BBCCI.
C-
INTEGER*4 STATES(4) ! 128 shared state bits

COMMON /STATES/ STATES ! Could be shared memory
LOGICAL*4 LIB$BBCCI

IF (LIB$BBCCI (42, STATES)) THEN
TYPE *,’'State bit 42 was set’
ELSE
TYPE *,’State bit 42 was clear’
END IF
END

This Fortran example tests and clears bit 42 of array STATES, which is in a
COMMON area (possibly shared between two processors).

The output generated by this program is as follows:

$ RUN STATE
State bit 42 was clear.

lib—22

LIBS$ Routines
LIB$BBSSI

LIB$BBSSI
Test and Set Bit with Interlock

Format

Returns

Arguments

Description

The Test and Set Bit with Interlock routine tests and sets a selected bit under
memory interlock. LIB$BBSSI makes the VAX BBSSI instruction available as a
callable routine. 1

LIB$BBSSI position ,bit-zero-address

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by value

The state of the bit before it was set by LIB$BBSSI: 1 if it was previously set,
and 0 if it was previously clear.

position

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Bit position, relative to bit-zero-address, of the bit that LIB$BBSSI tests
and sets. The position argument is the address of a signed longword integer
containing the bit position. A position of zero denotes the low-order bit of the
byte base. The bit position is equal to the offset of the bit chosen from the base
position. This offset may span the entire range of a signed longword integer;
negative offsets access bits in lower addressed bytes.

bit-zero-address
OpenVMS usage: unspecified

type: address
access: read only
mechanism: by value

Address of the byte containing bit 0 of the field that LIB§BBSSI references.
The bit-zero-address argument is the location of the base position. The
bit that LIB$BBSSI tests and sets is position bits offset from the low bit of
bit-zero-address.

The single bit specified by position and bit-zero-address arguments is tested,
the previous state of the bit remembered, and the bit set. The reading of the
state of the bit and its setting are interlocked against similar operations by other
processors or devices in the system. The remembered previous state of the bit is
then returned as the function value of LIB$BBSSI.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib—23

LIBS$ Routines
LIB$BBSSI

Condition Values Returned

None.

Example

C+
C This Fortran example program demonstrates
C the use of LIBSBBSSI.
C-
INTEGER*4 STATES(4) ! 128 shared state bits

COMMON /STATES/ STATES ! Could be shared memory
LOGICAL*4 LIBSBBSSI

IF (LIB$BBSSI (104, STATES)) THEN
TYPE *,'State bit 104 was set’
ELSE

TYPE *,’'State bit 104 was clear’
END IF
END

This Fortran example tests and sets bit 104 of array STATES, which is in a
COMMON storage area (possibly shared between two processors).

The output generated by this program is as follows:

$ RUN STATEB
State bit 104 was clear.

lib—24

LIBS$ Routines
LIBSBUILD NODESPEC

LIB$BUILD_NODESPEC
Build a Node-Name Specification

Format

Returns

Arguments

The Build a Node-Name Specification routine builds a node-name specification
from the primary node name. The output node-name specification can be used for
other node-name parsing operations. T

LIB$BUILD_NODESPEC primary-nodename, nodespec [,acs] [,secondary-nodename] [,nodespec-length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

primary-nodename
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Primary node name. The primary-nodename argument contains the address of
a descriptor pointing to this node-name string. The primary node name should
not contain unnecessary quotation marks (that is, quotation marks (* ") that are
not part of a simple name within the node name).

The error LIB$_INVARG is returned if primary-nodename points to a null
string. The error LIB$_INVSTRDES is returned if primary-nodename is an
invalid descriptor.

nodespec

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Node-name specification. The nodespec argument contains the address of a
descriptor pointing to this output node-name specification string. LIB§BUILD_
NODESPEC writes the output node-name specification into the buffer pointed to
by the nodespec descriptor.

The error LIB$_INVSTRDES is returned if nodespec is an invalid descriptor.

The length field of the nodespec descriptor is not updated unless nodespec is a
dynamic descriptor with a length less than the resultant node-name specification.
Refer to the OpenVMS RTL String Manipulation (STR$) Manual for dynamic
string descriptor usage.

The nodespec argument contains an unusable result when LIB$BUILD_
NODESPEC returns in error.

7 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib—25

LIBS$ Routines
LIBSBUILD NODESPEC

Description

lib—26

acs

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Access control string. The acs argument contains the address of a descriptor
pointing to this access control string. The access control string must be a quoted
string.

The error LIB$_INVSTRDES is returned if aes is an invalid descriptor.

secondary-nodename
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Secondary node name. The secondary-nodename argument contains the
address of a descriptor pointing to this secondary node-name string.

The error LIB$_INVSTRDES is returned if secondary-nodename is an invalid
descriptor.

nodespec-length
OpenVMS usage: unsigned_word

type: word (unsigned)
access: write only
mechanism: by reference

Length of the output node-name specification. The nodespec-length argument
is the address of an unsigned word that contains this length in bytes.

The nodespec-length argument contains an unusable result when LIB$BUILD_
NODESPEC returns in error.

This routine builds the parsable form of a node name as the output node-name
specification from the network usable form. Refer to LIB§GET_HOSTNAME for
the definitions of both the parsable form and the network usable form.

The network usable form is specified by the argument primary-nodename.

If primary-nodename contains special characters, it is enclosed in quotation
marks (" ") to build the node-name specification. The quotation marks prevent
the special characters from being recognized as terminator characters and enables
correct parsing of the node-name syntax.

If you enclose primary-nodename in quotation marks, any quotation marks
that are part of any simple names within primary-nodename are doubled
(that is, each quotation mark (") is turned into two quotation marks ("")).
LIB$BUILD_NODESPEC checks if the fully quoted primary node name exceeds
1024 characters. The error condition LIB$ NODTOOLNG is returned if this is
the case.

To form the output node-name specification, the fully quoted primary node name
is concatenated with the access control string (if supplied) and the double colons
and is followed by the secondary node name (if supplied).

LIBS$ Routines
LIBSBUILD NODESPEC

This routine does not validate any of the input arguments to ensure they can
form a syntactically valid node name when they are concatenated.

If the routine overflows the output buffer pointed to by nodespec, the output
node-name specification is truncated, and the alternate successful status LIB$_
STRTRU is returned.

The nodespec-length argument, if supplied, is always set to the length of the
node-name specification that is written into the output buffer pointed to by
nodespec.

Condition Values Returned

SS$ NORMAL Routine successfully completed.

LIB$_INVARG Invalid argument. The primary-nodename
argument points to a null string.

LIB$_INVSTRDES Invalid string descriptor.

LIB$_NODTOOLNG The primary node name after quoting exceeds
1024 characters.

LIB$_STRTRU Routine successfully completed. Characters are

truncated in the output buffer pointed to by the
nodespec argument.

LIB$_ WRONUMARG Wrong number of arguments.
Any condition value returned by LIB$SCOPY_DXDX.

lib—27

LIBS$ Routines
LIBSCALLG

LIBSCALLG
Call Routine with General Argument List

The Call Routine with General Argument List routine calls a routine with an
argument list specified as an array of longwords, the first of which is a count of

the remaining longwords. LIB$CALLG is a callable version of the VAX CALLG
1

instruction.
Format

LIBSCALLG argument-list ,user-procedure
Returns

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by value

Return value, if any, of the called routine, unchanged by LIB§CALLG.
Arguments

argument-list
OpenVMS usage: arg_list

type: unspecified
access: read only
mechanism: by reference, array reference

Argument list to be passed to user-procedure. The argument-list argument is
the address of an array of longwords that is the argument list. The first longword
contains the count of the remaining longwords, to a maximum of 255.

user-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

Routine that LIB§CALLG calls with the specified argument list.

Description

LIB$CALLG is used to call routines that accept variable-length argument lists
when the number of arguments to be passed is not known until execution time.
LIB$CALLG is also used to call such routines from strongly typed languages,
which require routines to be declared as having a fixed number of arguments.

Condition Values Returned

None.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib—28

LIBS$ Routines
LIBSCALLG_64 (Alpha and 164 Only)

LIBSCALLG_64 (Alpha and 164 Only)
Call Routine with General Argument List

Format

Returns

Arguments

Description

The Call Routine with General Argument List routine calls a routine with an
argument list specified as an array of quadwords, the first of which is a count of
the remaining quadwords.

LIBSCALLG_64 argument-list ,user-procedure

OpenVMS usage: quadword_unsigned

type: quadword (unsigned)
access: write only
mechanism: by value

Return value, if any, of the called routine, unchanged by LIB$CALLG_64.

argument-list
OpenVMS usage: arg_list

type: unspecified
access: read only
mechanism: by reference, array reference

Argument list to be passed to user-procedure. The argument-list argument
is the address of an array of quadwords that is the argument list. The first
quadword contains the count of the remaining quadwords, to a maximum of 255.

user-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

Routine that LIB§CALLG_64 calls with the specified argument list.

LIB$CALLG_64 is useful for calling routines that accept variable-length
argument lists when the number of arguments to be passed is not known

until execution time. LIB$CALLG 64 can also be used to call such routines from
strongly typed languages, which require routines to be declared as having a fixed
number of arguments.

Condition Values Returned

None.

lib—29

LIBS$ Routines

LIBSCHAR

LIBSCHAR

Transform Byte to First Character of String
The Transform Byte to First Character of String routine transforms a single 8-bit
ASCII character to an ASCII string consisting of a single character followed by
trailing spaces, if needed, to fill out the string. The range of the input byte is 0
through 255.

Format
LIBSCHAR one-character-string ,ascii-code

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

Description

lib—30

one-character-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

ASCII character string consisting of a single character followed by trailing spaces,
if needed, that LIB§CHAR creates when it transforms the ASCII character code.
The one-character-string argument is the address of a descriptor pointing to
the character string that LIBSCHAR writes.

ascii-code

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Single 8-bit ASCII character code that LIB§CHAR transforms to an ASCII string.
The ascii-code argument is the address of an unsigned byte containing the
ASCII character code.

LIB$CHAR is the inverse of LIB$ICHAR. (See the description of LIBJICHAR.)
LIB$CHAR is not a binary-to-ASCII conversion routine. LIB§CHAR merely
interprets ascii-code as an ASCII character code and converts it to a string.

Condition Values Returned

SS$_NORMAL
LIB$ FATERRLIB

LIB$_INSVIRMEM
LIB$_INVSTRDES

LIB$_STRTRU

LIBS$ Routines
LIBSCHAR

Routine successfully completed.

Fatal internal error. An internal consistency
check has failed. This usually indicates

an internal error in the Run-Time Library
and should be reported to your HP support
representative.

Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

Routine successfully completed, but the string
was truncated. The destination string could not
contain all of the characters.

lib—31

LIBS$ Routines
LIBSCOMPARE_NODENAME

LIBSCOMPARE_NODENAME
Compare Two Node Names

Format

Returns

Arguments

lib—32

The Compare Two Node Names routine compares two node names to see if they
resolve to the same full name. ¥

LIBSCOMPARE_NODENAME nodenamei ,nodename2 ,comparison-result

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
nodename1l

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

First node name to be compared. The nodenamel argument contains the
address of a descriptor pointing to this node-name string.

The error LIB$ INVARG is returned if nodenamel contains an invalid node
name, points to a null string, or contains more than 1024 characters. The error
LIB$_INVSTRDES is returned if nodenamel is an invalid descriptor.

nodename2

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Second node name to be compared. The nodename2 argument contains the
address of a descriptor pointing to this node-name string.

The error LIB$_INVARG is returned if nodename2 contains an invalid node
name, points to a null string, or contains more than 1024 characters. The error
LIB$_INVSTRDES is returned if nodename2 is an invalid descriptor.

comparison-result
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by reference

Result of the comparison. The comparison-result argument is the address of an
unsigned longword that contains the comparison result. If the two node names
are equal, 0 is returned. If they are not equal, 1 is returned.

T No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIBS$ Routines
LIBSCOMPARE_NODENAME

Comparison-result contains an unusable result when LIBSCOMPARE_
NODENAME returns in error.

Description

This routine compares two node names and checks to see if they resolve to the
same full name. The two node names are first expanded using LIB§EXPAND _
NODENAME. Any errors that result from expanding the input node names are
propagated and returned as condition values. A string comparison is performed
on the expanded node names to check if they resolve to the same full name. The
result of the comparison is returned in comparison-result as follows:

comparison-result Value Meaning
0 Node names are equal.
1 Node names are not equal.

Condition Values Returned

SS$ NORMAL Routine successfully completed.
LIB$ _INVARG Invalid argument:

e nodenamel or nodename?2 is an invalid
node name.

¢ nodenamel or nodename?2 points to a null
string.

¢ The length of the node name is more than
1024 characters.

¢ The expanded DECnet-Plus for OpenVMS
node name is invalid in a DECnet for
OpenVMS environment.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_ WRONUMARG Wrong number of arguments.

Any condition value returned by RTL routine LIB§SCOPY_R_DX or by the $IPC
DECnet service.

lib—33

LIBS$ Routines
LIBSCOMPRESS NODENAME

LIBSCOMPRESS_NODENAME
Compress a Node Name to Its Short Form Equivalence

Format

Returns

Arguments

lib—34

The Compress a Node Name to Its Short Form Equivalence routine compresses a
node name to an unambiguous short form usable within the naming environment
where the compression is performed. T

LIBSCOMPRESS_NODENAME nodename ,compressed-nodename [,resultant-length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

nodename

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Node name to be compressed. The nodename argument contains the address of
a descriptor pointing to this node-name string.

The error LIB$ _INVARG is returned if nodename contains an invalid node
name, points to a null string, or contains more than 1024 characters. The error
LIB$_INVSTRDES is returned if the nodename descriptor is invalid.

compressed-nodename
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Compressed node name. The compressed-nodename argument contains
the address of a descriptor pointing to the compressed node-name string.
LIB$COMPRESS_NODENAME writes the compressed node name into the
buffer pointed to by compressed-nodename.

The error LIB$_INVSTRDES is returned if compressed-nodename is an invalid
descriptor.

The length field of the compressed-nodename descriptor is not updated
unless compressed-nodename is a dynamic descriptor with a length less
than the resulting compressed node name. Refer to the OpenVMS RTL String
Manipulation (STR$) Manual for dynamic string descriptor usage.

The compressed-nodename argument contains an unusable result when
LIB$COMPRESS_NODENAME returns in error.

T No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIBS$ Routines
LIBSCOMPRESS NODENAME

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Length of the compressed node name. The resultant-length argument is the
address of an unsigned word that contains this length in bytes.

The resultant-length argument contains an unusable result when
LIB$COMPRESS NODENAME returns in error.

Description

This routine compresses a given node name to a short form that is usable within
the local naming environment in which the compression is performed. The local
naming environment is defined by the underlying network directory services. Be
careful when using the compressed node name for making network connections.
Using the compressed node name outside the intended local naming environment
may result in an ambiguous reference. Use the full name whenever you need to
eliminate ambiguity.

The nodename argument is validated against the supported form of node names.
The error LIB$_INVARG is returned if the input node name is invalid.

When calling LIBSCOMPRESS_NODENAME in a DECnet-Plus for OpenVMS
environment, the underlying network layer verifies the existence of the input node
name. If the input node name does not resolve to an existing node name in the

naming environment, an error condition is returned by the underlying network
layer and propagated back to the caller of LIBSCOMPRESS_NODENAME.

If the returned compressed node name overflows the buffer pointed to by
compressed-nodename, the compressed node name is truncated, and the
alternate successful status LIB$ STRTRU is returned.

The actual length of the compressed node name written to the output buffer
compressed-nodename is returned in resultant-length if this argument is
supplied.

In a DECnet environment, compressing a DECnet-Plus node name results in the
error condition LIB$ INVARG.

Condition Values Returned

SS$ NORMAL Routine successfully completed.

LIB$_STRTRU Routine successfully completed. Characters are
truncated in the output buffer pointed to by
compressed-nodename.

lib—35

LIBS$ Routines
LIBSCOMPRESS NODENAME

lib—36

LIB$_INVARG Invalid argument:

¢ mnodename is invalid.
¢ nodename points to a null string.

¢ The length of the node name is more than
1024 characters.

¢ The compressed DECnet-Plus for OpenVMS
node name is invalid in a DECnet for
OpenVMS environment.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by RTL routine LIB§SCOPY_R_DX or by the $IPC
DECnet service.

LIBS$ Routines
LIBSCONVERT DATE_STRING

LIBSCONVERT_DATE_STRING
Convert Date String to Quadword

The Convert Date String to Quadword routine converts an absolute date string
into an OpenVMS internal format date-time quadword. That is, given an input
date/time string of a specified format, LIBSCONVERT_DATE_STRING converts
this string to an OpenVMS internal format time.

Format
LIBSCONVERT_DATE_STRING date-string ,date-time [,user-context] [,flags] [,defaults] [,defaulted-fields]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
date-string
OpenVMS usage: time_name
type: character-coded text string
access: read only
mechanism: by descriptor

Date string that specifies the absolute time to be converted to an internal system
time. The date-string argument is the address of a descriptor pointing to this
date string. This string must have a format corresponding to the currently
defined input format, or it must be one of the relative day strings YESTERDAY,
TODAY, or TOMORROW, or their equivalents in the currently selected language.

date-time

OpenVMS usage: date_time

type: quadword (unsigned)
access: write only
mechanism: by reference

Receives the converted time. The date-time argument is the address of an
unsigned quadword that contains this OpenVMS internal format converted time.

user-context
OpenVMS usage: context

type: longword (unsigned)
access: modify
mechanism: by reference

Context variable that receives the translation context from a call to

LIB$INIT DATE_TIME CONTEXT and then retains the translation context
over multiple calls to LIBSCONVERT _DATE_STRING. The user-context
argument is the address of an unsigned longword that contains this context. The
user program should not write directly to this variable once it is initialized.

lib—37

LIBS$ Routines
LIBSCONVERT _DATE_STRING

lib—38

The user-context parameter is optional. However, if a context cell is not
passed, the routine LIBSCONVERT _DATE_STRING may abort if two threads of
execution attempt to manipulate the context area concurrently. Therefore, when
calling this routine in situations where reentrancy might occur, such as from AST
level, HP recommends that users specify a different context cell for each calling
thread.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Specifies which date or time fields of the date-string argument might be omitted
so that default values are applied. The flags argument is the address of a
longword bit mask that contains these flags. A set bit indicates that the field
may be omitted. The bit definitions for the mask correspond to the fields in a
$NUMTIM “timbuf” structure as follows:

Field Bit Number Mask
Year 0 1
Month 1 2
Day of month 2 4
Hours 3 8
Minutes 4 16
Seconds 5 32
Fractional seconds 6 64

Bits 7 through 31 must be zero and are reserved for use by HP. If this parameter
is omitted, a default value of 120 (78H) is used, indicating that the time fields
may be defaulted but the date fields may not.

defaults

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: read only

mechanism: by reference, array reference

Supplies the defaults to be used for omitted fields. The defaults argument is the
address of an array of unsigned words containing these default values. This array
corresponds to a 7-word $NUMTIM “timbuf” structure. If the defaults argument
is omitted, the following defaults are applied:

e For the date group, the default is the current date.
e For the time group, the default is 00:00:00.00.

Description

LIBS$ Routines
LIBSCONVERT DATE_STRING

defaulted-fields
OpenVMS usage: mask_longword

type: longword (unsigned)
access: write only
mechanism: by reference

Indicates which date or time fields have been defaulted. The defaulted-fields
argument is the address of a longword bit mask that specifies these fields. The
bit definitions are identical to those of the flags bit mask. A set bit indicates that
the field was defaulted. Bits 7 through 31, which are reserved for use by HP, are
zeroed.

LIB$CONVERT DATE_STRING converts an absolute date string into an
OpenVMS internal format date-time quadword. The input date string can
either correspond to the format specified, or it can be the language equivalent
of one of the relative date strings YESTERDAY, TODAY, or TOMORROW. The
language to be used and the format in which to interpret the information are
programmable using either of the following methods:

e The language and format are programmable at compile time through the use
of the routine LIB$INIT_DATE_TIME_CONTEXT.

e The language and format can be determined at run time through the
translation of the logical names SYS$LANGUAGE and LIB$DT_INPUT_
FORMAT.

In general, if an application is reading text from internal storage, the language
and input format should be specified at compile time. If this is the case, use the
routine LIB$INIT_DATE_TIME_CONTEXT to specify the language and input
format of your choice.

If an application is accepting text from a user, the logical name method of
specifying language and format should be used. In this method, the user assigns
equivalence names to the logical names SYS$LANGUAGE and LIB$DT_INPUT_
FORMAT, thereby selecting the language and input format of the date and time
at run time.

The calling program can choose to apply defaults for omitted fields in the date
string. To do this, the flags argument is used to indicate which fields are to be
defaulted, and the defaults argument is used to supply the default values. If the
defaults argument is not supplied, the following default values are applied:

e For the date group, the default is the current date.
¢ For the time group, the default is 00:00:00.00.
Optionally, you can use the defaulted-fields argument to receive information on

which input fields were omitted and thus accepted default values.

Note

Because the default is the current date for the date group, if you specify
a value of 00 with the !'Y2 format, the year is interpreted as 1900. After
January 1, 2000, the value 00 will be interpreted as 2000.

lib—39

LIBS$ Routines
LIBSCONVERT _DATE_STRING

See the HP OpenVMS Programming Concepts Manual for a description of
system date and time operations as well as a detailed description of the format
mnemonics used in these routines.

Condition Values Returned

lib—40

SS$_NORMAL
LIB$_AMBDATTIM
LIB$_DEFFORUSE

LIB$_ENGLUSED
LIB$_ILLFORMAT
LIB$_INCDATTIM
LIB$ INVARG

LIB$_INVSTRDES
LIB$_IVTIME
LIB$_REENTRANCY
LIB$_ UNRFORCOD
LIB$ WRONUMARG

Routine successfully completed.
Ambiguous date or time.

Default format used; unable to determine desired
format.

English used by default; unable to translate
SYS$LANGUAGE.

Illegal format string; too many or not enough
fields.

Incomplete date or time; missing fields with no
defaults.

Invalid argument; a required argument was not
specified.

Invalid input string descriptor.
Invalid date or time.
Reentrancy detected.
Unrecognized format code.
Wrong number of arguments.

Any condition value returned by RTL routines LIBGET_VM, LIBFREE_VM,
LIB$FREE1_DD, and LIB$SCOPY_R_DX, and system services $NUMTIM and

$GETTIM.

LIBS$ Routines
LIBSCRC

LIBSCRC
Calculate a Cyclic Redundancy Check (CRC)

The Calculate a Cyclic Redundancy Check routine calculates the cyclic
redundancy check (CRC) for a data stream.

Format
LIBSCRC crc-table ,initial-crc ,stream
Returns
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value
The computed cyclic redundancy check.
Arguments
crc-table
OpenVMS usage: vector_longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference, array reference

The 16-longword cyclic redundancy check table created by a call to LIBSCRC_
TABLE. The crc-table argument is the address of a signed longword integer
containing this table. Because this table is created by LIB§CRC_TABLE and
then used as input in LIB$CRC, your program must call LIB§CRC_TABLE before
it calls LIB$CRC.

initial-crc

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Initial cyclic redundancy check. The initial-crc argument is the address of a
signed longword integer containing the initial cyclic redundancy check.

stream

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Data stream for which LIB$CRC is calculating the CRC. The stream argument
is the address of a descriptor pointing to the data stream.

lib—41

LIBS$ Routines

LIBSCRC

Description

Before your program can call LIB§CRC, it must call LIBSCRC_TABLE.
LIB$CRC_TABLE takes a polynomial as its input and builds the table that
LIB$CRC uses to calculate the CRC.

LIB$CRC allows your high-level language program to use the CRC instruction,
which calculates the cyclic redundancy check.! This instruction checks the
integrity of a data stream by comparing its state at the sending point and the
receiving point. Each character in the data stream is used to generate a value
based on a polynomial. The values for each character are then added together.
This operation is performed at both ends of the data transmission, and the two
result values compared. If the results disagree, then an error occurred during the
transmission.

Condition Values Returned

Example

lib—42

None.

For an example on how to use LIB§CRC, refer to the BASIC example at the end
of the description of LIBSCRC_TABLE.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

LIBS$ Routines
LIBSCRC_TABLE

LIBSCRC_TABLE
Construct a Cyclic Redundancy Check (CRC) Table

Format

Returns

Arguments

Description

The Construct a Cyclic Redundancy Check Table routine constructs a 16-longword
table that uses a cyclic redundancy check polynomial specification as a bit mask.

LIBSCRC_TABLE polynomial-coefficient ,crc-table

None.

polynomial-coefficient
OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

A bit mask indicating which polynomial coefficients are to be generated by
LIB$CRC_TABLE. The polynomial-coefficient argument is the address of an
unsigned longword integer containing this bit mask.

crc-table

OpenVMS usage: vector_longword_signed
type: longword integer (signed)
access: write only

mechanism: by reference, array reference

The 16-longword table that LIBSCRC_TABLE produces. The cre-table argument
is the address of a signed longword integer containing the table.

The table created by LIBSCRC_TABLE can be passed to the LIB§CRC routine for
generating the cyclic redundancy check value for a stream of characters.

Condition Values Returned

Example

None.

1 $TITLE "Demonstrate LIBSCRC and LIB$CRC_TABLE"
$SBTTL "Declarations"
$IDENT "1-001"

OPTION TYPE = EXPLICIT

lib—43

LIBS$ Routines
LIBSCRC _TABLE

lib—44

DECLARE LONG CRC_TABLE(15), ! CRC table array &
LONG CRC VAL 1, ! CRC for first stream &
LONG CRC VAL 2, ! CRC for second stream &
|
|

STRING DATA 1, ! First data stream &

STRING DATA 2 ! Second data stream
EXTERNAL LONG FUNCTION LIBSCRC ! Rtn to calculate CRC
EXTERNAL SUB LIB$CRC_TABLE ! Rtn to set up table for CRC

OPEN "SYSSINPUT:" FOR INPUT AS FILE 1%

1+
! Initialize the CRC table. Use the CRC-16 polynomial (refer to the

! "VAX Architecture Reference Manual"). This is the polynomial used by
! DDCMP and Bisync.

CALL LIBSCRC_TABLE(0'120001'L, CRC_TABLE() BY REF)

1+
! Get data from user.

LINPUT #1%, 'Enter string: ';DATA 1

1+

! Calc the CRC for the user’s input. This CRC polynomial needs

! an initial CRC of 0 (refer to the "VAX Architecture Reference Manual").
! LIB$CRC returns a longword, but only the low-order word is valid

! for this polynomial.
|-

CRC_VAL 1 = LIB$CRC(CRC_TABLE() BY REF, 0%, DATA 1)
CRC_VAL 1 = CRC_VAL_1 AND 32767%
1+

! Get more data from user.
| -

LINPUT #1%, 'Enter a second string: ';DATA 2

CRC_VAL 2 = LIB$CRC(CRC_TABLE() BY REF, 0%, DATA 2)
CRC_VAL 2 = CRC_VAL 2 AND 32767%
1+

! Tell the user the results of the CRC comparison.
|-

IF CRC_VAL 1 = CRC VAL 2
THEN

PRINT "The two CRCs";CRC VAL 1;" and ";CRC VAL 2;" were the same"
ELSE

PRINT "The two CRCs";CRC VAL 1;" and ";CRC VAL 2;" were different"
END IF

IF DATA 1
THEN
PRINT "The two strings were the same"
ELSE
PRINT "The two strings were different"”
END IF

END

DATA 2

This BASIC example program shows the use of LIB§CRC and LIB§CRC_TABLE.
One example of the output generated by this program is as follows:

LIBS$ Routines
LIBSCRC_TABLE

$ RUN CRC

Enter string: DOVE

Enter a second string: HOSE

The two CRCs 29915 and 29915 were the same
The two strings were different

lib—45

LIBS$ Routines
LIBSCREATE_DIR

LIBSCREATE_DIR
Create a Directory

Format

Returns

Arguments

lib—46

The Create a Directory routine creates a directory or subdirectory.

LIBSCREATE_DIR device-directory-spec [,owner-UIC] [,protection-enable] [,protection-value]
[,maximum-versions] [,relative-volume-number] [initial-allocation]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

device-directory-spec
OpenVMS usage: device_name

type: character string
access: read only
mechanism: by descriptor

Directory specification of the directory or subdirectory that LIBSCREATE_DIR
will create. The device-directory-spec argument is the address of a descriptor
pointing to this directory specification.

The format of the device-directory-spec string conforms to standard OpenVMS
Record Management Services (RMS) format. This specification must contain

a directory or subdirectory specification. It may contain a disk specification.
SMD$:[THIS.IS.IT] is an example of a standard RMS file specification, where
SMDS$ is the disk specification and [THIS.IS.IT] is the subdirectory specification.

This specification cannot contain a node name, file name, file type, file version, or
wildcard characters. The maximum size of this string is 255 characters on VAX,
and 4095 characters on Alpha.

owner-UIC

OpenVMS usage: uic

type: longword (unsigned)
access: read only
mechanism: by reference

User identification code (UIC) identifying the owner of the created directory or
subdirectory. The owner-UIC argument is the address of an unsigned longword
that contains the UIC. If owner-UIC is zero, the owner UIC is that of the parent
directory. The specified value for owner-UIC is interpreted as a 32-bit octal
number, with two 16-bit fields:

bits 00-15 — Member number
bits 16—31 — Group number

This is an optional argument. The default is the UIC of the current process
except when the directory is in UIC format. For a directory in UIC format, for
example [123,321], the UIC of the created directory is used.

LIBS$ Routines
LIBSCREATE_DIR

protection-enable
OpenVMS usage: mask_word

type: word (unsigned)
access: read only
mechanism: by reference

Mask specifying the bits of protection-value to be set. The protection-enable
argument is the address of an unsigned word containing this protection mask.

Figure lib—1 shows the structure of a protection mask. Access is allowed for bits
set to 0.

Figure lib—1 Structure of a Protection Mask

World Group Owner System

m—4mrmQoO
MmM4COmXm
m-d—23=
O>»mx
m-mrmo
M4 COmXm
m-4—3=
O>mD

15 0
ZK-1979-GE

Bits set in the protection-enable mask cause corresponding bits of protection-
value to be set. Bits not set in the protection-enable mask cause corresponding
bits of protection-value to take the value of the corresponding bit in the parent
directory’s file protection. Bits in the parent directory’s file protection that
indicate delete access do not cause corresponding bits of protection-value to be
set, however.

Following is an example of how the protection-value protection mask is defined:

Hexadecimal
Mask Name Number Value
Protection enable %XDBFF S:None, O:None, G:E, W:W
Parent directory %X13FF S:RWED, O:RWED, G:RW, W:R
Protection value %X3TFF S:RWE, O:RWE, G:RWE, W:RW

The protection-enable argument is optional. It should be used only when
you want to change protection values from the parent directory’s default file
protection. The default for protection-enable is a mask of all zero bits,
which results in the propagation of the parent directory’s file protection. If
the protection-enable mask contains zeros, protection-value is ignored.

lib—47

LIBS$ Routines
LIBSCREATE_DIR

lib—48

protection-value
OpenVMS usage: file_protection

type: word (unsigned)
access: read only
mechanism: by reference

System/Owner/Group/World protection value of the directory you are creating.
The protection-value argument is the address of an unsigned word that
contains this protection mask.

The bits of protection-value are set or cleared in the method described in the
definition of protection-enable above.

The protection-value argument is optional. The default is a word of all zero
bits, which specifies full access for all access categories. Typically, protection-
value is not omitted unless protection-enable is also omitted. If protection-
enable is omitted, protection-value is ignored.

maximum-versions
OpenVMS usage: word_unsigned

type: word (unsigned)
access: read only
mechanism: by reference

Maximum number of versions allowed for files created in the newly created
directories. The maximum-versions argument is the address of an unsigned
word containing the value of the maximum number of versions.

The maximum-versions argument is optional. The default is the parent
directory’s default version limit. If maximum-versions is zero, the maximum
number of versions is not limited.

relative-volume-number
OpenVMS usage: word_unsigned

type: word (unsigned)
access: read only
mechanism: by reference

Relative volume number within a volume set on which the directory or
subdirectory is created. The relative-volume-number argument is the address
of an unsigned word containing the relative volume number. The relative-
volume-number argument is optional. The default is arbitrary placement
within the volume set.

initial-allocation
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Initial number of blocks to be allocated to the directory. This argument is
useful for creating large directories, for example MAIL.DIR;1. It can improve
performance by avoiding the need for later dynamic expansion of the directory.

LIBS$ Routines
LIBSCREATE_DIR

The initial-allocation argument applies only to Files—11 Level 2 volumes; it is
ignored for other volumes.

This argument is the address of an unsigned longword that contains the initial
number of blocks to be allocated to the directory.

The initial-allocation argument is optional. The default allocation is 1 block.

Description
LIB$CREATE_DIR creates a directory. You can specify:
¢ The owner and protection of the directory.

e The maximum number of different versions of a file that can exist in the
directory.

¢ The relative volume number of the volume set member in which the directory
is to be created.

e The number of blocks to be allocated initially to the directory.

Note

This routine calls LIB§GET_EF. Please read the note in the Description
section of that routine.

Condition Values Returned

SS$_CREATED Routine successfully completed; one or more
directories created.

SS$_NORMAL Routine successfully completed; all specified
directories already exist.

LIB$_INVARG Invalid argument to Run-Time Library. Either

the required argument was omitted, or device-
directory-spec is longer than 4095 characters.

LIB$ INVFILSPE Invalid file specification. Either the file
specification did not contain an explicit directory
and device name, or it contained a node name,
file name, file type, file version, or wildcard. This
error is also produced if the device specified was
not a disk.

Any condition values returned by system services $ASSIGN, $DASSGN, $PARSE,
and $QIO, and RTL routines LIBSANALYZE_SDESC, LIB$ANALYZE_SDESC_
64, and LIB$GET_EF.

lib—49

LIBS$ Routines
LIBSCREATE_USER_VM _ZONE

LIBSCREATE_USER_VM_ZONE
Create User-Defined Storage Zone

Format

Returns

Arguments

lib—50

The Create User-Defined Storage Zone routine creates a new user-defined storage
zone in the 32-bit virtual address space. T

LIBSCREATE_USER_VM_ZONE zone-id [,user-argument] [,user-allocation-procedure]
[,user-deallocation-procedure] [,user-reset-procedure]
[,user-delete-procedure] [,zone-name]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

zone-id

OpenVMS usage: identifier

type: longword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a longword that receives
the identifier of the newly created zone.

user-argument
OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by reference

User argument. The user-argument argument is the address of an unsigned
longword containing the user argument. LIBSCREATE_USER_VM_ZONE copies
the value of user-argument and supplies the value to all user procedures
invoked.

user-allocation-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User allocation routine.

T No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

Description

LIBS$ Routines
LIBSCREATE_USER_VM _ZONE

user-deallocation-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User deallocation routine.

user-reset-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User routine invoked each time LIB§RESET VM_ZONE is called for the zone.

user-delete-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User routine invoked when LIBSDELETE VM _ZONE is called for the zone.

Zohe-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone-name
argument is the address of a descriptor pointing to the zone name. If zone-name
is not specified, the zone will not have an associated name.

LIB$CREATE_USER VM _ZONE creates a user-defined zone in the 32-bit virtual
address space. If an error status is returned, the zone is not created.

Each time that one of the heap management routines (LIB$GET VM,
LIB$FREE_VM, LIBSRESET_VM_ZONE, or LIB§DELETE_VM_ZONE) is
called to perform an operation on a user-defined zone, the corresponding user
routine that you supplied is used.

You may omit any of the optional user routines. However, if you omit a routine
and later call the corresponding heap management routine, the error status
LIB$ INVOPEZON will be returned.

lib—51

LIBS$ Routines
LIBSCREATE_USER_VM _ZONE

lib—52

Call Format for User Routines

The user routines are called with arguments similar to those passed to LIB§GET_
VM, LIB$FREE_VM, LIB$RESET _VM_ZONE, or LIBSDELETE_VM_ZONE. In
each case, the user-argument argument from LIB§CREATE_USER_VM_ZONE
is passed to the user routine rather than a zone-id argument.

The call format for a user get or free routine is as follows:

user-rtn num-bytes ,base-adr ,user-argument

num-bytes

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Number of contiguous bytes to allocate or free. The num-bytes argument is
the address of a longword integer containing the number of bytes. The value of
num-bytes must be greater than zero.

base-adr

OpenVMS usage: address

type: longword (unsigned)
access: modify

mechanism: by reference

Virtual address of the first contiguous block of bytes allocated or freed. The
base-adr argument is the address of an unsigned longword containing this base
address. (This argument is write-only for a get routine and read-only for a free
routine.)

user-argument
OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by reference

User argument. LIB§CREATE_USER_VM_ZONE copies user-argument as it is
supplied to all user routines invoked.

The status value returned by your routine is returned as the status value for the
corresponding call to LIBSGET_VM or LIB§FREE_VM.

The zone-id value that is returned can be used in calls to LIB$SHOW VM
ZONE and LIB$VERIFY VM _ZONE.

The call format for a user reset or delete routine is as follows:

user-rtn user-argument

user-argument
OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by reference

User argument. LIB§CREATE_USER_VM_ZONE copies user-argument as it is
supplied to all user routines invoked.

LIBS$ Routines
LIBSCREATE_USER_VM _ZONE

The status value returned by your routine is returned as the status value for the
corresponding call to LIBSRESET_VM_ZONE or LIB§DELETE_VM_ZONE.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor for zone-name.

lib—53

LIBS$ Routines
LIBSCREATE_USER_VM_ZONE_64 (Alpha and 164 Only)

LIBSCREATE_USER_VM_ZONE_64 (Alpha and 164 Only)
Create User-Defined Storage Zone

The Create User-Defined Storage Zone routine creates a new user-defined storage
zone in the 64-bit virtual address space.

Format
LIBSCREATE_USER_VM_ZONE_64 zone-id [,user-argument] [,user-allocation-procedure]
[,user-deallocation-procedure] [,user-reset-procedure]
[,user-delete-procedure] [,zone-name]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
zone-id
OpenVMS usage: identifier
type: quadword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a quadword that receives
the identifier of the newly created zone.

user-argument
OpenVMS usage: user_arg

type: quadword (unsigned)
access: read only
mechanism: by reference

User argument. The user-argument argument is the address of an unsigned
quadword containing the user argument. LIBSCREATE_USER_VM_ZONE_64
copies the value of user-argument and supplies the value to all user procedures
invoked.

user-allocation-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User allocation routine.

user-deallocation-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User deallocation routine.

lib—54

Description

LIBS$ Routines
LIBSCREATE_USER_VM_ZONE_64 (Alpha and 164 Only)

user- reset-proced ure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User routine invoked each time LIBSRESET VM _ZONE 64 is called for the zone.

user-delete-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User routine invoked when LIB§DELETE_VM_ZONE_64 is called for the zone.

zone-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone-name
argument is the address of a descriptor pointing to the zone name. If zone-name
is not specified, the zone will not have an associated name.

LIB$CREATE_USER_VM_ZONE_64 creates a user-defined zone in the 64-bit
virtual address space. If an error status is returned, the zone is not created.

Each time that one of the heap management routines (LIB$GET_VM_64,
LIB$FREE_VM_64, LIBSRESET _VM_ZONE_64, or LIB$DELETE_VM_ZONE _
64) is called to perform an operation on a user-defined zone, the corresponding
user routine that you supplied is used.

You may omit any of the optional user routines. However, if you omit a routine
and later call the corresponding heap management routine, the error status
LIB$_INVOPEZON will be returned.

Call Format for User Routines

The user routines are called with arguments similar to those passed to LIB§GET_
VM_64, LIBSFREE_VM_64, LIB$RESET_VM_ZONE_64, or LIB§DELETE_VM_
ZONE_64. In each case, the user-argument argument from LIBS§CREATE_
USER_VM_ZONE_64 is passed to the user routine rather than a zone-id
argument.

The call format for a user get or free routine is as follows:

user-rtn num-bytes ,base-adr ,user-argument

num-bytes

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only

mechanism: by reference

lib—55

LIBS$ Routines
LIBSCREATE_USER_VM_ZONE_64 (Alpha and 164 Only)

Number of contiguous bytes to allocate or free. The num-bytes argument is
the address of a quadword integer containing the number of bytes. The value of
num-bytes must be greater than zero.

base-adr

OpenVMS usage: address

type: quadword (unsigned)
access: modify

mechanism: by reference

Virtual address of the first contiguous block of bytes allocated or freed. The
base-adr argument is the address of an unsigned quadword containing this base
address. (This argument is write-only for a get routine and read-only for a free
routine.)

user-argument
OpenVMS usage: user_arg

type: quadword (unsigned)
access: read only
mechanism: by reference

User argument. LIBSCREATE_USER_VM_ZONE_64 copies user-argument as
it is supplied to all user routines invoked.

The status value returned by your routine is returned as the status value for the
corresponding call to LIBSGET_VM_64 or LIBSFREE_VM_64.

The zone-id value that is returned can be used in calls to LIB§SHOW VM
ZONE 64 and LIB$VERIFY VM _ZONE 64.

The call format for a user reset or delete routine is as follows:
user-rtn user-argument

user-argument
OpenVMS usage: user_arg

type: quadword (unsigned)
access: read only
mechanism: by reference

User argument. LIBSCREATE_USER_VM_ZONE_64 copies user-argument as
it is supplied to all user routines invoked.

The status value returned by your routine is returned as the status value for the
corresponding call to LIBSRESET _VM_ZONE_64 or LIBSDELETE_VM_ZONE_
64.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor for zone-name.

lib—56

LIBS$ Routines
LIBSCREATE_VM_ZONE

LIBSCREATE_VM_ZONE
Create a New Zone

Format

Returns

Arguments

The Create a New Zone routine creates a new storage zone in the 32-bit virtual
address space, according to specified arguments.

LIBSCREATE_VM_ZONE zone-id [,algorithm] [,algorithm-argument] [flags] [,extend-size] [initial-size]
[,block-size] [,alignment] [,page-limit] [,smallest-block-size] [,zone-name]
[.get-page] [,free-page]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

zone-id

OpenVMS usage: identifier

type: longword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a longword that is set to
the zone identifier of the newly created zone.

algorithm

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Algorithm. The algorithm argument is the address of a longword integer that
contains a value representing one of the LIB$VM algorithms. Use one of the
predefined symbols to specify this value.

Symbol Value Algorithm

LIB$K_VM_FIRST_FIT 1 First fit
LIB$K_VM_QUICK_FIT Quick fit, lookaside list
LIB$K_VM_FREQ_SIZES Frequent sizes, lookaside list
LIB$K_VM_FIXED

B~ W N

Fixed-size blocks

If algorithm is not specified, a default of 1 (first fit) is used.

7 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib=57

LIBS$ Routines
LIBSCREATE_VM_ZONE

lib—58

algorithm-argument
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Algorithm argument. The algorithm-argument argument is the address of
a longword integer that contains a value specific to the particular allocation
algorithm as shown in the following table.

Algorithm Value

First fit Not used, may be omitted.

Quick fit The number of lookaside lists used. The number of lists
must be between 1 and 128.

Frequent sizes The number of lookaside lists used. The number of lists

must be between 1 and 16.

Fixed size blocks The fixed request size (in bytes) for each get or free
request. The request size must be greater than 0.

The algorithm-argument argument must be specified if you are using the
quick-fit, frequent-sizes or fixed-size-blocks algorithms. However, this argument
is optional, but ignored, if you are using the first-fit algorithm.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags. The flags argument is the address of a longword integer that contains flag
bits that control various options, as follows:

Bit Value Description

0 LIB$M_VM_BOUNDARY_TAGS Boundary tags for faster freeing.
Adds a minimum of 8 bytes to each
block.

1 LIB$M_VM_GET_FILLO LIB$GET_VM,; fill with bytes of 0.

2 LIB$M_VM_GET_FILL1 LIB$GET_VM; fill with bytes of FF
(hexadecimal).

3 LIB$M_VM_FREE_FILLO LIB$FREE_VM; fill with bytes of 0.

4 LIB$M_VM_FREE_FILL1 LIB$FREE_VM; fill with bytes of
FF (hexadecimal).

5 LIB$M_VM_EXTEND_AREA Adds extents to existing areas if
possible.

LIBS$ Routines
LIBSCREATE_VM_ZONE

Bit Value Description

6 LIB$M_VM_NO_EXTEND Prevents zone from being extended
beyond its initial size. If you specify
this flag, you must also specify
an initial-size. The extend-size
argument is not used.

7 LIB$M_VM_TAIL_LARGE Adds areas larger than extend-
size areas to the end of the area
list. Allocations that are larger
than extend-size can result in
new areas. These areas are added
to the end of the area list. (This
provides better memory reuse when
allocating small and very large
blocks from the same zone.)

Bits 8 through 31 are reserved and must be 0.

This is an optional argument. If flags is omitted, the default of 0 (no fill and no
boundary tags) is used.

extend-size

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Zone extend size. The extend-size argument is the address of a longword integer
that contains the number of (512-byte) pages on VAX systems or pagelets on
Alpha and 164 systems to be added to the zone each time it is extended.

The value of extend-size must be greater than or equal to 1.
This is an optional argument. If extend-size is not specified, a default of 16

pages on VAX systems or pagelets on Alpha and 164 systems is used.

Note

The extend-size argument does not limit the number of blocks that can
be allocated from the zone. The actual extension size is the greater of
extend-size and the number of pages on VAX systems or pagelets on
Alpha and 164 systems needed to satisfy the LIBSGET_VM call that
caused the extension.

initial-size

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Initial size for the zone. The initial-size argument is the address of a longword
integer that contains the number of (512-byte) pages on VAX systems or pagelets
on Alpha and 164 systems to be allocated for the zone as the zone is created.

lib—59

LIBS$ Routines
LIBSCREATE_VM_ZONE

lib—60

This is an optional argument. If you specify a value for initial-size, the value
must be greater than or equal to 0; otherwise, LIB$_INVARG is returned. If
initial-size is not specified or is specified as 0, no pages on VAX systems or
pagelets on Alpha and 164 systems are allocated when the zone is created. The
first call to LIB$GET_VM for the zone allocates extend-size pages on VAX
systems or pagelets on Alpha and 164 systems.

block-size

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Block size of the zone. The block-size argument is the address of a longword
integer specifying the allocation quantum (in bytes) for the zone. All blocks
allocated are rounded up to a multiple of block-size.

The value of block-size must be a power of 2 between 8 and 512. This is an
optional argument. If block-size is not specified, a default of 8 is used.

alignment

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Block alignment. The alignment argument is the address of a longword integer
that specifies the required address alignment (in bytes) for each block allocated.

The value of alignment must be a power of 2 between 4 and 512. This is an
optional argument. If alignment is not specified, a default of 8 (quadword
alignment) is used.

page-limit

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Maximum page limit. The page-limit argument is the address of a longword
integer that specifies the maximum number of (512-byte) pages on VAX systems
or pagelets on Alpha and 164 systems that can be allocated for the zone. The
value of page-limit must be greater than or equal to 0. Note that part of the
zone is used for header information.

This is an optional argument. If page-limit is not specified or is specified as
0, the only limit is the total process virtual address space limit imposed by
OpenVMS. If page-limit is specified, then initial-size must also be specified.

smallest-block-size
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Smallest block size. The smallest-block-size argument is the address of a
longword integer that specifies the smallest block size (in bytes) that has a
lookaside list for the quick fit algorithm.

Description

LIBS$ Routines
LIBSCREATE_VM_ZONE

If smallest-block-size is not specified, the default of block-size is used. That is,
lookaside lists are provided for the first n multiples of block-size.

Zohe-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone-name
argument is the address of a descriptor pointing to the zone name. If zone-name
is not specified, the zone will not have an associated name.

get-page

OpenVMS usage: procedure

type: procedure value
access: read only
mechanism: by value

Routine that allocates memory. The number and type of the arguments to this
routine must match those of the LIB§GET_VM_PAGE routine. If get-page is not
specified or is specified as 0, the LIBSGET_VM_PAGE routine is used to allocate

memory.

free-page

OpenVMS usage: procedure

type: procedure value
access: read only
mechanism: by value

Routine that deallocates memory. The number and type of the arguments to this
routine must match those of the LIBSFREE_VM_PAGE routine. If free-page is
not specified or if free-page is specified as 0, the LIBSFREE_VM_PAGE routine
is used to deallocate memory.

LIB$CREATE_VM_ZONE creates a new storage zone. The zone identifier
value that is returned can be used in calls to LIB§GET VM, LIB$FREE_VM,
LIB$RESET_VM_ZONE, LIB$DELETE_VM_ZONE, LIB$SHOW_VM_ZONE,
LIB$VERIFY_VM_ZONE, and LIB$CREATE_USER_VM_ZONE.

The following restrictions apply when you are creating a zone:

e If you want the zone to be accessible from another process or processes, you
must map the global section into the same virtual addresses in all processes.
You can use PPL$CREATE_SHARED_MEM to map to a global section after
you have first called PPL$INITIALIZE.

¢ The zone cannot expand; in other words, additional areas cannot be added to
the zone.

e The restrictions for LIBSRESET_VM_ZONE also apply to shared zones. That
is, it is the caller’s responsibility to ensure that the caller has exclusive access
to the zone while the reset operation is being performed.

If an error status is returned, the zone is not created.

lib—61

LIBS$ Routines
LIBSCREATE_VM_ZONE

Condition Values Returned

lib—62

SS$ NORMAL
LIB$_INSVIRMEM
LIB$_INVARG
LIB$_INVSTRDES

Routine successfully completed.
Insufficient virtual memory.

Invalid argument.

Invalid string descriptor for zone-name.

LIBS$ Routines
LIBSCREATE_VM_ZONE_64 (Alpha and 164 Only)

LIBSCREATE_VM_ZONE_64 (Alpha and 164 Only)
Create a New Zone

Format

Returns

Arguments

The Create a New Zone routine creates a new storage zone in the 64-bit virtual
address space, according to specified arguments.

LIBSCREATE_VM_ZONE_64 zone-id [,algorithm] [,algorithm-argument] [flags] [,extend-size] [,initial-size]
[,block-size] [,alignment] [,page-limit] [,smallest-block-size] [,zone-name]
[.get-page] [,free-page]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

zone-id

OpenVMS usage: identifier

type: quadword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a quadword that is set to
the zone identifier of the newly created zone.

algorithm

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only

mechanism: by reference

Algorithm. The algorithm argument is the address of a quadword integer that
represents the code for one of the LIB§VM algorithms. Use one of the following
predefined symbols to specify this value:

Symbol Value Algorithm

LIB$K_VM_FIRST_FIT 1 First fit
LIB$K_VM_QUICK_FIT Quick fit, lookaside list
LIB$K_VM_FREQ_SIZES Frequent sizes, lookaside list
LIB$K_VM_FIXED

B~ W N

Fixed-size blocks

If algorithm is not specified, a default of 1 (first fit) is used.

lib—63

LIBS$ Routines
LIBSCREATE_VM_ZONE_64 (Alpha and 164 Only)

lib—64

algorithm-argument
OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only
mechanism: by reference

Algorithm argument. The algorithm-argument argument is the address of
a quadword integer that contains a value specific to the particular allocation
algorithm.

Algorithm Value

First fit Not used, may be omitted.

Quick fit The number of lookaside lists used. The number of lists
must be between 1 and 128.

Frequent sizes The number of lookaside lists used. The number of lists

must be between 1 and 16.

Fixed size blocks The fixed request size (in bytes) for each get or free
request. The request size must be greater than 0.

The algorithm-argument argument must be specified if you are using the
quick-fit, frequent-sizes or fixed-size-blocks algorithms. However, this argument
is optional, but ignored, if you are using the first-fit algorithm.

flags

OpenVMS usage: mask_quadword
type: quadword (unsigned)
access: read only
mechanism: by reference

Flags. The flags argument is the address of a quadword integer that contains
flag bits that control various options, as follows:

Bit Value Description

0 LIB$M_VM_BOUNDARY_TAGS Boundary tags for faster freeing.
Adds a minimum of 16 bytes to each
block.

1 LIB$M_VM_GET_FILLO LIB$GET_VM_64; fill with bytes of
0.

2 LIB$M_VM_GET_FILL1 LIB$GET_VM_64; fill with bytes of
FF (hexadecimal).

3 LIB$M_VM_FREE_FILLO LIB$SFREE_VM_64; fill with bytes
of 0.

4 LIB$SM_VM_FREE_FILL1 LIB$FREE_VM_64; fill with bytes
of FF (hexadecimal).

5 LIB$M VM _EXTEND AREA Adds extents to existing areas if
possible.

LIBS$ Routines

LIBSCREATE_VM_ZONE_64 (Alpha and 164 Only)

Bit Value

Description

6 LIB$M_VM_NO_EXTEND

7 LIB$M_VM_TAIL_LARGE

Prevents zone from being extended
beyond its initial size. If you specify
this flag, you must also specify an
initial-size. Extend-size is not
used.

Adds areas larger than extend-
size areas to the end of the area
list. Allocations that are larger
than extend-size can result in

new areas. These areas are added
to the end of the area list. (This
provides better memory re-use when
allocating small and very large
blocks from the same zone.)

Bits 8 through 63 are reserved and must be 0.

This is an optional argument. If flags is omitted, the default of 0 (no fill and no

boundary tags) is used.

extend-size

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only

mechanism: by reference

Zone extend size. The extend-size argument is the address of a quadword
integer that contains the number of Alpha and 164 pagelets to be added to the

zone each time it is extended.

The value of extend-size must be greater than or equal to 1.

This is an optional argument. If extend-size is not specified, a default of 16

Alpha or 164 pagelets is used.

The extend-size argument does not limit the number of blocks that can
be allocated from the zone. The actual extension size is the greater of
extend-size and the number of Alpha or 164 pagelets needed to satisfy
the LIB$GET VM 64 call that caused the extension.

initial-size

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only

mechanism: by reference

Initial size for the zone. The initial-size argument is the address of a quadword
integer that contains the number of Alpha or 164 pagelets to be allocated for the

zone as the zone is created.

lib—65

LIBS$ Routines
LIBSCREATE_VM_ZONE_64 (Alpha and 164 Only)

lib—66

This is an optional argument. If you specify a value for initial-size, the value
must be greater than or equal to 0; otherwise, LIB$_INVARG is returned. If
initial-size is not specified or is specified as 0, no Alpha pagelets or 164 are
allocated when the zone is created. The first call to LIB$GET _VM_64 for the zone
allocates extend-size pagelets on Alpha or 164 systems.

block-size

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only

mechanism: by reference

Block size of the zone. The block-size argument is the address of a quadword
integer specifying the allocation quantum (in bytes) for the zone. All blocks
allocated are rounded up to a multiple of block-size.

The value of block-size must be a power of 2 between 16 and 512. This is an
optional argument. If block-size is not specified, a default of 16 is used.

alignment

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only

mechanism: by reference

Block alignment. The alignment argument is the address of a quadword integer
that specifies the required address alignment (in bytes) for each block allocated.

The value of alignment must be a power of 2 between 8 and 512. This is an
optional argument. If alignment is not specified, a default of 16 (octaword
alignment) is used.

page-limit

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only

mechanism: by reference

Maximum page limit. The page-limit argument is the address of a quadword
integer that specifies the maximum number of Alpha or 164 pagelets that can be
allocated for the zone. The value of page-limit must be greater than or equal to
0. Note that part of the zone is used for header information.

This is an optional argument. If page-limit is not specified or is specified as
0, the only limit is the total process virtual address space limit imposed by
OpenVMS. If page-limit is specified, then initial-size must also be specified.

smallest-block-size
OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only
mechanism: by reference

Smallest block size. The smallest-block-size argument is the address of a
quadword integer that specifies the smallest block size (in bytes) that has a
lookaside list for the quick fit algorithm.

If smallest-block-size is not specified, the default of block-size is used. That is,
lookaside lists are provided for the first » multiples of block-size.

Description

LIBS$ Routines
LIBSCREATE_VM_ZONE_64 (Alpha and 164 Only)

Zohe-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone-name
argument is the address of a descriptor pointing to the zone name. If zone-name
is not specified, the zone will not have an associated name.

get-page

OpenVMS usage: procedure

type: procedure value
access: read only
mechanism: by value

Routine that allocates memory. The number and type of the arguments to this
routine must match those of the LIBS§GET_VM_PAGE_64 routine. If get-page is
not specified or is specified as 0, the LIBSGET_VM_PAGE_64 routine is used to
allocate memory.

free-page

OpenVMS usage: procedure

type: procedure value
access: read only
mechanism: by value

Routine that deallocates memory. The number and type of the arguments to this
routine must match those of the LIBSFREE_VM_PAGE_64 routine. If free-page
is not specified or if free-page is specified as 0, the LIBSFREE_VM_PAGE_64
routine is used to deallocate memory.

LIB$CREATE_VM_ZONE_64 creates a new storage zone. The zone identifier
value that is returned can be used in calls to LIB$GET _VM_64, LIB$FREE_VM _
64, LIBSRESET VM_ZONE_64, LIBSDELETE_VM_ZONE_64, LIB§SHOW_VM_
ZONE_64, LIB$VERIFY_VM_ZONE_64, and LIBSCREATE_USER_VM_ZONE_
64.

The following restrictions apply when you are creating a zone:

e If you want the zone to be accessible from another process or processes, you
must map the global section into the same virtual addresses in all processes.

¢ The zone cannot expand; in other words, additional areas cannot be added to
the zone.

e The restrictions for LIB§RESET VM_ZONE_64 also apply to shared zones.
That is, it is the caller’s responsibility to ensure that the caller has exclusive
access to the zone while the reset operation is being performed.

If an error status is returned, the zone is not created.

lib—67

LIBS$ Routines
LIBSCREATE_VM_ZONE_64 (Alpha and 164 Only)

Condition Values Returned

SS$ NORMAL Routine successfully completed.

LIB$ INSVIRMEM Insufficient virtual memory.
LIB$_INVARG Invalid argument.

LIB$_INVSTRDES Invalid string descriptor for zone-name.

lib—68

LIBS$ Routines
LIBSCRF _INS_KEY

LIBSCRF_INS_KEY
Insert Key in Cross-Reference Table

Format

Returns

Arguments

The Insert Key in Cross-Reference Table routine inserts information about a key
into a cross-reference table. T

LIBSCRF_INS_KEY control-table ,key-string ,symbol-value ,flags

None.

control-table
OpenVMS usage: vector_longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference, array reference

Cross-reference table into which LIB$CRF INS KEY inserts information about
the key. The control-table argument is the address of a signed longword integer
pointing to the cross-reference table. You must name this table each time you call
a cross-reference routine because you can accumulate information for more than
one cross-reference table at a time.

key-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

A counted ASCII string that contains a symbol name or an unsigned binary
longword. The key-string argument is the address of a descriptor pointing to the
key.

symbol-value
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Symbol value, the address of which LIBSCRF_INS_KEY inserts in the cross-
reference table. The symbol-value argument is the address of a signed
longword integer containing this value. Both the key and value addresses
must be permanent addresses in the user’s symbol table.

7 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib—69

LIBS$ Routines
LIBSCRF _INS_KEY

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Value used in selecting the contents of the KEY2 and VAL2 fields; flags is stored
with the entry. The flags argument is the address of an unsigned longword
containing the flags. When preparing the output line, LIBSCRF_OUTPUT uses
flags and the 16-bit mask in the field descriptor table to extract the data. The
high-order bit of the word is reserved for LIB§CRF_INS_KEY.

Description

LIB$CRF_INS_KEY stores information to be printed in the KEY1, KEY2, VALIL,
and VAL2 fields. When you call this routine, an entry for the key is made in the
cross-reference table if the key is not present in the table. If the key is present,
only the value address and value flag fields are updated.

Using LIB$CRF_INS_KEY involves the following steps:
1. Define a table of control information using the $CRFCTLTABLE macro.
2. Define each field of the output line using the $§CRFFIELD macro.

3. Using the $CRFFIELDEND macro, specify the end of each set of macros that
define a field in the output line.

4. Provide data by calling LIB§CRF_INS_KEY to insert an entry for the specify
key in the specified symbol table. This data is used to build tables in virtual
memory.

5. Call LIB$CRF_OUTPUT, the cross-reference output routine, to summarize
and format the data. Supply a routine that LIBSCRF_OUTPUT calls to print
each line in the output file. Because you supply this routine, you can control
the number of lines per page and the header lines.

Condition Values Returned

None.

lib—70

LIBS$ Routines
LIBSCRF_INS REF

LIBSCRF_INS_REF
Insert Reference to a Key in the Cross-Reference Table

Format

Returns

Arguments

The Insert Reference to a Key in the Cross-Reference Table routine inserts a
reference to a key in a cross-reference symbol table.

LIBSCRF_INS_REF control-table ,longword-integer-key ,reference-string ,longword-integer-reference
Jref-definition-indicator

None.

control-table
OpenVMS usage: vector_longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference, array reference

Control table associated with this cross-reference. The control-table argument
is the address of an array containing the control table.

longword-integer-key
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Key referred to by LIB§CRF_INS_REF. The longword-integer-key argument is
the address of a signed longword integer containing the key. The key is a counted
ASCII string that contains a symbol name or an unsigned binary longword. It
must be a permanent address in the user’s symbol table.

reference-string
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Counted ASCII string with a maximum of 31 characters, not including the byte
count. The reference-string argument is the address of a descriptor pointing to
the counted ASCII string.

7 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib—71

LIBS$ Routines
LIBSCRF_INS _REF

Description

lib—72

longword-integer-reference
OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by reference

The 16-bit value used in selecting the contents of the REF1 field. The longword-
integer-reference argument is the address of a signed longword integer
containing this value. When preparing the output line, LIBSCRF_OUTPUT uses
longword-integer-reference and the bit mask in the field descriptor table to
extract the data. The high-order bit of the word is reserved for LIBSCRF_INS_
REF.

ref-definition-indicator
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Reference/definition indicator that LIBSCRF_INS_REF uses to distinguish
between a reference to a symbol and the definition of the symbol. The ref-
definition-indicator argument is the address of a signed longword integer
containing this indicator. The only difference between processing a symbol
reference and a symbol definition is where LIBSCRF_INS_REF stores the
information.

The reference/definition indicator can have either of the following values:

Symbolic Name Description
CRF$K_REF Reference to a symbol
CRF$K DEF Definition of a symbol

LIB$CRF_INS_REF inserts a reference to a key in the cross-reference symbol
table. If you attempt to insert reference information for a key that was not
specified in a call to LIB§CRF_INS_KEY, LIB$CRF_INS_REF uses the address
of the key to locate the symbol name and set the KEY1 field. Once set, either as
a result of LIB§CRF_INS_KEY or LIB$CRF_INS_REF, the KEY1 field is never
changed. A KEY1 field set by LIB§CRF_INS_REF has a space-filled VAL1 field
associated with it unless it is overridden by a subsequent call to LIB§CRF_INS_
KEY.

Using LIB$CRF_INS_REF involves the following steps:
1. Define a table of control information using the $CRFCTLTABLE macro.
2. Define each field of the output line using the $CRFFIELD macro.

3. Using the $CRFFIELDEND macro, specify the end of each set of macros that
define a field in the output line.

LIBS$ Routines
LIBSCRF_INS REF

4. Provide data by calling LIB§CRF_INS_REF to insert a reference to a key
in the specified symbol table. This data is used to build tables in virtual
memory.

5. Call LIB$CRF_OUTPUT, the cross-reference output routine, to summarize
and format the data. Supply a routine that LIBSCRF_OUTPUT calls to print
each line in the output file. Because you supply this routine, you can control
the number of lines per page and the header lines.

Condition Values Returned

None.

lib=73

LIBS$ Routines
LIBSCRF _OUTPUT

LIBSCRF_OUTPUT
Output Cross-Reference Table Information

Format

Returns

Arguments

lib—74

The Output Cross-Reference Table Information routine extracts the information
from the cross-reference tables and formats the output pages.

LIBSCRF_OUTPUT control-table ,output-line-width ,page1 ,page2 ,mode-indicator ,delete-save-indicator

None.

control-table
OpenVMS usage: vector_longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference, array reference

Control table associated with the cross-reference. The control-table argument
is the address of an array containing the control table. The table contains the
address of the user-supplied routine that prints the lines formatted by LIB$CRF_
OUTPUT.

output-line-width
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Width of the output line. The output-line-width argument is the address of a
signed longword integer containing the width.

pagei

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Number of lines on the first page of the output. The pagel argument is the
address of a signed longword integer containing this number. This allows
the user to reserve space to print header information on the first page of the
cross-reference.

T No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIBS$ Routines
LIBSCRF _OUTPUT

page2

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Number of lines per page for the other pages. The page2 argument is the address
of a signed longword integer containing this number.

mode-indicator
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Output mode indicator. The mode-indicator argument is the address of a signed
longword integer containing the mode indicator.

This indicator allows the user to select which of three output modes is desired.

Output Mode Description

CRF$K_VALUES Only the value and key fields are to be printed.
LIB$CRF_OUTPUT creates multiple columns across
the page. Each column consists of the KEY1, KEY2,
VAL1, and VAL2 fields. A minimum of one space
between each column is guaranteed.

CRF$K_VALS_REFS Requests a cross-reference summary that has no
column space saved for a defining reference. If the user
inserted a reference with the CRF$K_DEF indicator,
the entry is ignored.

CRF$K_DEFS_REFS Requests a cross-reference summary with the first
REF1 and REF2 fields used only for definition
references. If no definition reference is provided,
the fields are filled with spaces.

delete-save-indicator
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Delete/save indicator, which LIB§CRF_OUTPUT uses to determine whether the
table’s built-in accumulating symbol information is to be saved or deleted once the
cross-reference is produced. The delete-save-indicator argument is the address
of a signed longword integer containing the delete/save indicator.

The indicator can be either of the following:

CRF$K_SAVE To preserve the tables for subsequent processing
CRF$K DELETE To delete the tables

lib—75

LIBS$ Routines
LIBSCRF _OUTPUT

Description

LIB$CRF_OUTPUT can format output lines for three types of cross-reference
listings:

e A summary of symbol names and their values, as shown in Figure lib—2.

e A summary of symbol names, their values, and the names of modules that
refer to each symbol, as shown in Figure lib-3.

¢ A summary of symbol names, their values, the names of the defining modules,
and the names of those modules that refer to each symbol, as shown in
Figure lib—4.

Figure lib-2 Summary of Symbol Names and Values

Symbol Value Symbol Value

BASSINSTR 000020B0-RU BAS$SCRATCH 00002308-RU
BASSIN D R 000021F0-RU BASS$STATUS 00002338-RU
BASSIN F R 000021E8-RU BASSSTR D 000020C0-RU
BAS$IN L R 000021E0-RU BAS$STR F 000020B8-RU
BASSIN T DX 000021F8-RU BASSSTR L 000020C8-RU
BASSIN W R 000021D8-RU BASSUNLOCK 00002310-RU
BASSIO END 000021D0-RU BASSUPDATE 000022E8-RU
BASSLINKAGE 00001674-R BAS$UPDATE_COUN 000022F0-RU
BASSLINPUT 000021A8-RU BAS$VAL_D 00002110-RU
BAS$MAT_INPUT 00002268-RU BAS$VAL_F 00002108-RU

ZK-1973-GE

Figure lib-3 Summary of Symbol Names, Values, and Names of Referring

Modules

Symbol Value Referenced By ...

BAS $K_DIVBY_Z ER 0000003D ALLGBL BASSERROR
BASSPOWDJ BASSPOWIT
BAS$SPOWRJ BASS$POWRR

BAS $K_DUPKEYDET 00000086 ALLGBL BASSSS IGNAL IO

BAS $K_ENDFILDEV 0000000B ALLGBL BASS $REC_PROC
BAS$$UDF_RL

BAS SK_ENDOF_STA 0000006C ALLGBL

ZK-1974-GE

lib—76

LIBS$ Routines
LIBSCRF _OUTPUT

Figure lib-4 Summary Indicating Defining Modules

Symbol Value Defined By Referenced By ...
LIB$FREE_VM 0001E185-R LIBSVM ALLGBL
BASSMARGIN
BASSXLATE
FORSVM
STR$SAPPEND
STRSDUPL_CHAR
STR$SREPLACE
LIBSGET COMMAND 0001E2B0-R LIB$GET_INPUT ALLGBL
LIB$GET_COMMON 0001E4D6-R LIB$COMMON ALLGBL

ZK-1971-GE

Regardless of the format of the output, LIB§CRF_OUTPUT considers the output
line as consisting of six different field types:

KEY1 Is the first field in the line. It contains a symbol name.

KEY2 Is the second field in the line. It contains a set of flags (for
example, -R) that provide information about the symbol.

VAL1 Is the third field in the line. It contains the value of the symbol.

VAL2 Is the fourth field in the line. It contains a set of flags describing
VALL.

REF1 and Within each REF1 and REF2 pair, REF1 provides a set of flags,

REF2 fields and REF2 provides the name of a module that references the
symbol.

Any of these fields can be omitted from the output.
For example:

Symbol Value Symbol Value

BASSINSTR 000020B0-RU BAS$SCRATCH 00002308-RU

KEY1 VAL1 VAL2 KEY1 VAL1 VAL2
Symbol Value Defined By Referenced By ...
LIBSFREE VM O0001E185-R LIBSYM ALLGBL
KEY1 VALl VAL2 REF2 REF2

(CRF$K_DEF) (CRF$K_REF)

Condition Values Returned

None.

lib=77

LIBS$ Routines
LIBSCURRENCY

LIBSCURRENCY
Get System Currency Symbol

Format

Returns

Arguments

Description

lib—78

The Get System Currency Symbol routine returns the system’s currency symbol.

LIBSCURRENCY currency-string [,resultant-length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

currency-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Currency symbol. The currency-string argument is the address of a descriptor
pointing to the currency symbol.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Number of characters that LIBSCURRENCY has written into the currency-
string argument, not counting padding in the case of a fixed-length string.

The resultant-length argument is the address of an unsigned word containing
the length of the currency symbol. If the input string is truncated to the size
specified in the currency-string argument, resultant-length is set to this size.
Therefore, resultant-length can always be used by the calling program to access
a valid substring of currency-string.

LIB$CURRENCY attempts to translate the logical name SYS$CURRENCY as

a process, group, or system logical name, in that order. If the translation fails,
the routine returns the United States currency symbol ($). If the translation
succeeds, the text produced is returned. Thus, a system manager can define
SYS$CURRENCY as a systemwide logical name to provide a default for all users,
and an individual user with a special need can define SYSSCURRENCY as a
process logical name to override the system default.

For example, if you want to use the British pound sign (£) as the currency symbol
within your process but you want to leave the dollar sign as the system’s default,
define SYS$CURRENCY to be the pound sign in your process logical name table.
After this, any call to LIBSCURRENCY within your process returns the pound
sign (£), while any call outside your process returns the dollar sign ($).

Condition Values Returned

Example

SS$_NORMAL
LIB$ FATERRLIB

LIB$_INSVIRMEM
LIB$_INVSTRDES

LIB$_STRTRU

10 !+

LIBS$ Routines
LIBSCURRENCY

Routine successfully completed.

Fatal internal error. An internal consistency
check has failed. This usually indicates

an internal error in the Run-Time Library
and should be reported to your HP support
representative.

Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.
Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

Successfully completed, but the currency string
was truncated.

! This BASIC program uses LIB$CURRENCY to
! return the default system currency symbol.

OUTLEN = 1

CALL LIB$SCURRENCY (CURRS$, OUTLEN)

PRINT CURRS
99 END

This BASIC program uses LIBSCURRENCY to display the system currency
symbol default. The output generated by the program is a dollar sign ($).

lib—79

LIBS$ Routines
LIBSCVTF_FROM_INTERNAL_TIME

LIBSCVTF_FROM_INTERNAL_TIME
Convert Internal Time to External Time (F-Floating-Point Value)

The Convert Internal Time to External Time (F-Floating-Point Value) routine
converts a delta internal OpenVMS system time into an external F-floating time.

Format
LIBSCVTF_FROM_INTERNAL_TIME operation ,resultant-time ,input-time
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
operation
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an
unsigned longword specifying the operation. Valid values for operation are the

following:

Operation Interpretation
LIB$K DELTA WEEKS F Fractional weeks
LIB$K_DELTA_DAYS_F Fractional days
LIB$K DELTA_HOURS_F Fractional hours
LIB$K DELTA_MINUTES_F Fractional minutes
LIB$K_DELTA_SECONDS_F Fractional seconds

resultant-time
OpenVMS usage: floating_point

type: F_floating
access: write only
mechanism: by reference

The external time that results from the conversion. The resultant-time
argument is the address of an F-floating-point value containing the result.

lib—80

Description

LIBS$ Routines
LIBSCVTF_FROM_INTERNAL_TIME

input-time

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

Delta time to be converted. The input-time argument is the address of an
unsigned quadword containing the time.

LIB$CVTF_FROM_INTERNAL_TIME converts a delta internal OpenVMS system
time into an external F-floating-point time. The operation argument specifies
the conversion. LIB§CVTF_FROM_INTERNAL_TIME converts the value of
input-time into one of the external formats listed in the operation argument
description. LIB§CVTF_FROM_INTERNAL_TIME then places the result into
resultant-time.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_DELTIMREQ Delta time required but absolute time supplied.
LIB$_INVOPER Invalid operation.

LIB$_IVTIME Invalid time.

LIB$ WRONUMARG Incorrect number of arguments.

lib—81

LIBS$ Routines
LIBSCVTS_FROM_INTERNAL_TIME (Alpha and 164 Only)

LIBSCVTS_FROM_INTERNAL_TIME (Alpha and 164 Only)
Convert Internal Time toExternal Time (S-Floating-Point Value)

Format

Returns

Arguments

lib—82

The Convert Internal Time to External Time (IEEE S-Floating-Point Value)
routine converts a delta internal OpenVMS system time into an external IEEE
S-floating time.

LIBSCVTS_FROM_INTERNAL_TIME operation ,resultant-time ,input-time

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

operation

OpenVMS usage: function_code

type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an
unsigned longword specifying the operation. Valid values for operation are the
following:

Operation Interpretation
LIB$K DELTA WEEKS F Fractional weeks
LIB$K_DELTA_DAYS_F Fractional days
LIB$K DELTA_HOURS_F Fractional hours
LIB$K DELTA MINUTES F Fractional minutes
LIB$K DELTA SECONDS F Fractional seconds

resultant-time
OpenVMS usage: floating_point

type: IEEE S_floating
access: write only
mechanism: by reference

The external time that results from the conversion. The resultant-time
argument is the address of an IEEE S-floating-point value containing the result.

Description

LIBS$ Routines
LIBSCVTS_FROM_INTERNAL_TIME (Alpha and 164 Only)

input-time

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

Delta time to be converted. The input-time argument is the address of an
unsigned quadword containing the time.

LIB$CVTS_FROM_INTERNAL_TIME converts a delta internal OpenVMS system
time into an external IEEE S-floating-point time. The operation argument
specifies the conversion. LIB$CVTS_FROM_INTERNAL_TIME converts the
value of input-time into one of the external formats listed in the operation
argument description. LIBSCVTS_FROM_INTERNAL_TIME then places the
result into resultant-time.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_DELTIMREQ Delta time required but absolute time supplied.
LIB$_INVOPER Invalid operation.

LIB$_IVTIME Invalid time.

LIB$ WRONUMARG Incorrect number of arguments.

lib—83

LIBS$ Routines
LIBSCVTF_TO _INTERNAL_TIME

LIBSCVTF_TO_INTERNAL_TIME
Convert External Time to Internal Time (F-Floating-Point Value)

Format

Returns

Arguments

lib—84

The Convert External Time to Internal Time (F-Floating-Point Value) routine
converts an external time interval into an OpenVMS internal format F-floating
delta time.

LIBSCVTF_TO_INTERNAL_TIME operation ,input-time ,resultant-time

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

operation

OpenVMS usage: function_code

type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an
unsigned longword specifying the operation. Valid values for operation are the
following:

Operation Interpretation
LIB$K DELTA WEEKS F Fractional weeks
LIB$K_DELTA_DAYS_F Fractional days
LIB$K DELTA_HOURS_F Fractional hours
LIB$K DELTA MINUTES F Fractional minutes
LIB$K DELTA SECONDS F Fractional seconds
input-time

OpenVMS usage: varying_arg

type: F_floating

access: read only

mechanism: by reference

Delta time to be converted. The input-time argument is the address of this
input time. The value you supply for input-time must be greater than 0.

Description

LIBS$ Routines
LIBSCVTF_TO_ INTERNAL_TIME

resultant-time
OpenVMS usage: date_time

type: quadword (unsigned)
access: write only
mechanism: by reference

The OpenVMS internal format delta time that results from the conversion. The
resultant-time argument is the address of an unsigned quadword containing the
result.

LIB$CVTF_TO_INTERNAL_TIME converts an external time interval, such as 3.5
weeks, into an OpenVMS internal format F-floating delta time. The operation
argument specifies the conversion. LIB§CVTF_TO_INTERNAL_TIME converts
the value of input-time into one of the internal format delta times listed in the
operation argument description. LIB§CVTF_TO_INTERNAL_TIME then places
the result into resultant-time.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_INVOPER Invalid operation.
LIB$_IVTIME Invalid time.

LIB$_ WRONUMARG Incorrect number of arguments.

lib—85

LIBS$ Routines
LIBSCVTS_TO_INTERNAL_TIME (Alpha and 164 Only)

LIBSCVTS_TO_INTERNAL_TIME (Alpha and 164 Only)
Convert External Time to Internal Time (S-Floating-Point Value)

Format

Returns

Arguments

lib—86

The Convert External Time to Internal Time (IEEE S-Floating-Point Value)
routine converts an external time interval into an OpenVMS internal format
IEEE S-floating delta time.

LIBSCVTS_TO_INTERNAL_TIME operation ,input-time ,resultant-time

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

operation

OpenVMS usage: function_code

type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an
unsigned longword specifying the operation. Valid values for operation are the
following:

Operation Interpretation
LIB$K DELTA WEEKS F Fractional weeks
LIB$K_DELTA_DAYS_F Fractional days
LIB$K DELTA_HOURS_F Fractional hours
LIB$K DELTA MINUTES F Fractional minutes
LIB$K DELTA SECONDS F Fractional seconds
input-time

OpenVMS usage: varying_arg

type: IEEE S_floating

access: read only

mechanism: by reference

Delta time to be converted. The input-time argument is the address of this
input time. The value you supply for input-time must be greater than 0.

LIBS$ Routines
LIBSCVTS_TO_INTERNAL_TIME (Alpha and 164 Only)

resultant-time
OpenVMS usage: date_time

type: quadword (unsigned)
access: write only
mechanism: by reference

The OpenVMS internal format delta time that results from the conversion. The
resultant-time argument is the address of an unsigned quadword containing the
result.

Description

LIB$CVTS_TO_INTERNAL_TIME converts an external time interval, such as
3.5 weeks, into an OpenVMS internal format IEEE S-floating delta time. The
operation argument specifies the conversion. LIB§CVTS_TO_INTERNAL_TIME
converts the value of input-time into one of the internal format delta times listed
in the operation argument description. LIB$CVTS_TO_INTERNAL_TIME then
places the result into resultant-time.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_INVOPER Invalid operation.
LIB$_IVTIME Invalid time.

LIB$_ WRONUMARG Incorrect number of arguments.

lib—87

LIBS$ Routines
LIBSCVT_DX DX

LIBSCVT_DX_DX
General Data Type Conversion Routine

Format

Returns

Arguments

lib—88

The General Data Type Conversion routine converts OpenVMS standard atomic
or string data described by a source descriptor to OpenVMS standard atomic or
string data described by a destination descriptor. This conversion is supported
over a subset of the OpenVMS standard data types.

LIBSCVT_DX_DX source-item ,destination-item [,word-integer-dest-length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

source-item
OpenVMS usage: unspecified

type: unspecified
access: read only
mechanism: by descriptor

Source item to be converted by LIB§CVT_DX_DX. The source-item argument is
the address of a descriptor pointing to the source item to be converted. The type
of the item to be converted is contained in the descriptor.

The combination of source descriptor class and data type is restricted as described
in Table lib—1 and Table lib—2.

destination-item
OpenVMS usage: unspecified

type: unspecified
access: write only
mechanism: by descriptor

Destination of the conversion. The destination-item argument is the address of
a descriptor pointing to the destination item. The destination descriptor specifies
the data type to which the source item is converted.

The combination of destination descriptor class and data type is restricted as
described in Table lib—1 and Table lib—2.

word-integer-dest-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the destination item (when that item is a string) that has
been converted by LIB§CVT_DX_DX, not including any space filling. The
word-integer-dest-length argument contains the address of an unsigned word
containing this length.

Description

LIBS$ Routines
LIBSCVT DX DX

If the destination string is truncated, the returned length reflects the truncation.
This word can be used by the calling program to determine if truncation has
occurred or to extract the exact length of the string when the string contains
space filling.

LIB$CVT_DX_DX is a universal conversion utility routine. Table lib—1 shows the
complete matrix of data type and descriptor class combinations (as specified in
the fields of the descriptor) supported by LIB$CVT_DX_DX.

Conversion is defined over three sets of data types: atomic, string, and numeric
byte data strings. Although some of the functions of this routine may be found

in other Run-Time Library routines, LIB§CVT_DX_DX packages the conversion
functions with a general interface. Because of this general interface, the calling
program does not have to specify what conversion should be done for which data

type.

Refer to LIB$CVT xTB if you want to convert the ASCII text string
representation of a decimal, hexadecimal, or octal number into a binary
representation.

The description of this routine has been divided into the following parts:
e Guidelines for Using LIB$CVT_DX_DX
¢ Use of Numeric Byte Data Strings (NBDS)

For more information about numeric byte data strings, see the section called Use
of Numeric Byte Data Strings (NBDS). Although the set of data types in NBDS is
actually a subset of the atomic and string data types, the three sets are mutually
exclusive in this routine. For more information on the OpenVMS atomic and
string data types and the argument descriptor classes supported by this routine,
see the HP OpenVMS Calling Standard manual.

lib—89

LIBS$ Routines
LIBSCVT_DX DX

lib—90

Table lib-1 OpenVMS Descriptor Class and Data Type Combinations Accepted

by LIBSCVT_DX_DX

Descriptor Class

DSCS$K_

DTYPE_yyy A D NCA s SD VS
B Non-NBDS Non-NBDS
BU NBDS NBDS Non-NBDS

D Non-NBDS Non-NBDS
F Non-NBDS Non-NBDS
FS Non-NBDS Non-NBDS
FT Non-NBDS Non-NBDS
G Non-NBDS Non-NBDS
H Non-NBDS Non-NBDS
L Non-NBDS Non-NBDS
LU Non-NBDS

NL Non-NBDS Non-NBDS
NLO Non-NBDS Non-NBDS
NR Non-NBDS Non-NBDS
NRO Non-NBDS Non-NBDS
NU Non-NBDS Non-NBDS
NZ Non-NBDS Non-NBDS
P Non-NBDS Non-NBDS
Q Non-NBDS Non-NBDS
T NBDS NBDS NBDS NBDS NBDS

VT NBDS
W Non-NBDS Non-NBDS
WU Non-NBDS

Invalid combinations are blank. Any source data can be converted into any other destination data as
long as they are both represented by one of the valid combinations.

Note: LIB§CVT_DX_DX treats an array, described by a CLASS_A or CLASS_NCA descriptor, as a
character string. NBDS must have the format defined in Table lib—2.

Guidelines for Using LIBSCVT_DX_DX

The data type and descriptor class of the source and destination arguments
determine how LIB$CVT_DX_DX performs the conversion, according to the

following rules:

e Scale is applied when indicated in the descriptor (descriptor CLASS_SD only),

and scaling is defined for the data type.

e No language-specific semantics are applied, such as BASIC scale for DSC$K_

DTYPE_D.

e Some conversions must use intermediate values to arrive at the destination
requested. Although some loss of speed is inevitable, intermediate values will

not cause a loss of precision.

LIBS$ Routines
LIBSCVT DX DX

¢ Results are always rounded instead of truncated, except for the case described
below. Note that loss of precision or range may be inherent in the destination
data type or in the NBDS destination size. No errors are reported if there is
a loss of precision or range as a result of destination data type.

e When the destination is an NBDS and has fixed-string semantics, then if the
source does not fill the destination, the destination is padded with blanks.

e When the source and destination are both NBDS and no scaling is requested,
then a straight copy is done without translation or conversion, and truncation
is possible. If scaling is requested, then a conversion takes place as defined in
Table lib-2.

e When the source is an NBDS and the destination is non-NBDS, if there is an
invalid character in the source or the value is outside the range that can be
represented by the destination, then LIB$_INVNBDS is returned.

e Attempts to convert a negative value to an unsigned data type cause the
LIB$_INVCVT error to be returned.

e If the destination is an NBDS of descriptor CLASS_D, then a new string of
appropriate size is allocated for it, if necessary.

e Invalid conversions resulting in an error produce an unpredictable result.

Use of Numeric Byte Data Strings (NBDS)

For simplicity, and to define a generic numeric string that LIB$CVT_DX_DX
understands to be a numeric string, the set Numeric Byte Data String (NBDS) is
defined to be the set of NBDS descriptors shown in Table lib—1.

The combination of data type and descriptor class determines whether an
argument is an NBDS. For example, LIB$CVT_DX_DX treats the combination
DSCK_DTYPE_B/DSCK_CLASS_S (unsigned byte scalar) as an atomic data

type. However, the routine considers DSCK_DTYPE_BU/DSCK_CLASS_NCA
(noncontiguous array of unsigned bytes) to be an NBDS.

A destination NBDS is always left-justified.

If a destination NBDS requires more than 50 digits for its format (including the
sign, if any), then it is expressed in exponential format.

For a conversion of NBDS to NBDS, this format is used if scaling is requested.
Otherwise, a straight copy is done. The format of a source NBDS is the same as
the format defined for the input argument inp in OTS$_CVT_T_z, with bits 0, 2,
and 4 set in the flags argument. That is, blanks are ignored, underflow causes
an error, and tabs are ignored.

Table lib—2 defines the format of a destination NBDS.

lib—91

LIBS$ Routines
LIBSCVT_DX DX

lib—92

Table lib-2 LIB$CVT_DX_DX Destination NBDS Formats

Source Data Type

Destination NBDS Format

Byte integer (signed)
Byte (unsigned)

Word integer (signed)
Word (unsigned)
Longword integer (signed)
Longword (unsigned)
Quadword integer (signed)
D_floating

F_floating

G_floating

H_floating

FS_floating (IEEE)
FT_floating (IEEE)

NBDS

Decimal string

sdigits

digits

sdigits

digits

sdigits

digits

sdigits
s0.min(16,w-7)E4nn
s0.min(7,w-7)E+nn
s0.min(15,w-8)E4+nnn
s0.min(33,w-9)E+nnnn
s0.min(7,w-7)E4+nn
s0.min(15,w-8)E+nnn
s0.min(33,w-9)E+nnnn
sdigits (as defined by VAX architecture)

Key to Destination NBDS Formats

e digits: Digits 0 through 9, and a decimal point only if source descriptor specifies the value of the

SCALE field as less than 0.
e w: Width of destination in bytes.

e s: Sign. For positive numbers, the sign is implied.

e min: Minimum of two values.

The A and NCA array descriptor classes are supported with the following

restrictions:

An array is written with the semantics of a fixed string.

DIMCT =1 Only one-dimensional arrays are recognized.
LENGTH =1 The length of each array element must be a byte.

ARSIZE < 65,535 The total size of the array must be less than 65,535 bytes.
If ARSIZE = 0, the array has a length of zero.

S1=1 The stride of an array passed by a noncontiguous array
descriptor must be 1. That is, even if the class of the
array’s descriptor is noncontiguous array (NCA), the array
itself must be contiguous.

For more information about the semantics of writing output strings, see the
OpenVMS RTL String Manipulation (STR$) Manual.

If the calling program passes a descriptor to LIB§CVT_DX_DX that does not
comply with Table lib—1, one of the following error messages is returned:

LIB$_INVDTYDSC
LIB$_INVCLADSC
LIB$ INVCLADTY
LIB$ INVNBDS

Condition Values Returned

SS$_NORMAL
LIB$ DECOVF
LIB$ FLTOVF
LIB$_FLTUND
LIB$_INTOVF
LIB$ INVCLADSC

LIB$ INVCLADTY

LIB$ INVCVT

LIB$ INVDTYDSC

LIB$ INVNBDS

LIB$ OUTSTRTRU

LIB$ ROPRAND

LIBS$ Routines
LIBSCVT DX DX

Routine successfully completed.

Packed decimal overflow error. Severe error.
Floating overflow error. Severe error.
Floating underflow error. Severe error.
Integer overflow error. Severe error.

Invalid class in descriptor. This class of
descriptor is not supported. Severe error.

Invalid class and data type in descriptor. This
class and data type combination is not supported.
Severe error.

If the source value is negative and the
destination data type is unsigned, this error
is returned.

Invalid data type in descriptor. This data type is
not supported. Severe error.

Invalid NBDS. There is an invalid character

in the input, or the value is outside the range
that can be represented by the destination, or
the NMDS descriptor is invalid. This error is
also signaled when the array size of an NBDS is
larger than 65,535 bytes or the array is multi-
dimensional.

Output string truncated. This is returned only
when NBDS is both source and destination and
no scaling is requested. The result is truncated.

Reserved operand error. Severe error.

lib—93

LIBS$ Routines
LIBSCVT_FROM_INTERNAL_TIME

LIBSCVT_FROM _INTERNAL_TIME
Convert Internal Time to External Time

The Convert Internal Time to External Time routine converts an internal
OpenVMS system time (either absolute or delta) into an external time.

Format
LIBSCVT_FROM_INTERNAL_TIME operation ,resultant-time [,input-time]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
operation
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an
unsigned longword containing the operation. The following table shows valid
values for operation:

Operation Type Return Range
LIB$K_MONTH_OF_YEAR Absolute 1 to 12
LIB$K_DAY_OF_YEAR Absolute 1 to 366
LIB$K_HOUR_OF_YEAR Absolute 1 to 8784
LIB$K_MINUTE_OF_YEAR Absolute 1 to 527,040
LIB$K_SECOND_OF_YEAR Absolute 1 to 31,622,400
LIB$K_DAY_OF_MONTH Absolute 1to 31
LIB$K_HOUR_OF_MONTH Absolute 1 to 744
LIB$K_MINUTE_OF_MONTH Absolute 1 to 44,640
LIB$K_SECOND_OF_MONTH Absolute 1 to 2,678,400
LIB$K_DAY_OF_WEEK Absolute ! 1to7
LIB$K_HOUR_OF_WEEK Absolute 2 1 to 168
LIB$K_MINUTE_OF_WEEK Absolute 2 1 to 10,080
LIB$K_SECOND_OF_WEEK Absolute 4 1 to 604,800
LIB$K_HOUR_OF_DAY Absolute 0 to 23
LIB$K_MINUTE_OF_DAY Absolute 0 to 1439

1Day 1 is Monday.

2Hours since midnight on previous Monday.
3Minutes since midnight on previous Monday.
4Seconds since midnight on previous Monday.

lib—94

Description

LIBS$ Routines
LIBSCVT _FROM_INTERNAL_TIME

Operation Type Return Range
LIB$K_SECOND_OF DAY Absolute 0 to 86,399
LIB$K_MINUTE_OF_HOUR Absolute 0 to 59
LIB$K_SECOND_OF _HOUR Absolute 0 to 3599
LIB$K_SECOND_OF_MINUTE Absolute 0 to 59
LIB$K_JULIAN_DATE Absolute 5 Julian date
LIB$K_DELTA_WEEKS Delta 6

LIB$K_DELTA_DAYS Delta ’
LIB$K_DELTA_HOURS Delta 8
LIB$K_DELTA_MINUTES Delta 2
LIB$K_DELTA_SECONDS Delta 10

5Number of days since system zero time (17-Nov—1858).
6Whole weeks.

"Whole days.

8Whole hours.

9Whole minutes.

10Whole seconds.

resultant-time
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by reference

The external time that results from the conversion. The resultant-time
argument is the address of an unsigned longword containing the result.

input-time

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

Optional absolute or delta time to be converted. The input-time argument is
the address of an unsigned quadword containing the time. If you do not supply a
value for input-time, the current system time is used.

LIB$CVT_FROM_INTERNAL_TIME converts an internal OpenVMS system
time (either absolute or delta) into an external time. The operation argument
specifies the conversion. LIB§CVT _FROM_INTERNAL_TIME converts the value
of input-time (or the current system time if input-time is not supplied) into one
of the external formats listed in the operation argument description. LIB§CVT_
FROM_INTERNAL_TIME then places the result into resultant-time.

See the HP OpenVMS Programming Concepts Manual for a description of
system date and time operations as well as a detailed description of the format
mnemonics used in these routines.

lib—95

LIBS$ Routines
LIBSCVT_FROM_INTERNAL_TIME

Condition Values Returned

LIB$ NORMAL Routine successfully completed.
LIB$_ABSTIMREQ Absolute time required but delta time supplied.
LIB$_DELTIMREQ Delta time required but absolute time supplied.
LIB$ INVOPER Invalid operation.

LIB$ _IVTIME Invalid time.

LIB$_WRONUMARG Incorrect number of arguments.

lib—96

LIBS$ Routines
LIBSCVT _TO INTERNAL_TIME

LIBSCVT _TO _INTERNAL_TIME
Convert External Time to Internal Time

Format

Returns

Arguments

The Convert External Time to Internal Time routine converts an external time
interval into an OpenVMS internal format delta time.

LIBSCVT_TO_INTERNAL_TIME operation ,input-time ,resultant-time

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

operation

OpenVMS usage: function_code

type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an
unsigned longword specifying the operation. Valid values for operation are the
following:

Operation Interpretation

LIB$K DELTA WEEKS Whole weeks in delta time
LIB$K_DELTA_DAYS Whole days in delta time
LIB$K DELTA HOURS Whole hours in delta time
LIB$K DELTA_MINUTES Whole minutes in delta time
LIB$K_DELTA_SECONDS Whole seconds in delta time
input-time

OpenVMS usage: varying_arg

type: longword (signed)

access: read only

mechanism: by reference

Delta time to be converted. The input-time argument is the address of this
input time. The value you supply for input-time must be greater than 0.

lib—97

LIBS$ Routines
LIBSCVT _TO INTERNAL_TIME

Description

resultant-time
OpenVMS usage: date_time

type: quadword (unsigned)
access: write only
mechanism: by reference

The OpenVMS internal format delta time that results from the conversion. The
resultant-time argument is the address of an unsigned quadword containing the
result.

LIB$CVT _TO_INTERNAL_TIME converts an external time interval, such as
three weeks, into an OpenVMS internal format delta time. The operation
argument specifies the conversion. LIB$_CVT_TO_INTERNAL_TIME converts
the value of input-time into one of the internal format delta times listed in the
operation argument description. LIB$_CVT_TO_INTERNAL_TIME then places
the result into resultant-time.

See the HP OpenVMS Programming Concepts Manual for a description of
system date and time operations as well as a detailed description of the format
mnemonics used in these routines.

Condition Values Returned

lib—98

LIB$_NORMAL Routine successfully completed.
LIB$ INVOPER Invalid operation.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

LIBS$ Routines
LIBSCVT _VECTIM

LIBSCVT_VECTIM
Convert 7-Word Vector to Internal Time

Format

Returns

Arguments

The Convert 7-Word Vector to Internal Time routine converts a 7-word vector into
an OpenVMS internal format delta or absolute time.

LIBSCVT_VECTIM input-time ,resultant-time

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

input-time

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: read only

mechanism: by reference, array reference

Time to be converted. The input-time argument is the address of a 7-word
structure containing this time. This vector directly corresponds to a $SNUMTIM
timbuf structure. The following diagram depicts the fields in this structure:

31 15 0
Month of Year Year Since 0
Hour of Day Day of Month
Second of Minute Minute of Hour
Hundredths of Second

ZK-7968-GE

The input-time argument can represent an absolute or a delta time. In order
for input-time to represent a delta time, the year since 0 and month of year
fields must equal zero. If those fields do not equal zero, an absolute time is
returned.

resultant-time
OpenVMS usage: date_time

type: quadword (unsigned)
access: write only
mechanism: by reference

The OpenVMS internal format delta or absolute time that results from the
conversion. The resultant-time argument is the address of an unsigned
quadword containing the result.

lib—99

LIBS$ Routines
LIBSCVT _VECTIM

Description

LIB$CVT_VECTIM converts a 7-word vector (in the format output by the
$NUMTIM system service) into an OpenVMS internal format delta or absolute
time. LIB§CVT_VECTIM then places the result into resultant-time.

See the HP OpenVMS System Services Reference Manual: GETUTC-Z for more
information about $NUMTIM.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

lib—100

LIBS$ Routines
LIBSCVT xTB

LIBSCVT_xTB
Convert Numeric Text to Binary

Format

Returns

Arguments

The Convert Numeric Text to Binary routines return a binary representation of
the ASCII text string representation of a decimal, hexadecimal, or octal number.

LIBSCVT_DTB byte-count ,numeric-string ,result
LIBSCVT_HTB byte-count ,numeric-string ,result
LIBSCVT_OTB byte-count ,numeric-string ,result

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only

mechanism: by value

byte-count

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by value

Byte count of the input ASCII text string. The byte-count argument is a signed
longword integer containing the byte count of the input string.

numeric-string
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by reference

ASCII text string representation of a decimal, hexadecimal, or octal number that
LIB$CVT_xTB converts to binary representation. The numeric-string argument
is the address of a character string containing this input string to be converted.

The syntax of a valid ASCII text input string is as follows:

<radix-characters>

LIB$CVT _xTB allows only an optional plus (+) or minus (-) sign followed by a
string of decimal, hexadecimal, or octal characters appropriate to the routine
being called.

result

OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only

mechanism: by reference

lib—101

LIBS$ Routines
LIBSCVT xTB

Binary representation of the input string. The result argument is the address of
a signed longword integer containing the converted string.

Description

LIB$CVT _DTB converts the ASCII text string representation of a decimal
number into binary representation. LIBSCVT_HTB converts the ASCII text
string representation of a hexadecimal number into binary representation.
LIB$CVT_OTB converts the ASCII text string representation of an octal number
into binary representation.

Note

LIBCVT_DTB, LIBCVT_HTB, and LIB$CVT_OTB are intended to

be called primarily from BLISS and MACRO programs. Therefore, the
routines expect input scalar arguments to be passed by value and strings
by reference.

Condition Values Returned

1 Routine successfully completed.

Nonradix character in the input string or a sign
in any position other than the first character. An
overflow from 32 bits (unsigned) causes an error.

lib—102

LIBS$ Routines
LIBSCVT_xTB_64 (Alpha and 164 Only)

LIBSCVT_xTB_64 (Alpha and 164 Only)
Convert Numeric Text to Binary

Format

Returns

Arguments

The Convert Numeric Text to Binary routines return a binary representation of
the ASCII text string representation of a decimal, hexadecimal, or octal number.

LIBSCVT_DTB_64 byte-count ,numeric-string ,result
LIBSCVT_HTB_64 byte-count ,numeric-string ,result
LIBSCVT_OTB_64 byte-count ,numeric-string ,result

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only

mechanism: by value

byte-count

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by value

Byte count of the input ASCII text string. The byte-count argument is a signed
longword integer containing the byte count of the input string.

numeric-string
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by reference

ASCII text string representation of a decimal, hexadecimal, or octal number
that LIB$CVT _xTB_64 converts to binary representation. The numeric-string
argument is the address of a character string containing this input string to be
converted.

The syntax of a valid ASCII text input string is as follows:

<radix-characters>

LIB$CVT_xTB_64 allows only an optional plus (+) or minus (—) sign followed by
a string of decimal, hexadecimal, or octal characters appropriate to the routine
being called.

lib—103

LIB$ Routines
LIBSCVT_xTB_64 (Alpha and 164 Only)

result

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: write only

mechanism: by reference

Binary representation of the input string. The result argument is the address of
a signed quadword integer containing the converted string.

Description

LIB$CVT _DTB_64 converts the ASCII text string representation of a decimal
number into binary representation. LIB§CVT_HTB_64 converts the ASCII
text string representation of a hexadecimal number into binary representation.
LIB$CVT _OTB_64 converts the ASCII text string representation of an octal
number into binary representation.

Note

LIBCVT_DTB_64, LIBCVT_HTB_64, and LIB$CVT_OTB_64 are
intended to be called primarily from BLISS and MACRO programs.
Therefore, the routines expect input scalar arguments to be passed by
value and strings by reference.

Condition Values Returned

1 Routine successfully completed.

0 Nonradix character in the input string or a sign
in any position other than the first character. An
overflow from 64 bits (unsigned) causes an error.

lib—104

LIBS$ Routines
LIB$DATE_TIME

LIBSDATE_TIME
Date and Time Returned as a String

The Date and Time Returned as a String routine returns the OpenVMS system
date and time in the semantics of a user-provided string.

Format
LIBSDATE_TIME date-time-string
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Argument

date-time-string
OpenVMS usage: time_name

type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB§DATE_TIME writes the system date and time.
The date-time-string argument is the address of a descriptor pointing to the
destination string. This string is 23 characters long; its format is as follows:

dd-mmm-yyyy hh:mm:ss.hh

See the HP OpenVMS Programming Concepts Manual for a description of
system date and time operations as well as a detailed description of the format
mnemonics used in these routines.

Condition Values Returned

SS$ NORMAL Routine successfully completed.

LIB$ STRTRU Success, but destination string was truncated.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has

an invalid value in its CLASS field.

lib—105

LIBS$ Routines
LIB$DATE_TIME

Example

10 !+
! This BASIC program demonstrates the use of LIBSDATE TIME.
| =

CALL LIBSDATE TIME(DSTSTRS)
PRINT DSTSTR$
99 END

This BASIC program uses LIB§DATE_TIME to display the current system date
and time. The output generated by one run of this program follows:

26-JUL-2000 13:41:22.67

lib—106

LIBS$ Routines
LIB$DAY

LIBSDAY
Day Number Returned as a Longword Integer

The Day Number Returned as a Longword Integer routine returns the number
of days since the system zero date of November 17, 1858, or the number of days
from November 17, 1858, to a user-supplied date.

Format
LIBSDAY number-of-days [,user-time] [,day-time]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments

number-of-days
OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by reference

Number of days since the system zero date. The number-of-days argument is
the address of a signed longword integer containing the day number.

user-time

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

User-supplied time, in 100-nanosecond units. The user-time argument is the
address of a signed quadword integer containing the user time. A positive value
indicates an absolute time, while a negative value indicates a delta time. This is
an optional argument. If user-time is omitted, the default is the current system
time. This quadword time value is obtained by calling the $BINTIM system
service.

If time is passed as zero by value, the numeric value for the current day
is returned. If time is passed as a zero by reference, the number returned
represents the day of November 17, 1858, rather than the current day.

day-time

OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only

mechanism: by reference

Number of 10-millisecond units since midnight of the user-time argument.
The day-time argument is the address of a signed longword integer into which
LIB$DAY writes this number of units.

lib—107

LIBS$ Routines

LIBSDAY

Description

LIB$DAY returns the number of days since the system zero date of November 17,
1858. Optionally, the caller can supply a time in system time format to be used
instead of the current system time. In this case, LIB$DAY returns the number of
days from November 17, 1858, to the user-supplied date.

The number of 10-millisecond units since midnight is an optional return
argument.

Note

If the caller supplies a quadword time, it is not verified. If it is negative
(bit 63 on), the number-of-days value returned is negative.

The Run-Time Library provides the date/time utility routines for languages that
do not have built-in time and date functions and for particular applications that
require the time or date in a different format from the one that the language
supplies. In general, it is simpler to call the Run-Time Library routines for the
system date and time than to call a system service.

Condition Values Returned

Example

lib—108

SS$ NORMAL Routine successfully completed.

SS$_INTOVF The optional argument user-time is present and
represents a date and time well beyond the year
9999.

PROGRAM DAY (INPUT, OUTPUT);
{*}

{ This is a VAX Pascal example program showing
{ the use of LIBSDAY.
{-}
VAR
DAYNUMBER : INTEGER;

routine LIBS$DAY (VAR DAYNUM : INTEGER);
EXTERN;

BEGIN

LIBSDAY (DAYNUMBER) ;

WRITELN('The day number is ', DAYNUMBER);
END.

This Pascal program retrieves and prints the day number. A sample of the output
generated by this program is as follows.

The day number is 46738

LIBS$ Routines
LIBSDAY OF WEEK

LIBSDAY_OF_WEEK
Show Numeric Day of Week

Format

Returns

Arguments

The Show Numeric Day of Week routine returns the numeric day of the week for
an input time value. If 0 is the input time value, the current day of the week

is returned. The days are numbered 1 through 7, with Monday as day 1 and
Sunday as day 7.

LIBSDAY_OF_WEEK [user-time,] day-number

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

user-time

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

Time to be translated to a day of the week, or zero. The optional user-time
argument is the address of an unsigned quadword containing the value of time.
Time must be supplied as an absolute system time. To obtain this time value in
proper quadword format, call the $BINTIM system service.

If time is passed as zero by value, the numeric value for the current day

is returned. If time is passed as a zero by reference, the number returned
represents the day of November 17, 1858. If the user-time argument is omitted,
it is equivalent to passing a zero by value.

day-number

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Numeric day of week. The day-number argument is the address of a longword
into which LIB$DAY_OF_WEEK writes the integer value representing the day of
the week.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

lib—109

LIBS$ Routines
LIBSDAY OF WEEK

Example

PROGRAM DAYOFWEEK (INPUT, OUTPUT);
{+}

{ This is an example showing
{ the use of LIBSDAY OF WEEK.

{-}
VAR
OUTDAT : INTEGER;

routine LIB$DAY OF WEEK(TIM : INTEGER; %REF OUTDA : INTEGER); EXTERN;
BEGIN

LIBSDAY OF WEEK(%IMMED 0, OUTDAT);
WRITELN(OUTDAT) ;

END.

This Pascal program shows the use of LIB§DAY_OF_WEEK. This example was
tested on a Monday, and the output generated was 1.

lib—110

LIBS$ Routines
LIBSDECODE_FAULT

LIBSDECODE_FAULT
Decode Instruction Stream During Fault

The Decode Instruction Stream During Fault routine is a tool for building
condition handlers that process instruction fault exceptions. It is called from
a condition handler.

This routine is not available to native OpenVMS Alpha and 164 programs but is
available to translated VAX images.

Format

LIBSDECODE_FAULT signal-arguments ,mechanism-arguments ,user-procedure

[,unspecified-user-argument] [,instruction-definitions]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value
Arguments

signal-arguments
OpenVMS usage: vector_longword_unsigned

type: unspecified
access: read only
mechanism: by reference, array reference

Signal arguments array that was passed from the OpenVMS operating system to
your condition handler. The signal-arguments argument is the address of the
signal arguments array.

mechanism-arguments
OpenVMS usage: vector_longword_unsigned

type: unspecified
access: read only
mechanism: by reference, array reference

Mechanism arguments array that was passed from OpenVMS to your condition
handler. The mechanism-arguments argument is the address of the mechanism
arguments array.

user-procedure
OpenVMS usage: procedure

type: procedure value
access: call after stack unwind
mechanism: by descriptor, procedure descriptor

User-supplied action routine that LIB§DECODE_FAULT calls to handle the
exception. The user-procedure argument is the address of a descriptor pointing
to your user action routine. The user-procedure argument may be of type

7 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib—111

LIBS$ Routines
LIBSDECODE_FAULT

Description

lib—112

“procedure value” when called by languages with up-level addressing. If user-
procedure is not of type “bound routine value,” it is assumed to be the address
of an entry mask.

For further information on the user action routine, see the section called Call
Format for a User Action Routine in the Description section.

unspecified-user-argument
OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

Additional information passed from your handler without interpretation to your
user action routine. The unspecified-user-argument argument contains the
value of this additional information. The unspecified-user-argument argument
is optional; if it is omitted, zero is used as the default.

instruction-definitions
OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)
access: read only
mechanism: by reference, array reference

Array of bytes specifying instruction opcodes and operand definitions that are
to replace or supplement the standard instruction definitions. The instruction-
definitions argument is the address of this array.

If instruction-definitions is omitted, only the standard instruction definitions
are used. If supplied, instruction-definitions is searched first, followed by the
standard definitions.

Each instruction definition consists of a series of bytes, the first one or two of
which is the instruction opcode. If the instruction is a 2-byte opcode, the escape
byte, which must be hex FD, FE, or FF, is placed in the first of the two bytes.
Following the opcode may be from 0 to 16 operand definition bytes. These bytes
indicate the operand’s access type and data type.

The end of each instruction definition is denoted by a byte containing the value
LIB$K DCFOPR_END (zero). The list of instruction definitions is terminated
by two bytes, each of which contains the value —1 (hexadecimal FF). For further
information, see the section called Instruction Operand Definition Codes in the
Description section.

The Description section of the LIB§DECODE_FAULT routine is divided into the
following parts:

® Guidelines for Using LIBSDECODE_FAULT

e Exceptions Recognized by LIBSDECODE_FAULT
e Instruction Operand Definition Codes

e (Call Format for a User Action Routine

e (Call Format for a Signal Routine

LIBS$ Routines
LIBSDECODE_FAULT

Guidelines for Using LIBSDECODE_FAULT

LIB$DECODE_FAULT is a tool for building condition handlers that process
instruction fault exceptions. Called from a condition handler, LIB§DECODE_
FAULT performs the following actions:

1. Unwinds intermediate stack frames back to that of the exception
2. Decodes the instruction stream to determine the operation and its operands

3. Calls a user-supplied action routine and passes it a consistent and easy-to-
access description of the instruction’s context

Your user action routine performs whatever tasks are necessary to handle the
fault and returns to LIB§DECODE_FAULT. LIBSDECODE_FAULT then restores
the context as modified by your user action routine and continues execution.

Your condition handler must first decide whether or not it wants to handle the
exception. The signal arguments list contains the exception code and the address
of the program context (PC) that is usually sufficient for this determination. Once
LIB$DECODE_FAULT is called, if the exception is a fault LIBSDECODE_FAULT
can analyze, control does not return to the condition handler. Therefore, your
handler must not depend on regaining control by a routine return once it has
called LIB$DECODE_FAULT. With your user action routine, LIBSDECODE_
FAULT makes the original fault disappear.

Note

Your user action routine is capable of generating a new exception,
including one that looks identical to the original exception. Your user
action routine may also resignal, but if the decision to resignal is made
inside the user action routine, all post-signal stack frames are lost.

Once your condition handler has decided that it wants to handle the exception,

it calls LIB§DECODE_FAULT, passing as arguments the addresses of the signal
and mechanism argument lists and a descriptor for your user action routine entry
point. LIB§DECODE_FAULT then performs the following actions:

1. Determines if the exception is a fault it understands. If not, it returns SS$_
RESIGNAL.

2. Determines the context in which the exception occurred, including register
and processor status longword (PSL) contents, and saves it.

Unwinds all stack frames back to that frame in which the exception occurred.

4. Evaluates each operand’s addressing mode, computing the resulting location
for the operand. Immediate mode operands are expanded into their full form.
If an invalid addressing mode is found, an SS$_RADRMOD exception is
generated.

5. Unless the original exception was SS$_ACCVIO, tests each operand for
accessibility. If necessary, an access violation is signaled as if the instruction
had tried to execute normally. See the paragraph following this list for more
information.

6. Unless the original exception was SS$_ROPRAND, tests each floating-point
operand that is to be read for a reserved floating operand. If necessary, a
reserved operand fault is signaled. See the paragraph following this list for
more information.

lib—113

LIBS$ Routines
LIBSDECODE_FAULT

lib—114

7. Determines the address of the next sequential instruction.
8. Calls your user action routine with arguments as described below.

9. Upon return from your user action routine, reflects changes to the registers
and PSL and continues execution at the instruction address specified by your
user action routine. Optionally, your user action routine may resignal the
original exception.

Some instructions can generate more than one fault if evaluation of one operand
causes a fault that occurs before a later operand (which would also cause a fault).
An example of this is the possibility that a floating-point divide instruction might
report a divide-by-zero fault upon seeing a zero divisor before noticing that the
dividend was a reserved operand or was inaccessible.

In these cases, operand-specific faults are signaled immediately by
LIB$DECODE_FAULT in the expectation that another condition handler (or the
same one) can repair the situation. This may reorder the sequence of exceptions
as seen by a program. If the operand exception is corrected, the original exception
reoccurs, and the proper action is taken.

If at all possible, try to determine if a resignal is necessary inside the condition
handler that calls LIBSDECODE_FAULT, rather than inside your user action
routine. The reason for this is that LIBSDECODE_FAULT removes all post-signal
stack frames before calling your user action routine.

Your user action routine may fetch and store the operands, registers, and PSL
as necessary for handling the exception. You should follow the VAX architecture
rule of reading all input operands in left-to-right order, then writing all output
operands in left-to-right order, to avoid inconsistent results with overlapping
operands. This is especially necessary with register operands.

PSL may be modified in a manner consistent with the VAX architecture. If the
T-bit in the PSL was set at the beginning of the instruction, LIB§DECODE_
FAULT sets the TP bit. To initiate tracing, you must set only the T bit. To
disable tracing, you must clear both the T and TP bits. See the VAX Architecture
Reference Manual for more information.

If the first-part-done (FPD) bit in the PSL was set when the instruction faulted,
LIB$DECODE_FAULT only advances the PC over the instruction; it does not
reevaluate the operands, and it sets operand-count to zero. It is assumed that
if FPD is set, the operands are in known locations (typically the registers).

For the CASEB, CASEW, and CASEL instructions, only the selector, base,

and limit operands are represented in operand-count and read-operand-
locations. The element of registers that corresponds to the PC, described in the
following text as R15, points to the first of the word-length displacements. Your
user action routine must modify R15 to reflect the location of the next instruction
to execute.

The standard instruction definitions used by LIBSDECODE_FAULT specify the
XFC instruction (which causes an SS$_OPCCUS fault) as having zero operands.
You may redefine XFC if needed using the instruction-definitions argument to
LIB$DECODE_FAULT.

If you do not want instruction execution to resume with the next sequential
instruction, you must modify R15 appropriately. Your user action routine then
returns to LIBSDECODE_FAULT, which restores the registers and PSL, and
resumes instruction execution. See also the LIB$ RESTART condition value in
the section called Condition Values Returned from the User Action Routine.

LIBS$ Routines
LIBSDECODE_FAULT

Note

Vector context is not saved or restored.

Exceptions Recognized by LIBSDECODE_FAULT
LIB$DECODE_FAULT recognizes the following VAX faults:

e SS$ ACCVIO, access violation.

e SS$ BREAK, breakpoint fault.

e SS$ _FLTDIV_F, floating divide by zero.

e SS$_FLTOVF_F, floating overflow.

e SS$_FLTUND_F, floating underflow.

e SS$_OPCCUS, opcode reserved to customers.
e SS$_OPCDEC, opcode reserved to HP.

e SS$_ROPRAND, reserved operand.

e SS$_TBIT, T-bit pending trap. This is actually a fault caused by the TP bit
being set at the beginning of instruction execution. It allows you to interpret
all instructions by setting the PSL T-bit and allowing each instruction to
trace-fault.

All other exceptions, including SS$_COMPAT and SS$_RADRMOD, cause
LIB$DECODE_FAULT to return immediately with the return status SS$_
RESIGNAL.

SS$_COMPAT is generated by compatibility-mode instructions. LIB$DECODE_
FAULT does not handle compatibility-mode instructions.

SS$_RADRMOD is generated by a reserved addressing-mode fault.
LIB$DECODE_FAULT assumes that all instructions follow VAX addressing-mode
specifications.

Instruction Operand Definition Codes

Each instruction operand has an access type (read, write, ...) and a data type
(byte, word, . ..) associated with it. The operand definition codes used in both
the instruction-definitions argument passed to LIBSDECODE_FAULT and in
the operand-types argument passed to the user action routine encode the access
and data types in a byte. The fields and values for operand access and data types
are described using the symbols in Table lib—3. These symbols are defined in
definition libraries supplied by HP as macro or module name $LIBDCFDEF.

lib—115

LIBS$ Routines
LIBSDECODE_FAULT

Table lib—-3 Symbols for Fields and Values for Operand Access and Data Types
Using LIBSDECODE_FAULT

Symbol Description

LIB$V_DCFACC The field of the operand description code that describes the
operand access type (bits 0-2).

LIB$S_DCFACC The size of the access type field (3 bits).

LIB$M_DCFACC The mask for the access type field. This is a 3-bit field that
can contain any binary value from 000 through 111. The
integer value of these bit settings defines the operand access
type code for the LIB§M_DCFACC field. Currently, six codes
are defined. These codes have symbolic names and are
explained below. It is important to remember that LIB$M _
DCFACC is not a bit mask. The values 0 through 6 do not
refer to bits 0 through 6. They represent the binary values
001 through 110 as contained in the 3-bit field.

The operand access type codes defined for the LIB$M_
DCFACC field are:

LIB$K DCFACC R=1 Operand is read-only.

LIB$K_DCFACC_M = 2 Operand is to be modified.

LIB$K DCFACC_W =3 Operand is write-only.

LIB$K DCFACC A =14 Operand is an address (must
not be a register).

LIB$K DCFACC V=5 Operand is the base of a bit

field (same as address except
that it may be a register).

LIB$K DCFACC B =6 Operand is a branch address.

LIB$V_DCFTYP The field of the operand descriptor code that describes the
operand data type (bits 3-7).

LIB$S_DCFTYP The size of the operand data type field (5 bits).

(continued on next page)

lib—116

LIBS$ Routines
LIBSDECODE_FAULT

Table lib—3 (Cont.) Symbols for Fields and Values for Operand Access and
Data Types Using LIBSDECODE_FAULT

Description

Symbol

LIB$M_DCFTYP The mask for the operand data type field. This is a 5-bit
field (bits 3-7) that can contain any binary value from 00000
through 11111. The integer value of these bit settings defines
the operand access type code for the LIB§M_DCFACC field.
Currently, nine codes are defined. These codes have symbolic
names and are explained below. It is important to remember
that LIB$M_DCFTYP is not a bit mask. The values 0
through 9 do not refer to bits 0 through 9. They represent
the binary values 00001 through 01001 as contained in the
5-bit field. The operand access type codes defined for the
LIB$V_DCFTYP field are:

LIB$K DCFTYP B =1
LIB$K DCFTYP W = 2
LIB$K DCFTYP L = 3
LIB$K DCFTYP Q =4
LIB$K DCFTYP O =5

Operand is a byte.
Operand is a word.
Operand is a longword.
Operand is a quadword.
Operand is an octaword.

LIB$K DCFTYP F =6
LIB$K DCFTYP D =7
LIB$K _DCFTYP_G = 8

Operand is F_floating.
Operand is D_floating.
Operand is G_floating.

LIB$K DCFTYP H=9 Operand is H_floating.

Symbols of the form LIB§K_DCFOPR_xy, where x is the access type and y is the
data type, are also defined. These combine the notions of access and data type.
For example, LIB$K_DCFOPR_MF has the following value:

50 (2+(6%8))

It denotes modify access of an F_floating item. For the branch access type, only
the types BB, BW, and BL are defined; otherwise, all combinations are available.

Call Format for a User Action Routine

LIB$DECODE_FAULT calls the user action routine when it finds an exception to
be handled. Your user action routine handles the exception in any manner that
you specify and then returns to LIBSDECODE_FAULT.

action-routine opcode ,instr-PC ,PSL ,registers ,operand-count
,operand-types ,read-operand-locations
,write-operand-locations ,signal-arguments
,signal-procedure ,context
,unspecified-user-argument ,original-registers

opcode

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

lib—117

LIBS$ Routines
LIBSDECODE_FAULT

lib—118

Opcode of the instruction that caused the fault. The opcode argument is the
address of a longword that contains this opcode. LIB$DECODE_FAULT supplies
this opcode when it calls the user action routine.

For 2-byte opcodes, the escape code (for example, hex FD) is in the low-order byte.
You must use this argument to examine the opcode instead of reading the bytes
pointed to by instr-PC. This is because if a debugger breakpoint has been set on
the instruction, only opcode contains the original instruction.

instr-PC

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Value of the PC for the instruction that caused the fault. The instr-PC argument
is the address of a longword that contains the PC value.

Note the difference between this value and the contents of the registers array
element that corresponds to the PC. R15 of the registers array element contains
the address of the byte after the instruction that caused the fault.

PSL

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: modify

mechanism: by reference

Processor status longword (PSL) at the time of the fault. The PSL argument is
the address of a longword that contains this PSL. Your user action routine may
modify this PSL within the restrictions of the VAX architecture.

registers

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)

access: modify

mechanism: by reference, array reference

Contents of registers RO through R15 (PC) at the time of the fault but after
operand addressing-mode processing. This includes any autoincrements or
autodecrements. The registers argument is the address of this 16-longword
array. Each longword of the registers array contains the contents of one register.

Your user action routine may modify these values. If it does, the new values will
be reflected when instruction execution continues.

To modify vector registers, execute a vector instruction. Executing a vector
instruction in the handler modifies the state of the vector processor. The state of
the vector processor is not restored when the handler returns. This has the effect
of altering the state when the execution continues.

R15 denotes the sixteenth longword in the registers array, which corresponds to
the PC. R15 contains the address of the next byte after the current instruction.
Unless this value is modified by your user action routine, instruction execution
will resume at that address. An exception is for the CASEB, CASEW, and CASEL
instructions; R15 contains the address of the first displacement word. For these
instructions, your user action routine must modify R15 to point to the next
instruction to execute.

LIBS$ Routines
LIBSDECODE_FAULT

Upon instruction completion, registers R0-R15 are restored from this array.
However, if signal-procedure is used to cause a fault or if instruction restart is
specified by returning LIB$_RESTART, original-registers is used instead.

operand-count
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Number of operands in the instruction currently being decoded. The operand-
count is the address of a longword that contains this number.

operand-types
OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Array of longwords, one element for each operand, that contains the type codes
for the associated operand. The operand-types argument is the address of this
array.

The operand type codes are further defined in the section called Instruction
Operand Definition Codes.

read-operand-locations
OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Array of longwords, one element for each operand, that contains the addresses of
the operands to be read. The read-operand-locations argument is the address
of this array.

The address given in the array may not be the actual address of the operand if
the operand is not a memory location. If the operand is a register, the address
indicates a copy of the register values at the time of operand evaluation. If the
operand access type is ADDRESS or FIELD and the operand is not a register,
the address is the address of the item. If the operand access type is FIELD
and the operand is a register, the address refers to the appropriate element in
the registers array. If the operand access type is BRANCH, the address is the
destination PC of the branch. For WRITE access operands, the address value is
zero.

write-operand-locations
OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Array of longwords, one element for each operand, that contains the addresses
of operands that are to be written. The write-operand-locations argument is
the address of this array. If the operand access type is not MODIFY, WRITE,
ADDRESS, or FIELD, the pointer value is zero.

lib—119

LIBS$ Routines
LIBSDECODE_FAULT

lib—120

signal-arguments
OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Signal arguments list of the original exception, as passed from OpenVMS to your
condition handler and then to LIBSDECODE_FAULT. The signal-arguments
argument is the address of an array of longwords that contains these signal
arguments.

signal-procedure
OpenVMS usage: procedure

type: procedure value
access: call without stack unwinding
mechanism: by reference

Entry mask of a routine that your user action routine must call if it wants to
report an exception for the instruction that faulted. The signal-procedure
argument is the address of this entry mask.

For further information, see the section called Call Format for a Signal Routine.

context

OpenVMS usage: context
type: unspecified
access: read only
mechanism: by value

Context in which the exception occurs, including the register and PSL contents,
to be used when calling the signal-procedure. The context argument contains
the value of this context.

unspecified-user-argument
OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

Optional argument passed to LIBSDECODE_FAULT. If the argument was
not specified, the value zero is substituted. The unspecified-user-argument
argument contains the value of this optional argument.

original-registers
OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)
access: modify
mechanism: by reference, array reference

Array containing the values of registers RO through R15 (PC) at the time of
the fault, before operand processing. The original-registers argument is the
address of this 16-longword array.

If the action routine specifies that the instruction should restart or that a fault
should be generated, the registers are restored from original-registers. See also
the description of registers above.

LIBS$ Routines
LIBSDECODE_FAULT

Condition Values Returned from the User Action Routine The user action
routine can return the following condition values to LIB$DECODE_FAULT:

Condition Value Description

SS$ CONTINUE If the user action routine returns a value of SS$_
CONTINUE, instruction execution will continue as
specified by the current contents of the registers
element for the PC.

SS$_RESIGNAL If the user action routine returns SS$_RESIGNAL, the
original exception is resignaled, with the only changes
reflected being those specified by registers elements
for RO and R1 (which are stored in the mechanism
arguments vector), PC, and PSL. All other registers are
restored from original registers.

LIB$_RESTART If the user action routine returns LIB$_RESTART, the
current instruction is restarted with registers restored
from original-registers and a PSL from PSL. This
feature is useful for writing trace handlers.

Call Format for a Signal Routine
Your action routine calls the signal routine using this format:

signal-procedure fault-flag ,context ,signal-arguments

fault-flag

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Longword flag whose low-order bit determines whether the exception is to be
signaled as a fault or as a trap. The fault-flag argument contains the address of
this longword.

If the low-order bit of fault-flag is set to 1, the exception is signaled as a fault.
If the low-order bit of fault-flag is set to 0, the exception is signaled as a trap;
the current contents of the registers array are used. In either case, the current
contents of PSL are used to set the exception PSL.

context

OpenVMS usage: context
type: unspecified
access: read only
mechanism: by reference

Context in which the new exception is to occur, as passed to your user action
routine by LIB§DECODE_FAULT. The context argument is the address of this
context value.

signal-arguments
OpenVMS usage: arg_list

type: longword (unsigned)
access: read only
mechanism: by reference, array reference

lib—121

LIBS$ Routines
LIBSDECODE_FAULT

Signal arguments to be used. The signal-arguments argument is the address of
an array of longwords that contains these signal arguments.

The first longword contains the number of following longwords; the remainder of
the list contains signal names and arguments. Unlike the signal argument list
passed to a condition handler, no PC or PSL is present.

Before the exception is signaled, the stack frames are unwound back to the
original exception. You should be careful when causing a new signal that a loop
of faults is not inadvertently generated. For example, the condition handler that
called LIB§SDECODE_FAULT will usually be called for the second signal. If the
handler does not analyze the second signal as such, it may cycle through the
identical path as for the first signal.

To resignal the current exception, have the user action routine return a value of
SS$_RESIGNAL instead of calling the signal routine (unless you want previously
called condition handlers to be called again).

Condition Values Returned

SS$_RESIGNAL Resignal condition to next handler. The exception
described by signal-arguments was not an
instruction fault handled by LIBSDECODE_
FAULT. If LIB§DECODE_FAULT can process the
fault, it does not return to its caller.

Condition Value Signaled

Example

lib—122

LIB$_INVARG Invalid argument to Run-Time Library. The
instruction definition contained more than 16
operands or an operand definition contained an
invalid data type or access code. This message
is signaled after the stack frames have been
unwound so that it appears to have been signaled
from a routine that was called by the instruction
that faulted.

The following Fortran example implements a simple recovery scheme for floating
underflow and overflow faults, replacing the result of the instruction with the
correctly signed, smallest possible value for underflows or largest possible value
for overflows.

LIBS$ Routines
LIBSDECODE_FAULT

C+
C Example condition handler and user-action routine using
C LIBSDECODE FAULT. This example demonstrates the use of
C most of the features of LIBSDECODE FAULT. Its purpose
C 1is to handle floating underflow and overflow faults,
C replacing the result of the instruction with the correctly
C signed smallest possible value for underflows, or greatest
C possible value for overflows.
C
C For simplicity, faults involving the POLYx instructions are
C not handled.
c
C***
C FIXUP RESULT is the condition handler enabled by the program
C desiring the fixup of overflows and underflows.
Cr*x*
C-
INTEGER*4 FUNCTION FIXUP_RESULT(SIGARGS, MECHARGS)
IMPLICIT NONE
INCLUDE ' ($SSDEF)’ ! SS$_ symbols
INCLUDE ' (SLIBDCFDEF)' ! LIB$DECODE_FAULT symbols
INTEGER*4 SIGARGS(1:*) ! Signal arguments list
INTEGER*4 MECHARGS(1l:*) ! Mechanism arguments list
C+
C This is a sample redefinition of MULH3 instruction.
C-
BYTE OPTABLE(8) /'FD'X,'65'X, ! MULH3 opcode
1 LIBS$K_DCFOPR_RH, ! Read H_floating
2 LIBSK DCFOPR RH, ! Read H floating
3 LIBS$K_DCFOPR_WH, ! Write H_floating
4 LIB$SK_DCFOPR_END, ! End of operands
5 '"FF'X,'FF'X/ ! End of instructions
INTEGER*4 LIBSDECODE FAULT ! External function
EXTERNAL FIXUP_ACTION ! Action routine to do the fixup
C+
C Determine if the exception is one we want to handle.
C-
IF ((SIGARGS(2) .EQ. SS$_FLTOVF F) .OR.
1 (SIGARGS(2) .EQ. SS$_FLTUND F)) THEN
C+
C We think we can handle the fault. Call
C LIBSDECODE FAULT and pass it the signal arguments and
¢ the address of our action routine and opcode table.
C-
FIXUP RESULT = LIB$DECODE_FAULT (SIGARGS,
1 MECHARGS, %DESCR(FIXUP ACTION),, OPTABLE)
RETURN
END IF
C+
C We can only get here if we couldn’t handle the fault.
C Resignal the exception.
C-

FIXUP RESULT = SS$ RESIGNAL
RETURN
END

lib—123

LIBS$ Routines
LIBSDECODE_FAULT

lib—124

C+

C User action routine to handle the fault.

C-
INTEGER*4 FUNCTION FIXUP ACTION (OPCODE,INSTR PC,PSL,
1 - REGISTERS,OP COUNT,
2 OP TYPES,READ OPS,
3 WRITE OPS,SIGARGS,
4 SIGNAL ROUT,CONTEXT,
5 USER_ARG,ORIG_REGS)
IMPLICIT NONE
INCLUDE ' ($SSDEF)’ ! SS$ definitions
INCLUDE ' ($PSLDEF)’ ! PSLS definitions
INCLUDE ' (SLIBDCFDEF) ' ! LIB$DECODE_FAULT

! definitions
INTEGER*4 OPCODE ! Instruction opcode
INTEGER*4 INSTR PC ! PC of this instruction
INTEGER*4 PSL ! Processor status
! longword

INTEGER*4 REGISTERS(0:15) ! RO-R15 contents
INTEGER*4 OP COUNT ! Number of operands
INTEGER*4 OP:TYPES(l:*) ! Types of operands
INTEGER*4 READ OPS(1:%*) ! Addresses of read operands
INTEGER*4 WRITE OPS(1:*) ! Addresses of write operands
INTEGER*4 SIGARGS(1:*) ! Signal argument list
INTEGER*4 SIGNAL ROUT ! Signal routine address
INTEGER*4 CONTEXT ! Signal routine context
INTEGER*4 USER ARG ! User argument value
INTEGER*4 ORIG_REGS(0:15) ! Original registers

C+

C Declare and initialize table of class codes for each of the

C "real" opcodes. We’ll index into this by the first byte of

C one-byte opcodes, the second byte of two-byte opcodes. The

C class codes will be used in a computed GOTO (CASE). The

C codes are:

C 0 - Unsupported

C 1 - ADD

C 2 - SUB

o 3 - MUL,DIV

C 4 - ACB

C 5 - CVT

C 6 - EMOD

C

C The class mainly determines how we compute the sign of the

C result, except for ACB.

C-
BYTE INST CLASS TABLE(0:255)
DATA INST CLASS TABLE /
1 48*0, ! 00-2F
2 0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0, ! 30-3F
3 1,1,2,2,3,3,3,3,0,0,0,0,0,0,0,4, ! 40-4F
4 0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0, ! 50-5F
5 1,1,2,2,3,3,3,3,0,0,0,0,0,0,0,4, ! 60-6F
6 0,0,0,0,6,0,5,0,0,0,0,0,0,0,0,0, ! 70-7F
7 112%0, ! 80-EF
8 0,0,0,0,0,0,5,5,0,0,0,0,0,0,0,0/ ! FO-FF

C+

C Table of operand sizes in 8-bit bytes, indexed by the

C datatype code contained in the OP_TYPES array.
C types matter.

C-

Only floating

BYTE OP_SIZES(9) /0,0,0,0,0,4,8,8,16/

+

QOO0

NOTE :

INTEGER*4 LIBSEXTV
INTEGER*4 RESULT NEGATIVE

INTEGER*4 SIGN1,SIGN2,SIGN3
INTEGER*4 INST BYTE
INTEGER*4 INST CLASS

INTEGER*4 OP_DTYPE
INTEGER*4 OP_SIZE

INTEGER*4 RESULT OP

LOGICAL*4 OVERFLOW
LOGICAL*4 SMALLER

PARAMETER ESCD = '0FD’'X

INTEGER*2 SMALL F(2) !
DATA SMALL F /’0080'X,0/
INTEGER*2 SMALL D(4) !
DATA SMALL D /'0080'X,0,0,0/
INTEGER*2 SMALL G(4) !

DATA SMALL G /’0010'X,0,0,0/
INTEGER*2 SMALL H(8) !

LIBS$ Routines
LIBSDECODE_FAULT

External function

-1 if result negative,
0 if positive

Signs of operands
Current opcode byte
Class of instruction
from table

Datatype of operand
Size of operand in
8-bit bytes

Position of result

in WRITE OPS array
TRUE if SS$ FLTOVF F
Function which ~
compares operands
First byte of G,H instructions

Smallest F _floating
Smallest D floating

Smallest G_floating

Smallest H floating

DATA SMALL H /'0001'X,0,0,0,0,0,0,0/

INTEGER*2 BIGGEST(8) !
DATA BIGGEST /'7FFF'X,7*'FFFF'X/

INTEGER*4 SIGNAL ARRAY(2) !
!

Biggest value (all datatypes)

Array for signalling new
exception

Because the operands arrays contain the locations of

the operands, rather than the operands themselves,
we must call a routine using the %VAL function to
"fool" the called routine into considering the
contents of an operands array element as the address

of an item.

This would not be necessary in a

language that understood the concept of pointer

variables, such as PASCAL.

C If FPD is set in the PSL, signal SS$ ROPRAND (reserved operand). In
C reality this shouldn’t happen since none of the instructions we
C handle can set FPD, but do it as an example.

C-

C+

C Set OVERFLOW according to the exception type.

IF (BTEST(PSL,PSL$V FPD)) THEN
SIGNAL ARRAY(1) = 1 !
SIGNAL ARRAY(2) = SS$ ROPRAND !
CALL SIGNAL ROUT (

1 1, !

2 SIGNAL ARRAY, !

3 CONTEXT) !

|

END IF

Count of signal arguments
Error status value

Fault flag - signal as fault
Signal arguments array
Context as passed to us
Call will never return

We assume that

C the only alternatives are SS$ FLTOVF F and SS$ FLTUND F.

C-

OVERFLOW = (SIGARGS(2) .EQ. SS$ FLTOVF F)

lib—125

LIBS$ Routines
LIBSDECODE_FAULT

C+

C Determine the datatype of the instruction by that of its
C second operand, since that is always the type of the

C destination.
C

OP_DTYPE = IBITS(OP_TYPES(2),LIBSV_DCFTYP,LIB$S DCFTYP)

C+
C Get the size of the datatype in words.
C-
OP_SIZE = OP_SIZES (OP_DTYPE)
C+

C Determine the class of instruction and dispatch to the
C appropriate routine.

INST BYTE = IBITS(OPCODE,0,8) ! Get first byte

IF (INST BYTE .EQ. ESCD) INST BYTE = IBITS(OPCODE,S8,8)
INST CLASS = INST CLASS TABLE(INST BYTE)

GO TO (1000,2000,3000,4000,5000,6000), INST_CLASS

If we get here, the instruction’s entry in the

INST CLASS TABLE is zero. This might happen if the instruction was
a POLYx, or was some other unsupported instruction. Resignal the
original exception.

QOO0

FIXUP_ACTION = SS$ RESIGNAL ! Resignal condition to next handler
RETURN ! Return to LIBS$DECODE_FAULT

1000 - ADDF2, ADDF3, ADDD2, ADDD3, ADDG2, ADDG3, ADDH2, ADDH3

Result’s sign is the same as that of the first operand,
unless this is an underflow, in which case the magnitudes of
the values may change the sign.

QOO0

1000 RESULT NEGATIVE = LIBSEXTV (15,1,%VAL(READ OPS(1)))
IF (.NOT. OVERFLOW) THEN -
IF (SMALLER(OP_SIZE,$VAL(READ OPS(1)),
$VAL(READ OPS(2))))
2 RESULT NEGATIVE = .NOT. RESULT NEGATIVE

END IF

GO TO 9000
C+
C 2000 - SUBF2, SUBF3, SUBD2, SUBD3, SUBG2, SUBG3, SUBH2, SUBH3
C
C Result’s sign is the opposite of that of the first operand,
C unless this is an underflow, in which case the magnitudes of
C the values may change the sign.
C-

2000 RESULT NEGATIVE = .NOT. LIBSEXTV (15,1,3VAL(READ OPS(1)))
IF (.NOT. OVERFLOW) THEN
IF (SMALLER(OP SIZE,S$VAL(READ OPS(1)),

1 $VAL(READ OPS(2))))

2 RESULT NEGATIVE = .NOT. RESULT NEGATIVE
END IF -

GO TO 9000

lib—126

LIBS$ Routines
LIBSDECODE_FAULT

c+
C 3000 - MULF2, MULF3, MULD2, MULD3, MULG2, MULG3, MULH2, MULH3,
c DIVF2, DIVF3, DIVD2, DIVD3, DIVG2, DIVG3, DIVH2, DIVH3,
C

C If the signs of the first two operands are the same, then the
C result’s sign is positive, if they are not it is negative.
C-

3000 SIGN1 = LIBSEXTV (15,1,%VAL(READ OPS(1)))

SIGN2 = LIBSEXTV (15,1,%VAL(READ OPS(2)))

RESULT NEGATIVE = SIGN1 .XOR. SIGN2

GOTO 9000
C+
C 4000 - ACBF, ACBD, ACBG, ACBH
C
C The result’s sign is the same as that of the second operand
C (addend), unless this is underflow, in which case the
C magnitudes of the addend and index may change the sign.
C We must also determine if the branch is to be taken.
c-

4000 SIGN2 = LIBSEXTV (15,1,%VAL(READ OPS(2)))
RESULT NEGATIVE = SIGN2 -
IF (.NOT. OVERFLOW) THEN
IF (SMALLER(OP_SIZE,%VAL(READ OPS(2)),
$VAL(READ OPS(3))))
2 RESULT NEGATIVE = .NOT. RESULT NEGATIVE
END IF -

+

If this is overflow, then the branch is not taken, since the
result is always going to be greater or equal in magnitude

to the limit, and will be the correct sign. If underflow,
the branch is ALMOST always taken. The only case where the
branch might not be taken is when the result is exactly

equal to the limit. For this example, we are going to ignore
this exceptional case.

QOO0

IF (.NOT. OVERFLOW)
1 REGISTERS(15) = READ OPS(4) ! Branch destination

GO TO 9000

C+

C 5000 - CVIDF, CVTGF, CVTHF, CVTHD, CVTHG

C

C Result’s sign is the same as that of the first operand.

C-

5000 RESULT NEGATIVE = LIB$EXTV (15,1,%VAL(READ OPS(1)))
GO TO 9000

C+

C 6000 - EMODF, EMODD, EMODG, EMODH

C

C If the signs of the first and third operands are the same, then the
C result’s sign is positive, else it is negative.
C-

6000 SIGN1 = LIBSEXTV (15,1,%VAL(READ OPS(1)))
SIGN2 = LIBSEXTV (15,1,%VAL(READ OPS(3)))
RESULT NEGATIVE = SIGN1 .XOR. SIGN2
GOTO 9000

lib—127

LIBS$ Routines
LIBSDECODE_FAULT

C+

C All code paths merge here to store the result value. We also
C set the PSL appropriately. First, determine which operand is
C the result.

C-

9000 RESULT OP = OP_COUNT
IF (INST CLASS .EQ. 4)

1 RESULT OP = RESULT OP - 1 ! ACBx
C+
C Select result based on datatype and exception type.
C-
IF (OVERFLOW) THEN
CALL LIB$MOVC3 (OP_SIZE,BIGGEST,$VAL(WRITE OPS(RESULT OP)))
ELSE
GO TO (9100,9200,9300,9400), OP DTYPE-(LIBSK DCFTYP F-1)
C+
C Should never get here. Resignal original exception.
C-
FIXUP ACTION = SS$ RESIGNAL
RETURN
C+
C 9100 - F_floating result
C-
9100 CALL LIB$MOVC3 (OP_SIZE,SMALL F,$VAL(WRITE OPS(RESULT OP)))
GOTO 9500
C+
C 9200 - D_floating result
C-
9200 CALL LIB$MOVC3 (OP_SIZE,SMALL D,%VAL(WRITE OPS(RESULT OP)))
GOTO 9500
C+
C 9300 - G_floating result
C-
9300 CALL LIB$MOVC3 (OP_SIZE,SMALL G,%VAL(WRITE OPS(RESULT OP)))
GOTO 9500
C+
C 9400 - H_floating result
C-
9400 CALL LIB$MOVC3 (OP_SIZE,SMALL H,$VAL(WRITE OPS(RESULT OP)))
GOTO 9500
9500 END IF
C+

C Modify the PSL to reflect the stored result. If the result was

C negative, set the N bit. Clear the V (overflow) and Z (zero) bits.
C If the instruction was an ACBx, leave the C (carry) bit unchanged,
C otherwise clear it.

C-
IF (RESULT NEGATIVE) THEN
PSL = IBSET (PSL,PSL$V N) ! Set N bit
ELSE

lib—128

C+
C
C-

C+
C
C-

C+

LIBS$ Routines
LIBSDECODE_FAULT

PSL = IBCLR (PSL,PSL$V N) ! Clear N bit
END IF
PSL = IBCLR (PSL,PSL$V V) ! Clear V bit
PSL = IBCLR (PSL,PSLSV Z) ! Clear 7 bit
IF (INST CLASS .NE. 4)
1 PSL = IBCLR (PSL,PSL$V C) ! Clear C bit if not ACBx

Set the sign of result.

IF (RESULT NEGATIVE)
1 CALL LIB$INSV (1,15,1,%VAL(WRITE OPS(RESULT OP)))

Fixup is complete. Return to LIBS$DECODE_FAULT.

FIXUP_ACTION = SS$_CONTINUE
RETURN
END

C Function which compares two floating values. It returns .TRUE. if
C the first argument is smaller in magnitude than the second.

C-

LOGICAL*4 FUNCTION SMALLER(NBYTES,VAL1,VAL2)

INTEGER*4 NBYTES ! Number of bytes in values
INTEGER*2 VAL1(*),VAL2(*) ! Floating values to compare
INTEGER*4 WORDA,WORDB

SMALLER = .TRUE. ! Initially return true

Zero extend to a longword for unsigned compares.
Compare first word without sign bit.

WORDA = IBCLR(ZEXT(VAL1(1)),15)
WORDB = IBCLR(ZEXT(VAL2(1)),15)
IF (WORDA .LT. WORDB) RETURN

DO I=2,NBYTES/2

WORDA = ZEXT(VALI(I))

WORDB = ZEXT(VAL2(I))

IF (WORDA .LT. WORDB) RETURN
END DO

SMALLER = .FALSE. ! VAL]1 not smaller than VAL2
RETURN
END

lib—129

LIBS$ Routines
LIBSDEC OVER

LIBSDEC_OVER
Enable or Disable Decimal Overflow Detection

Format

Returns

Argument

Description

lib—130

The Enable or Disable Decimal Overflow Detection routine enables or disables
decimal overflow detection for the calling routine activation. The previous decimal
overflow setting is returned. f

This routine is available on OpenVMS Alpha and 164 systems in translated form
and is applicable to translated VAX images only.

LIBSDEC_OVER new-setting

OpenVMS usage: longword_unsigned

type: longword integer (unsigned)
access: write only
mechanism: by value

The old decimal overflow enable setting (the previous contents of SF$W_
PSW[PSW$V_DV] in the caller’s frame).

new-setting

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

New decimal overflow enable setting. The new-setting argument is the address
of an unsigned longword that contains the new decimal overflow enable setting.
Bit 0 set to 1 means enable; bit 0 set to 0 means disable.

The caller’s stack frame is modified by this routine.

A call to LIB§DEC_OVER affects only the current routine activation and does not
affect any of its callers or any routines that it may call. However, the setting does
remain in effect for any routines that are subsequently entered through a JSB
entry point.

T No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

Example

LIBS$ Routines
LIBSDEC OVER

DECOVF: ROUTINE OPTIONS (MAIN);

DECLARE LIB$DEC OVER ENTRY (FIXED BINARY (7)) /* Address of byte for
/* enable/disable
/* setting */
RETURNS (FIXED BINARY (31)); /* 0ld setting */

DECLARE DISABLE FIXED BINARY (7) INITIAL (0) STATIC READONLY;
DECLARE RESULT FIXED BINARY (31);
DECLARE (A,B) FIXED DECIMAL (4,2);

ON FIXEDOVERFLOW PUT SKIP LIST ('Overflow’);

RESULT = LIBSDEC OVER (DISABLE); /* Disable recognition of decimal
/* overflow in this block */
A =99.99;
B=A+ 2;
PUT SKIP LIST ('In MAIN');
BEGIN;
B=A+ 2;
PUT LIST ('In BEGIN block');
CALL Q;
Q: ROUTINE;
B=A+ 2;
PUT LIST (‘In Q');
END Q;

END /* Begin */;
END DECOVF;

This PL/I program shows how to use LIB§DEC_OVER to enable or disable the
detection of decimal overflow. Note that in PL/I, disabling decimal overflow
using this routine causes the condition to be disabled only in the current block;

descendent blocks will enable the condition unless this routine is called in each
block.

lib—131

LIBS$ Routines
LIB$DELETE_FILE

LIBSDELETE_FILE
Delete One or More Files

Format

Returns

Arguments

lib—132

The Delete One or More Files routine deletes one or more files. The specification
of the files to be deleted may include wildcards.

LIB$DELETE_FILE is similar in function to the DCL command DELETE.

LIBSDELETE_FILE filespec [,default-filespec] [,related-filespec] [,user-success-procedure]
[,user-error-procedure] [,user-confirm-procedure] [,user-specified-argument]
[,resultant-name] [,file-scan-context] [,flags]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

filespec

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

String containing the OpenVMS Record Management Services (RMS) file
specification of the files to be deleted. The filespec argument is the address

of a descriptor pointing to the file specification. If the specification includes
wildcards, each file that matches the specification is deleted. If running on Alpha
or 164 and flag LIB$M_FIL_LONG_NAMES is set, the string must not contain
more characters than specified by NAML$C_MAXRSS, otherwise the string must
not contain more than 255 characters. Any string class is supported.

default-filespec
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Default file specification of the files to be deleted. The default-filespec argument
is the address of a descriptor pointing to the default file specification. This is an
optional argument; if the argument is omitted, the default is the null string. Any
string class is supported.

See the OpenVMS Record Management Services Reference Manual for information
about default file specifications.

related-filespec
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

LIBS$ Routines
LIB$DELETE_FILE

Related file specification of the files to be deleted. The related-filespec argument
is the address of a descriptor pointing to the related file specification. Any string

class is supported. This is an optional argument; if the argument is omitted, the

default is the null string.

Input file parsing is used. See the OpenVMS Record Management Services
Reference Manual for information on related file specifications and input file
parsing.

The related file specification is useful when you are processing lists of file
specifications. Unspecified portions of the file specification are inherited from the
last file processed.

user-success-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User-supplied success routine that LIBSDELETE_FILE calls after it successfully
deletes a file.

The success routine can be used to display a log of the files that were deleted. For
more information on the success routine, see Call Format for a Success Routine
in the Description section.

user-error-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User-supplied error routine that LIBSDELETE_FILE calls when it detects an
error.

The error routine returns a success/fail value that LIB§DELETE_FILE uses to
determine if more files should be processed. For more information on the error
routine, see Call Format for an Error Routine in the Description section.

user-confirm-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User-supplied confirm routine that LIBSDELETE_FILE calls before each file is
deleted. The value returned by the confirm routine determines whether or not
the file will be deleted. The confirm routine can be used to select specific files
for deletion based on criteria such as expiration date, size, and so on. For more
information about the confirm routine, see Call Format for a Confirm Routine in
the Description section.

user-specified-argument
OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

lib—133

LIBS$ Routines
LIB$DELETE_FILE

lib—134

User-supplied argument that LIBSDELETE_FILE passes to the error, success,
and confirm routines each time they are called. Whatever mechanism is used to
pass user-specified-argument to LIBSDELETE_FILE is also used to pass it to
the routines. This is an optional argument; if the argument is omitted, zero is
passed by value.

resultant-name
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

String into which LIB§DELETE_FILE writes the RMS resultant file specification
of the last file processed. The resultant-name argument is the address of a
descriptor pointing to the resultant name.

If present, resultant-name is used to store the file specification passed to the
user-supplied routines, instead of a default class S, type T string. Therefore, this
argument should be specified when the user-supplied routines are used and those
routines require a descriptor type other than class S, type T. Any string class is
supported.

If you specify one or more of the user-supplied action routines, the descriptor used
to pass resultant-name must be:

e Of the same class as the descriptor required by the filespec argument of any
action routines. For example, VAX Ada requires a class SB descriptor for
string arguments to Ada routines but will use a class A descriptor by default
when calling external routines. Refer to your language manual to determine
the proper descriptor class to use.

e (Alpha and I64 only) Of the same form as the descriptor required by the
filespec argument of all action routines. For example, if the filespec
argument of an action routine uses a 64-bit descriptor, then the resultant-
name argument must also use a 64-bit descriptor.

file-scan-context
OpenVMS usage: context

type: longword (unsigned)
access: modify
mechanism: by reference

Context for deleting a list of file specifications. The file-scan-context argument
is the address of a longword containing the context value.

You must initialize the file scan context to zero before the first of a series of calls
to LIB$DELETE_FILE. LIB$FILE_SCAN uses this context to retain the file
context for multiple input files. You must specify this context only when you are
dealing with multiple input files, as the DCL command DELETE does. You may
deallocate the context allocated by LIB$FILE_SCAN by calling LIB$FILE_SCAN_
END after all calls to LIBSDELETE_FILE have been completed.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Description

LIBS$ Routines
LIB$DELETE_FILE

User flags. The flags argument is the address of an unsigned longword
containing the user flags.

The flag bits and their corresponding symbols are described in the following table:

Bit Symbol Description
Reserved to HP.
1 Reserved to HP.

2 LIB$M_FIL_LONG_NAMES (Alpha or 164 only) If set, LIB§DELETE_
FILE can process file names with a
maximum length of NAML$C_MAXRSS.
If clear, LIB$DELETE_FILE can process
file specifications with a maximum length
of 255 (default).

This Description section is divided into the following parts:
e (Call Format for a Success Routine

e (Call Format for an Error Routine

e (Call Format for a Confirm Routine

Call Format for a Success Routine

The success routine is called only if the user-success-procedure argument was
specified in the LIB§DELETE_FILE argument list.

The calling format of a success routine is as follows:

user-success-procedure filespec [,user-specified-argument]

filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the file being deleted. The filespec argument
is the address of a descriptor pointing to the file specification. If the resultant-
name argument was specified, it is used to pass the string to the success routine.
Otherwise, a class S, type T string is passed. Any string class is supported.

On Alpha and 164 systems, the descriptor specified by each of the action routines
for the filespec argument and the descriptor specified by the LIBSDELETE_FILE
resultant-name argument, if any, must be of the same form. They must all be
32-bit descriptors or all 64-bit descriptors. If you do not specify a resultant-
name argument, then the filespec argument must use a 32-bit descriptor.

user-specified-argument
OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: unspecified

lib—135

LIBS$ Routines
LIB$DELETE_FILE

lib—136

Value of user-specified-argument passed by LIBSDELETE_FILE to the success
routine. The same passing mechanism that was used to pass user-specified-
argument to LIBSDELETE_FILE is used by LIB$DELETE_FILE to pass
user-specified-argument to the success routine. This is an optional argument.
Call Format for an Error Routine

The error routine is called only if the user-error-procedure argument was
specified in the LIBSDELETE_FILE argument list.

The calling format of an error routine is as follows:

user-error-procedure filespec ,rms-sts ,rms-stv ,error-source [,user-specified-argument]

filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String containing the RMS resultant file specification of the file being deleted. If
resultant-name was specified, it is used to pass the string to the error routine.
Otherwise, a class S, type T string is passed. Any string class is supported.

On Alpha and 164 systems, the descriptor specified by each of the action routines
for the filespec argument and the descriptor specified by the LIBSDELETE_FILE
resultant-name argument, if any, must be of the same form. They must all be
32-bit descriptors or all 64-bit descriptors. If you specify no resultant-name
argument, then the filespec argument must use a 32-bit descriptor.

rms-sts

OpenVMS usage: cond_value

type: longword (unsigned)
access: read only
mechanism: by reference

Primary condition code (FAB$L_STS) that describes the error that occurred. The
rms-sts argument is the address of an unsigned longword that contains the
primary condition code.

rms-stv

OpenVMS usage: cond_value

type: longword (unsigned)
access: read only
mechanism: by reference

Secondary condition code (FAB$L_STV) that describes the error that occurred.
The rms-stv argument is the address of an unsigned longword that contains the
secondary condition code.

error-source
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Integer code that indicates the point at which the error was found. The error-
source argument is the address of a longword integer containing the code of the
error source.

LIBS$ Routines
LIB$DELETE_FILE

Possible values for the error code are as follows:
0 Error searching for file specification
1 Error deleting file

user-specified-argument
OpenVMS usage: user_arg

type: unspecified
access: read only
mechanism: unspecified

Value passed to LIB$DELETE_FILE that is then passed to user-error-
procedure using the same passing mechanism that was used to pass it to
LIB$DELETE_FILE. This is an optional argument.

If the error routine returns a success status (bit 0 set), then LIB$DELETE_
FILE continues processing files. If a failure status (bit O clear) is returned, then
processing ceases immediately, and LIBSDELETE_FILE returns with the error
status.

If the user-error-procedure argument is not specified, LIB$DELETE_FILE
returns to its caller the most severe error status encountered while deleting
the files. If the error routine is called for an error, the success status LIB$_

ERRROUCAL is returned.
The error routine is not called for errors related to string copying.

Call Format for a Confirm Routine

The confirm routine is called only if the user-confirm-procedure argument was
specified in the call to LIB§DELETE_FILE.

The calling format of the confirm routine is as follows:

user-confirm-procedure filespec ,fab [,user-specified-argument]

filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the file to be deleted. The filespec argument
is the address of a descriptor pointing to the file specification.

If resultant-name was specified, it is used to pass the string to the confirm
routine. Otherwise, a class S, type T string is passed. Any string class is
supported.

On Alpha and 164 systems, the descriptor specified by each of the action routines
for the filespec argument and the descriptor specified by the LIBSDELETE_FILE
resultant-name argument, if any, must be of the same form. They must all be
32-bit descriptors or all 64-bit descriptors. If you do not specify a resultant-
name argument, then the filespec argument must use a 32-bit descriptor.

fab

OpenVMS usage: fab

type: unspecified
access: read only
mechanism: by reference

lib—137

LIBS$ Routines
LIB$DELETE_FILE

RMS file access block (FAB) that describes the file being deleted. Your program
may perform an RMS $OPEN on the FAB to obtain file attributes to determine
whether the file should be deleted, but it must close the file with $CLOSE before
returning to LIB§DELETE_FILE.

On Alpha and 164 systems, if the LIB$M_FIL_LONG_NAMES FLAGS is set, the
FAB references a NAML block rather than a NAM block. The NAML block
supports the use of long file names with a maximum length of NAML$C_
MAXRSS. See the OpenVMS Record Management Services Reference Manual

for information on NAML blocks.

user-specified-argument
OpenVMS usage: user_arg

type: unspecified
access: read only
mechanism: unspecified

The value of the user-specified-argument argument that LIBSDELETE_FILE
passes to the confirm routine using the same passing mechanism that was used
to pass it to LIB§SDELETE_FILE. This is an optional argument.

If confirm routine returns a success status (bit 0 set), the file is then deleted,;
otherwise, the file is not deleted.

Condition Values Returned

Example

lib—138

SS$_NORMAL Routine successfully completed.

LIB$ ERRROUCAL Success, but an error routine was called. A file
error was encountered, but the error routine was
called to handle the condition.

LIB$INVARG Invalid argument. The flags argument has one
or more undefined bits set.

LIB$_INVFILSPE Invalid file specification. Filespec or default-
filespec is longer than 4095 characters.

LIB$_INVSTRDES Invalid string descriptor. The descriptor for a
string argument was not a valid string descriptor.

LIB$ WRONUMARG Wrong number of arguments. An incorrect

number of arguments was passed to
LIB$DELETE_FILE.

Any condition value returned by LIB$SCOPY_xxx except those condition values
specifying truncation errors.

Any condition value returned by RMS. If user-error-procedure is not specified,
this is the most severe of the RMS errors encountered while deleting the files.

PROGRAM DELETE EXAMPLE (INPUT, OUTPUT);

{t} _ _
{ Declare external function LIB$DELETE FILE. Throughout this
{ example, the user-arg argument is not used.

{-}

LIBS$ Routines
LIB$DELETE_FILE

FUNCTION LIB$DELETE FILE(
FILESPEC: VARYING [A] OF CHAR;
DEFAULT FILESPEC: VARYING [B] OF CHAR;
REL FILESPEC : VARYING [D] OF CHAR;
$IMMED [UNBOUND] ROUTINE SUCCESS ROUTINE
(FILESPEC : VARYING [A] OF CHAR) := $IMMED 0;
$IMMED [UNBOUND] FUNCTION ERROR ROUTINE
(FILESPEC : VARYING [A] OF CHAR; RMS STS, RMS STV : INTEGER)
: BOOLEAN := $IMMED 0; - -
$IMMED [UNBOUND] FUNCTION CONFIRM ROUTINE
(FILESPEC: VARYING [A] OF CHAR): BOOLEAN := $IMMED 0;
VAR USER ARG : [UNSAFE] INTEGER := $IMMED 0;
VAR RESULT NAME : VARYING [C] OF CHAR := $IMMED 0
) : INTEGER; EXTERN;

{+}
{ Declare a routine which will display the names of the files
{ as they are deleted.

{-}
ROUTINE LOG_ROUTINE(FILESPEC : VARYING [A] OF CHAR);
BEGIN
WRITELN('File ', FILESPEC, ' successfully deleted’);
END;
{+}

{ Declare a routine which will notify the user that an error
{ occurred.
{-}
FUNCTION ERR ROUTINE(FILESPEC: VARYING [A] OF CHAR;
RMS STS, RMS STV: INTEGER): BOOLEAN;
BEGIN a
WRITELN('Delete of ', FILESPEC, ' failed ', HEX(RMS STS));
ERR ROUTINE := TRUE; -
END;

{*}
{ Declare a routine which checks to see if the file should be
{ deleted. If the filename contains the string 'XYZ', then it is
{ deleted.
{-}
FUNCTION CONFIRM ROUTINE(FILESPEC: VARYING [A] OF CHAR): BOOLEAN;
BEGIN B
IF INDEX(FILESPEC, 'XY¥z') <> 0
THEN
CONFIRM ROUTINE := TRUE
ELSE B
CONFIRM ROUTINE := FALSE;
END; -

{+}

{ The main program begins here.

{-}

VAR
FILES TO DELETE, RESULTANT NAME : VARYING [255] OF CHAR;
RET STATUS : INTEGER;

lib—139

LIBS$ Routines
LIB$DELETE_FILE

BEGIN

WRITE (’Files to delete: ');

READLN(FILES TO DELETE);

RET STATUS := LIBS$DELETE FILE(

"FILES TO DELETE, '*;’, '’, LOG ROUTINE, ERR ROUTINE,
~ CONFIRM ROUTINE,,RESULTANT NAME);
IF NOT ODD(RET STATUS) -
THEN -
WRITELN('Delete failed. The error was ', HEX(RET STATUS));

END.

This Pascal program prompts the user for file specifications of files to be deleted.
Of those, it deletes only files that contain the string XYZ somewhere in their
resultant file specification. The names of deleted files are displayed.

lib—140

LIBS$ Routines
LIBSDELETE_LOGICAL

LIBSDELETE_LOGICAL
Delete Logical Name

The Delete Logical Name routine requests the calling process’ command
language interpreter (CLI) to delete a supervisor-mode process logical name.
LIB$DELETE_LOGICAL provides the same function as the DCL command

DEASSIGN.
Format
LIBSDELETE_LOGICAL logical-name [,table-name]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
logical-name
OpenVMS usage: logical_name
type: character string
access: read only
mechanism: by descriptor
Logical name to be deleted. The logical-name argument is the address of a
descriptor pointing to this logical name string. The maximum length of a logical
name is 255 characters.
table-name
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor
Name of the table from which the logical name is to be deleted. The table-name
argument is the address of a descriptor pointing to this name string. This is
an optional argument. If the argument is omitted, the LNM$PROCESS table is
used.
Description

LIB$DELETE_LOGICAL requests the calling process’s command language
interpreter (CLI) to delete a supervisor-mode process logical name. If the optional
table-name argument is defined, the logical name is deleted from that table.
Otherwise, the logical name is deleted from the LNM$PROCESS table.

Unlike the system service $DELLOG and $DELLNM, LIB$DELETE_LOGICAL
does not require the caller to be executing in supervisor mode to delete a
supervisor-mode logical name.

This routine is supported for use with the DCL and MCR command language
interpreters.

lib—141

LIBS$ Routines
LIBSDELETE_LOGICAL

This routine does not support the DCL DEFINE and DEASSIGN commands’
special side effect of opening and closing a process-permanent file if the logical
name “SYS$OUTPUT” is specified.

If an image is run directly as a subprocess or as a detached process, there is no
CLI present to perform this function. In that case, the error status LIB$_NOCLI

is returned.

See the HP OpenVMS DCL Dictionary for a description of the DCL command

DEASSIGN.

Condition Values Returned

lib—142

SS$_ACCVIO
SS$ IVLOGNAM
SS$ IVLOGTAB

SS$_NOLOGNAM

SS$_NOPRIV
SS$_NORMAL
SS$_TOOMANYLNAM
LIB$_INVSTRDES

LIB$ NOCLI

LIB$_UNECLIERR

Access violation. The logical name could not be
read.

Invalid logical name. The logical name contained
illegal characters or more than 255 characters.

Invalid logical name table

No logical name match. The logical name was
not defined as a supervisor-mode process logical
name.

No privilege for attempted operation.
Routine successfully completed.
Logical name translation exceeded allowed depth.

Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

No CLI present to perform function. The calling
process did not have a CLI to perform the
function, or the CLI did not support the request
type. Note that an image run as a subprocess or
detached process does not have a CLI.

Unexpected CLI error. The CLI returned an
error status that was not recognized. This error
may be caused by use of a nonstandard CLI. If
this error occurs while using the DCL command
language interpreter, please report the problem
to your HP support representative.

LIBS$ Routines
LIBSDELETE_SYMBOL

LIBSDELETE_SYMBOL
Delete CLI Symbol

Format

Returns

Arguments

The Delete CLI Symbol routine requests the calling process’s command language
interpreter (CLI) to delete an existing CLI symbol.

LIBSDELETE_SYMBOL symbol [,table-type-indicator]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

symbol

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Name of the symbol to be deleted by LIB$DELETE_SYMBOL. The symbol
argument is the address of a descriptor pointing to this symbol string. The
symbol name is converted to uppercase, and trailing blanks are removed before
use.

Symbol must begin with a letter, a digit, a dollar sign ($), a hyphen (-), or an
underscore (_). The maximum length of symbol is 255 characters.

table-type-indicator
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Indicator of the table that contains the symbol to be deleted. The table-type-
indicator argument is the address of a signed longword integer that is this table
indicator.

If table-type-indicator is omitted, the local symbol table is used. The following
are possible values for the table-type-indicator argument:

Symbolic Name Value Table Used
LIB$K CLI LOCAL _SYM 1 Local symbol table
LIB$K_CLI_GLOBAL_SYM 2 Global symbol table

lib—143

LIBS$ Routines
LIBSDELETE_SYMBOL

Description

LIB$DELETE_SYMBOL is supported for use with the DCL CLI. The error status
LIB$_NOCLI is returned if LIBSDELETE_SYMBOL is used with the MCR CLI
or called from an image run directly as a subprocess or as a detached process.

LIB$K_CLI_LOCAL_SYM and LIB$K_CLI_GLOBAL_SYM are defined in symbol
libraries supplied by HP (macro or module name $LIBCLIDEF) and as global
symbols.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$ FATERRLIB Fatal internal error. An internal consistency
check has failed. This usually indicates an

internal error in the Run-Time Library and
should be reported to HP.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

LIB$_INVARG Invalid argument. The value of table-type-
indicator was invalid.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

LIB$_INVSYMNAM Invalid symbol name. The symbol name

contained more than 255 characters or did
not begin with a letter, a digit, a dollar sign, a
hyphen, or an underscore.

LIB$_NOCLI No CLI present to perform the function. The
calling process did not have a CLI to perform the
function, or the CLI did not support the request
type. Note that an image run as a subprocess or
detached process does not have a CLI.

LIB$ NOSUCHSYM No such symbol. The symbol was not defined.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an
error status that was not recognized. This error
may be caused by use of a nonstandard CLI. If
this error occurs while using the DCL command
language interpreter, please report the problem
to your HP support representative.

lib—144

LIBS$ Routines
LIBSDELETE_VM_ZONE

LIBSDELETE_VM_ZONE
Delete Virtual Memory Zone

Format

Returns

Argument

Description

The Delete Virtual Memory Zone routine deletes a zone from the 32-bit virtual
address space and returns all pages on VAX systems or pagelets on Alpha and 164
systems owned by the zone to the processwide 32-bit page pool. T

LIBSDELETE_VM_ZONE zone-id

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

zone-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id is the address of a longword that contains the
identifier of a zone created by a previous call to LIBSCREATE_VM_ZONE or
LIB$CREATE_USER_VM_ZONE.

LIB$DELETE_VM_ZONE deletes a zone and returns all pages on VAX systems
or pagelets on Alpha and 164 systems owned by the zone to the processwide pool
managed by LIBSGET_VM_PAGE. The pages or pagelets are then available for
reallocation by later calls to LIB$GET_VM or LIB$GET_VM_PAGE.

It takes less time to free memory in a single operation by calling LIB§DELETE_
VM_ZONE than to individually account for and free every block of memory that
was allocated by calling LIBSGET_VM.

You must ensure that your program is no longer using any of the memory in the
zone before you call LIBSDELETE_VM_ZONE. Your program must not do any
further operations on the zone after you call LIBSDELETE_VM_ZONE.

If you specified deallocation filling when you created the zone, LIBSDELETE_
VM_ZONE will fill all of the allocated blocks that are freed.

If the zone you are deleting was created using the LIBSCREATE_USER_VM_
ZONE routine, then you must have an appropriate action routine for the delete
operation. That is, in your call to LIBSCREATE_USER_VM_ZONE, you must
have specified a user-delete-procedure.

7 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib—145

LIBS$ Routines
LIBSDELETE_VM_ZONE

Condition Values Returned

SS$ NORMAL
LIB$ BADBLOADR

lib—146

Routine successfully completed.

An invalid zone-id argument or a corrupted
zone.

LIBS$ Routines
LIBSDELETE_VM_ZONE_64 (Alpha and 164 Only)

LIBSDELETE_VM_ZONE_64 (Alpha and 164 Only)
Delete Virtual Memory Zone

Format

Returns

Argument

Description

The Delete Virtual Memory Zone routine deletes a zone from the 64-bit virtual
address space and returns all Alpha and 164 system pagelets owned by the zone
to the processwide 64-bit page pool.

LIBSDELETE_VM_ZONE_64 zone-id

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

zone-id

OpenVMS usage: identifier

type: quadword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id is the address of a quadword that contains the
identifier of a zone created by a previous call to LIBSCREATE_VM_ZONE_64 or
LIB$CREATE_USER_VM_ZONE_64.

LIB$DELETE_VM_ZONE_64 deletes a zone and returns all pagelets on Alpha
and 164 systems owned by the zone to the processwide pool managed by
LIB$GET_VM_PAGE_64. The pagelets are then available for reallocation by
later calls to LIB§GET VM _64 or LIBS§GET VM _PAGE 64.

It takes less time to free memory in a single operation by calling LIB§DELETE_
VM_ZONE_64 than to individually account for and free every block of memory
that was allocated by calling LIB§GET_VM_64.

You must ensure that your program is no longer using any of the memory in the
zone before you call LIBSDELETE_VM_ZONE_64. Your program must not do
any further operations on the zone after you call LIB§DELETE_VM_ZONE_64.

If you specified deallocation filling when you created the zone, LIBSDELETE_
VM_ZONE_64 will fill all of the allocated blocks that are freed.

If the zone you are deleting was created using the LIBSCREATE_USER_VM_
ZONE_64 routine, then you must have an appropriate action routine for the
delete operation. That is, in your call to LIBSCREATE_USER_VM_ZONE_64,
you must have specified a user-delete-procedure.

lib—147

LIBS$ Routines
LIBSDELETE_VM_ZONE_64 (Alpha and 164 Only)

Condition Values Returned

SS$ NORMAL Routine successfully completed.

LIB$_BADBLOADR An invalid zone-id argument or a corrupted
zone.

lib—148

LIBS$ Routines
LIBSDIGIT_SEP

LIBSDIGIT_SEP
Get Digit Separator Symbol

Format

Returns

Arguments

Description

The Get Digit Separator Symbol routine returns the system’s digit separator
symbol.

LIBSDIGIT_SEP digit-separator-string [,resultant-length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

digit-separator-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Digit separator symbol returned by LIB$DIGIT_SEP. The digit-separator-string
argument is the address of a descriptor pointing to the digit separator.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Number of characters written into digit-separator-string, not counting padding
in the case of a fixed-length string. The resultant-length argument is the
address of an unsigned word containing the length of the digit separator symbol.
If the input string is truncated to the size specified in the digit-separator-string
descriptor, resultant-length is set to this size. Therefore, resultant-length can
always be used by the calling program to access a valid substring of digit-
separator-string.

LIB$DIGIT_SEP returns the symbol that is used to separate groups of three
digits in the integer part of a number, for readability. A common digit separator
is a comma (,) as in 3,006,854.

LIB$DIGIT_SEP attempts to translate the logical name SYS$DIGIT_SEP as

a process, group, or system logical name. If the translation fails, LIB§DIGIT_
SEP returns a comma (,), the United States digit separator. If the translation
succeeds, the text produced is returned. Thus, a system manager can define
SYS$DIGIT_SEP as a systemwide logical name to provide a default for all users,
and an individual user with a special need can define SYS$DIGIT_SEP as a
process logical name to override the default symbol. For example, you may want
to use the European digit separator, the period (.).

lib—149

LIBS$ Routines
LIBSDIGIT_SEP

BASIC implicitly uses LIB$DIGIT_SEP.

Condition Values Returned

Example

lib—150

SS$_ NORMAL Routine successfully completed.
LIB$ FATERRLIB Fatal internal error. An internal consistency
check has failed. This usually indicates an

internal error in the Run-Time Library and
should be reported to HP.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

LIB$_STRTRU Successfully completed, but the digit separator

string was truncated.

PROGRAM DIGIT SEP(INPUT, OUTPUT);

{+}

{ This program uses LIBS$DIGIT SEP to return current

{ value of SYSSDIGIT SEP.

{-}

routine LIBSDIGIT SEP(%DESCR DIGIT SEPSTR : VARYING [A]
OF CHAR; %REF OUT_LEN : INTEGER); EXTERN;

VAR
SEPARATOR : VARYING [256] OF CHAR;
LENGTH : INTEGER;

BEGIN
LIB$DIGIT SEP(SEPARATOR, LENGTH);
WRITELN('T104',SEPARATOR, '567',SEPARATOR, '934");
END.

This Pascal example demonstrates how to use LIB$DIGIT_SEP. The output
generated by this program is as follows:

104,567,934

LIBS$ Routines
LIBSDISABLE_CTRL

LIBSDISABLE_CTRL
Disable CLI Interception of Control Characters

Format

Returns

Arguments

The Disable CLI Interception of Control Characters routine requests the calling
process’s command language interpreter (CLI) to not intercept the selected
control characters when they are entered during an interactive terminal session.
LIB$DISABLE_CTRL provides the same function as the DCL command SET
NOCONTROL.

LIBSDISABLE_CTRL disable-mask [,old-mask]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

disable-mask
OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask indicating which control characters are not to be intercepted. The
disable-mask argument is the address of an unsigned longword containing this
bit mask.

Each of the 32 bits corresponds to one of the 32 possible control characters. If a
bit is set, the corresponding control character is no longer intercepted by the CLI.
Currently, only bits 20 and 25, corresponding to Ctrl/T and Ctrl/Y, are recognized.

The following mask is defined in symbol libraries supplied by HP to specify the
value of disable-mask:

Symbol Hex Value Function
LIB$M_CLI_CTRLT %X 00100000 Disables Ctrl/T
LIB$M_CLI_CTRLY %X 02000000 Disables Ctrl/Y

If a set bit does not correspond to a character that the CLI can intercept,
LIB$DISABLE_CTRL returns an error.

lib—151

LIBS$ Routines
LIBSDISABLE_CTRL

Description

old-mask

OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Previous bit mask. The old-mask argument is the address of an unsigned
longword into which LIB$DISABLE_CTRL writes the old bit mask. The old bit
mask is of the same form as disable-mask and indicates those control characters
that were previously enabled. It may therefore be given to LIBSENABLE_CTRL
to reinstate the previous condition.

The DCL and MCR CLIs can intercept the Ctrl/Y control character. The DCL
CLI can intercept the Ctrl/T character. See the HP OpenVMS DCL Dictionary for
information on how the DCL CLI processes control characters.

LIB$DISABLE_CTRL is supported for use with the DCL and MCR CLIs. If an
image is run directly as a subprocess or as a detached process, there is no CLI
present to perform this function. In those cases, LIB$DISABLE_CTRL returns
the error status LIB$_NOCLI.

Condition Values Returned

lib—152

SS$ NORMAL Routine successfully completed.

LIB$ INVARG Invalid argument. A bit in disable-mask was
set that did not correspond to a control character
supported by the CLI.

LIB$_NOCLI No CLI present. Either the calling process did
not have a CLI to perform the function, or the
CLI did not support the request type. Note that
an image run as a subprocess or detached process
does not have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an
error status that was not recognized. This error
may be caused by use of a nonstandard CLI. If
this error occurs while using the DCL or MCR
CLIs, please report the problem to your HP
support representative.

LIBS$ Routines
LIBSDO COMMAND

LIBSDO_COMMAND
Execute Command

Format

Returns

Argument

Description

The Execute Command routine stops program execution and directs the command
language interpreter (CLI) to execute a command that you supply as the
argument. If successful, LIB$DO_COMMAND does not return control to the
calling program. Instead, LIB§DO_COMMAND begins execution of the specified
command.

If you want control to return to the caller, use LIB§SPAWN instead.

LIBSDO_COMMAND command-string

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

command-string
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Text of the command that LIB§DO_COMMAND executes. The command-string
argument is the address of a descriptor pointing to the command text. The
maximum length of the command is 255 characters.

LIB$DO_COMMAND terminates your current image and then executes the
contents of command-string as a command. The command is parsed using
normal DCL rules.

LIB$DO_COMMAND is especially useful when you want to execute a CLI
command after your program has finished executing. For example, you could use
the routine to execute a SUBMIT or PRINT command to handle a file that your
program has created.

Because of the following restrictions on LIB§DO_COMMAND, you should be
careful when you incorporate it in your program:

¢ During the call to LIB$DO_COMMAND, the current image exits and control
cannot return to it.

e The text of the command is passed to the current command language
interpreter. Because you can define your own CLI in addition to DCL and
MCR, you must make sure that the command will be handled by the intended
CLI.

lib—153

LIBS$ Routines
LIBSDO COMMAND

e If LIB$DO_COMMAND is called from an image run directly as a subprocess
or detached process, it will not execute correctly, because no CLI is associated
with a subprocess.

LIB$DO_COMMAND is supported for use with the DCL and MCR CLIs. If an
image is run directly as a subprocess or as a detached process, there is no CLI
present to perform this function. In those cases, the error status LIB$_NOCLI is

returned. Note that the command can execute an indirect file using the at sign
(@) feature of DCL.

Condition Values Returned

Example

lib—154

LIB$_INVARG Invalid argument. command-string was more
than 255 characters.
LIB$_NOCLI No CLI present. The calling process did not have

a CLI to perform the function, or the CLI did not
support the request type. Note that an image
run as a subprocess or detached process does not
have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an
error status that was not recognized. This error
may be caused by use of a nonstandard CLI. If
this error occurs while using the DCL or MCR
CLIs, please report the problem to your HP
support representative.

PROGRAM DO_COMMAND (INPUT, OUTPUT);

{+}

{ This example uses LIBSDO_COMMAND to execute
{ any DCL command that is entered by the user
{ at the prompt.

{-}

PROCEDURE LIB$DO COMMAND (CMDTXT : VARYING [A] OF CHAR);
EXTERN;

VAR
COMMAND : VARYING [256] OF CHAR;

BEGIN

WRITELN ('ENTER THE COMMAND YOU WANT TO EXECUTE: ’);
READLN (COMMAND) ;
LIB$DO_COMMAND (COMMAND) ;

END.

This Pascal program shows how to call LIBSDO_COMMAND. An example of the
output of this program is as follows:
$ RUN DO COMMAND

ENTER THE COMMAND YOU WANT TO EXECUTE: SHOW TIME
30-MAY-2000 14:07:28

LIBS$ Routines
LIB$EDIV

LIBSEDIV

Extended-Precision Divide

Format

Returns

Arguments

The Extended-Precision Divide routine performs extended-precision division.
LIB$EDIV makes the VAX EDIV instruction available as a callable routine. !

LIB$EDIV longword-integer-divisor ,quadword-integer-dividend ,longword-integer-quotient ,remainder

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

longword-integer-divisor
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Divisor. The longword-integer-divisor argument is the address of a signed
longword integer containing the divisor.

quadword-integer-dividend
OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only
mechanism: by reference

Dividend. The quadword-integer-dividend argument is the address of a signed
quadword integer containing the dividend.

longword-integer-quotient
OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by reference

Quotient. The longword-integer-quotient argument is the address of a signed
longword integer containing the quotient.

remainder

OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only

mechanism: by reference

Remainder. The remainder argument is the address of a signed longword
integer containing the remainder.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib—155

LIBS$ Routines
LIB$EDIV

Condition Values Returned

SS$ NORMAL Normal successful operation.

SS$_INTDIV Integer divide by zero. The quotient is replaced
by bits 31:0 of the dividend, and the remainder is
replaced by zero.

SS$_INTOVF Integer overflow. The quotient is replaced by
bits 31:0 of the dividend, and the remainder is
replaced by zero.

Example
c+
C This Fortran program demonstrates how to use LIBSEDIV.
C-
INTEGER DIVISOR,DIVIDEND(2),QUOTIENT,REMAINDER
c+

C Find the quotient and remainder of 4600387192 divided by 4096.
C Because 4600387192 is too large to store as a longword, use LIBSEDIV.
C-

DIVISOR = 4096

C+

C The dividend must be represented as a quadword. To do this use a vector
C of length 2. The first element is the low-order longword, and the second
C element is the high-order longword.

C Now, 4600387192 = '00000000112345678'x. So,

C-
DIVIDEND(1) = '12345678'X
DIVIDEND(2) = '00000001'X
C+
C Compute the quotient and remainder of 4600387192 divided by 4096.
C-

RETURN = LIBSEDIV(DIVISOR,DIVIDEND,QUOTIENT,REMAINDER)
TYPE *,’The longword integer quotient of 4600387192/4096 is:’

TYPE *,' " ,QUOTIENT

TYPE *,’The longword integer remainder of 4600387192/4096 is:’
TYPE *,' ", REMAINDER

END

This Fortran example demonstrates how to call LIB§EDIV. The output generated
by this program is as follows:

The longword integer quotient of 4600387192/4096 is:
1123141

The longword integer remainder of 4600387192/4096 is:
1656

lib—156

LIBS$ Routines
LIBSEMODD

LIBSEMODD
Extended Multiply and Integerize Routine for D-Floating-Point Values

Format

Returns

Arguments

The Extended Multiply and Integerize routine (D-Floating-Point Values) allows
higher-level language users to perform accurate range reduction of D-floating
arguments.

On Alpha and 164 systems, D-floating-point values are not supported in full
precision in native OpenVMS Alpha and 164 programs. They are precise to 56
bits on VAX systems, 53 or 56 bits in translated VAX images, and 53 bits in
native OpenVMS Alpha and 164 programs.

LIBSEMODD floating-point-multiplier ,multiplier-extension floating-point-multiplicand ,integer-portion
[fractional-portion

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

floating-point-multiplier
OpenVMS usage: floating point

type: D_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is a D-floating number.

multiplier-extension
OpenVMS usage: byte_unsigned

type: byte (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument
is an unsigned byte.

floating-point-multiplicand
OpenVMS usage: floating point

type: D_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is a D-floating
number.

lib—157

LIBS$ Routines

LIBSEMODD

Description

integer-portion
OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address
of a signed longword integer containing the integer portion of the result.

fractional-portion
OpenVMS usage: floating_point

type: D_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is a
D-floating number.

The floating-point multiplier extension operand (second operand) is concatenated
with the floating-point multiplier (first operand) to gain x additional low-order
fraction bits. The multiplicand is multiplied by the extended multiplier. After
multiplication, the integer portion is extracted, and a y-bit floating-point number
is formed from the fractional part of the product by truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a
fraction field of y bits. With respect to the result as the sum of an integer and
fraction of the same sign, the integer operand is replaced by the integer part of
the result and the fraction operand is replaced by the rounded fractional part of
the result.

The values of x and y are as follows:

Routine X Bits y

LIBSEMODD 8 7:0 64

Condition Values Returned

lib—158

SS$_NORMAL Routine successfully completed.

SS$_FLTUND Floating underflow. The integer and fraction
operands are replaced by zero (0).

SS$_INTOVF Integer overflow. The integer operand is replaced
by the low-order bits of the true result. Floating
overflow is indicated by SS$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction
operands are unaffected.

LIBS$ Routines
LIBSEMODF

LIBSEMODF
Extended Multiply and Integerize Routine for F-Floating-Point Values

Format

Returns

Arguments

The Extended Multiply and Integerize routine (F-Floating-Point Values) allows
higher-level language users to perform accurate range reduction of F-floating
arguments.

LIBSEMODF floating-point-multiplier ,multiplier-extension ,floating-point-multiplicand ,integer-portion
[fractional-portion

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

floating-point-multiplier
OpenVMS usage: floating_point

type: F_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is the address of an
F-floating number containing the number.

multiplier-extension
OpenVMS usage: byte_unsigned

type: byte (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument
is the address of an unsigned byte containing these multiplier extension bits.

floating-point-multiplicand
OpenVMS usage: floating_point

type: F_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is an F-floating
number.

integer-portion
OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address
of a signed longword integer containing the integer portion of the result.

lib—159

LIBS$ Routines

LIBSEMODF

Description

fractional-portion
OpenVMS usage: floating_point

type: F_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is the
address of an F-floating number containing the fractional portion of the result.

LIB$EMODF allows higher-level language users to perform accurate range
reduction of F-floating arguments.

The floating-point multiplier-extension operand (second operand) is
concatenated with the floating-point-multiplier (first operand) to gain x
additional low-order fraction bits. The multiplicand is multiplied by the extended
multiplier. After multiplication, the integer portion is extracted and a y-bit
floating-point number is formed from the fractional part of the product by
truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a
fraction field of y bits. With respect to the result as the sum of an integer and
fraction of the same sign, the integer operand is replaced by the integer part of
the result and the fraction operand is replaced by the rounded fractional part of
the result.

The values of x and y are as follows:

Condition Values Returned

lib—160

Routine X Bits y

LIB$EMODF 8 7:0 32

SS$_NORMAL Routine successfully completed.

SS$_FLTUND Floating underflow. The integer and fraction
operands are replaced by zero.

SS$_INTOVF Integer overflow. The integer operand is replaced

by the low-order bits of the true result. Floating
overflow is indicated by SS$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction
operands are unaffected.

LIBS$ Routines
LIBSEMODG

LIBSEMODG
Extended Multiply and Integerize Routine for G-Floating-Point Values

Format

Returns

Arguments

The Extended Multiply and Integerize routine (G-Floating-Point Values) allows
higher-level language users to perform accurate range reduction of G-floating
arguments.

LIBSEMODG floating-point-multiplier ,multiplier-extension floating-point-multiplicand ,integer-portion
[fractional-portion

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

floating-point-multiplier
OpenVMS usage: floating_point

type: G_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is a G-floating number.

multiplier-extension
OpenVMS usage: word_unsigned

type: word (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument
is an unsigned word.

floating-point-multiplicand
OpenVMS usage: floating_point

type: G_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is a G-floating
number.

integer-portion
OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address
of a signed longword integer containing the integer portion of the result.

lib—161

LIBS$ Routines

LIBSEMODG

Description

fractional-portion
OpenVMS usage: floating_point

type: G_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is a
G-floating number.

The floating-point multiplier extension operand (second operand) is concatenated
with the floating-point multiplier (first operand) to gain x additional low-order
fraction bits. The multiplicand is multiplied by the extended multiplier. After
multiplication, the integer portion is extracted and a y-bit floating-point number
is formed from the fractional part of the product by truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a
fraction field of y bits. With respect to the result as the sum of an integer and
fraction of the same sign, the integer operand is replaced by the integer part of
the result and the fraction operand is replaced by the rounded fractional part of
the result.

The values of x and y are as follows:

Routine X Bits y

LIBSEMODG 11 15:5 64

Condition Values Returned

lib—162

SS$_ NORMAL Routine successfully completed.

SS$_FLTUND Floating underflow. The integer and fraction
operands are replaced by zero.

SS$_INTOVF Integer overflow. The integer operand is replaced
by the low-order bits of the true result. Floating
overflow is indicated by SS$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction
operands are unaffected.

LIBS$ Routines
LIBSEMODH

LIBSEMODH
Extended Multiply and Integerize Routine for H-Floating-Point Values

Format

Returns

Arguments

On OpenVMS VAX systems, the Extended Multiply and Integerize routine (H-
Floating-Point Values) allows higher-level language users to perform accurate
range reduction of H-floating arguments.

This routine is not available to native OpenVMS Alpha programs but is available
to translated VAX images.

LIBSEMODH floating-point-multiplier ,multiplier-extension floating-point-multiplicand ,integer-portion
[fractional-portion

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

floating-point-multiplier
OpenVMS usage: floating_point

type: H_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is an H-floating
number.

multiplier-extension
OpenVMS usage: word_unsigned

type: word (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument
is an unsigned word.

floating-point-multiplicand
OpenVMS usage: floating_point

type: H_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is an H-floating
number.

lib—163

LIBS$ Routines

LIBSEMODH

Description

integer-portion
OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address
of a signed longword integer containing the integer portion of the result.

fractional-portion
OpenVMS usage: floating_point

type: H_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is an
H-floating number.

The floating-point multiplier extension operand (second operand) is concatenated
with the floating-point multiplier (first operand) to gain x additional low-order
fraction bits. The multiplicand is multiplied by the extended multiplier. After
multiplication, the integer portion is extracted and a y-bit floating-point number
is formed from the fractional part of the product by truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a
fraction field of y bits. With respect to the result as the sum of an integer and
fraction of the same sign, the integer operand is replaced by the integer part of
the result and the fraction operand is replaced by the rounded fractional part of
the result.

The values of x and y are as follows:

Routine X Bits y

LIBSEMODH 15 15:1 128

Condition Values Returned

lib—164

SS$_NORMAL Routine successfully completed.

SS$_FLTUND Floating underflow. The integer and fraction
operands are replaced by zero.

SS$_INTOVF Integer overflow. The integer operand is replaced
by the low-order bits of the true result. Floating
overflow is indicated by SS$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction
operands are unaffected.

LIBS$ Routines
LIBSEMODS (Alpha and 164 Only)

LIBSEMODS (Alpha and 164 Only)
Extended Multiply and Integerize Routine for S-Floating-Point Values

Format

Returns

Arguments

The Extended Multiply and Integerize routine (IEEE S-Floating-Point Values)
allows higher-level language users to perform accurate range reduction of IEEE
S-floating arguments.

LIBSEMODS floating-point-multiplier ,multiplier-extension floating-point-multiplicand ,integer-portion
[fractional-portion

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

floating-point-multiplier
OpenVMS usage: floating_point

type: IEEE S_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is the address of an
IEEE S-floating number containing the number.

multiplier-extension
OpenVMS usage: byte_unsigned

type: byte (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument
is the address of an unsigned byte containing these multiplier extension bits.

floating-point-multiplicand
OpenVMS usage: floating_point

type: IEEE S_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is an IEEE
S-floating number.

integer-portion
OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address
of a signed longword integer containing the integer portion of the result.

lib—165

LIB$ Routines
LIBSEMODS (Alpha and 164 Only)

Description

fractional-portion
OpenVMS usage: floating_point

type: IEEE S_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is the
address of an IEEE S-floating number containing the fractional portion of the
result.

LIB$EMODS allows higher-level language users to perform accurate range
reduction of IEEE S-floating arguments.

The floating-point multiplier-extension operand (second operand) is
concatenated with the floating-point-multiplier (first operand) to gain x
additional low-order fraction bits. The multiplicand is multiplied by the extended
multiplier. After multiplication, the integer portion is extracted and a y-bit
floating-point number is formed from the fractional part of the product by
truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a
fraction field of y bits. With respect to the result as the sum of an integer and
fraction of the same sign, the integer operand is replaced by the integer part of
the result and the fraction operand is replaced by the rounded fractional part of
the result.

The values of x and y are as follows:

Routine X Bits y
LIB$EMODS 8 7:0 32

Condition Values Returned

lib—166

SS$ NORMAL Routine successfully completed.

SS$_FLTUND Floating underflow. The integer and fraction
operands are replaced by zero.

SS$_INTOVF Integer overflow. The integer operand is replaced
by the low-order bits of the true result. Floating
overflow is indicated by SS$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction
operands are unaffected.

LIBS$ Routines
LIBSEMODT (Alpha and 164 Only)

LIBSEMODT (Alpha and 164 Only)
Extended Multiply and Integerize Routine for T-Floating-Point Values

Format

Returns

Arguments

The Extended Multiply and Integerize routine (IEEE T-Floating-Point Values)
allows higher-level language users to perform accurate range reduction of IEEE
T-floating arguments.

LIBSEMODT floating-point-multiplier ,multiplier-extension ,floating-point-multiplicand ,integer-portion
[fractional-portion

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

floating-point-multiplier
OpenVMS usage: floating_point

type: IEEE T floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is the address of an
IEEE T-floating number containing the number.

multiplier-extension
OpenVMS usage: byte_unsigned

type: byte (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument
is the address of an unsigned byte containing these multiplier extension bits.

floating-point-multiplicand
OpenVMS usage: floating_point

type: IEEE T_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is an IEEE
T-floating number.

integer-portion
OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address
of a signed longword integer containing the integer portion of the result.

lib—167

LIB$ Routines
LIBSEMODT (Alpha and 164 Only)

Description

fractional-portion
OpenVMS usage: floating_point

type: IEEE T_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is the
address of an IEEE T-floating number containing the fractional portion of the
result.

LIB$EMODT allows higher-level language users to perform accurate range
reduction of IEEE T-floating arguments.

The floating-point multiplier-extension operand (second operand) is
concatenated with the floating-point-multiplier (first operand) to gain x
additional low-order fraction bits. The multiplicand is multiplied by the extended
multiplier. After multiplication, the integer portion is extracted and a y-bit
floating-point number is formed from the fractional part of the product by
truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a
fraction field of y bits. With respect to the result as the sum of an integer and
fraction of the same sign, the integer operand is replaced by the integer part of
the result and the fraction operand is replaced by the rounded fractional part of
the result.

The values of x and y are as follows:

Routine X Bits y
LIB$EMODT 11 11:0 64

Condition Values Returned

lib—168

SS$ NORMAL Routine successfully completed.

SS$_FLTUND Floating underflow. The integer and fraction
operands are replaced by zero.

SS$_INTOVF Integer overflow. The integer operand is replaced
by the low-order bits of the true result. Floating
overflow is indicated by SS$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction
operands are unaffected.

LIBS$ Routines
LIBSEMUL

LIBSEMUL

Extended-Precision Multiply

Format

Returns

Arguments

The Extended-Precision Multiply routine performs extended-precision
multiplication. LIB§EMUL makes the VAX EMUL instruction available as a
callable routine. !

LIBSEMUL longword-integer-multiplier ,longword-integer-multiplicand ,addend ,product

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

longword-integer-multiplier
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Multiplier used by LIBSEMUL in the extended-precision multiplication. The
longword-integer-multiplier argument is the address of a signed longword
integer containing the multiplier.

longword-integer-multiplicand
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Multiplicand used by LIBSEMUL in the extended-precision multiplication. The
longword-integer-multiplicand argument is the address of a signed longword
integer containing the multiplicand.

addend

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Addend used by LIBSEMUL in the extended-precision multiplication. The
addend argument is the address of a signed longword integer containing the
addend.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib—169

LIBS$ Routines

LIBSEMUL

Description

product

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: write only

mechanism: by reference

Product of the extended-precision multiplication. The product argument is the
address of a signed quadword integer into which LIBSEMUL writes the product.

The multiplicand argument is multiplied by the multiplier argument giving a
double-length result. The addend argument is sign-extended to double-length
and added to the result. LIBSEMUL then writes the result into the product

argument.

Condition Values Returned

Example

lib—170

SS$ NORMAL Routine successfully completed.

INTEGER MULT1,MULT2,ADDEND,PRODUCT(2)
C+
C Find the extended precision multiplication of 268435456 times 4096.
C That is, find the extended precision product of 2**28 times 2**12.
C Since 268435456 times 4096 is 2**40, a quadword value is needed for
C the calculation: use LIBSEMUL.

C-
MULT1 = 4096
MULT2 = 268435456
APPEND = 0

C+

C Compute 268435456%4096.

C Note that product will be stored as a quadword. This value will be stored
C in the 2 dimensional vector PRODUCT. The first element of PRODUCT will

C contain the low order bits, while the second element will contain the high
C order bits.

C-
RETURN = LIB$EMUL (MULT1,MULT2,APPEND, PRODUCT)
TYPE *,'PRODUCT(2) =',PRODUCT(2),’ and PRODUCT(1) = ’,PRODUCT(1)
TYPE *,' !

TYPE *,’'Note that 256 and 0 represent the hexadecimal value’
type *,14H'10000000000'x,’, which in turn, represents 2**40,’
END

This Fortran program demonstrates how to use LIBSEMUL. The output
generated by this program is as follows:

PRODUCT(2) = 256 and PRODUCT(1) = 0

Note that 256 and 0 represent the hexadecimal value ' 10000000000 x, which in
turn represents 240,

LIBS$ Routines
LIBSENABLE_CTRL

LIBSENABLE_CTRL
Enable CLI Interception of Control Characters

Format

Returns

Arguments

The Enable CLI Interception of Control Characters routine requests the calling
process’s command language interpreter (CLI) to resume interception of the
selected control characters when they are typed during an interactive terminal
session. LIBSENABLE_CTRL provides the same function as the DCL command
SET CONTROL.

LIBSENABLE_CTRL enable-mask [,0ld-mask]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

enable-mask
OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask indicating for which control characters LIBSENABLE_CTRL is to
enable interception. The enable-mask argument is the address of an unsigned
longword containing this bit mask. Each of the 32 bits corresponds to one of the
32 possible control characters. If a bit is set, the corresponding control character
is intercepted by the CLI. Currently, only bits 20 and 25, corresponding to Ctrl/T
and Ctrl/Y, are recognized.

The following mask is defined in symbol libraries supplied by HP to specify the
value of enable-mask:

Symbol Hex Value Function
LIB$M_CLI_CTRLT %X 00100000 Enables Ctrl/T
LIB$M_CLI_CTRLY %X 02000000 Enables Ctrl/Y

If a set bit does not correspond to a character that the CLI can intercept, an error
is returned.

old-mask

OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Previous bit mask. The old-mask argument is the address of an unsigned
longword containing the old bit mask. The old bit mask is of the same form as
enable-mask.

lib—171

LIBS$ Routines
LIBSENABLE_CTRL

Description

LIBSENABLE_CTRL provides the functions of the DCL command SET
CONTROL. Normally, Ctrl/Y interrupts the current command, command
procedure, or image. After a call to LIB§DISABLE_CTRL, Ctrl/Y is treated
like Ctrl/U followed by a carriage return. LIBSENABLE_CTRL restores the
normal operation of Ctrl/Y or Ctrl/T.

Both the DCL and MCR CLIs can intercept control characters. See the HP
OpenVMS DCL Dictionary for information on how the CLI processes control

characters.

LIB$ENABLE_CTRL is supported for use with the DCL or MCR CLIs.

If an image is run directly as a subprocess or as a detached process, there is
no CLI present to perform this function. In those cases, the error status LIB$_

NOCLI is returned.

Condition Values Returned

lib—172

SS$ NORMAL
LIB$_INVARG

LIB$_NOCLI

LIB$ UNECLIERR

Routine successfully completed.

Invalid argument. A bit in enable-mask was set
which did not correspond to a control character
supported by the CLI.

No CLI present. The calling process did not have
a CLI to perform the function, or the CLI did not
support the request type. Note that an image
run as a subprocess or detached process does not
have a CLIL

Unexpected CLI error. The CLI returned an
error status which was not recognized. This
error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL or
MCR CLIs, please report the problem to your HP
support representative.

LIBS$ Routines
LIBSESTABLISH

LIBSESTABLISH
Establish a Condition Handler

Format

Returns

Argument

Description

The Establish a Condition Handler routine moves the address of a condition
handling routine (which can be a user-written or a library routine) to longword 0
of the stack frame of the caller of LIB§ESTABLISH. 7

This routine is not available to native OpenVMS Alpha and 164 programs but is
recognized and handled appropriately by most HP high-level language compilers.

LIBSESTABLISH new-handler

OpenVMS usage: routine

type: procedure value
access: write only
mechanism: by reference

Previous contents of SF$A_ HANDLER (longword 0) of the caller’s stack frame;
zero if no handler existed.

new-handler
OpenVMS usage: procedure

type: procedure value
access: read only
mechanism: by value

Routine to be set up as the condition handler. The new-handler argument is the
address of the procedure value to this routine.

LIB$ESTABLISH moves the address of a condition-handling routine to longword
0 of the stack frame of the caller of LIBSESTABLISH. This condition-handling
routine then becomes the caller’s condition handler. LIB§ESTABLISH returns
the previous contents of longword 0. This can either be the address of the caller’s
previous condition handler or zero if no handler existed.

The new condition handler remains in effect for your routine until you call
LIB$REVERT or until control returns to the caller of the routine that called
LIB$ESTABLISH. Once this happens, you must call LIBSESTABLISH again if
the same (or a new) condition handler is to be associated with the routine that
called LIBSESTABLISH.

LIB$ESTABLISH modifies the caller’s stack frame.

7 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib—173

LIBS$ Routines
LIBSESTABLISH

LIB$ESTABLISH is provided primarily for use with languages without built-in
error handling facilities. Do not use LIB§ESTABLISH with languages that
provide error handling, such as BASIC, COBOL, Pascal, and PL/I. The language-
support library for these languages depends on predefined language-specific
handlers, and use of LIB§ESTABLISH with these languages may adversely
affect the behavior of your program. See the language documentation for more
information about how each language handles errors.

In VAX MACRO, use the following instruction instead of calling
LIB$ESTABLISH:

MOVAB HANDLER, (FP) ; set handler address
; in current stack frame

Condition Values Returned

Example

lib-174

None.

C+
C This Fortran program demonstrates the
C use of LIBSESTABLISH.

C
C This is the main program.
C-
EXTERNAL LOG_HANDL
CHARACTER TIMBUF
OPEN (UNIT=99, FILE = 'ERRLOG’, STATUS = 'NEW’)
CALL LIB$ESTABLISH (LOG_HANDL)
CALL SYS$BINTIM (TIMBUF, TIMADR)
C+
C The rest of the main program would go here.
C-
END
INTEGER*4 FUNCTION LOG_HANDL (SIGARGS, MECHARGS)
INTEGER*4 SIGARGS (*), MECHARGS (5)
C+

C This is the handler to journal any signaled error messages.
C-

INCLUDE ' ($SSDEF)’

EXTERNAL PUT LINE

LOG_HANDL = SS$_RESIGNAL

CALL SYS$PUTMSG (SIGARGS, PUT LINE,)

RETURN
END
C+
C This is the action subroutine.
C-
LOGICAL*4 FUNCTION PUT LINE (LINE)
CHARACTER* (*) LINE -
PUT LINE = .FALSE.
100 WRITE (99,200)LINE
200 FORMAT (A)
RETURN
END

In this Fortran example, the function log_handl is the condition handler for the
program, and thus receives control when an error occurs.

LIBS$ Routines
LIBSEXPAND NODENAME

LIBSEXPAND_NODENAME
Expand a Node Name to Its Full Name Equivalent

Format

Returns

Arguments

The Expand a Node Name to Its Full Name Equivalent routine expands a node
name to its full name equivalent.

LIBSEXPAND_NODENAME nodename, fullname [resultant-length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

nodename

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Node name to be expanded. The nodename argument contains the address of a
descriptor pointing to this node-name string.

The error LIB$ INVARG is returned if nodename contains an invalid node
name, points to a null string, or contains more than 1024 characters. The error
LIB$_INVSTRDES is returned if nodename is an invalid descriptor.

fullname

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Expanded node name. The fullname argument contains the address of

a descriptor pointing to the expanded node-name string. LIB$EXPAND _
NODENAME writes the expanded node-name string into the buffer pointed
to by the fullname descriptor.

The error LIB$_INVSTRDES is returned if fullname is an invalid descriptor.

The length field of the fullname descriptor is not updated unless fullname is
a dynamic descriptor with a length less than the resulting expanded full name.
Refer to the OpenVMS RTL String Manipulation (STR$) Manual for dynamic

string descriptor usage.

The fullname argument contains an unusable result when LIB$EXPAND_
NODENAME returns in error.

7 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib—175

LIBS$ Routines
LIBSEXPAND NODENAME

Description

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Length of the expanded node name. The resultant-length argument is the
address of an unsigned word that contains this length in bytes.

The resultant-length argument contains an unusable result when
LIB$EXPAND_NODENAME returns in error.

This routine expands the input node name to its full name equivalent. Input is
validated against the supported form of node names. The error LIB$_INVARG is
returned if the input node name is invalid.

If the returned full name overflows the buffer pointed to by fullname, the
returned full name is truncated, and the alternate successful status LIB$_
STRTRU is returned. The resultant-length argument is set to the value of the
length field of the fullname descriptor if this argument is supplied.

If the length of the returned full name is less than or equal to the output buffer,
the expanded full name is returned in fullname. Resultant-length is set to the
actual length of the expanded full name if this argument is supplied.

In a DECnet environment, expanding a DECnet-Plus node name results in the
error condition LIB$ _INVARG.

LIB$EXPAND_NODENAME uses the underlying network directory services
to look up the full name. In a DECnet-Plus for OpenVMS environment,
LIB$EXPAND_NODENAME verifies the existence of the expanded full name
in the naming environment. If the expanded full name does not exist in the

naming environment, an error condition is returned from the underlying network
services and is propagated back to the caller of LIBSEXPAND_NODENAME.

It is recommended that applications use full names instead of the short form of

full names whenever possible. Because the short form of a full name is intended
to be used only in a specific naming environment, make sure the short form of a
full name is expanded in the right naming environment to avoid ambiguity. See
LIB$COMPRESS_NODENAME for more information about where and when to

use the short form of a full name.

Any error resulting from calling the underlying network services is propagated
and returned as condition values in this routine.

LIB$EXPAND_NODENAME supports any string class for the nodename and
fullname string arguments.

Condition Values Returned

lib-176

SS$_ NORMAL Routine successfully completed.

LIB$_STRTRU Routine successfully completed. Characters are
truncated in the output buffer pointed to by the
fullname descriptor.

LIBS$ Routines
LIBSEXPAND NODENAME

LIB$ _INVARG Invalid argument:
e nodename is invalid.
¢ nodename points to a null string.

¢ The length of the node name is more than
1024 characters.

¢ The expanded DECnet Phase V node name
is invalid in a DECnet for OpenVMS

environment.
LIB$_INVSTRDES Invalid string descriptor.
LIB$_ WRONUMARG Wrong number of arguments.

Any condition value returned by RTL routine LIB$SCOPY_R_DX or DECnet
service $IPC.

lib—177

LIBS$ Routines

LIBSEXTV

LIBSEXTV

Extract a Field and Sign-Extend

Format

Returns

Arguments

lib—178

The Extract a Field and Sign-Extend routine returns a sign-extended longword
field that has been extracted from the specified variable bit field. LIBSEXTV
makes the VAX EXTV instruction available as a callable routine. 1

LIBSEXTV position ,size ,base-address

OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by value

Field extracted by LIB$EXTYV, sign-extended to a longword.

position

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Position (relative to the base address) of the first bit in the field that LIB§EXTV
extracts. The position argument is the address of a signed longword integer
containing the position.

size

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field LIB$EXTV extracts. The size argument is the address of an
unsigned byte containing the size. The maximum size is 32 bits.

base-address
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Base address of the bit field LIB$EXTV extracts from the specified variable bit
field. The base-address argument is an unsigned longword containing the base
address.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

Description

The variable-length bit field is an

LIBS$ Routines
LIBSEXTV

OpenVMS data type used to store small

integers packed together in a larger data structure. It is often used to store

single flag bits.

Three scalar attributes define a variable bit field:

e The base address is the addres
point for locating the bit field.

s of a byte in memory that serves as a reference

e The bit position is a signed longword containing the displacement of the least

significant bit of the field with

respect to bit 0 of the base address.

e The size is a byte integer indicating the size of the bit field in bits (in the

range 0 < size < 32). That is,
length.

A variable-length bit field has the
indicates the field.

a bit field can be no more than one longword in

following format. The area containing asterisks

P+S-1 P 0
dhkkkkkkkkkkkkkkk .A LIB$EXTV
\ A /)
Y Y
S = Size of Field in Bits
P = Bit Displacement of Field
from Bit Zero of Address A
ZK-1940-GE

Bit fields are zero-origin, which means that the routine regards the first bit in the

field as being the zero position.

Condition Value Signaled

Example

SS$_ROPRAND A
th

reserved operand fault occurs if a size greater
an 32 is specified.

SIGN_EXTEND: ROUTINE OPTIONS (MAIN);

DECLARE LIB$EXTV ENTRY

(FIXED BINARY (31), /* Address of longword containing

/* beginning bit position */
FIXED BINARY (7), /* Address of byte containing size

/* of field */
FIXED BINARY (31)) /* Address of field */
RETURNS (FIXED BINARY (31)); /* Return value */

DECLARE (VALUE, SMALL INT) FIXED BINARY (31);

ON ENDFILE (SYSIN) STOP;

lib—179

LIBS$ Routines

LIBSEXTV
DO WHILE ('1’'B); /* Loop continuously, until end of file */
PUT SKIP(2);
GET LIST (VALUE) OPTIONS (PROMPT ('Value: '));
SMALL INT = LIBSEXTV (0, 4, VALUE); /* Extract and sign-extend
B /* first 4 bits */

PUT SKIP LIST (VALUE, SMALL INT);
END;
END SIGN EXTEND;

This PL/I program extracts a field and returns it sign-extended into a longword.

lib—180

LIBS$ Routines
LIB$EXTZV

LIBSEXTZV
Extract a Zero-Extended Field

Format

Returns

Arguments

The Extract a Zero-Extended Field routine returns a longword zero-extended field
that has been extracted from the specified variable bit field. LIB§EXTZV makes
the VAX EXTZV instruction available as a callable routine. !

LIBSEXTZV position ,size ,base-address

OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by value

Field extracted by LIB$EXTZV, zero-extended to a longword.

position

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Position (relative to the base address) of the first bit in the field LIB$EXTZV
extracts. The position argument is the address of a signed longword integer
containing the position.

size

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field LIBSEXTZV extracts. The size argument is the address of an
unsigned byte containing the size. The maximum size is 32 bits.

base-address
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Base address of the bit field LIBSEXTZV extracts. The base-address argument
is an unsigned longword containing the base address.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib—181

LIBS$ Routines

LIBSEXTZV

Description

The variable-length bit field is an OpenVMS data type used to store small
integers packed together in a larger data structure. It is often used to store

single flag bits.

Three scalar attributes define a variable bit field:

¢ The base address is the address of the byte in memory that serves as a

reference point for locating the bit field.

e The bit position is a signed longword containing the displacement of the least
significant bit of the field with respect to bit 0 of the base address.

e The size is a byte integer indicating the size of the bit field in bits (in the
range 0 < size < 32). That is, a bit field can be no more than one longword in

length.

A variable-length bit field has the following format. The area containing asterisks

indicates the field.

P+S-1

*hkkkkkkkkkkkkkkk

N

A

Y
S = Size of Field in Bits—,

P = Bit Displacement of Field

from Bit Zero of Address A

:A LIBSEXTZV

ZK-1941-GE

Bit fields are zero-origin fields, which means that the routine regards the first bit

in the field as being the zero position.

Condition Value Signaled

lib—182

SS$_ ROPRAND A reserved operand fault occurs if a size greater

than 32 is specified.

LIBS$ Routines
LIB$FFx

LIBSFFx

Find First Clear or Set Bit

Format

Returns

Arguments

The Find First Clear or Set Bit routines search the field specified by the start
position, size, and base for the first clear or set bit. LIB$FFC and LIB$FFS make
the VAX FFC and VAX FFS instructions available as callable routines. !

LIBSFFC position ,size ,base ,find-position
LIBSFFS position ,size ,base find-position

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only

mechanism: by value

position

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Starting position, relative to the base address, of the bit field to be searched by
LIB$FFx. The position argument is the address of a signed longword integer
containing the starting position.

size

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Number of bits to be searched by LIB$FFx. The size argument is the address
of an unsigned byte containing the size of the bit field to be searched. The
maximum size is 32 bits.

base

OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

The base argument is the address of the bit field that LIB§FFx searches.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib—183

LIBS$ Routines

LIBSFFx

Description

find-position
OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by reference

Bit position of the first bit in the specified state (clear or set), relative to the
base address. The find-position argument is the address of a signed longword
integer into which LIB$FFC writes the position of the first clear bit and into
which LIB$FFS writes the position of the first set bit.

LIB$FFC searches the field specified by the start position, size, and base for the
first clear bit. LIB$FFS searches the field for the first set bit.

If a bit in the specified state is found, LIB$FFx writes the position (relative to the
base) of that bit into find-position and returns a success status. If no bits are
in the specified state or if size is zero, LIB$FFx returns LIB$_NOTFOU and sets
find-position to the starting position plus the size.

LIB$FFx regards the first bit in the field as being the zero position.

Condition Values Returned

SS$_NORMAL Routine successfully completed. A bit in the
specified state was found.
LIB$ NOTFOU A bit in the specified state was not found.

Condition Value Signaled

lib—184

SS$_ROPRAND Reserved operand fault. A size greater than 32
was specified.

LIBS$ Routines
LIBSFID TO NAME

LIBSFID_TO_NAME
Convert Device and File ID to File Specification

Format

Returns

Arguments

The Convert Device and File ID to File Specification routine converts a disk
device name and file identifier to a file specification.

LIBSFID_TO_NAME device-name file-id ,filespec [filespec-length] [,directory-id] [,acp-status]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

device-name
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Device name to be converted. The device-name argument is the address of a
descriptor pointing to the device name. It must reference a disk device, and must
contain 64 characters or less. LIB$FID TO NAME obtains device-name from
the NAM$T_DVI field of an OpenVMS RMS name block.

file-id

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: read only

mechanism: by reference, array reference

Specifies the file identifier. The file-id argument is the address of an array of
three words containing the file identification. LIB$FID_TO_NAME obtains file-id
from the NAM$W_FID field of an OpenVMS RMS name block. The $FIDDEF
macro defines the structure of file-id.

filespec

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Receives the file specification. The filespec argument is the address of a
descriptor pointing to the file specification string. As of OpenVMS Version 7.2,
the maximum file specification string that can be returned is 4095 bytes on Alpha
and 164 systems, and 510 bytes on VAX systems. On versions prior to Version 7.2,
the maximum is 510 bytes on both platforms. Refer to the Description section for
more information about the file specification returned.

lib—185

LIBS$ Routines
LIBSFID TO NAME

Description

lib—186

filespec-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Receives the number of characters written into filespec, excluding padding in
the case of a fixed-length string. The optional filespec-length argument is the
address of an unsigned word containing the number of characters.

If the output string is truncated to the number of characters specified in filespec,
then filespec-length is set to that truncated size. Therefore, you can always use
filespec-length to access a valid substring of filespec.

directory-id

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: read only

mechanism: by reference, array reference

Specifies a directory file identifier. The directory-id argument is the address
of an array of three words containing the directory file identifier. LIB$FID_TO_
NAME obtains this array from the NAM$W_DID field of an OpenVMS RMS
name block. The $FIDDEF macro defines the structure of directory-id.

This parameter is relevant only for a structure level-1 disk on OpenVMS VAX
systems. This parameter is ignored on OpenVMS Alpha and 164 systems because
level-1 disks are not supported on OpenVMS Alpha and 164 systems.

acp-status

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The status resulting from traversing the backward links. The optional acp-
status argument is the address of an unsigned longword containing the status.

LIB$FID_TO_NAME converts a disk device name and file identifier to a file
specification by requesting the ACP file specification attribute.

On OpenVMS Alpha and 164 systems, if the file specification is longer than can
be accommodated by the filespec buffer, a directory in the path may be replaced
by a DID abbreviation (see the Guide to OpenVMS File Applications). If the file
specification, even after DID abbreviation, is longer than can be accommodated
by the buffer, the file specification is truncated, and LIB§STRTRU is returned as
an alternate success status.

On OpenVMS VAX systems, if you use the LIB$FID_TO_NAME routine on
a structure level 1 disk, specify the directory-id argument to ensure proper
operation of the routine.

LIB$FID_TO_NAME uses the directory backpointer stored in the file header.
With files in SYS$COMMON, the directory structure is duplicated because of
some SET FILE/ENTERs of directory names. If directory names have been
renamed or the tree structure modified (which the OpenVMS operating system

LIBS$ Routines
LIBSFID TO NAME

does with the [SYCOMMON] tree), the file specification returned by this routine
may not be useful.

LIB$FID_TO_NAME stores the output arguments (filespec, filespec-length,
and acp-status) only if the routine successfully finishes.
Note

This routine calls LIB§GET_EF. Please read the note in the Description
section of that routine.

Condition Values Returned

LIB$ NORMAL Routine successfully completed.

LIB$STRTRU Output string truncated (qualified success).

LIB$_INVARG Required argument omitted, or device-name is
longer than 64 characters.

LIB$_INVFILSPE The device-name argument does not reference a
disk.

Any condition value returned by RTL routine LIBSANALYZE_SDESC, or the
$ASSIGN, $QIO, or $DASSGN system services.

lib—187

LIBS$ Routines
LIBSFILE SCAN

LIBSFILE_SCAN

File Scan

Format

Returns

Arguments

lib—188

The File Scan routine searches an area, such as a directory, for all files matching
the file specification given and transfers program execution to the specified user-
written routine. Wildcards are acceptable. An action routine is called for each
file and/or error found. LIB$FILE_SCAN allows the search sequence to continue
even if an error occurs while processing a particular file.

LIB$FILE_SCAN fab ,user-success-procedure ,user-error-procedure [,context]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

fab

OpenVMS usage: fab

type: unspecified

access: read only
mechanism: by reference

File Access Block (FAB) referencing a valid NAM block or NAML block. The
fab argument is the address of the FAB that contains the address and length
of the file specification being searched for by LIB$FILE_SCAN. On Alpha and
164 systems, NAML blocks support the use of file specifications with a maximum
length of NAML$C_MAXRSS. See the OpenVMS Record Management Services
Reference Manual for information on NAML blocks.

user-success-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User-supplied success routine that LIB$FILE_SCAN calls when a file is found.
The success routine is invoked with the FAB address that was passed to
LIB$FILE_SCAN. The user context may be pased to this routine using the
FAB$L_CTX field in the FAB.

user-error-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User-supplied error routine that LIB§FILE_SCAN calls when it encounters an
error. The error routine is called with the FAB argument that was passed to
LIB$FILE_SCAN.

LIBS$ Routines
LIBSFILE _SCAN

context

OpenVMS usage: context

type: longword (unsigned)
access: modify

mechanism: by reference

Default file context used in processing file specifications for multiple input files.
The context argument is the address of a longword, which must be initialized
to zero by your program before the first call to LIB$FILE_SCAN. After the first
call, LIB$FILE_SCAN maintains this longword. You must not change the value
of context in subsequent calls to LIB$FILE_SCAN.

Name blocks and file specification strings are allocated by LIB$FILE_SCAN, and
context is used to retain their addresses so they may be deallocated later. If
the context argument is not passed, unspecified portions of the file specification
will be inherited from the previous file specification processed, rather than from
multiple input file specifications.

Description

LIB$FILE_SCAN is called with the address of a File Access Block (FAB) and calls
an action routine for each file found and/or error returned. LIB$FILE_SCAN
allows the search sequence to continue even if an error occurs while processing a
particular file.

If this routine is called once for each file specification argument in a command
line, portions of the file specifications which are not specified by the user are
inherited from the last files processed.

On Alpha and 164 systems, support for a file specification greater than 255
characters is provided by the use of NAML blocks rather than NAM blocks. See
the OpenVMS Record Management Services Reference Manual for information on
NAML blocks.

You must call LIB$FILE_SCAN_END before initiating a new sequence of calls to
LIB$FILE_SCAN.

Condition Values Returned

Any condition value returned by the RMS Parse service.

lib—189

LIBS$ Routines
LIBSFILE SCAN_END

LIBSFILE_SCAN_END
End-of-File Scan

The End-of-File Scan routine is called after each sequence of calls to LIB$FILE_
SCAN. LIB$FILE_SCAN_END deallocates any saved OpenVMS RMS context
and/or deallocates the virtual memory that had been allocated for holding the
related file specification information.

Format
LIB$FILE_SCAN_END [fab] [,context]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
fab
OpenVMS usage: fab
type: unspecified
access: modify
mechanism: by reference

File access block (FAB) used with LIB$FILE_SCAN. The optional fab argument
is the address of the FAB that contains the address and length of the file

specification.

context

OpenVMS usage: context

type: longword (unsigned)
access: modify

mechanism: by reference

Temporary default context used in LIB$FILE_SCAN. The optional context
argument is the address of a longword containing this temporary default context.

Description

Your program should call LIB$FILE_SCAN_END after each sequence of calls to
LIB$FILE_SCAN. The function that LIBSFILE_SCAN_END performs depends
upon the arguments you specify. If you specify fab, LIB$FILE_SCAN_END
parses the null string to deallocate any saved RMS context. If you specify
context, LIB§FILE_SCAN_END deallocates any virtual memory that was
allocated for holding the related file specification information. If you specify both
fab and context, LIB$FILE_SCAN_END performs both functions. However, if
you do not specify either argument, LIBSFILE_SCAN_END does nothing.

lib—190

LIBS$ Routines
LIBSFILE SCAN_END

If LIB$FILE_SCAN is directed to process the specifications for multiple input
files, LIB$FILE_SCAN_END is used to deallocate those saved file specifications.
If LIB$FILE_SCAN_END is called by your program after each sequence of calls
to LIB$FILE_SCAN, it will prevent the defaults from the previous call from
affecting context value in the next call to LIB§FILE_SCAN. LIB$FILE_SCAN_
END does this by replacing the context value passed to it with a temporary
context value that your program passes to LIB$FILE_SCAN the next time it is
called.

Condition Values Returned

SS$ NORMAL Routine successfully completed.
RMS$_FAB The fab argument is not the address of a valid
FAB.

lib—191

LIBS$ Routines
LIB$FIND FILE

LIBSFIND _

Find File

Format

Returns

Arguments

lib—192

FILE

The Find File routine is called with a file specification for which it searches.
LIB$FIND_FILE returns one file specification for each call. The file specification
may contain wildcards.

LIB$FIND_FILE filespec ,resultant-filespec ,context [,default-filespec] [,related-filespec] [,status-value]
[.flags]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

filespec

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

File specification, which may contain wildcards, that LIBSFIND_FILE uses to
search for the desired file. The filespec argument is the address of a descriptor
pointing to the file specification. If running on Alpha or 164 and flag LIB$M_FIL_
LONG_NAMES is set, the maximum length of a file specification is specified by
NAML$C_MAXRSS, otherwise the maximum length of a file specification is 255
bytes.

The file specification used may also contain a search list logical name. If present,
the search list logical name elements can be used as accumulative to related file
specifications, so that portions of file specifications not specified by the user are
inherited from previous file specifications.

resultant-filespec
OpenVMS usage: char_string

type: character string
access: modify
mechanism: by descriptor

Resultant file specification that LIB$FIND_FILE returns when it finds a file
that matches the specification in the filespec argument. The resultant-filespec
argument is the address of a descriptor pointing to the resultant file specification.

context

OpenVMS usage: context

type: longword (unsigned)
access: modify

mechanism: by reference

LIBS$ Routines
LIB$FIND FILE

A longword integer variable into which the routine stores a context value

for use by future calls to LIBSFIND_FILE or LIB$FIND_FILE_END. The
context argument is an unsigned longword integer containing the address of
the context. This variable must be set to zero before the first call to LIB$FIND_
FILE. You can use the same context argument from one LIB$FIND_FILE

call to another provided you have not called LIB$FIND_FILE_END for that
context first. LIBSFIND_FILE uses this argument to retain the context when
processing multiple input files. Portions of file specifications that the user does
not specify may be inherited from the last files processed because the file contexts
are retained in this argument. You must not change the value of context in
subsequent calls to LIB$FIND_FILE.

default-filespec
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Default file specification. The default-filespec argument is the address of a
descriptor pointing to the default file specification. See the OpenVMS Record
Management Services Reference Manual for information about default file
specifications.

related-filespec
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Related file specification containing the context of the last file processed. The
related-filespec argument is the address of a descriptor pointing to the related
file specification.

The related file specification is useful when you are processing lists of file
specifications. Unspecified portions of the file specification are inherited from the
last file processed. For more information on related file specifications, see the
OpenVMS Record Management Services Reference Manual.

status-value
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by reference

RMS secondary status value from a failing RMS operation. The status-value
argument is an unsigned longword containing the address of a longword-length
buffer to receive the RMS secondary status value (usually returned in the file
access block field, FAB$L_STV).

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

User flags. The flags argument is the address of an unsigned longword
containing the user flags.

lib—193

LIBS$ Routines
LIB$FIND FILE

The flag bits and their corresponding symbols are described in the following table:

Bit Symbol Description

0 LIB$M_FIL_NOWILD If set, LIB$FIND_FILE returns an error
if a wildcard character is input.

1 LIB$M_FIL_MULTIPLE If set, this performs temporary defaulting

for multiple input files and the related-
filespec argument is ignored. See
description of context in LIB$FILE_
SCAN. Each time LIB$FIND_FILE is
called with a different file specification,
the specification from the previous call

is automatically used as a related file
specification. This allows parsing of the
elements of a search-list logical name such
as DISK2:[SMITH] FIL1.TYP,FIL*2.TYP,
and so on. Use of this feature is required
to get the desired defaulting with search
list logical name. LIB$FIND_FILE_END
must be called between each command
line in interactive use or the defaults
from the previous command line affect the
current file specification.

2 LIB$M_FIL_LONG_NAMES (Alpha and 164 only) If set, LIBSFIND_
FILE can process file specifications with a
maximum length of NAML$C_MAXRSS.
If clear, LIB$FIND_FILE can process file
specifications with a maximum length of
255 (default).

Description

LIB$FIND_FILE returns one file specification per call unless it fails to find the
target file specification. In this case, the routine returns the condition value
RMS$_NMF (no more files). Each successful call to LIB$FIND FILE results in a
new resultant-filespec.

When you call LIBSFIND_FILE repeatedly using the same context, filespec is
saved only if you set the MULTIPLE bit. If you specify a different filespec on
your next call and set the MULTIPLE bit, the file specification from the previous
call defaults as the related file specification.

For each LIB$FIND_FILE call, RMS first applies the defaults from default-
filespec and then uses the defaults from related-filespec, if relevant. Default
file specifications are used only if components are missing from the filespec
argument and the needed components are found in default-filespec. The
related-filespec argument is used when you process lists of file specifications.
Unspecified portions of the file specification are inherited from the last file
processed. This provides an extra level of file specification defaults. For
additional information on related file specifications and input file parsing,

see the Guide to OpenVMS File Applications.

lib—194

LIBS$ Routines
LIB$FIND FILE

The filespec argument can contain wildcard characters. LIB$FIND_FILE can be
called repeatedly using the same context argument until the error RMS$_NMF
(no more files) is returned.

LIB$FIND_FILE searches for a certain wildcard file specification and returns all
file specifications that satisfy that wildcard file specification.

If you make multiple calls to LIB$FIND_FILE, be aware of the following
behavior:

e If the NOWILD bit is not set and the file specification does not contain any
wildcard characters, LIB§FIND_FILE returns the appropriate file name on
the first call and the condition value RMS$ NMF on the next call.

e If the NOWILD bit is set and you use the same nonwildcard file specification,
LIB$FIND FILE returns the file name on the first call as well as each
subsequent call.

On Alpha and 164 systems, support for file specifications longer than 255
characters is provided only when the LIB$M_FIL_LONG_NAMES flag is set in
the flags argument. When this flag is set, a NAML block (rather than a NAM
block) is part of the context, and file specifications can have a maximum length
of NAMLS$C_MAXRSS. See the OpenVMS Record Management Services Reference
Manual for information on NAML blocks.

You must call LIB§FIND_FILE_END before initiating a new sequence of calls to
LIBS$FIND_FILE to properly deallocate all of the internal data structures that
were allocated in the calls to LIBSFIND_FILE. After you call LIBSFIND_FILE_

END, the context value is no longer valid and cannot be used on any subsequent
LIB$FIND_FILE calls.

If the error RMS$_CHN is returned, RMS has no more channels to assign. There
are two possible reasons for this:

* You did not call LIB$FIND_FILE_END before initiating a new call with a
context variable to LIB$FIND_FILE. (This is the most common reason.)

e The system parameter CHANNELCNT is too low.

Condition Values Returned

RMS$ NORMAL Routine successfully completed.

LIB$_NOWILD A wildcard character was present in the file
specification parsed, and the wildcard flag bit
was set to no wildcard. (This is actually the
SHR$_NOWILD error message after application
of the LIB$ facility code.)

RMS$ CHN No more channels.
RMS$ NMF No more files.
Any condition value returned by RMS Parse and Search services, LIB§GET_VM,

LIBGET_VM_64, LIBFREE_VM, LIB$FREE_VM_64, LIB§SCOPY_R_DX, or
LIB$SCOPY_R_DX 64.

lib—195

LIBS$ Routines
LIB$FIND FILE END

LIBSFIND FILE _END
End of Find File

The End of Find File routine is called once after each sequence of calls to
LIB$FIND_FILE. LIB$FIND_FILE_END deallocates any saved OpenVMS RMS
context and deallocates the virtual memory used to hold the allocated context

block.
Format
LIB$FIND_FILE_END context
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Argument
context
OpenVMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference

Zero or the address of a FAB/NAM buffer from a previous call to LIBSFIND_
FILE. The context argument is the address of a longword that contains this
context.

Description

LIB$FIND_FILE_END should be called by your program after each sequence of
calls to LIBSFIND_FILE. This will prevent the default values from the previous
call from affecting the next file specification.

LIB$FIND FILE_END deallocates the context used in the last call to LIB$FIND _
FILE so that the context retained will not be used in subsequent calls to
LIB$FIND_FILE. If LIB$FIND_FILE was directed to process file specifications
for multiple input files, the saved file specifications are also deallocated.

Condition Values Returned

SS$ NORMAL Routine successfully completed.
RMS$ _FAB File access block argument is not the address of
a valid FAB.

lib—196

LIBS$ Routines
LIBSFIND IMAGE_SYMBOL

LIBSFIND_

IMAGE_SYMBOL

Find Universal Symbol in Shareable Image File

Format

Returns

Arguments

The Find Universal Symbol in Shareable Image File routine reads universal
symbols from the shareable image file. This routine then dynamically activates a
shareable image into the PO address space of a process.

LIBSFIND_IMAGE_SYMBOL filename ,symbol ,symbol-value [,image-name] [,flags]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

filename

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Name of the file for which LIB§FIND_IMAGE_SYMBOL is searching. The
filename argument is the address of a descriptor pointing to this file name
string. This argument may contain only the file name. File type cannot be

indicated. If any file specification punctuation characters (:, [, <, ;, .) are present,
the error SS$_IVLOGNAM is returned.

You can specify a file specification for the image name with the optional
image-name argument. If you do not specify image-name, a default file
specification of SYS$SHARE:.EXE is applied to the file name. If the file is not in
SYS$SHARE:.EXE, a logical name must be used to direct this routine to locate
the correct file. Only logical names defined in the system logical name table with
the /EXEC attribute will be considered while the image activator is processing a
request from an image that was installed with privileges. If the calling image was
installed with privileges, the image being activated and any shareable images

or message sections it references must be installed as a known image with the
INSTALL utility. Running an image to which you have only Execute (not Read)
access results in the same restrictions on logical names and shareable images as
does running a privileged image.

On VAX systems, the filename descriptor must be class D, S, or Z.

symbol

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Symbol for which LIB$FIND_IMAGE_SYMBOL is searching in the filename file.
The symbol argument is the address of a descriptor pointing to the symbol name

lib—197

LIBS$ Routines
LIBSFIND IMAGE_SYMBOL

string. The symbol name string can be input in uppercase, lowercase, or mixed

case letters.

symbol-value
OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

Symbol value that LIB§FIND_IMAGE_SYMBOL has located. The symbol-value
argument is the address of a signed longword integer into which LIBSFIND_
IMAGE_SYMBOL returns the symbol value. If the symbol is relocatable, the
starting virtual address of the shareable image in memory is added to the symbol

value.

image-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Default file specification applied to the image name. The optional image-name
argument is a string used as the RMS default file specification when parsing
filename as the primary filename. If image-name is not supplied, then a
default file specification of SYS$SHARE:.EXE is applied to the image name.

On VAX systems, the image-name descriptor must be class D, S, or Z.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Control flags. The flags argument is the address of a longword integer that

contains the control flags.

Bit Value

Description

Reserved to HP
Reserved to HP
Reserved to HP
Reserved to HP
LIB$M_FIS_MIXEDCASE

B~ W N = O

Causes LIB$FIND IMAGE
SYMBOL to look for the
symbol without converting it
to uppercase.

This is an optional argument. If omitted, the default is 0. If omitted, or if
LIB$M_FIS_MIXEDCASE (bit 4) is 0, LIB$FIND_IMAGE_SYMBOL converts the

specified symbol to uppercase before it is used.

lib—198

Description

LIBS$ Routines
LIBSFIND IMAGE_SYMBOL

The shareable image that LIB§FIND_IMAGE_SYMBOL activates must have
been already linked and must be position independent. You must have read
access to the shareable image file to use this routine.

LIB$FIND_IMAGE_SYMBOL writes the symbol value that it has located into the
symbol-value argument.

After the first call to LIB$FIND_IMAGE_SYMBOL for a particular image,
successive calls for that image are processed quickly. The image is activated only
once and an in-memory database is maintained. There is no way to deallocate
this database, nor is there any supported method to remove an activated image
from the address space. All images are activated into PO space.

LIB$FIND_IMAGE_SYMBOL locates the universal symbol in its database
qualified by the file name exactly as given in the filename argument. Therefore,
a reference to a lexically different but equivalent file name causes a new copy
of the same shareable image to be loaded and searched. To avoid this situation,
always specify the desired file name in the same form.

To work properly with translated VAX images on Alpha and 164 systems,
LIB$FIND_IMAGE_SYMBOL may modify the name of the file being searched
and may retry the search if the first search failed. If called from a translated
image, LIB$FIND_IMAGE_SYMBOL appends “_TV” to the file name before
searching. This locates the translated version of the image being searched. If
the search fails to find the file or the file does not define the symbol, LIBSFIND _
IMAGE_SYMBOL trys again with the unmodified original file name. This locates
the native Alpha or 164 version of the image. If the second search also fails, an
error is returned. If LIB$FIND_IMAGE_SYMBOL is called from a native Alpha
or 164 program, the order of the searches is reversed. The first search is done
with the unmodified original file name. If that fails, the second search is done
with “_TV” appended to the file name. If the second search fails, an error is
returned.

LIB$FIND_IMAGE_SYMBOL disables AST recognition while it is executing.
AST recognition is reenabled before returning to the caller only if AST recognition
was previously enabled.

LIB$FIND_IMAGE_SYMBOL signals all errors and returns the status in RO.

LIB$FIND_IMAGE_SYMBOL may signal a warning (LIBSEOMWARN) to
indicate that the image being activated contains modules that had compilation
warnings. A condition handler used with LIB$FIND_IMAGE_SYMBOL should
probably handle this as a special case.

To allow LIB$FIND_IMAGE_SYMBOL to continue executing after signaling
LIB$EOMWARN, the condition handler should exit with SSSCONTINUE. For
this reason, you may choose not to use LIB$SIG_TO_RET as a condition handler
for LIBSFIND_IMAGE_SYMBOL.

lib—199

LIBS$ Routines
LIBSFIND IMAGE_SYMBOL

Condition Values Returned

lib—200

LIB$_BADCCC
LIB$ EOMERROR
LIB$_EOMFATAL
LIB$_EOMWARN
LIB$ _GSDTYP
LIB$ ILLFMLCNT

LIB$_ILLMODNAM
LIB$_ILLPSCLEN
LIB$_ILLRECLEN
LIB$ ILLRECLN2
LIB$_ILLRECTYP
LIB$_ILLRECTY2
LIB$_ILLSYMLEN
LIB$ NOEOM

LIB$ RECTOOSML

LIB$_SEQUENCE
LIB$_SEQUENCE2
LIB$_STRVL

Note that all of the above
error messages indicate a
format error in the shareable

image.
LIB$_INSVIRMEM
SS$_IVLOGNAM

Illegal compilation code.

Compilation errors.

Fatal compilation errors.

Compilation warnings.

Illegal universal symbol directory record type.

Maximum argument count exceeds maximum for
routine.

Illegal module name length.

Illegal program section length.

Illegal record length in module.

Illegal record length.

Illegal record type in module.

Illegal record type.

Illegal symbol length.

No end of module record contained in the module.

Record too small; data overflows object record in
module.

Illegal record sequence in module.
Illegal record sequence.
Illegal object language structure level in module.

Insufficient virtual memory.

The filename argument contained more
than just a file name; a device or directory
specification was found in the string.

Any condition values returned by RTL routines LIB§INSERT TREE or

LIB$LOOKUP_TREE.

Any condition values returned by RMS.

LIBS$ Routines
LIBSFIND VM_ZONE

LIBSFIND VM _ZONE
Return the Next Valid Zone Identifier

Format

Returns

Arguments

Description

The Return the Next Valid Zone Identifier routine returns the zone identifier of
the next valid zone in the heap management 32-bit database. |

LIB$FIND_VM_ZONE context ,zone-id

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

context

OpenVMS usage: context

type: longword (unsigned)
access: modify

mechanism: by reference

Context specifier. The context argument is the address of an unsigned longword
used to keep the scan context for finding the next valid zone. The context
argument must be 0 to initialize the scan and to start with the first returnable
zone identifier.

zone-id

OpenVMS usage: identifier

type: longword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of an unsigned longword
that receives the zone identifier for the next zone.

At each call, LIB§FIND_VM_ZONE scans the heap management 32-bit zone
database and returns the zome-id of the next valid zone. (The first and second
calls to LIB$FIND _VM_ZONE return the zone-id of the 32-bit default zone and
the 32-bit string zone, respectively.) This capability allows a program to deal
with each 32-bit VM zone created during the invocation, including those created
outside of the program.

Note

LIB$FIND_VM_ZONE finds only 32-bit zones. You must use LIBSFIND_
VM_ZONE and LIB$FIND_VM_ZONE_64 to loop through all VM zones.

7 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib—201

LIBS$ Routines
LIBSFIND VM _ZONE

The context argument controls the state of the scan. It determines what zone
to return (the first, the next, and so forth). On the initial call, specified by
context=0, LIB§VERIFY_VM_ZONE is called to verify the heap management
zone database. If the database is corrupt, further calls to this routine will produce
no additional useful output.

When no more zones can be found, the routine returns the condition value LIB$_
NOTFOU.

If a zone has been corrupted in some major way (for example, if the validity code
has been changed), then this routine may not be able to locate it in the zone
database.

Note that ASTs may be disabled while LIB$FIND_VM_ZONE is executing code
that depends on the stability of the heap management zone database. In general
it is the caller’s responsibility to ensure that the calling program has exclusive
access to the zone database while scanning for multiple zones with this routine.
Results are unpredictable if another thread of control modifies the zone database
or the associated areas during the scanning.

Condition Values Returned

Example

lib—202

SS$_NORMAL Routine successfully completed.

LIB$_BADZONE Invalid zone.

LIB$ NOTFOU Zone identifier not found (alternate success
status).

LIB$ WRONUMARG Wrong number of arguments.

IMPLICIT NONE
INTEGER*4 status,context,zone id
INTEGER*4 1lib$find vm zone,lib$show_vm_zone

context = 0
status = lib$find vm zone (context, zone id)
DO WHILE (status)

print *

status = lib$show vm zone (zone id, 0)

status = 1ib$find vm zone (context, zone id)
END DO -7 B

END

Sample output for this Fortran program is shown below:

Zone Id = 00020020, Zone name = "DEFAULT ZONE"

000200B0, Zone name = "STRING ZONE"

Zone Id

LIBS$ Routines
LIBSFIND_VM_ZONE_64 (Alpha and 164 Only)

LIBSFIND_VM_ZONE_64 (Alpha and 164 Only)
Return the Next Valid Zone Identifier

The Return the Next Valid Zone Identifier routine returns the zone identifier of
the next valid zone in the heap management 64-bit database.

Format
LIB$SFIND_VM_ZONE_64 context ,zone-id
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
context
OpenVMS usage: context
type: quadword (unsigned)
access: modify
mechanism: by reference
Context specifier. The context argument is the address of an unsigned quadword
used to keep the scan context for finding the next valid zone. The context
argument must be 0 to initialize the scan and to start with the first returnable
zone identifier.
zone-id
OpenVMS usage: identifier
type: quadword (unsigned)
access: write only
mechanism: by reference
Zone identifier. The zone-id argument is the address of an unsigned quadword
that receives the zone identifier for the next zone.
Description

At each call, LIB$FIND_VM_ZONE_64 scans the heap management 64-bit zone
database and returns the zone-id of the next valid zone. (The first and second
calls to LIB$FIND VM_ZONE_64 return the zone-id of the 64-bit default zone
and the 64-bit string zone, respectively.) This capability allows a program to deal
with each VM 64-bit zone created during the invocation, including those created
outside of the program.

Note

LIB$FIND_VM_ZONE_64 finds only 64-bit zones. You must use
LIB$FIND_VM_ZONE and LIB$FIND_VM_ZONE_64 to loop through
all VM zones.

lib—203

LIBS$ Routines
LIBSFIND_VM_ZONE_64 (Alpha and 164 Only)

The context argument controls the state of the scan. It determines what zone
to return (the first, the next, and so forth). On the initial call, specified by
context=0, LIBSVERIFY_VM_ZONE_64 is called to verify the heap management
zone database. If the database is corrupt, further calls to this routine will produce
no additional useful output.

When no more zones can be found, the routine returns the condition value LIB$_
NOTFOU.

If a zone has been corrupted in some major way (for example, if the validity code
has been changed), then this routine may not be able to locate it in the zone
database.

Note that ASTs may be disabled while LIB§FIND_VM_ZONE_64 is executing
code that depends on the stability of the heap management zone database. In
general it is the caller’s responsibility to ensure that the calling program has
exclusive access to the zone database while scanning for multiple zones with this
routine. Results are unpredictable if another thread of control modifies the zone
database or the associated areas during the scanning.

Condition Values Returned

Example

lib—204

SS$_NORMAL Routine successfully completed.

LIB$_BADZONE Invalid zone.

LIB$ NOTFOU Zone identifier not found (alternate success
status).

LIB$ WRONUMARG Wrong number of arguments.

IMPLICIT NONE

INTEGER*4 status

INTEGER*8 context,zone id

INTEGER*4 1ib$find vm zone 64,lib$show vm zone 64

context = 0
status = 1lib$find vm zone 64 (context, zone_id)
DO WHILE (status)

print *

status = lib$show_vm zone 64 (zone_id, 0)

status = 1ib$find vm zone 64 (context, zone id)
END DO T -

END

Sample output for this Fortran program is as follows:

Zone Id
Zone Id

0000000000020040, Zone name = "DEFAULT ZONE"
0000000000020140, Zone name = "STRING ZONE"

LIBS$ Routines
LIBSFIT NODENAME

LIBSFIT_NODENAME
Fit a Node Name into an Output Field

The Fit a Node Name Into an Output Field routine fits a node name into an
output field. It attempts to compress the node name to fit the output field. If this
fails, it trims the node name. ¥

Format
LIBSFIT_NODENAME nodename, output-buffer [,output-width][,resultant-length]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
nodename
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Node name to be fitted into the desired output field. The nodename argument
contains the address of a descriptor pointing to this node-name string.

The error LIB$_INVARG is returned if nodename contains an invalid node
name, points to a null string, or contains more than 1024 characters. The error
LIB$_INVSTRDES is returned if nodename is an invalid descriptor.

output-buffer
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

The output buffer. The output-buffer argument contains the address of a
descriptor pointing to the output buffer. LIB$FIT NODENAME writes the final
output node name into the buffer pointed to by output-buffer.

The error LIB$_INVSTRDES is returned if output-buffer is an invalid
descriptor.

The length field of the output-buffer descriptor is not updated unless output-
buffer is a dynamic descriptor with a length less than the resulting fitted node
name. Refer to the OpenVMS RTL String Manipulation (STR$) Manual for
dynamic string descriptor usage.

The output-buffer argument contains an unusable result when LIB$FIT_
NODENAME returns in error.

7 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib—205

LIBS$ Routines
LIBSFIT NODENAME

Description

lib—206

output-width
OpenVMS usage: word_unsigned

type: word (unsigned)
access: read only
mechanism: by reference

Field width desired for the fit operation. The output-width argument is the
address of an unsigned word that contains this field width in bytes.

If output-width is omitted, the current length of output-buffer is used. If
output-buffer is not a fixed-length string, specify output-width to ensure that
the desired width is used.

If the lengths of both output-buffer and output-width are specified, the length
in output-width is used. In this case, if the current length of output-buffer is
smaller than the length of output-width, the output node name is truncated at
the end, and the alternate successful status LIB$_STRTRU is returned.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Length of the output node name. The resultant-length argument is the address
of an unsigned word that contains this length in bytes.

The resultant-length argument contains an unusable result when LIB$FIT_
NODENAME returns in error.

This routine fits the input node name into the desired output field for display
purposes. It first attempts to get the usable short form of the input node name
by calling LIBSCOMPRESS_NODENAME. If that fails, the input node name
is expanded by LIB§EXPAND_NODENAME and then trimmed by LIB§TRIM _
FULLNAME to fit the desired output width.

The input is validated against the supported form of input node names. The error
LIB$_INVARG is returned if the input node name is invalid.

Node-name compression is always attempted even if the length of the input node
name is less than or equal to the desired output width. This is to ensure that the
short form of a full name is always chosen for display purposes.

When the compressed node name is too long to fit the desired output width, the
input node name is expanded using LIBSEXPAND_NODENAME and trimmed
using LIB$TRIM_FULLNAME. In this case, the alternate success status LIB$_
STRTRU is returned.

When LIB$FIT NODENAME encounters errors from the underlying network
services, it tries to return the string-truncated compressed node name. If it is
the compression operation that fails, LIBSFIT NODENAME returns the string-
truncated input node name. The alternate successful status LIB$_STRTRU is
returned.

LIBS$ Routines
LIBSFIT NODENAME

Note that the returned node name can be either a compressed usable short form
of the input node name or an unusable trimmed or truncated node name. The
caller should always assume an unusable node name is returned when it finds
the alternate success return status LIB$_STRTRU. On the other hand, the SS$_
NORMAL return status means that a usable form of a node name is returned.

LIB$FIT NODENAME adds padding spaces to the end of the output buffer if the
output node name is shorter than the size of the output buffer. The argument
resultant-length, if supplied, is set to the length of the output node name,
excluding any padding spaces.

Condition Values Returned

SS$ NORMAL Routine successfully completed.

LIB$_STRTRU Routine successfully completed. Characters are
truncated in the output buffer pointed to by
output-buffer.

LIB$ INVARG Invalid argument:

¢ nodename is invalid.
e nodename points to a null string.

e The length of the node name is more than
1024 characters.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_ WRONUMARG Wrong number of arguments.

Any condition value returned by LIB$SCOPY_R_DX.

lib—207

LIBS$ Routines
LIBSFIXUP_FLT

LIBSFIXUP_FLT
Fix Floating Reserved Operand

Format

Returns

Arguments

lib—208

The Fix Floating Reserved Operand routine finds the reserved operand of any
F-floating, D-floating, G-floating, or H-floating instruction (with some exceptions)
after a reserved operand fault has been signaled.t LIB$FIXUP_FLT changes
the reserved operand from —0.0 to the value of the new-operand argument, if
present; or to +0.0 if new-operand is absent.

This routine is available on OpenVMS Alpha and 164 systems in translated form
and is applicable to translated VAX images only.

LIBSFIXUP_FLT signal-arguments ,mechanism-arguments [,new-operand]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

signal-arguments
OpenVMS usage: vector_longword_unsigned

type: unspecified
access: read only
mechanism: by reference, array reference

Signal argument vector. The signal-arguments argument is the address of an
array of unsigned longwords containing the signal argument vector.

mechanism-arguments
OpenVMS usage: vector_longword_unsigned

type: unspecified
access: read only
mechanism: by reference, array reference

Mechanism argument vector. The mechanism-arguments argument is the
address of an array of unsigned longwords containing the mechanism argument
vector.

new-operand
OpenVMS usage: floating-point

type: F_floating
access: read only
mechanism: by reference

An F-floating value to replace the reserved operand. The new-operand
argument is the address of an F-floating number containing the new operand.
This is an optional argument. If omitted, the default value is +0.0.

T No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

Description

LIBS$ Routines
LIBSFIXUP_FLT

LIB$FIXUP_FLT finds the reserved operand of any F-floating, D-floating, G-
floating, or H-floating instruction (with some exceptions) after a reserved operand
fault has been signaled. LIB$FIXUP_FLT changes the reserved operand from
—0.0 to the value of the new-operand argument, if present; or to +0.0 if new-
operand is absent. LIBSFIXUP_FLT cannot handle the following cases and will
return a status of SS$_RESIGNAL if any of them occur:

e The currently active signaled condition is not SS§_ROPRAND.

e The reserved operand’s data type is not F-floating, D-floating, G-floating, or
H-floating.

¢ The reserved operand is an element in the coefficient table for one of the VAX
POLYx instructions.

If the status value returned from LIB$FIXUP_FLT is seen by the condition
handling facility (as would be the case if LIB§FIXUP_FLT was the handler), any
success value is equivalent to SS$_ CONTINUE, which causes the instruction to
be restarted. Any failure value is equivalent to SS$_RESIGNAL, which causes
the condition to be resignaled to the next handler. This resignal status is because
the condition handler (LIB$FIXUP_FLT) was unable to handle the condition
correctly.

LIB$FIXUP_FLT can be enabled directly as a condition handler. The signal-
arguments and mechanism-arguments arguments are passed to the condition
handler by OpenVMS exception dispatching.

Condition Values Returned

SS$_NORMAL Routine successfully completed. The reserved
operand was found and has been fixed.
SS$_ACCVIO Access violation. An argument to LIB$FIXUP_

FLT or an operand of the faulting instruction
could not be read or written.

SS$_RESIGNAL The signaled condition was not SS$_ROPRAND,
or the reserved operand was not a floating-point
value or was an element in a POLYx table.

SS$_ROPRAND Reserved operand fault. The optional argument
new-operand was supplied but was itself an
F-floating reserved operand.

LIB$ BADSTA Bad stack. The stack frame linkage has been
corrupted since the time of the reserved operand
exception.

lib—209

LIBS$ Routines
LIBSFLT UNDER

LIBSFLT_UNDER
Floating-Point Underflow Detection

Format

Returns

Argument

Description

The Floating-Point Underflow Detection routine enables or disables floating-point
underflow detection for the calling routine activation. The previous setting is
returned as a function value. T

This routine is available on OpenVMS Alpha and 164 systems in translated form
and is applicable to translated VAX images only.

LIBSFLT_UNDER new-setting

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by value

The old floating-point underflow enable setting (the previous contents of the
SF$W_PSW[PSW$V_FU] in the caller’s frame).

new-setting

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

New floating-point underflow enable setting. The new-setting argument is the
address of an unsigned byte containing the new setting. Bit 0 set to 1 means
enable; bit 0 set to 0 means disable.

LIB$FLT_UNDER affects only the current routine activation and does not affect
any of its callers or any routines that it may call. However, the setting does
remain in effect for any routines entered through a JSB entry point.

The caller’s stack frame will be modified by this routine.

Condition Values Returned

lib—210

None.

T No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

Example

C+

LIBS$ Routines
LIBSFLT UNDER

C This Fortran example program shows
C the use of LIB$FLT_UNDER.

C-

1

1

INTEGER*4 NEW_SETTING
REAL*4 X , Y , Z

NEW_SETTING = 0
X = 1E-20
Y = 1E20

CALL LIBSFLT UNDER(NEW SETTING)

TYPE *,'First Case: This should not have an underflow exception’
7=X/Y

TYPE *, 'If this lines prints then the underflow exception
was disabled.’
TYPE *

NEW_SETTING = 1
X = 1E-20
Y = 1E20

CALL LIBSFLT UNDER(NEW SETTING)

TYPE * , ’Second Case: This should have an underflow exception
and then stop.’

Z=X/Y

TYPE * , 'If this line prints, then the underflow exception
was disabled.’

END

In this Fortran example, floating-point underflow detection is disabled the first
time X is divided by Y. The second time, underflow detection is enabled, and the
program stops because of the error generated.

lib—211

LIBS$ Routines
LIBSFORMAT_ DATE_TIME

LIBSFORMAT _DATE_TIME
Format Date and/or Time

The Format Date and/or Time routine allows the user to select at run time a
specific output language and format for a date or time, or both.

Format
LIBSFORMAT_DATE_TIME date-string [,date] [,user-context] [,date-length] [,flags]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
date-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Receives the requested date or time, or both, that has been formatted for output
according to the currently selected format and language. The date-string
argument is the address of a descriptor pointing to this string.

date

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

The date or time, or both, to be formatted for output. The date argument is the
address of an unsigned quadword that contains the absolute date or time, or both
to be formatted. If you omit this argument, or if you supply a zero passed by
value, then the current system time is used. Note that the date argument must
represent an absolute time, not a delta time.

user-context
OpenVMS usage: context

type: longword (unsigned)
access: modify
mechanism: by reference

User context that retains the translation context over multiple calls to this
routine. The user-context argument is the address of an unsigned longword
that contains this context. The initial value of the context variable must be zero.
Thereafter, the user program must not write to the cell.

lib—212

Description

LIBS$ Routines
LIBSFORMAT_ DATE_TIME

The user-context parameter is optional. However, if a context cell is not passed,
the routine LIBSFORMAT_DATE_TIME may abort if two threads of execution
attempt to manipulate the context area concurrently. Therefore, when calling this
routine in situations where reentrancy might occur, such as from AST level, HP
recommends that users specify a different context cell for each calling thread.

date-length

OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Number of bytes of text written to the date-string argument. The date-length
argument is the address of a signed longword that receives this string length.
Note that date-length specifies the number of bytes of text, not the number of
characters, written to date-string.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask that allows the user to specify whether the date, time, or both are
output. The flags argument is the address of an unsigned bit mask containing
the specified values. Valid values are LIB$M_DATE_FIELDS and LIB$M_TIME_
FIELDS.

Default values are determined as follows:

e If the flags argument is omitted, LIBSFORMAT DATE_TIME determines
which fields to format according to the current definition of LIB$DT
FORMAT.

e If the flags argument is specified, LIBSFORMAT_DATE_TIME uses the flags
value to determine which fields to format. That is, the flags argument can be
used to override the definition of LIB$DT_FORMAT when specifying which
fields should be formatted for output. If the field specified by flags was not
assigned a format through the definition of LIB§DT_FORMAT, the standard
OpenVMS format is used.

The LIBSFORMAT_DATE_TIME routine formats an OpenVMS internal format
date-time quadword into a textual string of some predefined format. The
language to be used and the format in which to output the information are
programmable using either of the following methods.

¢ The language and format are programmable at compile time through the use
of the routine LIB$INIT DATE_TIME_CONTEXT.

¢ The language and format are determined at run time through the translation
of the logical names SYS$LANGUAGE and LIB$DT _FORMAT.

In general, if an application is formatting text for internal storage or
transmission, the language and format should be specified at compile time.

If this is the case, use the routine LIB$INIT_DATE_TIME_CONTEXT to specify
the language and format of your choice.

lib—213

LIBS$ Routines
LIBSFORMAT_ DATE_TIME

If an application is formatting text for presentation to a user, the logical name
method of specifying language and format should be used. In this method, the
user assigns equivalence names to the logical names SYS$LANGUAGE and
LIB$DT_FORMAT, thereby selecting the language and format of the date and
time at run time.

If the logical name method is used, the translations of the logical names
SYS$LANGUAGE and LIB$DT_FORMAT specify one or more executive mode
logicals, which in turn must be translated to determine the actual format string.
These additional logicals supply such things as the names of the days of the week
and the months in the selected language (determined by SYS$LANGUAGE).

All of these logicals are predefined, so that a non-privileged user can select any
one of these languages and formats. A user can create his or her own languages
and formats; however, the CMEXEC, SYSNAME, and SYSPRV privileges are
required.

With the exception of SYSSLANGUAGE and LIB$DT_FORMAT, all logical names
used by this routine must be defined from the executive mode.

See the HP OpenVMS Programming Concepts Manual for a description of
system date and time operations as well as a detailed description of the format
mnemonics used in these routines.

Condition Values Returned

SS$ NORMAL Routine successfully completed.

LIB$_ABSTIMREQ Absolute time required.

LIB$ DEFFORUSE Default format used; unable to determine the
desired format.

LIB$ ENGLUSED English used; unable to determine or use the
specified language.

LIB$ REENTRANCY Reentrant invocation with same context variable.

LIB$ STRTRU Output string truncated.

LIB$ UNRFORCOD Unrecognized format code.

Any condition values returned by the $NUMTIM system service, or RTL routines
LIBGET_VM, LIBGET_VM_64, LIBSANALYZE_SDESC, or LIBSANALYZE_
SDESC_64.

lib—214

LIBS$ Routines
LIBSFORMAT_SOGW_PROT

LIBSFORMAT_SOGW_PROT
Format Protection Mask

Format

Returns

Arguments

The Format Protection Mask routine translates a protection mask into a
formatted string.

LIBSFORMAT_SOGW_PROT protection-mask, [access-names], [ownership-names],
[ownership-separator], [list-separator], protection-string, [protection-length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

protection-mask
OpenVMS usage: protection

type: word (unsigned)
access: read only
mechanism: by reference

The address of a word that holds a 16-bit protection mask to be translated.

access-names
OpenVMS usage: access_names

type: array [0..31] of quadword string descriptor
access: read only
mechanism: by reference

The address of the access name table for the associated object class. For example,
it is the value returned in acecnam by LIB$GET_ACCNAM. This parameter
defaults to the access name table for the FILE object class.

ownership-names
OpenVMS usage: char_string

type: array [0..3] of quadword string descriptor
access: read only
mechanism: by reference

The address of a vector of 4 quadword descriptors that points to the ownership
name. The default value is the full ownership category names (System, Owner,
Group, World).

ownership-separator
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor

lib—215

LIBS$ Routines
LIBSFORMAT _SOGW_PROT

Description

The address of a descriptor that points to the ownership separator string. The
separator string is inserted after the ownership name to introduce a nonempty
set of access names. By default, the value is “: ” (the colon and space characters).

list-separator
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor

The address of a descriptor that points to the list separator string. The list
separator string is inserted between ownership-access type pairs. By default, the
value is “, ” (the comma and space characters).

protection-string
OpenVMS usage: char_string

type: character-coded text string
access: write only
mechanism: by descriptor

The address of a character-string descriptor that receives the output of the
routine call. The protection-string argument points to the formatted protection
string at the end of a call. The protection string has the following components
repeated for each of: System, Owner, Group, World:

ownership-name[ownership-separator][access-types][list-separator]
An example of a formatted protection string is

System: RWED, Owner: RWED, Group: RW, World: R

protection-length
OpenVMS usage: word_signed

type: word (signed)
access: write only
mechanism: by reference

The address of a word that receives the length of the string returned in the
protection-string argument.

LIB$FORMAT _SOGW_PROT translates a 16-bit protection mask into a formatted
string. This routine works for any protected object class by specifying the correct
access name table. The address of the access name table can be obtained from
the LIB$GET ACCNAM routine.

Several formatting options are available. The caller can specify ownership names,
ownership separators, or list separators.

Condition Values Returned

lib—216

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Required parameter missing.
LIB$_ WRONGNUMARG Wrong number of arguments.
STR$_TRU String truncation warning.

LIBS$ Routines
LIBSFREE_DATE_TIME_CONTEXT

LIBSFREE_DATE_TIME_CONTEXT
Free the Context Area Used When Formatting Dates and Times for
Input or Output

The Free the Context Area Used When Formatting Dates and Times for Input or
Output routine frees the virtual memory associated with the context area used by
the date/time input and output formatting routines.

Format
LIBSFREE_DATE_TIME_CONTEXT [user-context]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
user-context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference
User context that retains the translation context over multiple calls to the
date/time input and output formatting routines. The user-context argument
is the address of an unsigned longword that contains this context. If the user-
context argument was not specified in the call to LIBSFORMAT_DATE_TIME,
LIB§CONVERT_DATE_STRING, or LIB$GET MAXIMUM_DATE_LENGTH,
then no argument should be supplied when calling this routine.

Description

The LIB$FREE_DATE_TIME_CONTEXT routine frees the virtual memory
associated with the context area used by the date/time input and output
formatting routines. A call to this routine is optional, since the same functions
are performed at image exit.

Condition Values Returned

SS$ NORMAL Routine successfully completed.

Any condition value returned by LIBSFREE_VM. If one of these condition values
is returned, it indicates either an internal coding error or that memory was
corrupted by the user’s program.

lib—217

LIBS$ Routines
LIB$FREE_EF

LIBSFREE_EF
Free Event Flag

Format

Returns

Argument

Description

The Free Event Flag routine frees a local event flag previously allocated by
LIB$GET_EF or by LIBSRESERVE_EF. LIB$FREE_EF is the complement of
LIB$GET_EF.

LIB$FREE_EF event-flag-number

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

event-flag-number
OpenVMS usage: ef number

type: longword integer (unsigned)
access: read only
mechanism: by reference

Event flag number to be deallocated by LIBSFREE_EF. The event-flag-number
argument is the address of a signed longword integer that contains the event
flag number, which is the value allocated to the user by LIB§GET_EF or
LIB$RESERVE_EF.

When a local event flag allocated by calling LIB§GET_EF or LIBSRESERVE_EF
is no longer needed, LIBSFREE_EF should be called to free the event flag for use
by other routines.

See the HP OpenVMS Programming Concepts Manual for more information.

Condition Values Returned

lib—218

SS$_NORMAL Routine successfully completed.
LIB$ EF _ALRFRE Event flag already free.
LIB$ EF RESSYS Event flag reserved to system. This error occurs

if the event flag number is outside the ranges of
1 to 23 and 32 to 63.

LIBS$ Routines
LIBSFREE_LUN

LIBSFREE_LUN
Free Logical Unit Number

Format

Returns

Argument

Description

The Free Logical Unit Number routine releases a logical unit number allocated
by LIB$GET_LUN to the pool of available numbers. LIBSFREE_LUN is the
complement of LIBSGET_LUN.

LIBSFREE_LUN logical-unit-number

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

logical-unit-number
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Logical unit number to be deallocated. The logical-unit-number argument is
the address of a signed longword integer that contains this logical unit number,
which is the value previously returned by LIB§GET_LUN.

When a logical unit number allocated by calling LIB§GET_LUN is no longer
needed, it should be released for use by other routines.

This routine is useful only in BASIC or Fortran programs.

Condition Values Returned

SS$ NORMAL Routine successfully completed.
LIB$_LUNALRFRE Logical unit number is already free.
LIB$_LUNRESSYS Logical unit number reserved to system. This

occurs if the specified logical unit number is
outside the range of 100 through 299.

lib—219

LIBS$ Routines
LIB$FREE_TIMER

LIBSFREE_TIMER
Free Timer Storage

The Free Timer Storage routine frees the storage allocated by LIB$INIT TIMER.

Format
LIBSFREE_TIMER handle-address
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Argument

handle-address
OpenVMS usage: address

type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to a block of storage containing the value returned by a previous call to
LIB$INIT_TIMER,; this is the storage that LIBSFREE_TIMER deallocates. The
handle-address argument is the address of an unsigned longword containing
that value.

Description

LIB$SFREE_TIMER frees a block of storage previously allocated by LIB$INIT_
TIMER. LIB§FREE_TIMER assumes that handle-address was returned by a
previous call to LIBSINIT_TIMER. If the block referred to by handle-address
was not allocated by LIB$INIT TIMER, LIBSFREE_TIMER returns an error. If
the routine completes successfully, LIBSFREE_TIMER sets handle-address to
Zero.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

LIB$_ BADBLOADR Bad block address; LIBSFREE_TIMER could not
deallocate the block to which handle-address
points.

LIB$_INVARG Invalid argument; handle-address was not

supplied or did not point to a timer block.

lib—220

LIBS$ Routines
LIBSFREE_VM

LIBSFREE_VM
Free Virtual Memory from Program Region

The Free Virtual Memory from Program Region routine deallocates an entire
block of contiguous bytes that was allocated by a previous call to LIBSGET_VM.
The arguments passed are the same as for LIB§GET_VM.

Format
LIBSFREE_VM number-of-bytes ,base-address [,zone-id]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments

number-of-bytes
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Number of contiguous bytes to be deallocated by LIB§FREE_VM. The number-
of-bytes argument is the address of a signed longword integer that contains this
number. The value of number-of-bytes must be greater than zero.

Byte counts are rounded in the same manner as in LIB§GET_VM.

Note

You may omit the number-of-bytes argument if you are using boundary
tags (LIB$M_VM_BOUNDARY_TAGS).

base-address
OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

Address of the first byte to be deallocated by LIBSFREE_VM. The base-address
argument contains the address of an unsigned longword that is this address.
The value of base-address must be the address of a block of memory that was
allocated by a previous call to LIB§GET_VM.

7 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib—221

LIBS$ Routines

LIBSFREE_VM
zone-id
OpenVMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Description

The address of a longword that contains a zone identifier created by a previous
call to LIB§CREATE_VM_ZONE or LIBSCREATE_USER_VM_ZONE.

You must specify the same zone-id value as when you called LIBSGET_VM to
allocate the block. An error status will be returned if you specify an incorrect
zone-id. The zone-id argument is optional. If zone-id is omitted or if the
longword contains the value 0, the 32-bit default zone is used.

LIB$SFREE_VM returns the block of memory to a free list associated with the
zone, so the block is available on a subsequent call to LIB§GET_VM for the zone.

The base-address argument must contain the address of the first byte of memory
that was allocated by a previous call to LIB§GET_VM. LIB$FREE_VM rounds up
the value of number-of-bytes to a multiple of the block size for the zone.

Note

You cannot free part of a block that was allocated by a call to LIB§GET_
VM. The whole block must be freed by a single call to LIBSFREE_VM.

Neither can you combine contiguous blocks of memory that were allocated
by several calls to LIB§GET_VM into one larger block that is freed by a
single call to LIBSFREE_VM.

If you specified deallocation filling when you created the zone, LIB§FREE_VM
will fill each byte freed. Note that part of a free block is used to store control
information, so some bytes will not contain the fill value.

LIB$FREE_VM is fully reentrant, so it can be called by routines executing at
AST-level or in an Ada multitasking environment.

If the zone you are freeing was created using the LIBSCREATE_USER_VM_

ZONE routine, then you must have an appropriate action routine for the free
operation. That is, in your call to LIBSCREATE_USER_VM_ZONE, you must
have specified a user deallocation procedure.

Condition Values Returned

lib—222

SS$ NORMAL Routine successfully completed.

LIB$ BADBLOADR The base-address argument contained a bad
block address. Either an address was outside of
the area allocated by LIB$GET_VM, the contents
of base-address were not properly aligned, part
of the space being deallocated was previously
deallocated, or a zone was found to be corrupt.

LIB$_BADBLOSIZ

LIB$_BADTAGVAL

LIBS$ Routines
LIBSFREE_VM

The number-of-bytes argument is less than or
equal to 0, or the number-of-bytes argument is
incorrect for a zone containing fixed size blocks.

For a zone that uses boundary tags, the tag field
was corrupted.

lib—223

LIBS$ Routines
LIBSFREE_VM_64 (Alpha and 164 Only)

LIBSFREE_VM_64 (Alpha and 164 Only)
Free Virtual Memory from Program Region

The Free Virtual Memory from Program Region routine deallocates an entire
block of contiguous bytes that was allocated by a previous call to LIB§GET VM _
64. The arguments passed are the same as for LIBSGET_VM_64.

Format

LIBSFREE_VM_64 number-of-bytes ,base-address [,zone-id]
Returns

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value
Arguments

number-of-bytes
OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only
mechanism: by reference

Number of contiguous bytes to be deallocated by LIB§FREE_VM_64. The
number-of-bytes argument is the address of a signed quadword integer that
contains this number. The value of number-of-bytes must be greater than zero.

Byte counts are rounded in the same manner as in LIB§GET_VM_64.

Note

You may omit the number-of-bytes argument if you are using boundary
tags (LIB§M_VM_BOUNDARY_TAGS).

base-address
OpenVMS usage: address

type: quadword (unsigned)
access: read only
mechanism: by reference

Address of the first byte to be deallocated by LIB$FREE_VM_64. The base-
address argument contains the address of an unsigned quadword that is this
address. The value of base-address must be the address of a block of memory
that was allocated by a previous call to LIBSGET_VM_64.

lib—224

Description

LIBS$ Routines
LIBSFREE_VM_64 (Alpha and 164 Only)

zone-id

OpenVMS usage: identifier

type: quadword (unsigned)
access: read only
mechanism: by reference

The address of a quadword that contains a zone identifier created by a previous
call to LIBSCREATE_VM_ZONE_64 or LIBSCREATE_USER_VM_ZONE_64.

You must specify the same zone-id value as when you called LIB§GET_VM_64
to allocate the block. An error status will be returned if you specify an incorrect
zone-id. The zone-id argument is optional. If zone-id is omitted or if the
quadword contains the value 0, the 64-bit default zone is used.

LIB$FREE_VM_64 returns the block of memory to a free list associated with the
zone, so the block is available on a subsequent call to LIB§GET_VM_64 for the
zone.

The base-address argument must contain the address of the first byte of memory
that was allocated by a previous call to LIBSGET_VM_64. LIB§FREE_VM_64
rounds up the value of number-of-bytes to a multiple of the block size for the
zone.

Note

You cannot free part of a block that was allocated by a call to LIB$GET_
VM_64. The whole block must be freed by a single call to LIB$FREE_
VM_64.

Neither can you combine contiguous blocks of memory that were allocated
by several calls to LIBSGET_VM_64 into one larger block that is freed by
a single call to LIBSFREE_VM_64.

If you specified deallocation filling when you created the zone, LIBSFREE_VM_64
will fill each byte freed. Note that part of a free block is used to store control
information, so some bytes will not contain the fill value.

LIB$FREE_VM_64 is fully reentrant, so it can be called by routines executing at
AST-level or in an Ada multitasking environment.

If the zone you are freeing was created using the LIB§CREATE_USER_VM_
ZONE_64 routine, then you must have an appropriate action routine for the free
operation. That is, in your call to LIBSCREATE_USER_VM_ZONE_64, you must
have specified a user deallocation procedure.

lib—225

LIBS$ Routines
LIBSFREE_VM_64 (Alpha and 164 Only)

Condition Values Returned

SS$ NORMAL
LIB$ BADBLOADR

LIB$_BADBLOSIZ

LIB$ BADTAGVAL

lib—226

Routine successfully completed.

The base-address argument contained a bad
block address. Either an address was outside

of the area allocated by LIB§GET_VM_64, the
contents of base-address were not properly
aligned, part of the space being deallocated was
previously deallocated, or a zone was found to be
corrupt.

The number-of-bytes argument is less than or
equal to 0, or the number-of-bytes argument is
incorrect for a zone containing fixed size blocks.

For a zone that uses boundary tags, the tag field
was corrupted.

LIBS$ Routines
LIBSFREE_VM_PAGE

LIBSFREE_VM_PAGE
Free Virtual Memory Page

The Free Virtual Memory Page routine deallocates a block of contiguous pages
on VAX systems or pagelets on Alpha and 164 systems that were allocated by
previous calls to LIBSGET_VM_PAGE.

Format
LIBSFREE_VM_PAGE number-of-pages ,base-address
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
number-of-pages
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of pages on VAX systems or pagelets on Alpha and 164 systems. The
number-of-pages argument is the address of a longword integer that specifies
the number of contiguous pages on VAX systems or pagelets on Alpha and 164
systems to be deallocated. The value of number-of-pages must be greater than
Zero.
base-address
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference
Block address. The base-address argument is the address of a longword that
contains the address of the first byte of the first VAX page or Alpha or 164 pagelet
to be deallocated.
Description

LIB$FREE_VM_PAGE deallocates a block of contiguous 512-byte pages starting
at base-address. Each of the pages or pagelets specified by number-of-pages
and base-address must have been allocated by previous calls to LIB§GET_

VM_PAGE. The pages or pagelets are returned to the processwide pool and are
available to satisfy subsequent calls to LIB§GET_VM_PAGE.

7 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib—227

LIBS$ Routines
LIBSFREE_VM_PAGE

You can free a smaller group of pages or pagelets than you allocated. That

is, if you allocated a group of contiguous pages or pagelets by a single call to
LIB$GET_VM_PAGE, you can deallocate them in several calls to LIB$FREE_
VM_PAGE. You can also combine contiguous groups of pages or pagelets that
were allocated in several calls to LIBSGET _VM_PAGE into one large group that
is freed by a single call to LIB§FREE_VM_PAGE.

LIB$FREE_VM_PAGE is fully reentrant, so it may be called by routines executing
at AST level or in an Ada multitasking environment.

Condition Values Returned

lib—228

SS$_ NORMAL Routine successfully completed.

LIB$_BADBLOADR Pages on VAX systems or pagelets on Alpha and
164 systems not allocated by LIB$GET_VM_
PAGE, the value of base-address is not a page
boundary, or the pages were previously freed.

LIB$_BADBLOSIZ The number-of-pages argument is less than or
equal to zero.

LIBS$ Routines
LIBSFREE_VM_PAGE_64 (Alpha and 164 Only)

LIBSFREE_VM_PAGE_64 (Alpha and 164 Only)
Free Virtual Memory Page

The Free Virtual Memory Page routine deallocates a block of contiguous Alpha or
164 pagelets that was allocated by previous calls to LIB§GET_VM_PAGE_64.

Format
LIBSFREE_VM_PAGE_64 number-of-pages ,base-address
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
number-of-pages
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference
Number of Alpha or 164 pagelets. The address of a quadword integer that
specifies the number of contiguous Alpha or 164 pagelets to be deallocated. The
value of number-of-pages must be greater than zero.
base-address
OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by reference
Block address. The base-address argument is the address of a quadword that
contains the address of the first byte of the first Alpha or 164 pagelet to be
deallocated.
Description

LIB$FREE_VM_PAGE_64 deallocates a block of contiguous Alpha or 164 pagelets
starting at base-address. Each of the pagelets specified by number-of-pages
and base-address must have been allocated by previous calls to LIB§GET_VM_
PAGE_64. The pagelets are returned to the processwide pool and are available to
satisfy subsequent calls to LIBSGET_VM_PAGE_64.

You can free a smaller group of pagelets than you allocated. That is, if you
allocated a group of contiguous pagelets by a single call to LIB§GET_VM_PAGE_
64, you can deallocate them in several calls to LIBSFREE_VM_PAGE_64. You
can also combine contiguous groups of pagelets that were allocated in several
calls to LIBSGET _VM_PAGE_64 into one large group that is freed by a single call
to LIB$FREE_VM_PAGE_64.

LIB$FREE_VM_PAGE_64 is fully reentrant, so it may be called by routines
executing at AST level or in an Ada multitasking environment.

lib—229

LIBS$ Routines
LIBSFREE_VM_PAGE_64 (Alpha and 164 Only)

Condition Values Returned

lib—230

SS$ NORMAL
LIB$ BADBLOADR

LIB$_BADBLOSIZ

Routine successfully completed.

Alpha pagelets not allocated by LIB§GET_VM_
PAGE_64, the value of base-address is not a
pagelet boundary, or the pagelets were previously
freed.

The number-of-pages argument is less than or
equal to zero.

LIBS$ Routines
LIBSGETDVI

LIB$SGETDVI
Get Device/Volume Information

The Get Device/Volume Information routine provides a simplified interface to
the $GETDVI system service. It returns information about the primary and
secondary device characteristics of an I/O device. The calling process need not
have a channel assigned to the device about which it wants information.

Format
LIBSGETDVI item-code [,channel] [,device-name] [,longword-integer-value] [,resultant-string]
[,resultant-length] [,pathname]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
item-code
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Code specifying the item of information you are requesting. The item-code
argument is the address of a signed longword containing the item code. All valid
$GETDVI item codes whose names begin with DVI$_ are accepted.

See the Description section for more information on item codes.

channel

OpenVMS usage: channel

type: word (unsigned)
access: read only
mechanism: by reference

OpenVMS I/O channel assigned to the device for which LIB§GETDVI returns
information. The channel argument is the address of an unsigned word
containing the channel specification. If channel is not specified, device-name is
used instead. You must specify either channel or device-name, but not both. If
neither is specified, the error status SS$_IVDEVNAM is returned.

device-name
OpenVMS usage: device_name

type: character string
access: read only
mechanism: by descriptor

Name of the device for which LIB§GETDVI returns information. The device-
name argument is the address of a descriptor pointing to the device name string.
If this string contains a colon, the colon and the characters that follow it are
ignored.

lib—231

LIBS$ Routines

LIBSGETDVI

lib—232

The device-name may be either a physical device name or a logical name. If
the first character in the string is an underscore character (_), the name is
considered a physical device name. Otherwise, the name is considered a logical
name, and logical name translation is performed until either a physical device
name is found or the system default number of translations has been performed.

If device-name is not specified, channel is used instead. You must specify
either channel or device-name, but not both. If neither is specified, the error
status SS$_IVDEVNAM is returned. The device name must not be longer than
255 characters.

longword-integer-value
OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

Numeric value of the information requested. The longword-integer-value
argument is the address of a signed longword containing the numeric value. If an
item is listed as only returning a string value, this argument is ignored.

resultant-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

String representation of the information requested. The resultant-string
argument is the address of a descriptor pointing to this information. If resultant-
string is not specified and if the value returned has only a string representation,
the error status LIB$_INVARG is returned.

Refer to Table lib—4 for a description of the string representation used for each
item.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string by LIBSGETDVI.
The resultant-length argument is the address of an unsigned word containing
this length.

pathname

OpenVMS usage: path_name

type: character text string
access: read only
mechanism: by descriptor

(I64 and Alpha only) The name of the path about which $GETDVI is to return
information. The pathname argument is the address of a character string
descriptor pointing to this name string. The path name may be used with either
the channel or device-name arguments.

Description

LIBS$ Routines
LIBSGETDVI

Check the definitions of the item codes to see if the pathname argument is used.
In general, item codes that return information that may vary by path will make
use of the pathname argument. The paths for a multipath device can be seen
with the SHOW DEVICE /FULL command, the SYS$DEVICE_PATH_SCAN
system service, or the FSMULTIPATH DCL lexical function.

If the pathname argument is used, it will be validated against the existing paths
for the device specified. If the path does not exist, the error SS$_NOSUCHPATH
will be returned, even if the item codes(s) used do not make use of the pathname
argument.

LIB$GETDVI returns two categories of information:
e Primary device characteristics
e Secondary device characteristics

LIB$GETDVI does not allow you to get more than one item of information in a
single call.

LIB$GETDVI provides the following features in addition to those provided by the
$GETDVI system service.

e Instead of a list of item descriptors, which may be difficult to construct in
high-level languages, the single item desired is specified as an integer code
which is passed by reference. Results are written to separate arguments.

¢ For items which return numeric values, LIBSGETDVI can optionally provide
a formatted string interpretation of the value. For example, if the device
owner UIC is requested, LIBSGETDVI can return the UIC formatted as
[identifier].

e For string arguments, LIBSGETDVI understands all string classes supported
by the Run-Time Library.

e C(Calls to LIB§GETDVI are synchronous; LIB§GETDVI calls LIB§GET_EF to
allocate a local event flag number for synchronization.

See the description of the $§GETDVI system service in the HP OpenVMS System
Services Reference Manual: A-GETUAI for more detailed information.

Item Codes
All item codes that can be used with the $GETDVI system service may be used

as the item-code argument to LIBSGETDVI. These codes have symbolic names
beginning with DVI$_.

The use of a DVI$_ code by itself will return the primary device characteristic
associated with that code. To obtain the secondary device characteristics, add
1 to the code. See the description of the $GETDVI system service for a list of
the defined item codes. The symbolic names for these items are defined in HP
supplied symbol libraries in module $DVIDEF (where appropriate).

lib—233

LIBS$ Routines

LIBSGETDVI

lib—234

Value Formats

By using the longword-integer-value and resultant-string arguments to
LIB$GETDVI, the information requested can be returned in two different
fashions.

e For each item described as a “string” in the table of Item Codes for the
$GETDVI service, the value is returned in resultant-string.

e For all other items—those that have numeric values—the numeric
representation is returned in longword-integer-value (if specified), and a
formatted string interpretation of the value is returned in resultant-string.

Each formatted item is written left-justified; resultant-length, if specified, gives
the number of characters used. Table lib—4 lists the formats used for the string
interpretations.

LIBS$ Routines
LIBSGETDVI

Table lib-4 Formats Used for LIBSGETDVI Strings

Item or Format

Description

DVI$_ACPPID
DVI$_PID

DVI$_ACPTYPE

DVI$_OWNUIC

DVI$_VPROT

Boolean

All others

The string value is returned as an 8-digit hexadecimal
number.

The string value is returned as an 8-digit hexadecimal
number.

The ACP type string is one of the following:
NONE No ACP

F11vi1 Files-11 Level 1

F11v2 Files-11 Level 2

F11v3 Files-11 presentation of ISO 9660
F11v4 Files-11 presentation of High Sierra
F11V5 Files-11 structure level 5 (ODS-5)
F11ve6 Files-11 structure level 5 (ODS-6)

F64 Files 64 support for Spiralog

HBS Not currently defined

HBVS ACP for Host Based Volume Shadowing
MTA Magnetic Tape

NET Networks

REM Remote I/0

Ucx ACP for TCP/IP Services for OpenVMS

The standard UIC format [group,member] is used. If the
format of a UIC includes identifiers from the access rights
database in place of the octal group and member numbers,
the UIC string returned will have these identifiers, if
available.

The volume protection string is in the following form:
SYSTEM=RWLP,OWNER=RWLP,GROUP=RWLP,WORLD=RWLP
If a category has no access, the equal sign is omitted. The

string will not contain any embedded spaces.

The value string returned is TRUE if the low bit of the
value is set, or FALSE if the low bit is clear.

The value string is returned in the form of an unsigned
decimal integer.

Note

This routine calls LIB§GET_EF. Please read the note in the Description
section of that routine.

lib—235

LIBS$ Routines

LIBSGETDVI

Condition Values Returned

lib—236

SS$ NORMAL
LIB$ STRTRU

SS$_BADPARAM

SS$_IVDEVNAM

LIB$_INSEF

LIB$_INVARG

LIB$_INVSTRDES

LIB$ WRONUMARG

Normal successful completion.

String truncated. This is an alternate success
return status. The resultant-string argument
could not contain all the characters of the
returned item.

Unrecognized item code. The item-code
argument was not recognized as valid by
$GETDVI.

The device name string contains invalid
characters, or neither the channel nor device-
name arguments were specified.

Insufficient event flags. A local event flag
number could not be allocated by a call to
LIB$GET_EF.

Invalid arguments. The $GETDVI Item
Code describes the item as a “string”, and no
resultant-string argument was specified.

Invalid string descriptor. The descriptor of
the resultant-string argument is not a valid
descriptor.

Wrong number of arguments. An incorrect
number of arguments was passed to

LIB$GETDVI.

Any condition values returned by LIB§SCOPY _xxx, or the $GETDVI system

service.

LIBS$ Routines
LIBSGETJPI

LIB$GETJPI
Get Job/Process Information

Format

Returns

Arguments

The Get Job/Process Information routine provides a simplified interface to the
$GETJPI system service. It provides accounting, status, and identification
information about a specified process.

LIB$GETJPI obtains only one item of information in a single call.

LIBSGETJPI item-code [,process-id] [,process-name] [,resultant-value] [,resultant-string]
[,resultant-length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

item-code

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Item identifier code specifying the item of information you are requesting. The
item-code argument is the address of a signed longword containing the item
code. You may request only one item in each call to LIB§GETJPI.

LIB$GETJPI accepts all $GETJPI item codes. These names begin with JPI$_ and
are defined in symbol libraries in module $JPIDEF supplied by HP.

process-id

OpenVMS usage: process_id

type: longword (unsigned)
access: modify

mechanism: by reference

Process identifier of the process for which you are requesting information. The
process-id argument is the address of an unsigned longword containing the
process identifier. If you do not specify process-id, process-name is used.

The process-id is updated to contain the process identifier actually used,
which may be different from what you originally requested if you specified
process-name or used wildcard process searching.

lib—237

LIBS$ Routines

LIBSGETJPI

lib—238

process-name

OpenVMS usage: process_name
type: character string
access: read only
mechanism: by descriptor

A 1- to 15-character string specifying the name of the process for which you
are requesting information. The process-name argument is the address of
a descriptor pointing to the process name string. The name must correspond
exactly to the name of the process for which you are requesting information;
LIB$GETJPI does not allow trailing blanks or abbreviations.

If you do not specify process-name, process-id is used. If you specify neither
process-name nor process-id, the caller’s process is used. Also, if you do not
specify process-name and you specify zero for process-id, the caller’s process
is used. In this way, you can fetch the item you want and the caller’s PID in a
single call to LIB§GETJPI.

resultant-value
OpenVMS usage: varying_arg

type: unspecified
access: write only
mechanism: by reference

Numeric value of the information you request. The resultant-value argument
is the address of a longword or quadword into which LIB§GETJPI writes the
numeric value of this information. Refer to Table lib—5 for information on which
items return longword values and which return quadword values. If the item you
request returns only a string value, this argument is ignored.

resultant-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

String representation of the information you request. The resultant-string
argument is the address of the descriptor for a character string into which
LIB$GETJPI writes the string representation. Table lib—5 describes the string
representation used for each item.

If you do not include resultant-string, but the item you request has only a string
representation, the error status LIB$_INVARG is returned.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string by LIB§GETJPI.
The resultant-length argument is the address of an unsigned word integer into
which LIB$GETJPI writes the number of characters.

Description

LIBS$ Routines
LIBSGETJPI

LIB$GETJPI provides the following features in addition to those provided by the
$GETJPI system service:

e Instead of a list of item descriptors, which may be difficult to construct in
high-level languages, the single item desired is specified as an integer code
which is passed by reference. Results are written to separate arguments.

e For items which return numeric values, LIBSGETJPI can optionally provide a
formatted string interpretation of the value. For example, if the process UIC
is requested, LIB§GETJPI can return the UIC formatted as [g,m].

e For string arguments, all string classes supported by the Run-Time Library
are understood.

e C(Calls to LIB$GETJPI are synchronous. LIBSGETJPI calls LIB$GET_EF to
allocate a local event flag number for synchronization.

See the description of the $GETJPI system service in the HP OpenVMS System
Services Reference Manual: A-GETUAI for more information.

By using the resultant-value and resultant-string arguments to LIBSGETJPI,
you can request that the information be returned in two ways. For each item
described as a “string” in the table of Item Codes for the $GETJPI service, the
value is returned in resultant-string. For all other items—those which have
numeric values—the numeric representation is returned in resultant-value

(if specified), and a formatted string interpretation of the value is returned in
resultant-string.

Each formatted item is written left-justified; resultant-length, if specified, gives
the number of characters used.

Table lib—5 lists the formats used for the string interpretations.

Table lib-5 Item Code Formats for LIBSGETJPI
Item or Format Description

JPI$_AUTHPRIV The string representation of these quadword privilege
masks is a list of each privilege that is enabled. The
privilege names are in uppercase, and are separated by

commas.
JPI$_CURPRIV Same as for JPISAUTHPRIV.
JPI$_IMAGPRIV Same as for JPISAUTHPRIV.
JPI$_PROCPRIV Same as for JPISAUTHPRIV.
JPI$_LOGINTIM The string representation of the quadword time is a
standard absolute date-time string.
JPI$_PID The process identification string is an 8-digit

hexadecimal number.

(continued on next page)

lib—239

LIBS$ Routines
LIBSGETJPI

Table lib-5 (Cont.) Item Code Formats for LIBSGETJPI

Item or Format

Description

JPI$_STATE

JPI$_UIC

JPI$ MODE

All others

The process state string is one of the following:

CEF
COM
COMO
CUR
COLPG
FPG
HIB
HIBO
LEF
LEFO
MWAIT
PFW
SUSP
SUSPO

Common event flag wait
Computable

Computable, outswapped

Current process

Collided page wait

Free page wait

Hibernate wait

Hibernate wait, outswapped
Local event flag wait

Local event flag wait, outswapped
Mutex and miscellaneous resource wait
Page fault wait

Suspended

Suspended, outswapped

The standard UIC format [group,member] is used. If
the format of a UIC includes identifiers from the access
rights database in place of the octal group and member
numbers, the UIC string returned will have these
identifiers, if available.

The current mode string is one of the following: BATCH,
INTERACTIVE or NETWORK.

The string value is returned as an unsigned decimal

integer.

Note

This routine calls LIB§GET_EF. Please read the note in the Description
section of that routine.

Condition Values Returned

SS$ NORMAL
LIB$ STRTRU

SS$ BADPARAM

lib—240

Routine successfully completed.

String truncated. This is an alternate success
return status. The resultant-string argument
could not contain all the characters of the
returned item.

Unrecognized item code. The item-code
argument was not recognized as valid by
$GETJPI.

LIB$_INSEF

LIB$_INVARG

LIB$_INVSTRDES

LIB$ WRONUMARG

LIBS$ Routines
LIBSGETJPI

Insufficient event flags. A local event flag
number could not be allocated by a call to
LIB$GET_EF.

Invalid arguments. The $GETJPI Item Code
describes the item as a “string”, and no
resultant-string argument was specified.
Invalid string descriptor. The descriptor for a
string argument was not a valid string descriptor.
Wrong number of arguments. An incorrect

number of arguments was passed to
LIB$GETJPL.

Any condition value returned by LIB§SCOPY _xxx, or the $GETJPI system

service.

lib—241

LIBS$ Routines
LIBSGETQUI

LIBSGETQUI
Get Queue Information

The Get Queue Information routine provides a simplified interface to the
$GETQUI system service. It provides queue, job, file, characteristic, and form
information about a specified process.

LIB$GETQUI obtains only one item of information in a single call.

Format
LIBSGETQUI function-code [,item-code] [,search-number] [,search-name] [,search-flags] [,resultant-value]
[,resultant-string] [,resultant-length]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments

function-code
OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Function code specifying the function that LIB§GETQUI is to perform. The
function-code argument is the address of a signed longword containing the
function code.

LIB$GETQUI accepts all $GETQUI function codes. These names begin with
QUI$_ and are defined in symbol libraries in module $QUIDEF supplied by HP.

item-code

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Item identifier code specifying the item of information you are requesting. The
item-code argument is the address of a signed longword containing the item
code. You may request only one item in each call to LIB§GETQUI.

LIB$GETQUI accepts all $GETQUI item codes. These names begin with QUI$_
and are defined in symbol libraries in module $QUIDEF supplied by HP.

lib—242

LIBS$ Routines

LIBSGETQUI
search-number
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Numeric value used to process your request. The search-number argument
is the address of a signed longword integer containing the number needed to
process your request. The search-number argument corresponds directly to
QUI$_SEARCH_NUMBER as described by the $GETQUI system service.

search-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Character string used to process your request. The search-name argument is
the address of a string descriptor that provides the name needed to process your
request. The search-name argument corresponds directly to QUI$_SEARCH_
NAME as described by the $GETQUI system service.

search-flags
OpenVMS usage: longword_unsigned

type: longword integer (unsigned)
access: read only
mechanism: by reference

Optional bit mask indicating request to be performed. The search-flags
argument is the address of an unsigned longword integer containing the bit
mask. The search-flags argument directly corresponds to $QUI_SEARCH_
FLAGS as described by the $GETQUI system service.

resultant-value
OpenVMS usage: varying arg

type: unspecified
access: write only
mechanism: by reference

Numeric value of the information you requested. The resultant-value argument
is the address of a longword, quadword or octaword into which LIB$GETQUI
writes the numeric value of this information. Refer to Table lib—6 for information
on which items return values other than longwords.

If the item you requested returns only a string value, this argument is ignored.

resultant-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

String representation of the information you requested. The resultant-string
argument is the address of the descriptor for a character string into which
LIB$GETQUI writes the string representation. Table lib—6 describes the string
representation used for each item.

lib—243

LIBS$ Routines

LIBSGETQUI

Description

lib—244

If you do not include resultant-string, but the item you request has only a string
representation, the error status LIB$_INVARG is returned.

resultant-length
OpenVMS usage: word_signed

type: word integer (signed)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string by LIBS§GETQUI.
The resultant-length argument is the address of a signed word integer into
which LIB$GETQUI writes the number of characters.

LIB$GETQUI provides a simplified interface to the $GETQUI system service. It
provides queue, job, file, characteristic, and form information about a specified
process. This routine obtains only one item of information in a single call.

LIB$GETQUI provides the following features in addition to those provided by the
$GETQUI system service.

e Instead of a list of item descriptors that may be difficult to construct in high-
level languages, the single item desired is specified as an integer code which
is passed by reference. Results are written to separate arguments.

e For items that return numeric values, LIB§GETQUI optionally can provide a
formatted string interpretation of the value. For example, if you request the
characteristics of a queue, LIBSGETQUI can return the list of characteristics
as “23,42,76,98,125”.

e For string arguments, all string classes supported by the Run-Time Library
are understood.

e Calls to LIBSGETQUI are synchronous. LIBSGETQUI calls $GETQUIW to
force the synchronization.

LIB$GETQUI retains context. This means that previous calls to LIB§GETQUI
affect current calls to LIB§GETQUI.

See the description of the $GETQUI system service in the HP OpenVMS System
Services Reference Manual: A-GETUAI for more information.

By using the resultant-value and resultant-string arguments to LIB§GETQUI,
you can request that the information be returned in two ways. For items that
have numeric values, the numeric representation is returned in resultant-value
(if specified), and a formatted string interpretation of the value is returned in
resultant-string. For each item described as a “string” in the table of Item
Codes for the $GETQUI service, the value is returned in resultant-string.

Each formatted item is written left-justified; resultant-length, if specified, gives
the number of characters used.

The $GETQUI system service requires some item codes. LIB§GETQUI provides
those item codes for you by corresponding your input to LIB§GETQUI directly to
the required input codes.

LIBS$ Routines
LIBSGETQUI

The following table describes all of the required and optional input needed to

perform your task with LIB§GETQUI:

Function

Input Description

QUI$_CANCEL
QUI$_DISPLAY CHARACTERISTIC

QUI$_DISPLAY ENTRY

QUI$_DISPLAY_FILE
QUI$_DISPLAY FORM

QUI$_DISPLAY JOB
QUI$_DISPLAY QUEUE

QUI$_TRANSLATE _QUEUE

Accepts no input.

A characteristic name or number,

or both. Optionally, a search flags
number.

Optionally, an entry number, user
name, and search flags number. The
default user name is that of the calling
process.

Optionally, a search flags number.

A form name or number, or both.
Optionally, a search flags number.

Optionally, a search flags number.

A queue name. Optionally, a search
flags number.

A queue name.

Table lib—6 lists the formats used for the string interpretations.

Table lib-6 Item Code Formats for LIBSGETQUI

Item or Format

Description

QUI$_AFTER _TIME

QUI$_CHARACTERISTICS

QUI$_SUBMISSION_TIME

QUI$_UIC

Returns a quadword resultant-value as
well as a resultant-string.

Returns an octaword resultant-value as
well as a comma-separated list that lists
all the characteristic numbers, output as
a resultant-string.

Returns a quadword resultant-value as
well as a resultant-string.

Returns a formatted resultant-string as
well as a longword.

Note

This routine calls LIB§GET_EF. Please read the note in the Description

section of that routine.

lib—245

LIBS$ Routines

LIBSGETQUI

Condition Values Returned

lib—246

SS$ NORMAL
LIB$ STRTRU

SS$_BADPARAM

LIB$_INSEF

LIB$_INVARG

LIB$_INVSTRDES

LIB$_WRONUMARG

Routine successfully completed.

String truncated. This is an alternate success
return status. The resultant-string argument
could not contain all the characters of the
returned item.

Unrecognized item code. The item-code
argument was not recognized as valid by
$GETQUI.

Insufficient event flags. A local event flag
number could not be allocated by a call to
LIB$GET_EF.

Invalid arguments. The $GETQUI Item

Code describes the item as a “string”, and no
resultant-string argument was specified.
Invalid string descriptor. The descriptor for a
string argument was not a valid string descriptor.
Wrong number of arguments. An incorrect

number of arguments was passed to
LIB$GETQUI.

Any condition value returned by LIB$SCOPY_xxx, or the $GETQUI system

service.

LIBS$ Routines
LIBSGETSYI

LIBSGETSYI
Get Systemwide Information

The Get Systemwide Information routine provides a simplified interface to the
$GETSYI system service. The $GETSYI system service obtains status and
identification information about the system. LIB$GETSYI returns only one item
of information in a single call.

Format
LIBSGETSYI item-code [,resultant-value] [,resultant-string] [,resultant-length] [,cluster-system-id]
[,node-name]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
item-code
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Item code specifying the desired item of information. The item-code argument
is the address of a signed longword containing this item code. All valid $GETSYI
item codes are accepted.

resultant-value
OpenVMS usage: varying arg

type: unspecified
access: write only
mechanism: by reference

Numeric value returned by LIB§GETSYI. The resultant-value argument is the
address of a longword or quadword containing this value. If an item is listed as
returning only a string value, this argument is ignored.

resultant-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Information returned by LIB$GETSYI. The resultant-string argument is the
address of a descriptor pointing to the character string that will receive this
information.

See the Description section for more information about value formats. If
resultant-string is not specified and if the returned value has only a string
representation, the error status LIB$_INVARG is returned.

lib—247

LIBS$ Routines

LIBSGETSYI

lib—248

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string, not including
blank padding or truncated characters. The resultant-length argument is the
address of an unsigned word into which LIB§GETSYI returns this number.

cluster-system-id
OpenVMS usage: identifier

type: longword (unsigned)
access: modify
mechanism: by reference

Cluster system identification (CSID) of the node for which information is to

be returned. The cluster-system-id argument is the address of this CSID.

If cluster-system-id is specified and is nonzero, node-name is not used. If
cluster-system-id is specified as zero, LIBSGETSYI uses node-name and
writes into the cluster-system-id argument the CSID corresponding to the node
identified by node-name.

The cluster-system-id of an OpenVMS node is assigned by the cluster-
connection software and may be obtained by the DCL command SHOW
CLUSTER. The value of the cluster-system-id for an OpenVMS node is not
permanent; a new value is assigned to an OpenVMS node whenever it joins or
rejoins the OpenVMS Cluster.

If cluster-system-id is specified as —1, LIBSGETSYI assumes a wildcard
operation and returns the requested information for each OpenVMS node in the
cluster, one node per call.

If cluster-system-id is not specified, node-name is used.

node-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the node for which information is to be returned. The node-name
argument is the address of a descriptor pointing to the node name string. If
cluster-system-id is not specified or is specified as zero, node-name is used. If
neither node-name nor cluster-system-id is specified, the caller’s node is used.
See the cluster-system-id argument for more information.

The node name string must contain from 1 to 15 characters and must correspond
exactly to the OpenVMS node name; no trailing blanks nor abbreviations are
permitted.

LIBS$ Routines
LIBSGETSYI

Description

LIB$GETSYI provides the following features in addition to those provided by the
$GETSYI system service:

e Instead of a list of item descriptors, which may be difficult to construct in
high-level languages, the single item desired is specified as an integer code
which is passed by reference. Results are written to separate arguments.

e For items which return numeric values, LIBSGETSYI can optionally provide
a formatted string interpretation of the value.

e For string arguments, all string classes supported by the Run-Time Library
are understood.

e Calls to LIBSGETSYI are synchronous. LIB§GETSYI calls LIB§GET_EF to
allocate a local event flag number for synchronization.

All item codes that can be used with the $GETSYI system service may be used
as the item-code argument to LIBSGETSYI. See the description of the $GETSYI
system service for a list of the defined item codes. Note that the symbolic names
for these items are defined in symbol libraries in module $SYIDEF (where
appropriate) supplied by HP.

Value Formats

By using the resultant-value and resultant-string arguments to LIB§GETSYI,
you can request that the information be returned in two ways. For each item
described as a “string” in the table of Item Codes for the $GETSYI service,

the value is returned in resultant-string. For all other items—those which
have numeric values—the numeric representation is returned in resultant-
value (if specified), and an unsigned decimal integer representation is stored in
resultant-string.

Each formatted item is written left-justified; resultant-length, if specified, gives
the number of characters used.

See the HP OpenVMS System Services Reference Manual: A-GETUAI for a
description of the $GETSYI system service.
Note

This routine calls LIB§GET_EF. Please read the note in the Description
section of that routine.

Condition Values Returned

SS$ NORMAL Routine successfully completed.

SS$ BADPARAM Unrecognized item code. The item-code
argument was not recognized as valid by
$GETSYI.

LIB$_INSEF Insufficient event flags. A local event flag
number could not be allocated by a call to
LIB$GET_EF.

lib—249

LIBS$ Routines

LIBSGETSYI

lib—250

LIB$_INVARG

LIB$_INVSTRDES

LIB$_STRTRU

LIB$_WRONUMARG

Invalid arguments. The $GETSYI Item Code
describes the item as a “string”, and no
resultant-string argument was specified.

Invalid string descriptor. The descriptor of
the resultant-string argument is not a valid
descriptor.

String truncated. This is an alternate success
return status. The resultant-string argument
could not contain all the characters of the
returned item.

Wrong number of arguments. An incorrect
number of arguments was passed to
LIB$GETSYL.

Any condition values returned by LIB§SCOPY_xxx, or the $GETSYI system

service.

LIBS$ Routines
LIBSGET_ACCNAM

LIBSGET_ACCNAM
Get Access Name Table for Protected Object Class (by Name)

Format

Returns

Arguments

The Get Access Name Table for Protected Object Class (by Name) routine is

a simplified interface to the $GET_SECURITY system service, and returns a
pointer to the access name table for a protected object class that is specified by
name.

LIBSGET_ACCNAM [clsnam] , [objnam] ,accnam

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only

mechanism: by value

clsnam

OpenVMS usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor

The address of a character-string descriptor pointing to the name of a protected
object class. This argument is optional and defaults to FILE.

objnam

OpenVMS usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor

The address of a character-string descriptor pointing to the name of a protected
object. This argument is optional. If it is omitted, the access name table returned
is that used for objects of the class specified by the clsnam argument.

accham

OpenVMS usage: access_names

type: longword (unsigned)
access: write only
mechanism: by reference

The address of a longword into which this routine writes the address of the access
name table.

lib—251

LIBS$ Routines

LIBSGET_ACCNAM

Description

LIB$GET_ACCNAM returns the address of the access name table for the specified
protected object. The format of the table is a vector of 32 quadword string
descriptors. Each table entry points to the name of an access type. The index into
the vector is the bit position in an access-desired mask. Undefined access types
have zero-length names. The table can be used as input to the LIBSPARSE_
SOGW_PROT, LIBSFORMAT_SOGW_PROT, LIB$PARSE_ACCESS_CODE,
$PARSE_ACL, and $FORMAT_ACL routines.

The semantics of this routine are as follows:

1.
2.

If the elsnam parameter is omitted, clsnam defaults to “FILE.”

If clsnam is not the name of an object class, then the routine returns an
error status (SS$_NOCLASS), and the value of acenam is undefined.

If the objnam parameter is omitted, then accnam points to the table
corresponding to clsnam, and the routine returns a success status (SS$_
NORMAL). The table returned is the table of access names for a new object of
class clsnam.

Otherwise, if clsnam and objnam do in fact name a protected object, then
accnam points to the table corresponding to the protected object class, and
the routine returns a success status (SS$ NORMAL).

Otherwise, if elsnam and objnam do not name a protected object, then
the routine returns an error status (the exact status value depends on the
security class), and the value of accnam is undefined.

Condition Values Returned

lib—252

SS$ NORMAL Routine successfully completed.
SS$_NOCLASS No matching object class was found.
LIB$_INVARG The accnam argument was omitted.
LIB$_WRONUMARG Wrong number of arguments.

In addition, any completion status may be returned from $GET_SECURITY.

LIBS$ Routines
LIBSGET_ACCNAM BY CONTEXT

LIBSGET_ACCNAM_BY_CONTEXT
Get Access Name Table for Protected Object Class (by Context)

Format

Returns

Arguments

Description

The Get Access Name Table for Protected Object Class (by Context) routine is
a simplified interface to the $GET_SECURITY system service, and returns a

pointer to the access name table for a protected object class that is specified by a
context longword returned from $GET_SECURITY or $SET_SECURITY.

LIBSGET_ACCNAM_BY_CONTEXT contxt ,accnam

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

contxt

OpenVMS usage: context

type: longword (unsigned)
access: read only
mechanism: by reference

The address of a nonzero longword context value returned by $GET_SECURITY
or $SET_SECURITY.

accham

OpenVMS usage: access_names

type: longword (unsigned)
access: write only
mechanism: by reference

The address of a longword into which this routine writes the address of the access
name table.

LIB$GET _ACCNAM_BY CONTEXT returns the address of the access name table
for the specified protected object class. The format of the table is a vector of 32
quadword string descriptors. Each table entry points to the name of an access
type. The index into the vector is the bit position in an access-desired mask.
Undefined access types have zero-length names. The table can be used as input
to the LIB$PARSE_SOGW_PROT, LIBSFORMAT_SOGW_PROT, LIB$PARSE_
ACCESS_CODE, $PARSE_ACL, and $FORMAT_ACL routines.

lib—253

LIBS$ Routines
LIBSGET _ACCNAM BY CONTEXT

The semantics of this routine are as follows:

e If the contxt argument is valid, then the accnam argument points to the
table corresponding to the protected object class, and the routine returns a
success status (SS$_NORMAL).

e Ifthe contxt argument is not valid, then the routine returns an error status,
and the value of acenam is undefined.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_WRONUMARG Wrong number of arguments.

In addition, error status may be returned from $GET_SECURITY.

lib—254

LIBS$ Routines
LIBSGET_COMMAND

LIBSGET _COMMAND
Get Line from SYS$COMMAND

The Get Line from SYS$COMMAND routine gets one record of ASCII text
from the current controlling input device, specified by the logical name

SYS$COMMAND.
Format

LIBSGET_COMMAND resultant-string [,prompt-string] [,resultant-length]
Returns

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value
Arguments

resultant-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

String that LIB§GET_COMMAND gets from SYS$COMMAND. The resultant-
string argument is the address of a descriptor pointing to this string.

prompt-string
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Prompt message that LIB§GET_COMMAND displays on the controlling terminal.
The prompt-string argument is the address of a descriptor pointing to the
prompt. Any string can be a valid prompt. By convention however, a prompt
string consists of text followed by a colon (:), a space, and no carriage-return/line-
feed combination. The maximum size of the prompt message is 255 characters. If
the controlling input device is not a terminal, this argument is ignored.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Number of bytes written into resultant-string by LIB§GET_COMMAND, not
counting padding in the case of a fixed string. The resultant-length argument
is the address of an unsigned word containing this length. If the input string

is truncated to the size specified in the resultant-string descriptor, resultant-
length is set to this size. Therefore, resultant-length can always be used by the
calling program to access a valid substring of resultant-string.

lib—255

LIBS$ Routines
LIBSGET_COMMAND

Description

LIB$GET_COMMAND uses the OpenVMS RMS $GET service (see the OpenVMS
Record Management Services Reference Manual) to get one record of ASCII text
from the current controlling input device, specified by SYS$COMMAND.

When you log in, the OpenVMS operating system creates three files as default I/O
control streams for your process.

e SYSS$INPUT, your default input device
e SYS$OUTPUT, your default output device
e SYS$COMMAND, the device that supplies the commands to your process

These files remain open until you log out. They are the interface between

your interactive input and output or your batch commands and the OpenVMS
software. Initially, all three files are equated with the terminal. However,

with the DCL command ASSIGN, you can change these assignments to

obtain information from a file or put information into a file. SYS$INPUT and
SYS$COMMAND are usually identical, but the input and command streams can
be different. For example, during the execution of an indirect command file from
an interactive terminal, SYS$COMMAND refers to the terminal and SYS$INPUT
refers to the command file.

LIB$GET_COMMAND opens file SYS$COMMAND on the first call. The RMS
internal stream identifier (ISI) is stored in the routine’s static storage for
subsequent calls. Hence, this routine is not AST reentrant.

If prompt-string is provided and if the SYS§COMMAND device is a terminal,
LIB$GET_COMMAND displays the prompt message. If the device is not a
terminal, the prompt-string is ignored.

LIB$GET_COMMAND is used when a program needs input from some source
other than the current input stream. Usually, it is used to input from the
terminal rather than from an indirect command file. For example, a program
may ask a question which cannot be answered by an indirect command file entry.
In this case the program would call LIBSGET_COMMAND to get one record of
ASCII text from SYS$COMMAND, the terminal.

Condition Values Returned

lib—256

SS$_NORMAL Routine successfully completed. RMS completion
status.
LIB$ FATERRLIB An internal consistency check on Run-Time

Library data structures has failed. This may
indicate a programming error in the Run-
Time Library, or that your program may have
overwritten those data structures.

LIB$_INPSTRTRU The input string has been truncated to the size
specified in the resultant-string descriptor
(fixed-length strings only). The resultant-
length argument is also set to this size. This is
an error (as opposed to LIB$_STRTRU which is
a success) because the truncation is not under
program control.

LIBS$ Routines
LIBSGET_COMMAND

LIB$_INSVIRMEM Insufficient virtual memory to allocate the
dynamic string.
LIB$_INVARG Invalid arguments. The descriptor class field is

not a recognized code or is zero.

Any valid RMS status code.

Any code returned by LIB§GET_VM, LIB$GET _VM_64, LIB§SCOPY_R_DX, or
LIB$SCOPY R DX 64.

lib—257

LIBS$ Routines
LIBSGET_COMMON

LIBSGET_COMMON
Get String from Common

Format

Returns

Arguments

Description

lib—258

The Get String from Common routine copies a string in the common area to the
destination string. (The common area is an area of storage that remains defined
across multiple image activations in a process.) The string length is taken from
the first longword of the common area.

LIBSGET_COMMON resultant-string [,resultant-length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

resultant-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB§GET_COMMON writes the string copied from
the common area. The resultant-string argument is the address of a descriptor
pointing to the destination string.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Number of characters written into resultant-string by LIB§GET_COMMON,
not counting padding in the case of a fixed-length string. The resultant-length
argument is the address of an unsigned word integer containing the number of
characters copied. If the input string is truncated to the size specified in the
resultant-string descriptor, resultant-length is set to this size. Therefore,
resultant-length can always be used by the calling program to access a valid
substring of resultant-string.

LIB$PUT_COMMON allows a program to copy a string into the process’s common
storage area. This area remains defined during multiple image activations.
LIB$GET_COMMON allows a program to copy a string from the common area
into a destination string. The programs reading and writing the data in the
common area must agree upon its amount and format.

The maximum number of characters that can be copied is 252. The actual
number of characters copied is returned by the optional argument, resultant-
length (if given).

LIBS$ Routines
LIBSGET_COMMON

You can use LIB$PUT_COMMON and LIB§GET_COMMON to pass information
between images run successively, such as chained images run by LIBSRUN_
PROGRAM. Since the common area is unique to each process, do not use
LIB$GET _COMMON and LIB$PUT COMMON to share information across

processes.

Condition Values Returned

SS$_ NORMAL
LIB$_FATERRLIB

LIB$_INSVIRMEM
LIB$ _INVSTRDES

LIB$_STRTRU

Routine successfully completed.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to HP.

Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

Successfully completed. The string was longer
than the buffer and was truncated.

lib—259

LIBS$ Routines
LIBSGET_CURR_INVO_CONTEXT (Alpha and 164 Only)

LIBSGET_CURR_INVO_CONTEXT (Alpha and 164 Only)
Get Current Invocation Context

Format

Returns

Argument

Description

The Get Current Invocation Context routine gets the current invocation context
of any active procedure.

A thread can obtain the invocation context of a current procedure using the
following function format:

LIBSGET_CURR_INVO_CONTEXT invo_context

None.

invo_context
OpenVMS usage: invo_context_blk

type: structure
access: write only
mechanism: by reference

Address of an invocation context block into which the procedure context of the
caller will be written.

LIB$GET_CURR_INVO_CONTEXT gets the current invocation context of any
active procedure.

See the HP OpenVMS Calling Standard manual for additional information.

Condition Values Returned

lib—260

None.

LIBS$ Routines
LIBSGET_DATE_FORMAT

LIBSGET_DATE_FORMAT
Get the User’s Date Input Format

Format

Returns

Arguments

Description

The Get the User’s Date Input Format routine returns information about the
user’s choice of a date/time input format.

LIBSGET_DATE_FORMAT format-string [,user-context]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

format-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Receives the translation of LIB§DT_INPUT_FORMAT. The format-string
argument is the address of a descriptor pointing to this format string.

user-context
OpenVMS usage: context

type: longword (unsigned)
access: modify
mechanism: by reference

Context variable that retains the translation context over multiple calls to this
routine. The user-context argument is the address of an unsigned longword
that contains this context. The initial value of the context variable must be zero.
Thereafter, the user program must not write to the cell.

The user-context argument is optional. However, if a context cell is not passed,
LIB$GET_DATE_FORMAT may abort if two threads of execution attempt to
manipulate the context area concurrently. Therefore, when calling this routine in
situations where reentrancy might occur, such as from AST level, HP recommends
that users specify a different context cell for each calling thread.

Depending on which method was used to specify the input formats, LIBSGET_
DATE_FORMAT either translates the logicals LIB$DT_INPUT_FORMAT and
LIB$FORMAT_MNEMONICS, or uses the preinitialized context components
LIB$K_FORMAT _MNEMONICS and LIB$K_INPUT_FORMAT to return the
user’s specified date/time input format in a “legible” form. This format string can
then be used as a guideline for entering date/time strings.

lib—261

LIBS$ Routines
LIBSGET _DATE _FORMAT

The string returned by LIB§GET_DATE_FORMAT parallels the currently defined
input format string, consisting of the format punctuation (with most whitespace
compressed) and “legible” mnemonics representing the various format fields. The
English (default) versions of these mnemonics are as follows:

Format Field Legible Mnemonic (Default)
Year YYYY?

Numeric month MM

Alphabetic month MONTH

Numeric day DD

Hours (12- or 24-hour) HH

Minutes MM

Seconds SS

Fractional seconds ccl

Meridiem indicator AM/PM

IThis variable-length field mnemonic has a numeric suffix representing the number of digits allowed
or required in the field. For instance, YYYY4 indicates a four-digit year field.

For example, consider the following input format string:

$ DEFINE LIBSDT INPUT FORMAT -
_$ "IMAAU !DO, !Y2 !H02:!MO0:!S0.!C4 !MIU"

If LIB§GET_DATE_FORMAT were called for this format string, the format string
returned would be as follows:

MONTH DD, YYYY2 HH:MM:SS.CC4 AM/PM

See the HP OpenVMS Programming Concepts Manual for a description of
system date and time operations as well as a detailed description of the format
mnemonics used in these routines.

Condition Values Returned

lib—262

SS$ NORMAL Routine successfully completed.

LIB$ DEFFORUSE Default format used; unable to determine desired
format.

LIB$ ENGLUSED English used; unable to determine or use desired
language.

LIB$_ILLFORMAT Illegal format string.

LIB$_INVARG Invalid argument; a required argument was not
specified.

LIB$_INVSTRDES Invalid input string descriptor.

LIB$ REENTRANCY Reentrancy detected.

LIB$_STRTRU String truncated.

LIB$ UNRFORCOD Unrecognized format code.

LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by LIB§GET VM, LIB$SCOPY_R_DX, and
LIB$SFREE1 DD.

LIBS$ Routines
LIBSGET_EF

LIBSGET_EF
Get Event Flag

Format

Returns

Argument

Description

The Get Event Flag routine allocates one local event flag from a processwide
pool and returns the number of the allocated flag to the caller. If no flags are
available, LIB§GET_EF returns an error as its function value.

LIBSGET_EF event-flag-number

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

event-flag-number
OpenVMS usage: ef number

type: longword (unsigned)
access: write only
mechanism: by reference

Number of the local event flag that LIBSGET_EF allocated, or —1 if no local event
flag was available. The event-flag-number argument is the address of a signed
longword integer into which LIB$GET_EF writes the number of the local event
flag that it allocates.

LIB$GET_EF and LIB$FREE_EF cause local event flags to be allocated and
deallocated at run time, so that your routine remains independent of other
routines executing in the same process.

LIB$GET_EF provides your program with an arbitrary event flag number. You
can obtain a specific event flag number by calling LIBSRESERVE_EF.

Note

Beware of running multiple images linked with /NOSYSSHR in the same
process and having more than one image make calls to LIBSGET_EF.
Each image contains its own copy of the event flag bit array that is
designed to be process-wide and synchronize ownership of event flags.
Multiple calls to LIBSGET_EF could cause the same event flag to be
allocated more than once.

See the HP OpenVMS Programming Concepts Manual for more information.

lib—263

LIBS$ Routines
LIBSGET_EF

Condition Values Returned

SS$ NORMAL Routine successfully completed.

LIB$ INSEF Insufficient event flags. There were no more
event flags available for allocation.

lib—264

LIBS$ Routines
LIBSGET_FOREIGN

LIBSGET_FOREIGN
Get Foreign Command Line

The Get Foreign Command Line routine requests the calling image’s command
language interpreter (CLI) to return the contents of the “foreign command” line
that activated the current image.

Format

LIBSGET_FOREIGN resultant-string [,prompt-string] [,resultant-length] [,flags]
Returns

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value
Arguments

resultant-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

String that LIB$GET_FOREIGN uses to receive the foreign command line. The
resultant-string argument is the address of a descriptor pointing to this string.
If the foreign command text returned was obtained by a prompt to SYS$INPUT
(see the description of flags), the text is translated to uppercase so as to be more
consistent with text returned from the CLI.

prompt-string
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Optional user-supplied prompt for text that LIBS§GET_FOREIGN uses if no
command-line text is available. The prompt-string argument is the address of
a descriptor pointing to the user prompt. If omitted, no prompting is performed.
It is recommended that prompt-string be specified. If prompt-string is omitted
and if no command-line text is available, a zero-length string will be returned.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Number of bytes written into resultant-string by LIB$§GET_FOREIGN, not
counting padding in the case of a fixed-length resultant-string. The resultant-
length argument is the address of an unsigned word into which LIB$GET_
FOREIGN writes the number of bytes.

lib—265

LIBS$ Routines
LIBSGET_FOREIGN

Description

lib—266

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: modify

mechanism: by reference

Value that LIB§GET_FOREIGN uses to control whether or not prompting is

to be performed. The flags argument is the address of an unsigned longword
integer containing this value. If the low bit of flags is zero, or if flags is omitted,
prompting is done only if the CLI does not return a command line. If the low
bit is 1, prompting is done unconditionally. If specified, flags is set to 1 before
returning to the caller.

The primary use of flags is to allow a utility program to be invoked once

with subcommand text on the command line, and then to repeatedly prompt

for further subcommands from SYS$INPUT. This is accomplished by calling
LIB$GET_FOREIGN repeatedly, specifying in the call a prompt-string string
and a flags variable that is initialized to zero at the beginning of the program.
The first call gets the subcommand text from the command line, after which flags
will be set to 1, causing further subcommands to be requested through prompts
to SYS$INPUT.

LIB$GET_FOREIGN returns the contents of the command line that you use to
activate an image. It can be used to give your program access to the qualifiers of
a foreign command or to prompt for further command line text.

A foreign command is a command that you can define and then use as if it were
a DCL or MCR command in order to run a program. When you use the foreign
command at command level, the CLI parses the foreign command only and
activates the image. It ignores any options or qualifiers that you have defined for
the foreign command. Once the CLI has activated the image, the program can
call LIB$GET_FOREIGN to obtain and parse the remainder of the command line
(after the command itself) for whatever options it may contain. See the OpenVMS
User’s Manual for information on how to define a foreign command.

If no command line is available, LIB§GET_FOREIGN can optionally call
LIB$GET_INPUT to prompt the user for command text. If desired, LIB§GET_
FOREIGN can be called repetitively, returning the command line on the first call,
but prompting for further text on subsequent calls.

LIB$GET_FOREIGN can also be used for images invoked by the RUN command,
for which further text must be obtained by prompting. Such an image can also be
invoked by the DCL command MCR or by the MCR CLI. The text following the
image name will be returned to the executing image.

The action of LIBSGET_FOREIGN depends on the environment in which the
image is activated.

e If you use a foreign command to invoke the image, you can call LIB$GET_
FOREIGN to obtain the command qualifiers following the foreign command.
You can also use LIBSGET_FOREIGN to prompt repeatedly for more
qualifiers after the command. This technique is shown in the example.

e If the image is in the SYS$SYSTEM: directory, the image can be invoked
by the DCL command MCR or by the MCR CLI. In this case, LIB$GET_
FOREIGN returns the command line text following the image name.

LIBS$ Routines
LIBSGET_FOREIGN

e If the image is invoked by a DCL command RUN, LIB$GET_FOREIGN can
be used to prompt for additional text.

e If the image is not invoked by a foreign command or MCR, or if there is no
information remaining on the command line, and the user-supplied prompt
is present, LIB$GET _INPUT is called to prompt for a command line. If the
prompt is not present, LIBSGET _FOREIGN returns a zero length string.

Condition Values Returned

Example

SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB A fatal internal error was detected.
LIB$_INPSTRTRU The input string was truncated. The resultant-

string argument could not contain all of the
characters. The resultant-length argument
reflects the truncated length.

LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor.

A condition value returned by OpenVMS RMS. SYS$INPUT was prompted for
command text and RMS returned an error. The most typical error will be RMS$_
EOF, end-of-file.

EXAMPLE: ROUTINE OPTIONS (MAIN);
$INCLUDE $STSDEF; /* Status-testing definitions */

DECLARE COMMAND LINE CHARACTER(80) VARYING,
PROMPT FLAG FIXED BINARY(31) INIT(0),
LIB$GET FOREIGN ENTRY (CHARACTER(*) VARYING,
- CHARACTER (*) VARYING,
FIXED BINARY(15),
FIXED BINARY(31))
OPTIONS (VARIABLE) RETURNS (FIXED BINARY(31)),
RMS$_EOF GLOBALREF FIXED BINARY(31) VALUE;

/* Repeat forever calling LIB$SGET FOREIGN to obtain
subcommand text and print the text. Exit when an
end-of-file is found. */

DO WHILE (’1’'B); /* Do while TRUE */
STS$VALUE = LIB$GET FOREIGN
(COMMAND LINE,'Input: ',,
PROMPT FLAG);
IF STS$SUCCESS THEN
PUT LIST (' Command was ',COMMAND LINE);
ELSE DO; -
IF STS$VALUE "= RMS$ EOF THEN
PUT LIST ('Error encountered’);
RETURN;
END;
PUT SKIP; /* Skip to next line */
END; /* End of DO WHILE loop */
END;

This PL/I example shows the use of the optional flags argument to permit
repeated calls to LIBSGET_FOREIGN. The command line text is retrieved on the
first pass only; after the first pass, the program prompts from SYS$INPUT.

lib—267

LIBS$ Routines
LIBSGET _FULLNAME_OFFSET

LIBSGET_FULLNAME_OFFSET
Get the Offset to the Starting Position of the Most Significant Part of
a Full Name

Format

Returns

Arguments

lib—268

The Get the Offset to the Starting Position of the Most Significant Part of a Full
Name routine returns the offset to the starting position of the most significant
part of a full name.f The most significant part of a full name is determined by
the underlying network services.

LIBSGET_FULLNAME_OFFSET fullname, offset

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

fullname

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Full name. The fullname argument contains the address of the descriptor
pointing to this full name string.

The error LIB$_INVARG is returned if fullname contains an invalid full name,
points to a null string, or contains more than 1024 characters. The error LIB$_
INVSTRDES is returned if fullname is an invalid descriptor.

offset

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

The offset in bytes of the starting position of the most significant part of
fullname. The offset argument is the address of an unsigned word that contains
this offset.

The offset argument contains an unusable result when LIB§GET_FULLNAME _
OFFSET returns in error.

T No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIBS$ Routines
LIBSGET _FULLNAME_OFFSET

Description

This routine returns the byte offset of the starting position of the most significant
part of the input full name. The returned offset can be used to position the
display of a full name in a fixed-size output region, for example, scroll regions in
DECwindows applications. The most significant part of a full name is determined
by the underlying network services.

You must validate fullname by expanding it with LIBSEXPAND_NO DENAME
before calling LIBSGET FULLNAME_OFFSET. LIB§GET_FULLNAME_OFFSET
returns the error LIB$_INVARG if fullname is invalid.

In a DECnet for OpenVMS environment, processing a DECnet-Plus for OpenVMS
full name using LIB$GET_FULLNAME_OFFSET results in the error condition
LIB$_INVARG.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument:

e fullname is invalid.
e fullname points to a null string.

¢ The length of the full name is more than
1024 characters.

e Processing a DECnet-Plus for OpenVMS
node name in a DECnet for OpenVMS
environment is invalid.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_ WRONUMARG Wrong number of arguments.

Any condition value returned by the $IPC DECnet service.

Examples

The following table gives some examples of the results of LIB§GET_
FULLNAME_OFFSET:

Full Name Offset
NODE 0
DEC: FOO.NODE 9

lib—269

LIBS$ Routines
LIBSGET _HOSTNAME

LIBSGET HOSTNAME
Get Host Node Name

Format

Returns

Arguments

lib—270

The Get Host Node Name routine returns the host node name of the local system.

.*_

LIBSGET_HOSTNAME hostname [resultant-length] [,flags]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

hosthame

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

The host node name. The hostname argument contains the address of a
descriptor pointing to the host node name. LIB$GET HOSTNAME writes the
host node-name string into the buffer pointed to by the hostname descriptor.

The error LIB$_INVSTRDES is returned if hostname is an invalid descriptor.

The length field of the hostname descriptor is not updated unless hostname is
a dynamic descriptor with a length less than the host node name to be returned.
Refer to the OpenVMS RTL String Manipulation (STR$) Manual for dynamic
string descriptor usage.

The hostname argument contains an unusable result when LIB$GET_
HOSTNAME returns in error.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Length of the host node name. The resultant-length argument is the address of
an unsigned word that contains this length in bytes.

The resultant-length argument contains an unusable result when LIB$GET_
HOSTNAME returns in error.

T No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

Description

LIBS$ Routines
LIBSGET _HOSTNAME

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

The value LIB§GET_HOSTNAME uses to control the form of the host node name
that it returns in the output descriptor hostname. If flags is equal to 0, or if
flags is omitted, the host node name returned is in the network usable form. If
flags is equal to 1, the host node name returned is in the parsable form.

Unused bits in flags must be 0. Nonzero unused bits result in the error condition
LIB$_INVARG.

This routine returns the host node name. The routine searches for the first host
node name using the following order:

1. Get host node name from $GETSYI system service.

2. Translate the executive mode logical SYS$NODE_FULLNAME once.
3. Translate the executive mode logical SYS$NODE once.

The error LIB$ NOHOSNAM is returned if no host node name is found.

LIB$GET_HOSTNAME can return the host node name in the following two
forms:

e Network usable form — The form that can be passed directly to the network.
This form does not contain unnecessary double quotation marks (double
quotation marks ["] that are not part of the node name) and also does not
contain trailing double colons, for example: DEC:.F00."simple name with
Sspaces".

e Parsable form — The form that can be passed directly to the part of the
system that does node-name syntax parsing, for example, $FILESCAN and
DCL command parsing. This form contains trailing double colons and is
fully quoted if there are special characters. Individual double quotation
marks (") that are part of a simple name are doubled (""), for example:
"DEC:.F00.""simple name with spaces"""::

You must use double quotation marks for a node name with special characters
to facilitate correct parsing.

If the returned node name overflows the buffer pointed to by hostname, the
host node name is truncated at the end, and the alternate success status LIB$_
STRTRU is returned.

The resultant-length argument, if supplied, is set to the length of the node-
name string copied to the output buffer pointed to by hostname.

lib—271

LIBS$ Routines
LIBSGET _HOSTNAME

Condition Values Returned

lib—272

SS$ NORMAL Routine successfully completed.

LIB$_STRTRU Routine successfully completed. Characters are
truncated in the output buffer pointed to by
hostname.

LIB$_INVARG Invalid input argument. Unused bits in flags are
not set to 0.

LIB$_INVSTRDES Invalid string descriptor.

LIB$_WRONUMARG Wrong number of arguments.

LIB$ NOHOSNAM No host node name found.

Any condition value returned by LIB$SCOPY_R_DX, or the $FILESCAN system
service.

LIBS$ Routines
LIBSGET _INPUT

LIBSGET _INPUT
Get Line from SYSSINPUT

The Get Line from SYS$INPUT routine gets one record of ASCII text from the
current controlling input device, specified by SYS$INPUT.

Format

LIBSGET_INPUT resultant-string [,prompt-string] [,resultant-length]
Returns

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value
Arguments

resultant-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

String that LIB§GET_INPUT gets from the input device. The resultant-string
argument is the address of a descriptor pointing to the character string into
which LIB$GET _INPUT writes the text received from the current input device.

prompt-string
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Prompt message that is displayed on the controlling terminal. The prompt-
string argument is the address of a descriptor containing the prompt. Any
string can be a valid prompt. By convention however, a prompt consists of text
followed by a colon (:), a space, and no carriage-return/line-feed combination.
The maximum size of the prompt message is 255 characters. If the controlling
input device is not a terminal, this argument is ignored.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Number of bytes written into resultant-string by LIB$GET_INPUT, not
counting padding in the case of a fixed string. The resultant-length argument
is the address of an unsigned word containing this number. If the input string

is truncated to the size specified in the resultant-string descriptor, resultant-
length is set to this size. Therefore, resultant-length can always be used by the
calling program to access a valid substring of resultant-string.

lib—273

LIBS$ Routines
LIBSGET _INPUT

Description

LIB$GET_INPUT uses the OpenVMS RMS $GET service to get one record of
ASCII text from the current controlling input device, specified by SYS$INPUT.
(For more information about the RMS $GET service, see the OpenVMS Record
Management Services Reference Manual.)

When you log in, the OpenVMS operating system creates three files as default I/O
control streams for your process.

e SYS$INPUT, your default input device
e SYS$OUTPUT, your default output device
e SYS$COMMAND, the device that supplies the commands to your process

These files remain open until you log out. They are the interface between

your interactive input and output or your batch commands and the OpenVMS
software. Initially, all three names are equated with the terminal. However,
with the DCL command ASSIGN, you can change these assignments to

obtain information from a file or put information into a file. SYS$INPUT and
SYS$COMMAND are usually identical, but the input and command streams can
be different. For example, during the execution of an indirect command file from
an interactive terminal, SYS$COMMAND refers to the terminal and SYS$INPUT
refers to the command file.

LIB$GET_INPUT opens file SYS$INPUT on the first call. The RMS internal
stream identifier (ISI) is stored in the routine’s static storage for subsequent calls.

If prompt-string is provided and the SYS$INPUT device is a terminal,
LIB$GET_INPUT displays the prompt message. If the device is not a terminal,
the prompt-string argument is ignored.

If you want to get input from some source other than the current input stream,
use LIB§GET_COMMAND.

Condition Values Returned

lib—274

SS$_NORMAL Routine successfully completed. RMS completion
status.
LIB$ FATERRLIB An internal consistency check on Run-Time

Library data structures has failed. This may
indicate a programming error in the Run-
Time Library, or that your program may have
overwritten those data structures.

LIB$ _INPSTRTRU The input string has been truncated to the size
specified in the resultant-string descriptor
(fixed-length strings only). The resultant-
length argument is also set to this size. This is
an error (as opposed to LIB$_STRTRU, which is
a success) because the truncation is not under
program control.

LIB$ INSVIRMEM Insufficient virtual memory to allocate the
dynamic string.

LIBS$ Routines
LIBSGET _INPUT

LIB$ _INVARG Invalid arguments. The descriptor class field is
not a recognized code or is zero.

Any RMS condition value returned by $GET.

Any condition value returned by LIB§GET_VM, LIBGET_VM_64, LIBSCOPY_
R_DX, or LIB$SCOPY_R_DX_64.

lib—275

LIBS$ Routines
LIBSGET_INVO_CONTEXT (Alpha and 164 Only)

LIBSGET_INVO_CONTEXT (Alpha and 164 Only)
Get Invocation Context

The Get Invocation Context routine gets the invocation context of any active

procedure.
Format
LIBSGET_INVO_CONTEXT invo_handle, invo_context
Returns
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
invo_handle
OpenVMS usage: invo_handle
type: longword (unsigned)
access: read only
mechanism: by value

Handle for the desired invocation. Returned by LIB§GET_INVO_HANDLE.

invo_context
OpenVMS usage: invo_context_blk

type: structure
access: write only
mechanism: by reference

Address of an invocation context block into which the procedure context of the
frame specified by invo_handle will be written.

Description
LIB$GET_INVO_CONTEXT gets the invocation context of any active procedure.

Note

If invo_handle does not represent any procedure context in the
active call chain, the new contents of the invocation context block are
unpredictable.

See the HP OpenVMS Calling Standard manual for additional information.

Condition Values Returned

0 Indicates failure.

0 Indicates success.

lib—276

LIBS$ Routines
LIBSGET_INVO_HANDLE (Alpha and 164 Only)

LIBSGET_INVO_HANDLE (Alpha and 164 Only)
Get Invocation Handle

Format

Returns

Argument

Description

The Get Invocation Handle routine gets an invocation handle of any active
procedure.

A thread can obtain an invocation handle corresponding to any invocation context
block by using the following function format.

LIBSGET_INVO_HANDLE invo_context

OpenVMS usage: invo_handle

type: longword (unsigned)
access: write only
mechanism: by value

Invocation handle of the invocation context that was passed. If the returned
value is LIB$K_INVO_HANDLE_NULL, the invocation context that was passed
was invalid.

invo_context
OpenVMS usage: invo_context_blk

type: structure
access: read only
mechanism: by reference

Address of an invocation context block. Here, only the frame pointer and stack
pointer fields of an invocation context block must be defined.

LIB$GET_INVO_HANDLE gets an invocation handle of any active procedure.
See the HP OpenVMS Calling Standard manual for additional information.

Condition Values Returned

None.

lib—277

LIBS$ Routines
LIBSGET LOGICAL

LIBSGET_LOGICAL
Get Logical Name

The Get Logical Name routine calls the system service routine $TRNLNM to
return information about a logical name.

Format
LIBSGET_LOGICAL logical-name [,resultant-string] [,resultant-length] [,table-name] [,max-index] [,index]
[,acmode] [,flags]
Returns
OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value
Arguments

logical-name
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Logical name for which LIB§GET_LOGICAL searches. The logical-name
argument is the address of a descriptor pointing to the logical name string.

resultant-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Logical name equivalent returned. The resultant-string argument is the
address of a descriptor pointing to a character string into which LIB§GET_
LOGICAL writes the equivalence name of the logical.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Length of the equivalence name string returned by LIB§GET_LOGICAL. The
resultant-length argument is the address of an unsigned word integer into
which LIB$GET _LOGICAL writes the length.

table-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

lib—278

LIBS$ Routines
LIBSGET _LOGICAL

Name of the table in which to search for the logical name. The table-name
argument contains the address of a descriptor pointing to a character string
which contains the table name. If no table is specified, LNM$FILE_DEV is used.

max-index

OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Largest equivalence name index. Each equivalence name for the logical name

has an index associated with it. The max-index argument is the address of a

signed longword integer into which LIB§GET _LOGICAL write the value. If no
equivalence names (and, therefore, no index values) exist, LIBSGET_LOGICAL
returns a value of -1.

index

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Equivalence name index value. LIB§GET_LOGICAL will return the equivalence
name string that has the specified index value. The index argument is the
address of an unsigned longword integer specifying the index value.

acmode

OpenVMS usage: access_mode
type: byte (unsigned)
access: read only
mechanism: by reference

Access mode to be used in the translation. The acmode argument is the address
of a byte specifying the access mode. The $PSLDEF macro defines symbolic
names for the four access modes.

When you specify the acmode argument, all names at access modes which are
less privileged than the specified access mode are ignored.

If you do not specify acmode, the translation is performed without regard to
access mode; however, the translation process proceeds from the outermost to the
innermost access modes. Thus, if two logical names with the same name, but

at different access modes, exist in the same table, the name with the outermost
access mode is translated.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags controlling the search for the logical name. The flags argument is the
address of a longword integer that contains the control flags. The $LNMDEF
macro defines these flags. Currently only bit 0 of this argument is used.

lib—279

LIBS$ Routines
LIBSGET LOGICAL

Description

Bit Value

Description

0 LNM$M_CASE_BLIND

If set, LIB$GET_LOGICAL does not
distinguish between uppercase and lowercase
letters in the logical name to be translated.

This is an optional argument. If omitted the default is 0.

LIB$GET_LOGICAL provides a simplified interface to the $TRNLNM system
service. It provides most of the features found in $TRNLNM with some additional
benefits. For string arguments, all string classes supported by the Run-Time

Library are understood. The list of item descriptors, which may be difficult to
construct in high-level languages, is handled internally by LIB§GET_LOGICAL.

See the description of the $TRNLNM system service in the HP OpenVMS System
Services Reference Manual for more information.

Condition Values Returned

lib—280

SS$_NORMAL
SS$_ACCVIO

SS$ BADPARAM
SS$ IVLOGNAM

SS$_IVLOGTAB
SS$_NOLOGNAM

SS$_NOPRIV

SS$_ TOOMANYNAM
LIB$ INVARG
LIB$_INSVIRMEM
LIB$_INVSTRDES
LIB$_STRTRU

LIB$ WRONUMARG

Routine successfully completed.

Access violation. Cannot access the location
specified.

Bad parameter value.

Invalid logical name. The logical name or its
value contained more than 255 characters.

Invalid logical name table.

The logical name was not found in the specified
table.

No privileges for attempted operation.

Logical name translation exceeded allowed depth.
Required argument is missing.

Insufficient virtual memory.

Invalid string descriptor.

Success, but source string truncated.

Wrong number of arguments.

LIBS$ Routines
LIBSGET _LUN

LIBSGET_LUN
Get Logical Unit Number

Format

Returns

Argument

Description

The Get Logical Unit Number routine allocates one logical unit number from
a processwide pool. If a unit is available, its number is returned to the caller.
Otherwise, an error is returned as the function value.

LIBSGET_LUN logical-unit-number

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

logical-unit-number
OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by reference

Allocated logical unit number or —1 if none was available. The logical-unit-
number argument is the address of a longword into which LIB§GET_LUN
returns the value of the allocated logical unit. LIBSGET_LUN can allocate logical
unit numbers 100 through 119 on VAX, and 100 through 299 on Alpha and 164.

LIB$GET_LUN allocates one logical unit number from a processwide pool. If
a unit is available, its number is returned to the caller. Otherwise, an error is
returned as the function value.

On VAX systems, LIBSGET_LUN reserves logical unit numbers starting at 119
and continues in descending order through 100.

On Alpha and 164 systems, LIBSGET_LUN reserves logical unit numbers 100
through 299. To maintain compatibility with VAX systems, LIB§GET_LUN
reserves logical unit numbers starting at 119 and continues in descending order
through 100. When these are exhausted, LIB§GET_LUN reserves logical unit
numbers starting at 299 and continues in descending order through 120.

LIB$GET_LUN assumes that the logical unit numbers in the range 0 through
99 may be in use by your program, but it cannot determine which logical unit
numbers are actually in use by your program.

lib—281

LIBS$ Routines
LIBSGET _LUN

Call LIB$GET_LUN only from Fortran or BASIC programs. Those languages and
LIB$GET_LUN share the concept of unit numbers and a similar number space.

Note

Beware of running multiple images linked with /NOSYSSHR in the same
process and having more than one image make calls to LIBSGET_LUN.
Each image contains its own copy of the event flag bit array that is
designed to be process-wide and synchronize ownership of event flags.
Multiple calls to LIBSGET_EF could cause the same event flag to be
allocated more than once.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

LIB$_INSLUN Insufficient logical unit numbers. No logical unit
numbers were available.

lib—282

LIBS$ Routines
LIBSGET _MAXIMUM DATE _LENGTH

LIBSGET_MAXIMUM_DATE_LENGTH
Retrieve the Maximum Length of a Date/Time String

Format

Returns

Arguments

Given an output format and language, the Retrieve the Maximum Length of
a Date/Time String routine determines the maximum possible length for the
date-string string returned by LIB$FORMAT DATE_TIME.

LIBSGET_MAXIMUM_DATE_LENGTH date-length [,user-context] [,flags]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
date-length

OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Receives the maximum possible length of the date-string argument returned

to LIBSFORMAT_DATE_TIME. The date-length argument is the address of

a signed longword that receives this maximum length. The length written to
date-length reflects the greatest possible length of an output date/time string for
the currently selected output format and natural language.

For example, if the selected output date/time format includes the alphabetic,
unabbreviated month name (assuming English as the natural language), the
longest month name (September) would have to be taken into consideration when
determining the maximum possible length of date-string.

user-context
OpenVMS usage: context

type: longword (unsigned)
access: modify
mechanism: by reference

Context variable that retains the translation context over multiple calls to this
routine. The user-context argument is the address of an unsigned longword
that contains this context. The initial value of the context variable must be zero.
Thereafter, the user program must not write to the cell.

The user-context parameter is optional. However, if a context cell is not passed,
the routine LIB§GET MAXIMUM_DATE_LENGTH may abort if two threads of
execution attempt to manipulate the context area concurrently. Therefore, when
calling this routine in situations where reentrancy might occur, such as from AST
level, HP recommends that users specify a different context cell for each calling
thread.

lib—283

LIBS$ Routines
LIBSGET_MAXIMUM_DATE _LENGTH

Description

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask that allows the user to specify whether the date, time, or both are to be
included in the calculation of the maximum date length. The flags argument is
the address of an unsigned bit mask containing the specified values. Valid values
are LIB§M_DATE_FIELDS and LIB$M_TIME_FIELDS. The values specified for
flags must correspond to the flags argument passed to LIBSFORMAT_DATE_
TIME.

The LIB$GET MAXIMUM DATE_LENGTH routine determines the maximum
possible length for a formatted date/time string as returned by LIBSFORMAT _
DATE_TIME. The maximum length returned takes into account the currently
specified output format and natural language; date-length represents the
maximum possible length of the string written to the date-string argument of
LIB$FORMAT_DATE_TIME.

Consider the following example, in which the output format is defined as follows.
DEFINE LIB$DT_FORMAT LIBSDATE_FORMAT_OIZ, LIB$TIME_FORMAT_012

This date/time format would appear as follows:

!MAU !DD, !Y4 !HH2:!MO !MIU

Given this format, the maximum possible length for this date/time string is
calculated using the longest possible date string followed by a space and the
longest possible time string. One example that meets these requirements is as
follows (assuming English as the selected language):

SEPTEMBER 21, 2000 11:24 PM
The maximum possible length of this date-string would then be 28.

See the HP OpenVMS Programming Concepts Manual for a description of
system date and time operations as well as a detailed description of the format
mnemonics used in these routines.

Condition Values Returned

lib—284

SS$_NORMAL Routine successfully completed.

LIB$_ABSTIMREQ Absolute time required.

LIB$ DEFFORUSE Default format used; unable to determine desired
format.

LIB$ ENGLUSED English used by default; unable to translate
SYS$LANGUAGE.

LIB$ REENTRANCY Reentrant invocation with same context variable.

LIB$_STRTRU Output string truncated.

LIB$ UNRFORCOD Unrecognized format code.

Any condition value returned by LIB§GET_VM.

LIBS$ Routines
LIBSGET_PREV_INVO_CONTEXT (Alpha and 164 Only)

LIBSGET_PREV_INVO_CONTEXT (Alpha and 164 Only)
Get Previous Invocation Context

Format

Returns

Argument

Description

The Get Previous Invocation Context routine gets the previous invocation context
of any active procedure.

A thread can obtain the invocation context of the procedure context preceding any
other procedure context using the following function format.

LIBSGET_PREV_INVO_CONTEXT invo_context

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by value

invo_context
OpenVMS usage: invo_context_blk

type: structure
access: modify
mechanism: by reference

Address of an invocation context block. The given context block is updated to
represent the context of the previous (calling) frame.

For the purposes of this function, the minimum fields of an invocation block
that must be defined are those IREG and FREG fields corresponding to registers
used by a context whether the registers are preserved or not. Note that the
invocation context blocks written by the routines specified in these sections define
all possible fields in a context block. Such context blocks satisfy this minimum
requirement.

LIB$GET_PREV_INVO_CONTEXT gets the previous invocation context of any
active procedure.

See the HP OpenVMS Calling Standard manual for more information.

Condition Values Returned

0 The initial context represents the bottom of the
call chain.
1 Indicates success.

lib—285

LIBS$ Routines
LIBSGET_PREV_INVO_HANDLE (Alpha and 164 Only)

LIBSGET_PREV_INVO_HANDLE (Alpha and 164 Only)
Get Previous Invocation Handle

Format

Returns

Argument

Description

The Get Previous Invocation Handle routine gets the previous invocation handle
of any active procedure.

A thread can obtain an invocation handle of the procedure context preceding that
of a specified procedure context by using the following function format.

LIBSGET_PREV_INVO_HANDLE invo_handle

OpenVMS usage: invo_handle

type: longword (unsigned)
access: write only
mechanism: by value

An invocation handle for the invocation context that is previous to that which
was specified as the target.

invo_handle

OpenVMS usage: invo_handle

type: longword (unsigned)
access: read only
mechanism: by value

An invocation handle that represents a target invocation context.

LIB$GET_PREV_INVO_HANDLE gets the previous invocation handle of any
active procedure.

See the HP OpenVMS Calling Standard manual for more information.

Condition Values Returned

lib—286

None.

LIBS$ Routines
LIBSGET_SYMBOL

LIBSGET_SYMBOL
Get Value of CLI Symbol

The Get Value of CLI Symbol routine requests the calling process’s command
language interpreter (CLI) to return the value of a CLI symbol as a string.
LIB$GET_SYMBOL then returns the string to the caller. Optionally, LIB§GET _
SYMBOL can return the length of the returned value and the table in which the
symbol was found.

Format
LIBSGET_SYMBOL symbol ,resultant-string [,resultant-length] [,table-type-indicator]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
symbol
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the symbol for which LIB§GET_SYMBOL searches. The symbol
argument is the address of a descriptor pointing to the name of the symbol.
LIB$GET_SYMBOL converts the symbol name to uppercase and removes trailing
blanks before the search. The symbol argument must begin with a letter, a digit,
a dollar sign ($), a hyphen (-), or an underscore (_). The maximum length of
symbol is 255 characters.

resultant-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Value of the returned symbol. The resultant-string argument is the address of
a descriptor pointing to a character string into which LIB§GET_SYMBOL writes
the value of the symbol.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Length of the symbol value returned by LIB§GET_SYMBOL. The resultant-
length argument is the address of an unsigned word integer into which
LIB$GET_SYMBOL writes the length.

lib—287

LIBS$ Routines
LIBSGET_SYMBOL

Description

table-type-indicator
OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by reference

Indicator of which table contained the symbol. The table-type-indicator
argument is the address of a signed longword integer into which LIB$GET_
SYMBOL writes the table indicator.

Possible values of the table indicator are listed below.

Symbolic Name Value Table
LIB$K_CLI_LOCAL_SYM 1 Local symbol table
LIB$K_CLI_GLOBAL_SYM 2 Global symbol table

LIB$K_CLI_LOCAL_SYM and LIB$K_CLI_GLOBAL_SYM are defined in symbol
libraries supplied by HP (macro or module name $LIBCLIDEF) and as global
symbols.

LIB$GET_SYMBOL first searches the local symbol table for the symbol name,
then searches the global symbol table. Numeric values are converted to an ASCII
representation of a signed decimal number before being returned.

LIB$GET_SYMBOL is supported for use with the DCL command language
interpreter. If used with the MCR CLI, the error status LIB$_NOCLI will be
returned.

If an image is run directly as a subprocess or as a detached process, there is no
CLI present to get the symbol. In that case, LIBSGET_SYMBOL returns the
error status LIB$ NOCLI.

Condition Values Returned

lib—288

SS$ NORMAL Routine successfully completed.

LIB$_STRTRU Routine successfully completed; string truncated.
The destination string could not contain all the
characters in the symbol value.

LIB$ FATERRLIB Fatal internal error. An internal consistency
check has failed. This usually indicates
an internal error in the Run-Time Library
and should be reported to your HP support
representative.

LIB$ INSCLIMEM Insufficient CLI memory. The CLI could not
obtain enough virtual memory to perform the
function. This may be caused by having too
many symbols defined. Deleting some symbol
definitions may relieve the situation.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

LIB$_INVSTRDES

LIB$ INVSYMNAM

LIB$ NOCLI

LIB$ NOSUCHSYM

LIB$ UNECLIERR

LIBS$ Routines
LIBSGET_SYMBOL

Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

Invalid symbol name. The symbol name
contained more than 255 characters or did not
begin with a letter or dollar sign ($).

No CLI present. The calling process did not have
a CLI to perform the function or the CLI did not
support the request type. Note that an image
run as a subprocess or detached process does not
have a CLI.

No such symbol. The symbol was not defined in
either the local or global symbol table.
Unexpected CLI error. The CLI returned an
error status which was not recognized. This
error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL
command language interpreter, please report the
problem to your HP support representative.

lib—289

LIBS$ Routines
LIBSGET_UIB_INFO

LIBSGET UIB_INFO
Unwind Routine

Returns information from the unwind information block (UIB).

Format
LIBSGET_UIB_INFO uib_va [,gp_value] [,uw_desc_va] [,uw_desc_len] [handler_fv] [,ossd_va] [,Isda_va]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
uib_va
OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by reference

Address of a quadword that contains the virtual address of an unwind information
block (UIB).

gp_value

OpenVMS usage: address

type: quadword (unsigned)
access: read only
mechanism: by reference

Address of a quadword that contains the GP value that must be added to the UIB
condition handler value. Must be specified if handler_fv is specified.

uw_desc_va
OpenVMS usage: address

type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the virtual address of the unwind descriptor area.
If none is present, then zero is returned. This is an optional argument.

un_desc_len
OpenVMS usage: address

type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the length (in bytes) of the unwind descriptor
area. If none are present, then zero is returned. This is an optional argument.

lib—290

Description

LIBS$ Routines
LIBSGET_UIB_INFO

handler_fv

OpenVMS usage: address

type: quadword (unsigned)
access: write

mechanism: by reference

Address of a quadword to store the function value of the condition handler. If
none is present, then zero is returned. This is an optional argument.

ossd_va

OpenVMS usage: address

type: quadword (unsigned)
access: write

mechanism: by reference

Address of a quadword to store the address of the operating system-specific data
area. If none is present, then zero is returned. This is an optional argument.

Isda_va

OpenVMS usage: address

type: quadword (unsigned)
access: write

mechanism: by reference

Address of a quadword to store the address of the language-specific data area
(LSDA). If none is present, then zero is returned. This is an optional argument.

Takes in the address of an uwind information block (UIB) and the GP value for a
routine and returns the addresses of the start of the unwind descriptors (if any),
the handler function descriptor (if any), and the operating system-specific data
area (if any). The size in bytes of the unwind descriptors is also returned.

Related Services

SYS$SET UNWIND _TABLE, SYS§CLEAR_UNWIND_TABLE, SYS$GET_
UNWIND_ENTRY_INFO,

Condition Values Returned

SS$ NORMAL Routine completed successfully.
LIB$ INVARG Bad UIB virtual address.

