
HP OpenVMS RTL Library (LIB$)
Manual
Order Number: AA–QSBHE–TE

January 2005

This manual documents the library routines contained in the LIB$ and
CVT$ facilities of the OpenVMS Run-Time Library.

Revision/Update Information: This manual supersedes HP OpenVMS
RTL Library (LIB$) Manual,
OpenVMS Alpha Version 7.3.

Software Version: OpenVMS I64 Version 8.2
OpenVMS Alpha Version 8.2

Hewlett-Packard Company
Palo Alto, California

PS Conditioner
Processed on 10/19/2004

Black and white submission.

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Printed in the US

ZK5932

The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . xi

Part I LIB$ Overview Section

1 Overview of the LIB$ Facility

1.1 Run-Time Library LIB$ Routines . 1–1
1.1.1 64-Bit Addressing Support (Alpha and I64 Only) 1–2
1.1.2 The LIB$ Routines . 1–2
1.2 Translated Version of LIB$ Facility (Alpha and I64 Only) 1–9
1.3 Run-Time Library CVT$ Facility . 1–10

Part II LIB$ Reference Section

LIB$ADAWI . lib–3
LIB$ADDX . lib–5
LIB$ADD_TIMES . lib–8
LIB$ANALYZE_SDESC . lib–10
LIB$ANALYZE_SDESC_64 (Alpha and I64 Only) lib–12
LIB$ASN_WTH_MBX . lib–14
LIB$AST_IN_PROG . lib–17
LIB$ATTACH . lib–19
LIB$BBCCI . lib–21
LIB$BBSSI . lib–23
LIB$BUILD_NODESPEC . lib–25
LIB$CALLG . lib–28
LIB$CALLG_64 (Alpha and I64 Only) . lib–29
LIB$CHAR . lib–30
LIB$COMPARE_NODENAME . lib–32
LIB$COMPRESS_NODENAME . lib–34
LIB$CONVERT_DATE_STRING . lib–37
LIB$CRC . lib–41
LIB$CRC_TABLE . lib–43
LIB$CREATE_DIR . lib–46
LIB$CREATE_USER_VM_ZONE . lib–50
LIB$CREATE_USER_VM_ZONE_64 (Alpha and I64 Only) lib–54
LIB$CREATE_VM_ZONE . lib–57
LIB$CREATE_VM_ZONE_64 (Alpha and I64 Only) lib–63
LIB$CRF_INS_KEY . lib–69
LIB$CRF_INS_REF . lib–71

iii

LIB$CRF_OUTPUT . lib–74
LIB$CURRENCY . lib–78
LIB$CVTF_FROM_INTERNAL_TIME . lib–80
LIB$CVTS_FROM_INTERNAL_TIME (Alpha and I64 Only) lib–82
LIB$CVTF_TO_INTERNAL_TIME . lib–84
LIB$CVTS_TO_INTERNAL_TIME (Alpha and I64 Only) lib–86
LIB$CVT_DX_DX . lib–88
LIB$CVT_FROM_INTERNAL_TIME . lib–94
LIB$CVT_TO_INTERNAL_TIME . lib–97
LIB$CVT_VECTIM . lib–99
LIB$CVT_xTB . lib–101
LIB$CVT_xTB_64 (Alpha and I64 Only) . lib–103
LIB$DATE_TIME . lib–105
LIB$DAY . lib–107
LIB$DAY_OF_WEEK . lib–109
LIB$DECODE_FAULT . lib–111
LIB$DEC_OVER . lib–130
LIB$DELETE_FILE . lib–132
LIB$DELETE_LOGICAL . lib–141
LIB$DELETE_SYMBOL . lib–143
LIB$DELETE_VM_ZONE . lib–145
LIB$DELETE_VM_ZONE_64 (Alpha and I64 Only) lib–147
LIB$DIGIT_SEP . lib–149
LIB$DISABLE_CTRL . lib–151
LIB$DO_COMMAND . lib–153
LIB$EDIV . lib–155
LIB$EMODD . lib–157
LIB$EMODF . lib–159
LIB$EMODG . lib–161
LIB$EMODH . lib–163
LIB$EMODS (Alpha and I64 Only) . lib–165
LIB$EMODT (Alpha and I64 Only) . lib–167
LIB$EMUL . lib–169
LIB$ENABLE_CTRL . lib–171
LIB$ESTABLISH . lib–173
LIB$EXPAND_NODENAME . lib–175
LIB$EXTV . lib–178
LIB$EXTZV . lib–181
LIB$FFx . lib–183
LIB$FID_TO_NAME . lib–185
LIB$FILE_SCAN . lib–188
LIB$FILE_SCAN_END . lib–190
LIB$FIND_FILE . lib–192
LIB$FIND_FILE_END . lib–196
LIB$FIND_IMAGE_SYMBOL . lib–197
LIB$FIND_VM_ZONE . lib–201
LIB$FIND_VM_ZONE_64 (Alpha and I64 Only) . lib–203

iv

LIB$FIT_NODENAME . lib–205
LIB$FIXUP_FLT . lib–208
LIB$FLT_UNDER . lib–210
LIB$FORMAT_DATE_TIME . lib–212
LIB$FORMAT_SOGW_PROT . lib–215
LIB$FREE_DATE_TIME_CONTEXT . lib–217
LIB$FREE_EF . lib–218
LIB$FREE_LUN . lib–219
LIB$FREE_TIMER . lib–220
LIB$FREE_VM . lib–221
LIB$FREE_VM_64 (Alpha and I64 Only) . lib–224
LIB$FREE_VM_PAGE . lib–227
LIB$FREE_VM_PAGE_64 (Alpha and I64 Only) . lib–229
LIB$GETDVI . lib–231
LIB$GETJPI . lib–237
LIB$GETQUI . lib–242
LIB$GETSYI . lib–247
LIB$GET_ACCNAM . lib–251
LIB$GET_ACCNAM_BY_CONTEXT . lib–253
LIB$GET_COMMAND . lib–255
LIB$GET_COMMON . lib–258
LIB$GET_CURR_INVO_CONTEXT (Alpha and I64 Only) lib–260
LIB$GET_DATE_FORMAT . lib–261
LIB$GET_EF . lib–263
LIB$GET_FOREIGN . lib–265
LIB$GET_FULLNAME_OFFSET . lib–268
LIB$GET_HOSTNAME . lib–270
LIB$GET_INPUT . lib–273
LIB$GET_INVO_CONTEXT (Alpha and I64 Only) lib–276
LIB$GET_INVO_HANDLE (Alpha and I64 Only) lib–277
LIB$GET_LOGICAL . lib–278
LIB$GET_LUN . lib–281
LIB$GET_MAXIMUM_DATE_LENGTH . lib–283
LIB$GET_PREV_INVO_CONTEXT (Alpha and I64 Only) lib–285
LIB$GET_PREV_INVO_HANDLE (Alpha and I64 Only) lib–286
LIB$GET_SYMBOL . lib–287
LIB$GET_UIB_INFO . lib–290
LIB$GET_USERS_LANGUAGE . lib–292
LIB$GET_VM . lib–293
LIB$GET_VM_64 (Alpha and I64 Only) . lib–295
LIB$GET_VM_PAGE . lib–297
LIB$GET_VM_PAGE_64 (Alpha and I64 Only) . lib–299
LIB$I64_CREATE_INVO_CONTEXT (I64 Only) . lib–301
LIB$I64_FREE_INVO_CONTEXT (I64 Only) . lib–303
LIB$I64_GET_CURR_INVO_CONTEXT (I64 Only) lib–304
LIB$I64_GET_CURR_INVO_HANDLE (I64 Only) lib–305
LIB$I64_GET_FR (I64 Only) . lib–306

v

LIB$I64_GET_GR (I64 Only) . lib–308
LIB$I64_GET_INVO_CONTEXT (I64 Only) . lib–310
LIB$I64_GET_INVO_HANDLE (I64 Only) . lib–312
LIB$I64_GET_PREV_INVO_CONTEXT (I64 Only) lib–313
LIB$I64_GET_PREV_INVO_HANDLE (I64 Only) lib–314
LIB$I64_GET_UNWIND_HANDLER_FV (I64 Only) lib–315
LIB$I64_GET_UNWIND_LSDA (I64 Only) . lib–316
LIB$I64_GET_UNWIND_OSSD (I64 Only) . lib–317
LIB$I64_INIT_INVO_CONTEXT (I64 Only) . lib–318
LIB$I64_IS_AST_DISPATCH_FRAME (I64 Only) lib–320
LIB$I64_IS_EXC_DISPATCH_FRAME (I64 Only) lib–321
LIB$I64_PREV_INVO_END (I64 Only) . lib–322
LIB$I64_PUT_INVO_REGISTERS (I64 Only) . lib–323
LIB$I64_SET_FR (I64 Only) . lib–326
LIB$I64_SET_GR (I64 Only) . lib–328
LIB$I64_SET_PC (I64 Only) . lib–330
LIB$ICHAR . lib–331
LIB$INDEX . lib–333
LIB$INIT_DATE_TIME_CONTEXT . lib–335
LIB$INIT_TIMER . lib–339
LIB$INSERT_TREE . lib–341
LIB$INSERT_TREE_64 (Alpha and I64 Only) . lib–350
LIB$INSQHI . lib–359
LIB$INSQHIQ (Alpha and I64 Only) . lib–362
LIB$INSQTI . lib–365
LIB$INSQTIQ (Alpha and I64 Only) . lib–368
LIB$INSV . lib–371
LIB$INT_OVER . lib–373
LIB$LEN . lib–375
LIB$LOCC . lib–376
LIB$LOCK_IMAGE . lib–379
LIB$LOOKUP_KEY . lib–380
LIB$LOOKUP_TREE . lib–384
LIB$LOOKUP_TREE_64 (Alpha and I64 Only) . lib–386
LIB$LP_LINES . lib–388
LIB$MATCHC . lib–390
LIB$MATCH_COND . lib–392
LIB$MOVC3 . lib–395
LIB$MOVC5 . lib–397
LIB$MOVTC . lib–399
LIB$MOVTUC . lib–416
LIB$MULT_DELTA_TIME . lib–419
LIB$MULTF_DELTA_TIME . lib–420
LIB$MULTS_DELTA_TIME (Alpha and I64 Only) lib–421
LIB$PARSE_ACCESS_CODE . lib–422
LIB$PARSE_SOGW_PROT . lib–425
LIB$PAUSE . lib–428

vi

LIB$POLYD . lib–429
LIB$POLYF . lib–431
LIB$POLYG . lib–434
LIB$POLYH . lib–436
LIB$POLYS (Alpha and I64 Only) . lib–438
LIB$POLYT (Alpha and I64 Only) . lib–440
LIB$PUT_COMMON . lib–442
LIB$PUT_INVO_REGISTERS (Alpha and I64 Only) lib–444
LIB$PUT_OUTPUT . lib–446
LIB$RADIX_POINT . lib–448
LIB$REMQHI . lib–450
LIB$REMQHIQ (Alpha and I64 Only) . lib–453
LIB$REMQTI . lib–456
LIB$REMQTIQ (Alpha and I64 Only) . lib–459
LIB$RENAME_FILE . lib–462
LIB$RESERVE_EF . lib–471
LIB$RESET_VM_ZONE . lib–473
LIB$RESET_VM_ZONE_64 (Alpha and I64 Only) lib–475
LIB$REVERT . lib–477
LIB$RUN_PROGRAM . lib–478
LIB$SCANC . lib–480
LIB$SCOPY_DXDX . lib–482
LIB$SCOPY_R_DX . lib–484
LIB$SCOPY_R_DX_64 (Alpha and I64 Only) . lib–486
LIB$SET_LOGICAL . lib–488
LIB$SET_SYMBOL . lib–491
LIB$SFREE1_DD . lib–494
LIB$SFREEN_DD . lib–495
LIB$SGET1_DD . lib–497
LIB$SGET1_DD_64 (Alpha and I64 Only) . lib–499
LIB$SHOW_TIMER . lib–501
LIB$SHOW_VM . lib–505
LIB$SHOW_VM_64 (Alpha and I64 Only) . lib–508
LIB$SHOW_VM_ZONE . lib–511
LIB$SHOW_VM_ZONE_64 (Alpha and I64 Only) lib–517
LIB$SIGNAL . lib–523
LIB$SIG_TO_RET . lib–528
LIB$SIG_TO_STOP . lib–530
LIB$SIM_TRAP . lib–532
LIB$SKPC . lib–534
LIB$SPANC . lib–536
LIB$SPAWN . lib–540
LIB$STAT_TIMER . lib–547
LIB$STAT_VM . lib–551
LIB$STAT_VM_64 (Alpha and I64 Only) . lib–553
LIB$STOP . lib–555
LIB$SUBX . lib–557

vii

LIB$SUB_TIMES . lib–559
LIB$SYS_ASCTIM . lib–561
LIB$SYS_FAO . lib–563
LIB$SYS_FAOL . lib–565
LIB$SYS_FAOL_64 (Alpha and I64 Only) . lib–567
LIB$SYS_GETMSG . lib–569
LIB$TPARSE/LIB$TABLE_PARSE . lib–572
LIB$TRAVERSE_TREE . lib–632
LIB$TRAVERSE_TREE_64 (Alpha and I64 Only) lib–634
LIB$TRA_ASC_EBC . lib–636
LIB$TRA_EBC_ASC . lib–640
LIB$TRIM_FILESPEC . lib–643
LIB$TRIM_FULLNAME . lib–646
LIB$UNLOCK_IMAGE (Alpha and I64 Only) . lib–649
LIB$VERIFY_VM_ZONE . lib–650
LIB$VERIFY_VM_ZONE_64 (Alpha and I64 Only) lib–651
LIB$WAIT . lib–652

Part III CVT$ Reference Section

CVT$CONVERT_FLOAT . cvt–3
CVT$FTOF . cvt–9

Index

Figures

lib–1 Structure of a Protection Mask . lib–47
lib–2 Summary of Symbol Names and Values . lib–76
lib–3 Summary of Symbol Names, Values, and Names of Referring

Modules . lib–76
lib–4 Summary Indicating Defining Modules . lib–77
lib–5 Keyword Table . lib–381
lib–6 LIB$AB_ASC_EBC . lib–401
lib–7 LIB$AB_ASC_EBC_REV . lib–402
lib–8 LIB$AB_EBC_ASC . lib–403
lib–9 LIB$AB_EBC_ASC_REV . lib–404
lib–10 LIB$AB_CVTPT_O . lib–405
lib–11 LIB$AB_CVTPT_U . lib–406
lib–12 LIB$AB_CVTTP_O . lib–407
lib–13 LIB$AB_CVTTP_U . lib–408
lib–14 LIB$AB_CVT_O_U . lib–409
lib–15 LIB$AB_CVT_U_O . lib–410
lib–16 LIB$AB_CVTPT_Z . lib–411
lib–17 LIB$AB_CVTTP_Z . lib–412
lib–18 LIB$AB_UPCASE . lib–413
lib–19 LIB$AB_LOWERCASE . lib–414

viii

lib–20 LIB$T[ABLE_]PARSE 32-Bit Argument Block lib–586
lib–21 LIB$T[ABLE_]PARSE 64-Bit Argument Block (Alpha and I64

Only) . lib–587
lib–22 Transition Diagram for a Hypothetical Utility lib–592
lib–23 Tabular Diagram of a Hypothetical Utility . lib–593
lib–24 LIB$AB_ASC_EBC . lib–637
lib–25 LIB$AB_EBC_ASC . lib–641

Tables

1–1 LIB$ Routines . 1–2
1–2 Translated LIB$ Routines (Alpha Only) . 1–9
1–3 CVT$ Routines . 1–10
lib–1 OpenVMS Descriptor Class and Data Type Combinations Accepted by

LIB$CVT_DX_DX . lib–90
lib–2 LIB$CVT_DX_DX Destination NBDS Formats lib–92
lib–3 Symbols for Fields and Values for Operand Access and Data Types

Using LIB$DECODE_FAULT . lib–116
lib–4 Formats Used for LIB$GETDVI Strings . lib–235
lib–5 Item Code Formats for LIB$GETJPI . lib–239
lib–6 Item Code Formats for LIB$GETQUI . lib–245
lib–7 LIB$SHOW_VM_ZONE Error and Warning Messages lib–513
lib–8 LIB$SHOW_VM_ZONE_64 Error and Warning Messages lib–519
lib–9 The Alphabet of LIB$T[ABLE_]PARSE . lib–576
lib–10 LIB$T[ABLE_]PARSE Argument Block Fields lib–588
lib–11 Keyword Abbreviation Flags . lib–602
lib–12 Binary Representation of a LIB$T[ABLE_]PARSE State

Transition . lib–608
lib–13 ASCII Graphics Not Translated to EBCDIC Equivalent by

LIB$TRA_ASC_EBC . lib–637
lib–14 EBCDIC Graphics Not Translated to ASCII Equivalent by

LIB$TRA_EBC_ASC . lib–641

ix

Preface

This manual provides users of the HP OpenVMS operating system with detailed
usage and reference information on library routines supplied in the LIB$ and
CVT$ facilities of the Run-Time Library (RTL).

Intended Audience
This manual is intended for system and application programmers who write
programs that call LIB$ and CVT$ Run-Time Library routines.

Document Structure
This manual is organized into three parts as follows:

• The overview chapter provides a brief overview of the LIB$ and CVT$ Run-
Time Library facility and lists the LIB$ routines and their functions. It also
provides guidelines and information on using the LIB$ facility with VAX and
Alpha platforms.

• The LIB$ reference section describes each library routine contained in the
LIB$ Run-Time Library facility. This information is presented using the
documentation format described in HP OpenVMS Programming Concepts
Manual. Routine descriptions appear alphabetically by routine name.

• The CVT$ reference section describes the routines contained in the
CVT$ Run-Time Library facility. This information is presented using the
documentation format described in HP OpenVMS Programming Concepts
Manual.

Related Documents
The Run-Time Library (RTL) routines are documented in a series of reference
manuals.

General descriptions of OpenVMS RTL routines appear in the following manual:

• HP OpenVMS Programming Concepts Manual—A description of OpenVMS
features and functionality available through calls to the LIB$ Run-Time
Library

Specific descriptions of the other RTL facilities and their corresponding routines
appear in the following manuals:

• Compaq Portable Mathematics Library

• OpenVMS VAX RTL Mathematics (MTH$) Manual

• OpenVMS RTL DECtalk (DTK$) Manual1

1 This manual has been archived but is available on the OpenVMS documentation
CD-ROM.

xi

• HP OpenVMS RTL General Purpose (OTS$) Manual

• OpenVMS RTL Parallel Processing (PPL$) Manual1

• OpenVMS RTL Screen Management (SMG$) Manual

• OpenVMS RTL String Manipulation (STR$) Manual

Application programmers using any language can refer to the Guide to Creating
OpenVMS Modular Procedures for writing modular and reentrant code.

High-level language programmers will find additional information on calling
Run-Time Library routines in their language reference manuals. Additional
information may also be found in the language user’s guide provided with your
OpenVMS language software.

For a complete list and description of the manuals in the OpenVMS
documentation set, see the HP OpenVMS Version 8.2 New Features and
Documentation Overview.

For additional information about HP OpenVMS products and services, see the
following World Wide Web address:

http://www.hp.com/products/openvms

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
For information on how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions
In this manual, every use of DECwindows and DECwindows Motif refers to HP
DECwindows Motif for OpenVMS software.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

xii

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose the options in parentheses if you choose more
than one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the options listed. Do
not type the braces on the command line.

bold text This typeface represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

xiii

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xiv

Part I
LIB$ Overview Section

This part contains one chapter that provides a brief overview of the LIB$ and
CVT$ Run-Time Library facilities and lists the LIB$ and CVT$ routines and their
functions. It also provides guidelines and information on using the LIB$ facility
with VAX, Alpha, and HP OpenVMS Industry Standard 64 for Integrity Servers
(I64) platforms.

1
Overview of the LIB$ Facility

This section describes the OpenVMS Run-Time Library (LIB$) facility and lists
the function of each routine within the LIB$ facility.

1.1 Run-Time Library LIB$ Routines
This manual discusses the Run-Time Library (RTL) LIB$ routines that perform
general purpose (library) functions. One of the functions of the LIB$ facility is to
provide a callable interface to components of OpenVMS operating systems that
are difficult to use in a high-level language. LIB$ routines allow access to the
following:

• System services

• The command language interpreter (CLI)

• Some VAX machine instructions or the equivalent Alpha or I64 instructions

In addition, LIB$ routines allow you to perform the following operations:

• Allocate resources that your process needs, such as virtual memory and event
flags

• Convert data types for I/O

• Enable detection of hardware exceptions (VAX only)

• Establish condition handlers (VAX only)

• Generate and display timing statistics while your program is running

• Get and put strings in the process common storage area

• Obtain records from devices

• Obtain the system date and time in various formats

• Process cross-reference data

• Process HP DECnet-Plus for OpenVMS full names

• Search for specified files

• Set up and use binary trees

• Signal exceptions

Overview of the LIB$ Facility 1–1

Overview of the LIB$ Facility
1.1 Run-Time Library LIB$ Routines

1.1.1 64-Bit Addressing Support (Alpha and I64 Only)
On Alpha and I64 systems, the Run-Time Library (LIB$) routines provide 64-bit
virtual addressing capabilities as follows:

• Most routines now accept 64-bit addresses for arguments passed by reference.
Footnotes in the Reference Section of this manual indicate those routines that
do not.

• Most routines also accept either 32-bit or 64-bit descriptors for arguments
passed by descriptor. Footnotes in the Reference Section of this manual
indicate those routines that do not.

• In some cases, a new routine was added to support a 64-bit addressing or
data capability. These routines carry the same name as the original routine
but with a _64 suffix. In general, both versions of the routine support 64-bit
addressing, but the routine with the _64 suffix also supports additional 64-bit
capability. The 32-bit capabilities of the original routine are unchanged.

• Specialized routines create and manipulate storage zones in the 64-bit virtual
address space. The names of these routines are the same as their 32-bit
counterparts but with a _64 suffix. One example is LIB$CREATE_VM_
ZONE and LIB$CREATE_VM_ZONE_64. LIB$CREATE_VM_ZONE creates
a storage zone in the 32-bit vitual address space, and LIB$CREATE_VM_
ZONE_64 creates a storage zone in the 64-bit virtual address space. The
function of the original routine is unchanged.

See the HP OpenVMS Programming Concepts Manual for more information about
64-bit virtual addressing capabilities.

1.1.2 The LIB$ Routines
Table 1–1 lists all of the LIB$ routines and their functions.

Table 1–1 LIB$ Routines

Routine Name Function

LIB$ADAWI Add adjacent word with interlock.

LIB$ADDX Add two multiple-precision binary numbers.

LIB$ADD_TIMES Add two quadwords times.

LIB$ANALYZE_SDESC Analyze a string descriptor.

LIB$ANALYZE_SDESC_64 Analyze a string descriptor.1

LIB$ASN_WTH_MBX Assign a channel to a mailbox.

LIB$AST_IN_PROG Check for active AST.

LIB$ATTACH Attach a terminal to a process.

LIB$BBCCI Test and clear a bit with interlock.

LIB$BBSSI Test and set a bit with interlock.

LIB$BUILD_NODESPEC Build a node-name specification.

LIB$CALLG Call a procedure with a general argument list.

LIB$CALLG_64 Call a procedure with a general argument list.1

1Alpha and I64 specific.

(continued on next page)

1–2 Overview of the LIB$ Facility

Overview of the LIB$ Facility
1.1 Run-Time Library LIB$ Routines

Table 1–1 (Cont.) LIB$ Routines

Routine Name Function

LIB$CHAR Transform a byte to the first character of a string.

LIB$COMPARE_NODENAME Compare two node names.

LIB$COMPRESS_NODENAME Compress a node name to its short form equivalent.

LIB$CONVERT_DATE_STRING Convert a date string to a quadword.

LIB$CRC Calculate a cyclic redundancy check (CRC).

LIB$CRC_TABLE Construct a cyclic redundancy check (CRC) table.

LIB$CREATE_DIR Create a directory.

LIB$CREATE_USER_VM_ZONE Create a user-defined storage zone.

LIB$CREATE_USER_VM_ZONE_64 Create a user-defined storage zone. 1

LIB$CREATE_VM_ZONE Create a new storage zone.

LIB$CREATE_VM_ZONE_64 Create a new storage zone.1

LIB$CRF_INS_KEY Insert a key in the cross-reference table.

LIB$CRF_INS_REF Insert a reference to a key in the cross-reference table.

LIB$CRF_OUTPUT Output some cross-reference table information.

LIB$CURRENCY Get the system currency symbol.

LIB$CVTF_FROM_INTERNAL_TIME Convert internal time to external time (F-floating value).

LIB$CVTS_FROM_INTERNAL_TIME Convert internal time to external time (IEEE S-floating
value).

LIB$CVTF_TO_INTERNAL_TIME Convert external time to internal time (F-floating value).

LIB$CVTS_TO_INTERNAL_TIME Convert external time to internal time (IEEE S-floating
value).

LIB$CVT_DX_DX Convert the specified data type.

LIB$CVT_FROM_INTERNAL_TIME Convert internal time to external time.

LIB$CVT_TO_INTERNAL_TIME Convert external time to internal time.

LIB$CVT_VECTIM Convert 7-word vector to internal time.

LIB$CVT_xTB Convert numeric text to binary.

LIB$CVT_xTB_64 Convert numeric text to binary.1

LIB$DATE_TIME Return the date and time as a string.

LIB$DAY Return the day number as a longword integer.

LIB$DAY_OF_WEEK Return the numeric day of the week.

LIB$DECODE_FAULT Decode instruction stream during a fault.2

LIB$DEC_OVER Enable or disable decimal overflow detection.2

LIB$DELETE_FILE Delete one or more files.

LIB$DELETE_LOGICAL Delete a logical name.

LIB$DELETE_SYMBOL Delete a CLI symbol.

LIB$DELETE_VM_ZONE Delete a virtual memory zone.

LIB$DELETE_VM_ZONE_64 Delete a virtual memory zone.1

1Alpha and I64 specific.
2Available only on OpenVMS VAX systems and for translated VAX applications running on OpenVMS Alpha or I64
systems.

(continued on next page)

Overview of the LIB$ Facility 1–3

Overview of the LIB$ Facility
1.1 Run-Time Library LIB$ Routines

Table 1–1 (Cont.) LIB$ Routines

Routine Name Function

LIB$DIGIT_SEP Get the digit separator symbol.

LIB$DISABLE_CTRL Disable CLI interception of control characters.

LIB$DO_COMMAND Execute the specified command.

LIB$EDIV Perform an extended-precision divide.

LIB$EMODD Perform extended multiply and integerize for D-floating
values.

LIB$EMODF Perform extended multiply and integerize for F-floating
values.

LIB$EMODG Perform extended multiply and integerize for G-floating
values.

LIB$EMODH Perform extended multiply and integerize for H-floating
values.2

LIB$EMODS Perform extended multiply and integerize for IEEE S-floating
values.

LIB$EMODT Perform extended multiply and integerize for IEEE T-floating
values.

LIB$EMUL Perform an extended-precision multiply.

LIB$ENABLE_CTRL Enable CLI interception of control characters.

LIB$ESTABLISH Establish a condition handler.2 3

LIB$EXPAND_NODENAME Expand a node name to its full name equivalent.

LIB$EXTV Extract a field and sign-extend.

LIB$EXTZV Extract a zero-extended field.

LIB$FFx Find the first clear or set bit.

LIB$FID_TO_NAME Convert a device and file ID to a file specification.

LIB$FILE_SCAN Perform a file scan.

LIB$FILE_SCAN_END End a file scan.

LIB$FIND_FILE Find a file.

LIB$FIND_FILE_END End of find file.

LIB$FIND_IMAGE_SYMBOL Merge activate an image symbol.

LIB$FIND_VM_ZONE Find the next valid zone.

LIB$FIND_VM_ZONE_64 Find the next valid zone.1

LIB$FIT_NODENAME Fit a node name into an output field.

LIB$FIXUP_FLT Fix floating reserved operand.2

LIB$FLT_UNDER Detect a floating-point underflow.2

LIB$FORMAT_DATE_TIME Format a date and/or time.

LIB$FORMAT_SOGW_PROT Format protection mask.4

LIB$FREE_DATE_TIME_CONTEXT Free the context used to format a date.

1Alpha and I64 specific.
2Available only on OpenVMS VAX systems and for translated VAX applications running on OpenVMS Alpha or I64
systems.
3This routine or an equivalent mechanism is supplied by compilers on OpenVMS Alpha and I64 systems.
4VAX specific.

(continued on next page)

1–4 Overview of the LIB$ Facility

Overview of the LIB$ Facility
1.1 Run-Time Library LIB$ Routines

Table 1–1 (Cont.) LIB$ Routines

Routine Name Function

LIB$FREE_EF Free an event flag.

LIB$FREE_LUN Free a logical unit number.

LIB$FREE_TIMER Free timer storage.

LIB$FREE_VM Free virtual memory from the program region.

LIB$FREE_VM_64 Free virtual memory from the program region.1

LIB$FREE_VM_PAGE Free a virtual memory page.

LIB$FREE_VM_PAGE_64 Free a virtual memory page.1

LIB$GETDVI Get device/volume information.

LIB$GETJPI Get job/process information.

LIB$GETQUI Get queue information.

LIB$GETSYI Get systemwide information.

LIB$GET_ACCNAM Get access name table for a security object identified by
name.4

LIB$GET_ACCNAM_BY_CONTEXT Get access name table for a security object identified by
$GET_SECURITY or $SET_SECURITY context.4

LIB$GET_COMMAND Get line from SYS$COMMAND.

LIB$GET_COMMON Get string from common area.

LIB$GET_CURR_INVO_CONTEXT Get current invocation context. 1

LIB$GET_DATE_FORMAT Return the user’s date input format.

LIB$GET_EF Get an event flag.

LIB$GET_FOREIGN Get foreign command line.

LIB$GET_FULLNAME_OFFSET Get the offset to the starting position of the most significant
part of a full name.

LIB$GET_HOSTNAME Get host node name.

LIB$GET_INPUT Get line from SYS$INPUT.

LIB$GET_INVO_CONTEXT Get invocation context.1

LIB$GET_INVO_HANDLE Get invocation handle.1

LIB$GET_LUN Get logical unit number.

LIB$GET_MAXIMUM_DATE_LENGTH Get the maximum possible date/time string length.

LIB$GET_PREV_INVO_CONTEXT Get previous invocation context.1

LIB$GET_PREV_INVO_HANDLE Get previous invocation handle.1

LIB$GET_SYMBOL Get the value of a CLI symbol.

LIB$GET_USERS_LANGUAGE Return the user’s language choice.

LIB$GET_VM Allocate virtual memory.

LIB$GET_VM_64 Allocate virtual memory.1

LIB$GET_VM_PAGE Get a virtual memory page.

LIB$GET_VM_PAGE_64 Get a virtual memory page.1

LIB$ICHAR Convert the first character of a string to an integer.

1Alpha and I64 specific.
4VAX specific.

(continued on next page)

Overview of the LIB$ Facility 1–5

Overview of the LIB$ Facility
1.1 Run-Time Library LIB$ Routines

Table 1–1 (Cont.) LIB$ Routines

Routine Name Function

LIB$I64_CREATE_INVO_CONTEXT Allocate and initialize an invocation context block.5

LIB$I64_GET_CURR_INVO_CONTEXT Get current invocation context.5

LIB$I64_FREE_INVO_CONTEXT Deallocate an invocation context block.5

LIB$I64_GET_CURR_INVO_HANDLE Get current invocation handle.5

LIB$I64_GET_FR Get floating-point register value.5

LIB$I64_GET_GR Get general register value.5

LIB$I64_GET_INVO_HANDLE Get invocation handle.5

LIB$I64_GET_INVO_CONTEXT Get invocation context.5

LIB$I64_GET_PREV_INVO_CONTEXT Get previous invocation context.5

LIB$I64_GET_PREV_INVO_END Free memory used to process unwind descriptors.5

LIB$I64_GET_PREV_INVO_HANDLE Get previous invocation handle.5

LIB$I64_GET_UNWIND_HANDLER_FV Given a pc_value, find the function value (address of the
procedure descriptor) for the condition handler, if present,
and write it to handler_fv. 5

LIB$I64_GET_UNWIND_LSDA Find Address of Unwind Information Block Language-Specific
Data. 5

LIB$I64_GET_UNWIND_OSSD Find address of the unwind information block operating
system-specific data area.5

LIB$I64_INIT_INVO_CONTEXT Initialize an invocation context block that has already been
allocated.5

LIB$I64_IS_AST_DISPATCH_FRAME Determine whether a given PC value represents an AST
dispatch frame. 5

LIB$I64_IS_EXC_DISPATCH_FRAME Determine whether a given PC value represents an exception
dispatch frame. 5

LIB$I64_PUT_INVO_REGISTERS Update register contetnts using a given invocation context.5

LIB$I64_PREV_INVO_END Free memory used tp process unwind descriptors.5

LIB$I64_SET_FR Write context of invocation context block.5

LIB$I64_SET_GR Write invocation block general register value.5

LIB$I64_SET_PC Write pc_copy value of invocation context block.5

LIB$INDEX Index to relative position of substring.

LIB$INIT_DATE_TIME_CONTEXT Initialize the context used in formatting date/time strings.

LIB$INIT_TIMER Initialize times and counts.

LIB$INSERT_TREE Insert entry in a balanced binary tree.

LIB$INSERT_TREE_64 Insert entry in a balanced binary tree.1

LIB$INSQHI Insert entry at the head of a queue.

LIB$INSQHIQ Insert entry at the head of a queue.1

LIB$INSQTI Insert entry at the tail of a queue.

LIB$INSQTIQ Insert entry at the tail of a queue.1

LIB$INSV Insert a variable bit field.

1Alpha and I64 specific.
5I64 specific.

(continued on next page)

1–6 Overview of the LIB$ Facility

Overview of the LIB$ Facility
1.1 Run-Time Library LIB$ Routines

Table 1–1 (Cont.) LIB$ Routines

Routine Name Function

LIB$INT_OVER Detect integer overflow.2

LIB$LEN Return the length of a string as a longword.

LIB$LOCC Locate a character.

LIB$LOCK Lock a specified image in the process’s working set.

LIB$LOOKUP_KEY Look up keyword in table.

LIB$LOOKUP_TREE Look up an entry in a balanced binary tree.

LIB$LOOKUP_TREE_64 Look up an entry in a balanced binary tree.1

LIB$LP_LINES Specify the number of lines on each printer page.

LIB$MATCHC Match characters, return relative position.

LIB$MATCH_COND Match condition values.

LIB$MOVC3 Move characters.

LIB$MOVC5 Move characters with fill.

LIB$MOVTC Move translated characters.

LIB$MOVTUC Move translated until character.

LIB$MULTF_DELTA_TIME Multiply delta time by F-floating scalar.

LIB$MULTS_DELTA_TIME Multiply delta time by IEEE S-floating scalar.

LIB$MULT_DELTA_TIME Multiply delta time by scalar.

LIB$PARSE_ACCESS_CODE Parse access-encoded name string.4

LIB$PARSE_SOGW_PROT Parse protection string.4

LIB$PAUSE Pause program execution.

LIB$POLYD Evaluate polynomials for D-floating values.

LIB$POLYF Evaluate polynomials for F-floating values.

LIB$POLYG Evaluate polynomials for G-floating values.

LIB$POLYH Evaluate polynomials for H-floating values.2

LIB$POLYS Evaluate polynomials for IEEE S-floating values.

LIB$POLYT Evaluate polynomials for IEEE T-floating values.

LIB$PUT_COMMON Put string into common area.

LIB$PUT_INVO_REGISTERS Put invocation registers.1

LIB$PUT_OUTPUT Put line to SYS$OUTPUT.

LIB$RADIX_POINT Radix point symbol.

LIB$REMQHI Remove entry from head of queue.

LIB$REMQHIQ Remove entry from head of queue.1

LIB$REMQTI Remove entry from tail of queue.

LIB$REMQTIQ Remove entry from tail of queue.1

LIB$RENAME_FILE Rename one or more files.

LIB$RESERVE_EF Reserve an event flag.

1Alpha and I64 specific.
2Available only on OpenVMS VAX systems and for translated VAX applications running on OpenVMS Alpha or I64
systems.
4VAX specific.

(continued on next page)

Overview of the LIB$ Facility 1–7

Overview of the LIB$ Facility
1.1 Run-Time Library LIB$ Routines

Table 1–1 (Cont.) LIB$ Routines

Routine Name Function

LIB$RESET_VM_ZONE Reset virtual memory zone.

LIB$RESET_VM_ZONE_64 Reset virtual memory zone.1

LIB$REVERT Revert to the handler of the procedure activator.2 3

LIB$RUN_PROGRAM Run new program.

LIB$SCANC Scan for characters and return relative position.

LIB$SCOPY_DXDX Copy source string by descriptor to destination.

LIB$SCOPY_R_DX Copy source string by reference to destination.

LIB$SCOPY_R_DX_64 Copy source string by reference to destination.1

LIB$SET_LOGICAL Set logical name.

LIB$SET_SYMBOL Set the value of a CLI symbol.

LIB$SFREE1_DD Free one or more dynamic strings.

LIB$SFREEN_DD Free n dynamic strings.

LIB$SGET1_DD Get one dynamic string.

LIB$SGET1_DD_64 Get one dynamic string.1

LIB$SHOW_TIMER Show accumulated times and counts.

LIB$SHOW_VM Show virtual memory statistics.

LIB$SHOW_VM_64 Show virtual memory statistics.1

LIB$SHOW_VM_ZONE Display information about a virtual memory zone.

LIB$SHOW_VM_ZONE_64 Display information about a virtual memory zone.1

LIB$SIGNAL Signal exception condition.

LIB$SIG_TO_RET Convert a signaled message to a return status.

LIB$SIG_TO_STOP Convert a signaled condition to a signaled stop.

LIB$SIM_TRAP Simulate floating trap.2

LIB$SKPC Skip equal characters.

LIB$SPANC Skip selected characters.

LIB$SPAWN Spawn a subprocess.

LIB$STAT_TIMER Return accumulated time and count statistics.

LIB$STAT_VM Return virtual memory statistics.

LIB$STAT_VM_64 Return virtual memory statistics.1

LIB$STOP Stop execution and signal the condition.

LIB$SUBX Perform multiple-precision binary subtraction.

LIB$SUB_TIMES Subtract two quadword times.

LIB$SYS_ASCTIM Invoke $ASCTIM to convert binary time to ASCII.

LIB$SYS_FAO Invoke $FAO system service to format output.

LIB$SYS_FAOL Invoke $FAOL system service to format output.

LIB$SYS_FAOL_64 Invoke $FAOL system service to format output.1

1Alpha and I64 specific.
2Available only on OpenVMS VAX systems and for translated VAX applications running on OpenVMS Alpha or I64
systems.
3This routine or an equivalent mechanism is supplied by compilers on OpenVMS Alpha and I64 systems.

(continued on next page)

1–8 Overview of the LIB$ Facility

Overview of the LIB$ Facility
1.1 Run-Time Library LIB$ Routines

Table 1–1 (Cont.) LIB$ Routines

Routine Name Function

LIB$SYS_GETMSG Invoke $GETMSG system service to get message text.

LIB$TABLE_PARSE Implement a table-driven, finite-state parser.

LIB$TPARSE Implement a table-driven, finite-state parser.2

LIB$TRAVERSE_TREE Traverse a balanced binary tree.

LIB$TRAVERSE_TREE_64 Traverse a balanced binary tree.1

LIB$TRA_ASC_EBC Translate ASCII to EBCDIC.

LIB$TRA_EBC_ASC Translate EBCDIC to ASCII.

LIB$TRIM_FILESPEC Fit a long file specification into a fixed field.

LIB$TRIM_FULLNAME Trim a full name to fit into a desired output field.

LIB$UNLOCK Unlock a specified image in the process’s working set.

LIB$VERIFY_VM_ZONE Verify a virtual memory zone.

LIB$VERIFY_VM_ZONE_64 Verify a virtual memory zone.1

LIB$WAIT Wait a specified period of time.

1Alpha and I64 specific.
2Available only on OpenVMS VAX systems and for translated VAX applications running on OpenVMS Alpha or I64
systems.

1.2 Translated Version of LIB$ Facility (Alpha and I64 Only)
The RTL LIB$ facility exists in two forms on OpenVMS Alpha and I64 systems:
native and translated. The translated LIB$ library contains routines specific to
VAX systems only, and are executed in the Translated Image Environment (TIE).
These routines are not available to native OpenVMS Alpha and I64 programs.
See Migrating an Application from OpenVMS VAX to OpenVMS Alpha1 for
additional information on using translated images and the TIE.

Table 1–2 lists the translated LIB$ routines.

Table 1–2 Translated LIB$ Routines (Alpha Only)

Routine Name Restriction

LIB$DECODE_FAULT Decodes VAX instructions.

LIB$DEC_OVER Applies to VAX PSL only.

LIB$ESTABLISH Supported by compilers on OpenVMS Alpha systems.

LIB$FIXUP_FLT Applies to VAX PSL only.

LIB$FLT_UNDER Applies to VAX PSL only.

LIB$INT_OVER Applies to VAX PSL only.

LIB$REVERT Supported by compilers on OpenVMS Alpha systems.

LIB$SIM_TRAP Applies to VAX code.

(continued on next page)

1 This manual has been archived but is available on the OpenVMS Documentation
CD-ROM.

Overview of the LIB$ Facility 1–9

Overview of the LIB$ Facility
1.2 Translated Version of LIB$ Facility (Alpha and I64 Only)

Table 1–2 (Cont.) Translated LIB$ Routines (Alpha Only)

Routine Name Restriction

LIB$TPARSE Requires action routine interface changes. Replaced by
LIB$TABLE_PARSE.

LIB$ routines that are called using JSB linkages may function differently on
OpenVMS VAX and OpenVMS Alpha systems. See OpenVMS Programming
Interfaces: Calling a System Routine1 for more information on using JSB
linkages.

1.3 Run-Time Library CVT$ Facility
This manual describes the Run-Time Library CVT$ facility and its routines:
CVT$CONVERT_FLOAT and CVT$FTOF. The CVT$ facility lets you convert
data stored in one OpenVMS data type into data of another data type. Table 1–3
lists the routines in the CVT$ facility.

Table 1–3 CVT$ Routines

Routine Name Function

CVT$CONVERT_FLOAT Converts data in one of several floating-point data types to
another floating-point data type.

CVT$FTOF Enhanced version of CVT$CONVERT_FLOAT that
provides better performance and more output options than
CVT$CONVERT_FLOAT, and also enhances portability
between HP-supported platforms.

1 This manual has been archived but is available on the OpenVMS Documentation
CD-ROM.

1–10 Overview of the LIB$ Facility

Part II
LIB$ Reference Section

This part contains detailed descriptions of the routines provided by the OpenVMS
RTL Library (LIB$) facility.

LIB$ Routines
LIB$ADAWI

LIB$ADAWI
Add Aligned Word with Interlock

The Add Aligned Word with Interlock routine allows the user to perform an
interlocked add operation using an aligned word.

Format

LIB$ADAWI add ,sum ,sign

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

add
OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by reference

The addend operand to be added to the value of sum. The add argument is the
address of a signed word that contains the addend operand.

sum
OpenVMS usage: word_signed
type: word integer (signed)
access: modify
mechanism: by reference

The word to which add is added. The sum argument is the address of a signed
word integer containing this value. The add operand is added to the sum
operand, and the value of the sum argument is replaced by the result of this
addition. The sum argument must be word-aligned; in other words, its address
must be a multiple of 2.

sign
OpenVMS usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

Sign of the sum argument. The sign argument is the address of a signed word
integer that is assigned the value –1, 0, or 1, depending on whether the new
value of sum is negative, 0, or positive.

lib–3

LIB$ Routines
LIB$ADAWI

Description

LIB$ADAWI allows the user to perform an interlocked add operation using an
aligned word, and makes the VAX ADAWI1 instruction available as a callable
routine. This routine also enables the user to implement synchronization
primitives for multiprocessing.

The add operation is interlocked against similar operations on other processors in
a multiprocessor environment. This provides an atomic addition operation. The
destination must be aligned on a word boundary; that is, bit 0 of the address of
the sum operand must be 0.

If the addend and the sum operand overlap, the result of the addition, the value
of the sign argument, and the associated condition codes are unpredictable.

The value of the sign argument is useful when LIB$ADAWI is used to implement
locking in a multiprocessing program. For example, a process that is waiting to
seize a lock or a resource calls LIB$ADAWI to add 1 to the sum. When the call
returns, the waiting process checks the value of sign.

One possible algorithm would interpret the value of sign as follows:

Value of sign
Argument Status of Lock or Resource

–1 Open lock or free resources
0 Closed lock or no free resources, with no processes waiting
+1 Closed lock or no free resources, with processes waiting

In this algorithm, if the value of the sign argument is -1, that indicates that
the process successfully seized the lock or resource, and other free resources are
available. A value of 0 indicates that the process successfully seized the lock or
the last available resource. A value of 1 indicates that the process was unable to
seize the lock.

It is not sufficient for a waiting process to test the value of sum. The result
is unpredictable because other processes can alter the value of sum after the
original process executes the ADAWI instruction but before it tests the value
of sum. However, a process can safely test the value of sign because its value
is determined by the ADAWI instruction and is unaffected by other processes’
activities.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_INTOVF Integer overflow error.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–4

LIB$ Routines
LIB$ADDX

LIB$ADDX
Add Two Multiple-Precision Binary Numbers

The Add Two Multiple-Precision Binary Numbers routine adds two signed two’s
complement integers of arbitrary length.

Format

LIB$ADDX addend-array ,augend-array ,resultant-array [,array-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

addend-array
OpenVMS usage: vector_longword_signed
type: unspecified
access: read only
mechanism: by reference, array reference

First multiple-precision, signed two’s complement integer that LIB$ADDX adds
to the second two’s complement integer. The addend-array argument is the
address of the array containing the two’s complement number to be added.

augend-array
OpenVMS usage: vector_longword_signed
type: unspecified
access: read only
mechanism: by reference, array reference

Second multiple-precision, signed two’s complement integer that LIB$ADDX
adds to the first two’s complement integer. The augend-array argument is the
address of the array containing the two’s complement number.

resultant-array
OpenVMS usage: vector_longword_signed
type: unspecified
access: write only
mechanism: by reference, array reference

Multiple-precision, signed two’s complement integer result of the addition. The
resultant-array argument is the address of the array into which LIB$ADDX
writes the result of the addition.

array-length
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

lib–5

LIB$ Routines
LIB$ADDX

Length in longwords of the arrays to be operated on; each array is of length
array-length. The array-length argument is the address of a signed longword
integer containing the length. The array-length argument must not be negative.
This is an optional argument. If omitted, the default is 2.

Description

LIB$ADDX adds two signed two’s complement integers of arbitrary length.
The integers are located in arrays of longwords. The higher addresses of
these longwords contain the higher precision parts of the values. The highest-
addressed longword contains the sign and 31 bits of precision. The remaining
longwords contain 32 bits of precision in each. The number of longwords in each
array is specified in the optional argument array-length. The default array
length is 2, which corresponds to the OpenVMS quadword data type.

Any two or all three of the first three arguments can be the same.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_INTOVF Integer overflow. The result is correct, except

that the sign bit is lost.

Example

C+
C This Fortran example program shows the use
C of LIB$ADDX.
C-

INTEGER A(2),B(2),C(2),RETURN
DATA A/’00000001’x,’7FFF407F’x/
DATA B/’FFFFFFFF’x,’8000BF80’x/

C+
C The highest addressed longword of "A" is A(2).
C So, "A" represents the integer value (’7FFF407F’x) * 16**7 + 1.
C That is, A(2) is 576447592255193089.
C "B" is the twos complement representation of "-A".
C-

RETURN = LIB$ADDX(A,B,C)
TYPE *,’Let A = 576447592255193089.’
TYPE *,’Then A + B is 0.’
TYPE 1,C(2),C(1)

1 FORMAT(’ "A" - "A" is ’,1H’,I1,I1,3H’x.)
TYPE *,’Note that C is C(2) concatenated with C(1).’

C+
C Let "A" have the value 72057594037927937 = ’1000000000000001’x.
C Let "B" have the value 4294967295 = ’00000000FFFFFFFF’x.
C-

A(1) = ’00000001’x
A(2) = ’10000000’x
B(1) = ’FFFFFFFF’x
B(2) = ’00000000’x

C+
C Then "A" + "B" is 72057598332895232.
C-

lib–6

LIB$ Routines
LIB$ADDX

RETURN = LIB$ADDX(A,B,C)
TYPE *,’ ’
TYPE *,’LET A = 72057594037927937 and B = 4294967295’
TYPE *,’Then A + B is ’,C
TYPE 2,C(2),C(1)

2 FORMAT(’ 72057598332895232 is represented as ’,1H’,Z8.8,Z8.8,3H’x.)
TYPE *,’Recall that 72057598332895232 is C(2) concatenated

1 with C(1).’
END

This Fortran example demonstrates how to call LIB$ADDX. The output generated
by this program is as follows:

Let A = 576447592255193089.
Then A + B is 0.
"A" - "A" is ’00’x.
Note that C is C(2) concatenated with C(1).
LET A = 72057594037927937 and B = 4294967295
Then A + B is 0 268435457
72057598332895232 is represented as ’10000001 0’x.
Recall that 72057598332895232 is C(2) concatenated with C(1).

lib–7

LIB$ Routines
LIB$ADD_TIMES

LIB$ADD_TIMES
Add Two Quadword Times

The Add Two Quadword Times routine adds two internal format times.

Format

LIB$ADD_TIMES time1 ,time2 ,resultant-time

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

time1
OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

First time that LIB$ADD_TIMES adds to the second time. The time1 argument
is the address of an unsigned quadword containing the first time to be added.
The time1 argument may be either a delta time or an absolute time; however, at
least one of the arguments, time1 or time2, must be a delta time.

time2
OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Second time that LIB$ADD_TIMES adds to the first time. The time2 argument
is the address of an unsigned quadword containing the second time to be added.
The time2 argument may be either a delta time or an absolute time; however, at
least one of the arguments, time1 or time2, must be a delta time.

resultant-time
OpenVMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

The result of adding time1 and time2. The resultant-time argument is the
address of an unsigned quadword containing the result. If both time1 and time2
are delta times, then resultant-time is a delta time. Otherwise, resultant-time
is an absolute time.

lib–8

LIB$ Routines
LIB$ADD_TIMES

Description

LIB$ADD_TIMES adds two OpenVMS internal times. It can add two delta times
or a delta time and an absolute time. LIB$ADD_TIMES cannot add two absolute
times.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_IVTIME Invalid time.
LIB$_ONEDELTIM At least one delta time is required.
LIB$_WRONUMARG Incorrect number of arguments.

lib–9

LIB$ Routines
LIB$ANALYZE_SDESC

LIB$ANALYZE_SDESC
Analyze String Descriptor

The Analyze String Descriptors routine extracts the length and the address at
which the data starts for a variety of 32-bit string descriptor classes.

Format

LIB$ANALYZE_SDESC input-descriptor ,data-length ,data-address

Corresponding JSB Entry Point

LIB$ANALYZE_SDESC_R2

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

input-descriptor
OpenVMS usage: descriptor
type: quadword (unsigned)
access: read only
mechanism: by reference

Input descriptor from which LIB$ANALYZE_SDESC extracts the length of the
data and the address at which the data starts. The input-descriptor argument
is the address of a descriptor pointing to the input data.

data-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the data; LIB$ANALYZE_SDESC extracts this length value from the
input descriptor. The data-length argument is the address of an unsigned word
integer into which LIB$ANALYZE_SDESC writes the length.

data-address
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Starting address of the data; LIB$ANALYZE_SDESC extracts this address from
the input descriptor. The data-address argument is the address of an unsigned
longword into which LIB$ANALYZE_SDESC writes the starting address of the
data.

lib–10

LIB$ Routines
LIB$ANALYZE_SDESC

Description

LIB$ANALYZE_SDESC extracts the length and the address at which the data
starts for a variety of 32-bit string descriptor classes. Following is a description
of the classes of string descriptors.

Class Description Restrictions/Notes

A Array DSC$L_ARSIZE must be less than
65,536 bytes.

D Decimal string Treated as class S.
NCA Noncontiguous array Same as class A.
S Scalar, string None.
SD Decimal scalar Treated as class S.
VS Varying string Length returned is CURLEN.
Z Unspecified Treated as class S.

See STR$ANALYZE_SDESC for a similar routine that signals an error rather
than returning a status.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVSTRDES Invalid string descriptor. An array descriptor

has an ARSIZE greater than 65,535 bytes, or the
class is unsupported.

lib–11

LIB$ Routines
LIB$ANALYZE_SDESC_64 (Alpha and I64 Only)

LIB$ANALYZE_SDESC_64 (Alpha and I64 Only)
Analyze String Descriptor

The Analyze String Descriptor routine extracts the length and the address at
which the data starts for a variety of 32-bit and 64-bit string descriptor classes.

Format

LIB$ANALYZE_SDESC_64 input-descriptor ,data-length ,data-address [,descriptor-type]

Corresponding JSB Entry Point

LIB$ANALYZE_SDESC_R2 Refer to the LIB$ANALYZE_SDESC routine for information about the JSB
entry point, LIB$ANALYZE_SDESC_R2. This JSB entry point returns 64-bit
results on Alpha and I64 systems.

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

input-descriptor
OpenVMS usage: descriptor
type: longword (unsigned) or quadword (unsigned)
access: read only
mechanism: by reference

Input descriptor from which LIB$ANALYZE_SDESC_64 extracts the length of the
data and the address at which the data starts. The input-descriptor argument
is the address of a descriptor pointing to the input data. The input descriptor can
be a longword (unsigned) or a quadword (unsigned).

data-length
OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: write only
mechanism: by reference

Length of the data; LIB$ANALYZE_SDESC_64 extracts this length value from
the input descriptor. The data-length argument is the address of an unsigned
quadword integer into which LIB$ANALYZE_SDESC_64 writes the length.

data-address
OpenVMS usage: address
type: quadword (unsigned)
access: write only
mechanism: by reference

Starting address of the data; LIB$ANALYZE_SDESC_64 extracts this address
from the input descriptor. The data-address argument is the address of an
unsigned quadword into which LIB$ANALYZE_SDESC_64 writes the starting
address of the data.

lib–12

LIB$ Routines
LIB$ANALYZE_SDESC_64 (Alpha and I64 Only)

descriptor-type
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Flag value indicating the type of input descriptor. The descriptor-type
argument contains the address of an unsigned longword integer to which
LIB$ANALYZE_SDESC_64 writes a 0 for a 32-bit input descriptor or a 1 for
a 64-bit descriptor.

This argument is optional.

Description

LIB$ANALYZE_SDESC_64 extracts the length and the address at which the data
starts for a variety of 32-bit and 64-bit string descriptor classes. Following is a
description of the classes of string descriptors:

Class Description Restrictions/Notes

A Array For 32-bit descriptors, DSC$L_ARSIZE
must be less than �

16, or 65,536, bytes.
For 64-bit descriptors, DSC64$Q_
ARSIZE must be less than �

64 bytes.
D Decimal string Treated as class S.
NCA Noncontiguous array Same as class A.
S Scalar, string None.
SD Decimal scalar Treated as class S.
VS Varying string Length returned is CURLEN.
Z Unspecified Treated as class S.

See STR$ANALYZE_SDESC_64 for a similar routine that signals an error rather
than returning a status.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVSTRDES Invalid string descriptor. An array descriptor

has an ARSIZE greater than 65,535 bytes, or the
class is unsupported.

lib–13

LIB$ Routines
LIB$ASN_WTH_MBX

LIB$ASN_WTH_MBX
Assign Channel with Mailbox

The Assign Channel with Mailbox routine assigns a channel to a specified device
and associates a mailbox with the device. It returns both the device channel and
the mailbox channel.

Format

LIB$ASN_WTH_MBX device-name [,maximum-message-size] [,buffer-quota] ,device-channel
,mailbox-channel

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

device-name
OpenVMS usage: device_name
type: character string
access: read only
mechanism: by descriptor

Device name that LIB$ASN_WTH_MBX passes to the $ASSIGN service. The
device-name argument is the address of a descriptor pointing to the device
name.

maximum-message-size
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Maximum message size that can be sent to the mailbox; LIB$ASN_WTH_MBX
passes this argument to the $CREMBX service. The maximum-message-size
argument is the address of a signed longword integer containing this maximum
message size.

buffer-quota
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of system dynamic memory bytes that can be used to buffer messages
sent to the mailbox; LIB$ASN_WTH_MBX passes this argument to the
$CREMBX service. The buffer-quota argument is the address of a signed
longword integer containing this buffer quota.

lib–14

LIB$ Routines
LIB$ASN_WTH_MBX

device-channel
OpenVMS usage: word_unsigned
type: word integer (unsigned)
access: write only
mechanism: by reference

Device channel that LIB$ASN_WTH_MBX receives from the $ASSIGN service.
The device-channel argument is the address of an unsigned word integer into
which $ASSIGN writes the device channel.

mailbox-channel
OpenVMS usage: channel
type: word integer (unsigned)
access: write only
mechanism: by reference

Mailbox channel that LIB$ASN_WTH_MBX receives from the $CREMBX service.
The mailbox-channel argument is the address of an unsigned word integer into
which $CREMBX writes the mailbox channel.

Description

A mailbox is a virtual device used for communication between processes. A
channel is the communication path that a process uses to perform I/O operations
to a particular device. LIB$ASN_WTH_MBX assigns a channel to a device and
associates a mailbox with the device. It returns both the device channel and the
mailbox channel to the mailbox.

Normally, a process calls the $CREMBX system service to create a mailbox and
assign a channel and logical name to it. Any process running in the same job and
using the same logical name uses the same mailbox.

LIB$ASN_WTH_MBX associates the physical mailbox name with the channel
assigned to the device. To create a temporary mailbox for itself and other
processes cooperating with it, your program calls LIB$ASN_WTH_MBX. The
Run-Time Library routine assigns the channel and creates the temporary mailbox
by using the system services $GETDVIW, $ASSIGN, and $CREMBX. Instead of
a logical name, the mailbox is identified by a physical device name of the form
MBcu. The physical device name MBcu is made up of the following elements:

MB Indicates that the device is a mailbox
c Is the controller
u Is the unit number

The routine returns the channel for this device name to the calling program,
which then must pass the mailbox channel to the other programs with which
it cooperates. In this way, the cooperating processes access the mailbox by its
physical name, instead of by a logical name.

The calling program passes the routine a device name, which specifies the device
to which the channel is to be assigned. For this argument (called device-name),
you may use a logical name. If you do so, the routine attempts one level of logical
name translation.

lib–15

LIB$ Routines
LIB$ASN_WTH_MBX

The privilege restrictions and process quotas required for using this routine are
those required by the $GETDVIW, $CREMBX, and $ASSIGN system services.

Note

This routine calls LIB$GET_EF. Please read the note in the Description
section of that routine.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
Any condition value returned by the called system services $ASSIGN, $CREMBX,
$GETDVI, or the RTL routines LIB$GET_EF and LIB$FREE_EF.

lib–16

LIB$ Routines
LIB$AST_IN_PROG

LIB$AST_IN_PROG
AST in Progress

The AST in Progress routine indicates whether an AST is currently in progress.

Format

LIB$AST_IN_PROG

Returns

OpenVMS usage: boolean
type: boolean
access: write only
mechanism: by value

Truth value that indicates whether an AST is currently in progress (value = 1) or
not (value = 0).

Arguments

None.

Description

An asynchronous system trap (AST) is an OpenVMS mechanism for providing
a software interrupt when an external event occurs, such as the user pressing
Ctrl/C. When an external event occurs, the OpenVMS operating system interrupts
the execution of the current process and calls a routine that you supply. While
that routine is active, the AST is said to be in progress, and the process is said to
be executing at AST level. When your AST routine returns control to the original
process, the AST is no longer active, and execution continues where it left off.

LIB$AST_IN_PROG indicates to the calling program whether an AST is currently
in progress. Your program can call LIB$AST_IN_PROG to determine whether it
is executing at AST level and then take appropriate action. This routine is useful
if you are writing AST-reentrant code, which takes different actions depending
on whether an AST is in progress. For example, the routine might have two
separate statically allocated storage areas, one for AST level and one for non-AST
level.

LIB$AST_IN_PROG calls the RTL routines LIB$FREE_EF and LIB$GET_EF,
and the $GETJPI system service. If LIB$AST_IN_PROG or any of these routines
encounters an error, LIB$AST_IN_PROG calls LIB$STOP.

Condition Values Returned

None.

lib–17

LIB$ Routines
LIB$AST_IN_PROG

Example

PROGRAM AST_IN_PROGRESS(INPUT, OUTPUT);

FUNCTION LIB$AST_IN_PROG : INTEGER; EXTERN;

VAR
ASTVALUE : INTEGER;

BEGIN
ASTVALUE := LIB$AST_IN_PROG;
CASE ASTVALUE OF
0 : WRITELN(’AN AST IS NOT IN PROGRESS’);
1 : WRITELN(’AN AST IS IN PROGRESS’);

END { of the case statement }
END.

This Pascal program determines whether or not an AST is in progress.

lib–18

LIB$ Routines
LIB$ATTACH

LIB$ATTACH
Attach Terminal to Process

The Attach Terminal to Process routine requests the calling process’s command
language interpreter (CLI) to detach the terminal of the calling process and to
reattach it to a different process.

Format

LIB$ATTACH process-id

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

process-id
OpenVMS usage: process_id
type: longword integer (unsigned)
access: read only
mechanism: by reference

Identification of the process to which LIB$ATTACH requests the calling process
to attach its terminal. The process-id argument is the address of an unsigned
longword integer containing the process identification. The specified process must
be currently detached (by means of a SPAWN or ATTACH command or by a call
to LIB$SPAWN or LIB$ATTACH) and must be part of the caller’s job.

Description

LIB$ATTACH requests the calling process’s command language interpreter (CLI)
to detach the terminal of the calling process and reattach it to a different process.
The calling process then hibernates. LIB$ATTACH provides the same function
as the DCL command ATTACH. For more information on ATTACH, see the HP
OpenVMS DCL Dictionary.

LIB$ATTACH is supported for use with the DCL CLI. If used with the Monitor
Control Routine (MCR) CLI, the error status LIB$_NOCLI is returned. If an
image is run directly as a subprocess or detached process, no CLI is present to
perform this function. In such cases, the error status LIB$_NOCLI is returned.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_NONEXPR Nonexistent process. The process specified by

process-id does not exist.
LIB$_ATTREQREF Attach request refused. The specified process

could not be attached to. Either it was not
detached or it did not belong to the caller’s job.

lib–19

LIB$ Routines
LIB$ATTACH

LIB$_NOCLI No CLI present to perform function. The calling
process did not have a CLI to perform the
function, or the CLI did not support the request
type. Note that an image run as a subprocess or
detached process does not have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an
error status, which was not recognized. This
error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL
CLI, please report the problem to your HP
support representative.

lib–20

LIB$ Routines
LIB$BBCCI

LIB$BBCCI
Test and Clear Bit with Interlock

The Test and Clear Bit with Interlock routine tests and clears a selected bit under
memory interlock. LIB$BBCCI makes the VAX BBCCI instruction available as a
callable routine. 1

Format

LIB$BBCCI position ,bit-zero-address

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

State of the bit before it was cleared by LIB$BBCCI: 1 if the bit was previously
set, and 0 if the bit was previously clear.

Arguments

position
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Bit position, relative to bit-zero-address, of the bit that LIB$BBCCI tests and
clears. The position argument is the address of a signed longword integer
containing the bit position. A position of zero denotes the low-order bit of the
byte base. The bit position is equal to the offset of the bit chosen from the base
position. This offset may span the entire range of a signed longword integer;
negative offsets access bits in lower addressed bytes.

bit-zero-address
OpenVMS usage: unspecified
type: address
access: read only
mechanism: by value

Address of the byte containing bit 0 of the field that LIB$BBCCI references.
The bit-zero-address argument is the location of the base position. The bit
that LIB$BBCCI tests and clears is position bits offset from the low bit of
bit-zero-address.

Description

The single bit specified by position and bit-zero-address is tested, the previous
state of the bit remembered, and the bit cleared. The reading of the state of the
bit and its clearing are interlocked against similar operations by other processors
or devices in the system. The remembered previous state of the bit is then
returned as the function value of LIB$BBCCI.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–21

LIB$ Routines
LIB$BBCCI

Condition Values Returned

None.

Example

C+
C This Fortran program demonstrates the use of
C LIB$BBCCI.
C-

INTEGER*4 STATES(4) ! 128 shared state bits
COMMON /STATES/ STATES ! Could be shared memory
LOGICAL*4 LIB$BBCCI

IF (LIB$BBCCI (42, STATES)) THEN
TYPE *,’State bit 42 was set’

ELSE
TYPE *,’State bit 42 was clear’

END IF
END

This Fortran example tests and clears bit 42 of array STATES, which is in a
COMMON area (possibly shared between two processors).

The output generated by this program is as follows:

$ RUN STATE
State bit 42 was clear.

lib–22

LIB$ Routines
LIB$BBSSI

LIB$BBSSI
Test and Set Bit with Interlock

The Test and Set Bit with Interlock routine tests and sets a selected bit under
memory interlock. LIB$BBSSI makes the VAX BBSSI instruction available as a
callable routine. 1

Format

LIB$BBSSI position ,bit-zero-address

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The state of the bit before it was set by LIB$BBSSI: 1 if it was previously set,
and 0 if it was previously clear.

Arguments

position
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Bit position, relative to bit-zero-address, of the bit that LIB$BBSSI tests
and sets. The position argument is the address of a signed longword integer
containing the bit position. A position of zero denotes the low-order bit of the
byte base. The bit position is equal to the offset of the bit chosen from the base
position. This offset may span the entire range of a signed longword integer;
negative offsets access bits in lower addressed bytes.

bit-zero-address
OpenVMS usage: unspecified
type: address
access: read only
mechanism: by value

Address of the byte containing bit 0 of the field that LIB$BBSSI references.
The bit-zero-address argument is the location of the base position. The
bit that LIB$BBSSI tests and sets is position bits offset from the low bit of
bit-zero-address.

Description

The single bit specified by position and bit-zero-address arguments is tested,
the previous state of the bit remembered, and the bit set. The reading of the
state of the bit and its setting are interlocked against similar operations by other
processors or devices in the system. The remembered previous state of the bit is
then returned as the function value of LIB$BBSSI.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–23

LIB$ Routines
LIB$BBSSI

Condition Values Returned

None.

Example

C+
C This Fortran example program demonstrates
C the use of LIB$BBSSI.
C-

INTEGER*4 STATES(4) ! 128 shared state bits
COMMON /STATES/ STATES ! Could be shared memory
LOGICAL*4 LIB$BBSSI

IF (LIB$BBSSI (104, STATES)) THEN
TYPE *,’State bit 104 was set’
ELSE
TYPE *,’State bit 104 was clear’

END IF
END

This Fortran example tests and sets bit 104 of array STATES, which is in a
COMMON storage area (possibly shared between two processors).

The output generated by this program is as follows:

$ RUN STATEB
State bit 104 was clear.

lib–24

LIB$ Routines
LIB$BUILD_NODESPEC

LIB$BUILD_NODESPEC
Build a Node-Name Specification

The Build a Node-Name Specification routine builds a node-name specification
from the primary node name. The output node-name specification can be used for
other node-name parsing operations. †

Format

LIB$BUILD_NODESPEC primary-nodename, nodespec [,acs] [,secondary-nodename] [,nodespec-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

primary-nodename
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Primary node name. The primary-nodename argument contains the address of
a descriptor pointing to this node-name string. The primary node name should
not contain unnecessary quotation marks (that is, quotation marks (" ") that are
not part of a simple name within the node name).

The error LIB$_INVARG is returned if primary-nodename points to a null
string. The error LIB$_INVSTRDES is returned if primary-nodename is an
invalid descriptor.

nodespec
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Node-name specification. The nodespec argument contains the address of a
descriptor pointing to this output node-name specification string. LIB$BUILD_
NODESPEC writes the output node-name specification into the buffer pointed to
by the nodespec descriptor.

The error LIB$_INVSTRDES is returned if nodespec is an invalid descriptor.

The length field of the nodespec descriptor is not updated unless nodespec is a
dynamic descriptor with a length less than the resultant node-name specification.
Refer to the OpenVMS RTL String Manipulation (STR$) Manual for dynamic
string descriptor usage.

The nodespec argument contains an unusable result when LIB$BUILD_
NODESPEC returns in error.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–25

LIB$ Routines
LIB$BUILD_NODESPEC

acs
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Access control string. The acs argument contains the address of a descriptor
pointing to this access control string. The access control string must be a quoted
string.

The error LIB$_INVSTRDES is returned if acs is an invalid descriptor.

secondary-nodename
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Secondary node name. The secondary-nodename argument contains the
address of a descriptor pointing to this secondary node-name string.

The error LIB$_INVSTRDES is returned if secondary-nodename is an invalid
descriptor.

nodespec-length
OpenVMS usage: unsigned_word
type: word (unsigned)
access: write only
mechanism: by reference

Length of the output node-name specification. The nodespec-length argument
is the address of an unsigned word that contains this length in bytes.

The nodespec-length argument contains an unusable result when LIB$BUILD_
NODESPEC returns in error.

Description

This routine builds the parsable form of a node name as the output node-name
specification from the network usable form. Refer to LIB$GET_HOSTNAME for
the definitions of both the parsable form and the network usable form.

The network usable form is specified by the argument primary-nodename.
If primary-nodename contains special characters, it is enclosed in quotation
marks (" ") to build the node-name specification. The quotation marks prevent
the special characters from being recognized as terminator characters and enables
correct parsing of the node-name syntax.

If you enclose primary-nodename in quotation marks, any quotation marks
that are part of any simple names within primary-nodename are doubled
(that is, each quotation mark (") is turned into two quotation marks ("")).
LIB$BUILD_NODESPEC checks if the fully quoted primary node name exceeds
1024 characters. The error condition LIB$_NODTOOLNG is returned if this is
the case.

To form the output node-name specification, the fully quoted primary node name
is concatenated with the access control string (if supplied) and the double colons
and is followed by the secondary node name (if supplied).

lib–26

LIB$ Routines
LIB$BUILD_NODESPEC

This routine does not validate any of the input arguments to ensure they can
form a syntactically valid node name when they are concatenated.

If the routine overflows the output buffer pointed to by nodespec, the output
node-name specification is truncated, and the alternate successful status LIB$_
STRTRU is returned.

The nodespec-length argument, if supplied, is always set to the length of the
node-name specification that is written into the output buffer pointed to by
nodespec.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. The primary-nodename

argument points to a null string.
LIB$_INVSTRDES Invalid string descriptor.
LIB$_NODTOOLNG The primary node name after quoting exceeds

1024 characters.
LIB$_STRTRU Routine successfully completed. Characters are

truncated in the output buffer pointed to by the
nodespec argument.

LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by LIB$SCOPY_DXDX.

lib–27

LIB$ Routines
LIB$CALLG

LIB$CALLG
Call Routine with General Argument List

The Call Routine with General Argument List routine calls a routine with an
argument list specified as an array of longwords, the first of which is a count of
the remaining longwords. LIB$CALLG is a callable version of the VAX CALLG
instruction. 1

Format

LIB$CALLG argument-list ,user-procedure

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Return value, if any, of the called routine, unchanged by LIB$CALLG.

Arguments

argument-list
OpenVMS usage: arg_list
type: unspecified
access: read only
mechanism: by reference, array reference

Argument list to be passed to user-procedure. The argument-list argument is
the address of an array of longwords that is the argument list. The first longword
contains the count of the remaining longwords, to a maximum of 255.

user-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

Routine that LIB$CALLG calls with the specified argument list.

Description

LIB$CALLG is used to call routines that accept variable-length argument lists
when the number of arguments to be passed is not known until execution time.
LIB$CALLG is also used to call such routines from strongly typed languages,
which require routines to be declared as having a fixed number of arguments.

Condition Values Returned

None.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–28

LIB$ Routines
LIB$CALLG_64 (Alpha and I64 Only)

LIB$CALLG_64 (Alpha and I64 Only)
Call Routine with General Argument List

The Call Routine with General Argument List routine calls a routine with an
argument list specified as an array of quadwords, the first of which is a count of
the remaining quadwords.

Format

LIB$CALLG_64 argument-list ,user-procedure

Returns

OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: write only
mechanism: by value

Return value, if any, of the called routine, unchanged by LIB$CALLG_64.

Arguments

argument-list
OpenVMS usage: arg_list
type: unspecified
access: read only
mechanism: by reference, array reference

Argument list to be passed to user-procedure. The argument-list argument
is the address of an array of quadwords that is the argument list. The first
quadword contains the count of the remaining quadwords, to a maximum of 255.

user-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

Routine that LIB$CALLG_64 calls with the specified argument list.

Description

LIB$CALLG_64 is useful for calling routines that accept variable-length
argument lists when the number of arguments to be passed is not known
until execution time. LIB$CALLG_64 can also be used to call such routines from
strongly typed languages, which require routines to be declared as having a fixed
number of arguments.

Condition Values Returned

None.

lib–29

LIB$ Routines
LIB$CHAR

LIB$CHAR
Transform Byte to First Character of String

The Transform Byte to First Character of String routine transforms a single 8-bit
ASCII character to an ASCII string consisting of a single character followed by
trailing spaces, if needed, to fill out the string. The range of the input byte is 0
through 255.

Format

LIB$CHAR one-character-string ,ascii-code

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

one-character-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

ASCII character string consisting of a single character followed by trailing spaces,
if needed, that LIB$CHAR creates when it transforms the ASCII character code.
The one-character-string argument is the address of a descriptor pointing to
the character string that LIB$CHAR writes.

ascii-code
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Single 8-bit ASCII character code that LIB$CHAR transforms to an ASCII string.
The ascii-code argument is the address of an unsigned byte containing the
ASCII character code.

Description

LIB$CHAR is the inverse of LIB$ICHAR. (See the description of LIB$ICHAR.)
LIB$CHAR is not a binary-to-ASCII conversion routine. LIB$CHAR merely
interprets ascii-code as an ASCII character code and converts it to a string.

lib–30

LIB$ Routines
LIB$CHAR

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error. An internal consistency

check has failed. This usually indicates
an internal error in the Run-Time Library
and should be reported to your HP support
representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

LIB$_STRTRU Routine successfully completed, but the string
was truncated. The destination string could not
contain all of the characters.

lib–31

LIB$ Routines
LIB$COMPARE_NODENAME

LIB$COMPARE_NODENAME
Compare Two Node Names

The Compare Two Node Names routine compares two node names to see if they
resolve to the same full name. †

Format

LIB$COMPARE_NODENAME nodename1 ,nodename2 ,comparison-result

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

nodename1
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

First node name to be compared. The nodename1 argument contains the
address of a descriptor pointing to this node-name string.

The error LIB$_INVARG is returned if nodename1 contains an invalid node
name, points to a null string, or contains more than 1024 characters. The error
LIB$_INVSTRDES is returned if nodename1 is an invalid descriptor.

nodename2
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Second node name to be compared. The nodename2 argument contains the
address of a descriptor pointing to this node-name string.

The error LIB$_INVARG is returned if nodename2 contains an invalid node
name, points to a null string, or contains more than 1024 characters. The error
LIB$_INVSTRDES is returned if nodename2 is an invalid descriptor.

comparison-result
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Result of the comparison. The comparison-result argument is the address of an
unsigned longword that contains the comparison result. If the two node names
are equal, 0 is returned. If they are not equal, 1 is returned.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–32

LIB$ Routines
LIB$COMPARE_NODENAME

Comparison-result contains an unusable result when LIB$COMPARE_
NODENAME returns in error.

Description

This routine compares two node names and checks to see if they resolve to the
same full name. The two node names are first expanded using LIB$EXPAND_
NODENAME. Any errors that result from expanding the input node names are
propagated and returned as condition values. A string comparison is performed
on the expanded node names to check if they resolve to the same full name. The
result of the comparison is returned in comparison-result as follows:

comparison-result Value Meaning

0 Node names are equal.
1 Node names are not equal.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument:

• nodename1 or nodename2 is an invalid
node name.

• nodename1 or nodename2 points to a null
string.

• The length of the node name is more than
1024 characters.

• The expanded DECnet-Plus for OpenVMS
node name is invalid in a DECnet for
OpenVMS environment.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by RTL routine LIB$SCOPY_R_DX or by the $IPC
DECnet service.

lib–33

LIB$ Routines
LIB$COMPRESS_NODENAME

LIB$COMPRESS_NODENAME
Compress a Node Name to Its Short Form Equivalence

The Compress a Node Name to Its Short Form Equivalence routine compresses a
node name to an unambiguous short form usable within the naming environment
where the compression is performed. †

Format

LIB$COMPRESS_NODENAME nodename ,compressed-nodename [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

nodename
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Node name to be compressed. The nodename argument contains the address of
a descriptor pointing to this node-name string.

The error LIB$_INVARG is returned if nodename contains an invalid node
name, points to a null string, or contains more than 1024 characters. The error
LIB$_INVSTRDES is returned if the nodename descriptor is invalid.

compressed-nodename
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Compressed node name. The compressed-nodename argument contains
the address of a descriptor pointing to the compressed node-name string.
LIB$COMPRESS_NODENAME writes the compressed node name into the
buffer pointed to by compressed-nodename.

The error LIB$_INVSTRDES is returned if compressed-nodename is an invalid
descriptor.

The length field of the compressed-nodename descriptor is not updated
unless compressed-nodename is a dynamic descriptor with a length less
than the resulting compressed node name. Refer to the OpenVMS RTL String
Manipulation (STR$) Manual for dynamic string descriptor usage.

The compressed-nodename argument contains an unusable result when
LIB$COMPRESS_NODENAME returns in error.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–34

LIB$ Routines
LIB$COMPRESS_NODENAME

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the compressed node name. The resultant-length argument is the
address of an unsigned word that contains this length in bytes.

The resultant-length argument contains an unusable result when
LIB$COMPRESS_NODENAME returns in error.

Description

This routine compresses a given node name to a short form that is usable within
the local naming environment in which the compression is performed. The local
naming environment is defined by the underlying network directory services. Be
careful when using the compressed node name for making network connections.
Using the compressed node name outside the intended local naming environment
may result in an ambiguous reference. Use the full name whenever you need to
eliminate ambiguity.

The nodename argument is validated against the supported form of node names.
The error LIB$_INVARG is returned if the input node name is invalid.

When calling LIB$COMPRESS_NODENAME in a DECnet-Plus for OpenVMS
environment, the underlying network layer verifies the existence of the input node
name. If the input node name does not resolve to an existing node name in the
naming environment, an error condition is returned by the underlying network
layer and propagated back to the caller of LIB$COMPRESS_NODENAME.

If the returned compressed node name overflows the buffer pointed to by
compressed-nodename, the compressed node name is truncated, and the
alternate successful status LIB$_STRTRU is returned.

The actual length of the compressed node name written to the output buffer
compressed-nodename is returned in resultant-length if this argument is
supplied.

In a DECnet environment, compressing a DECnet-Plus node name results in the
error condition LIB$_INVARG.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Routine successfully completed. Characters are

truncated in the output buffer pointed to by
compressed-nodename.

lib–35

LIB$ Routines
LIB$COMPRESS_NODENAME

LIB$_INVARG Invalid argument:

• nodename is invalid.

• nodename points to a null string.

• The length of the node name is more than
1024 characters.

• The compressed DECnet-Plus for OpenVMS
node name is invalid in a DECnet for
OpenVMS environment.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by RTL routine LIB$SCOPY_R_DX or by the $IPC
DECnet service.

lib–36

LIB$ Routines
LIB$CONVERT_DATE_STRING

LIB$CONVERT_DATE_STRING
Convert Date String to Quadword

The Convert Date String to Quadword routine converts an absolute date string
into an OpenVMS internal format date-time quadword. That is, given an input
date/time string of a specified format, LIB$CONVERT_DATE_STRING converts
this string to an OpenVMS internal format time.

Format

LIB$CONVERT_DATE_STRING date-string ,date-time [,user-context] [,flags] [,defaults] [,defaulted-fields]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

date-string
OpenVMS usage: time_name
type: character-coded text string
access: read only
mechanism: by descriptor

Date string that specifies the absolute time to be converted to an internal system
time. The date-string argument is the address of a descriptor pointing to this
date string. This string must have a format corresponding to the currently
defined input format, or it must be one of the relative day strings YESTERDAY,
TODAY, or TOMORROW, or their equivalents in the currently selected language.

date-time
OpenVMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

Receives the converted time. The date-time argument is the address of an
unsigned quadword that contains this OpenVMS internal format converted time.

user-context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context variable that receives the translation context from a call to
LIB$INIT_DATE_TIME_CONTEXT and then retains the translation context
over multiple calls to LIB$CONVERT_DATE_STRING. The user-context
argument is the address of an unsigned longword that contains this context. The
user program should not write directly to this variable once it is initialized.

lib–37

LIB$ Routines
LIB$CONVERT_DATE_STRING

The user-context parameter is optional. However, if a context cell is not
passed, the routine LIB$CONVERT_DATE_STRING may abort if two threads of
execution attempt to manipulate the context area concurrently. Therefore, when
calling this routine in situations where reentrancy might occur, such as from AST
level, HP recommends that users specify a different context cell for each calling
thread.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Specifies which date or time fields of the date-string argument might be omitted
so that default values are applied. The flags argument is the address of a
longword bit mask that contains these flags. A set bit indicates that the field
may be omitted. The bit definitions for the mask correspond to the fields in a
$NUMTIM ‘‘timbuf’’ structure as follows:

Field Bit Number Mask

Year 0 1
Month 1 2
Day of month 2 4
Hours 3 8
Minutes 4 16
Seconds 5 32
Fractional seconds 6 64

Bits 7 through 31 must be zero and are reserved for use by HP. If this parameter
is omitted, a default value of 120 (78H) is used, indicating that the time fields
may be defaulted but the date fields may not.

defaults
OpenVMS usage: vector_word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference, array reference

Supplies the defaults to be used for omitted fields. The defaults argument is the
address of an array of unsigned words containing these default values. This array
corresponds to a 7-word $NUMTIM ‘‘timbuf’’ structure. If the defaults argument
is omitted, the following defaults are applied:

• For the date group, the default is the current date.

• For the time group, the default is 00:00:00.00.

lib–38

LIB$ Routines
LIB$CONVERT_DATE_STRING

defaulted-fields
OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Indicates which date or time fields have been defaulted. The defaulted-fields
argument is the address of a longword bit mask that specifies these fields. The
bit definitions are identical to those of the flags bit mask. A set bit indicates that
the field was defaulted. Bits 7 through 31, which are reserved for use by HP, are
zeroed.

Description

LIB$CONVERT_DATE_STRING converts an absolute date string into an
OpenVMS internal format date-time quadword. The input date string can
either correspond to the format specified, or it can be the language equivalent
of one of the relative date strings YESTERDAY, TODAY, or TOMORROW. The
language to be used and the format in which to interpret the information are
programmable using either of the following methods:

• The language and format are programmable at compile time through the use
of the routine LIB$INIT_DATE_TIME_CONTEXT.

• The language and format can be determined at run time through the
translation of the logical names SYS$LANGUAGE and LIB$DT_INPUT_
FORMAT.

In general, if an application is reading text from internal storage, the language
and input format should be specified at compile time. If this is the case, use the
routine LIB$INIT_DATE_TIME_CONTEXT to specify the language and input
format of your choice.

If an application is accepting text from a user, the logical name method of
specifying language and format should be used. In this method, the user assigns
equivalence names to the logical names SYS$LANGUAGE and LIB$DT_INPUT_
FORMAT, thereby selecting the language and input format of the date and time
at run time.

The calling program can choose to apply defaults for omitted fields in the date
string. To do this, the flags argument is used to indicate which fields are to be
defaulted, and the defaults argument is used to supply the default values. If the
defaults argument is not supplied, the following default values are applied:

• For the date group, the default is the current date.

• For the time group, the default is 00:00:00.00.

Optionally, you can use the defaulted-fields argument to receive information on
which input fields were omitted and thus accepted default values.

Note

Because the default is the current date for the date group, if you specify
a value of 00 with the !Y2 format, the year is interpreted as 1900. After
January 1, 2000, the value 00 will be interpreted as 2000.

lib–39

LIB$ Routines
LIB$CONVERT_DATE_STRING

See the HP OpenVMS Programming Concepts Manual for a description of
system date and time operations as well as a detailed description of the format
mnemonics used in these routines.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_AMBDATTIM Ambiguous date or time.
LIB$_DEFFORUSE Default format used; unable to determine desired

format.
LIB$_ENGLUSED English used by default; unable to translate

SYS$LANGUAGE.
LIB$_ILLFORMAT Illegal format string; too many or not enough

fields.
LIB$_INCDATTIM Incomplete date or time; missing fields with no

defaults.
LIB$_INVARG Invalid argument; a required argument was not

specified.
LIB$_INVSTRDES Invalid input string descriptor.
LIB$_IVTIME Invalid date or time.
LIB$_REENTRANCY Reentrancy detected.
LIB$_UNRFORCOD Unrecognized format code.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by RTL routines LIBGET_VM, LIBFREE_VM,
LIB$FREE1_DD, and LIB$SCOPY_R_DX, and system services $NUMTIM and
$GETTIM.

lib–40

LIB$ Routines
LIB$CRC

LIB$CRC
Calculate a Cyclic Redundancy Check (CRC)

The Calculate a Cyclic Redundancy Check routine calculates the cyclic
redundancy check (CRC) for a data stream.

Format

LIB$CRC crc-table ,initial-crc ,stream

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The computed cyclic redundancy check.

Arguments

crc-table
OpenVMS usage: vector_longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference, array reference

The 16-longword cyclic redundancy check table created by a call to LIB$CRC_
TABLE. The crc-table argument is the address of a signed longword integer
containing this table. Because this table is created by LIB$CRC_TABLE and
then used as input in LIB$CRC, your program must call LIB$CRC_TABLE before
it calls LIB$CRC.

initial-crc
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Initial cyclic redundancy check. The initial-crc argument is the address of a
signed longword integer containing the initial cyclic redundancy check.

stream
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Data stream for which LIB$CRC is calculating the CRC. The stream argument
is the address of a descriptor pointing to the data stream.

lib–41

LIB$ Routines
LIB$CRC

Description

Before your program can call LIB$CRC, it must call LIB$CRC_TABLE.
LIB$CRC_TABLE takes a polynomial as its input and builds the table that
LIB$CRC uses to calculate the CRC.

LIB$CRC allows your high-level language program to use the CRC instruction,
which calculates the cyclic redundancy check.1 This instruction checks the
integrity of a data stream by comparing its state at the sending point and the
receiving point. Each character in the data stream is used to generate a value
based on a polynomial. The values for each character are then added together.
This operation is performed at both ends of the data transmission, and the two
result values compared. If the results disagree, then an error occurred during the
transmission.

Condition Values Returned

None.

Example

For an example on how to use LIB$CRC, refer to the BASIC example at the end
of the description of LIB$CRC_TABLE.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–42

LIB$ Routines
LIB$CRC_TABLE

LIB$CRC_TABLE
Construct a Cyclic Redundancy Check (CRC) Table

The Construct a Cyclic Redundancy Check Table routine constructs a 16-longword
table that uses a cyclic redundancy check polynomial specification as a bit mask.

Format

LIB$CRC_TABLE polynomial-coefficient ,crc-table

Returns

None.

Arguments

polynomial-coefficient
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

A bit mask indicating which polynomial coefficients are to be generated by
LIB$CRC_TABLE. The polynomial-coefficient argument is the address of an
unsigned longword integer containing this bit mask.

crc-table
OpenVMS usage: vector_longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference, array reference

The 16-longword table that LIB$CRC_TABLE produces. The crc-table argument
is the address of a signed longword integer containing the table.

Description

The table created by LIB$CRC_TABLE can be passed to the LIB$CRC routine for
generating the cyclic redundancy check value for a stream of characters.

Condition Values Returned

None.

Example

1 %TITLE "Demonstrate LIB$CRC and LIB$CRC_TABLE"
%SBTTL "Declarations"
%IDENT "1-001"

!--

OPTION TYPE = EXPLICIT

lib–43

LIB$ Routines
LIB$CRC_TABLE

DECLARE LONG CRC_TABLE(15), ! CRC table array &
LONG CRC_VAL_1, ! CRC for first stream &
LONG CRC_VAL_2, ! CRC for second stream &
STRING DATA_1, ! First data stream &
STRING DATA_2 ! Second data stream

EXTERNAL LONG FUNCTION LIB$CRC ! Rtn to calculate CRC

EXTERNAL SUB LIB$CRC_TABLE ! Rtn to set up table for CRC

OPEN "SYS$INPUT:" FOR INPUT AS FILE 1%

!+
! Initialize the CRC table. Use the CRC-16 polynomial (refer to the
! "VAX Architecture Reference Manual"). This is the polynomial used by
! DDCMP and Bisync.
!-

CALL LIB$CRC_TABLE(O’120001’L, CRC_TABLE() BY REF)

!+
! Get data from user.
!-

LINPUT #1%, ’Enter string: ’;DATA_1

!+
! Calc the CRC for the user’s input. This CRC polynomial needs
! an initial CRC of 0 (refer to the "VAX Architecture Reference Manual").
! LIB$CRC returns a longword, but only the low-order word is valid
! for this polynomial.
!-

CRC_VAL_1 = LIB$CRC(CRC_TABLE() BY REF, 0%, DATA_1)
CRC_VAL_1 = CRC_VAL_1 AND 32767%

!+
! Get more data from user.
!-

LINPUT #1%, ’Enter a second string: ’;DATA_2

CRC_VAL_2 = LIB$CRC(CRC_TABLE() BY REF, 0%, DATA_2)
CRC_VAL_2 = CRC_VAL_2 AND 32767%

!+
! Tell the user the results of the CRC comparison.
!-

IF CRC_VAL_1 = CRC_VAL_2
THEN

PRINT "The two CRCs";CRC_VAL_1;" and ";CRC_VAL_2;" were the same"
ELSE

PRINT "The two CRCs";CRC_VAL_1;" and ";CRC_VAL_2;" were different"
END IF

IF DATA_1 = DATA_2
THEN

PRINT "The two strings were the same"
ELSE

PRINT "The two strings were different"
END IF

END

This BASIC example program shows the use of LIB$CRC and LIB$CRC_TABLE.
One example of the output generated by this program is as follows:

lib–44

LIB$ Routines
LIB$CRC_TABLE

$ RUN CRC
Enter string: DOVE
Enter a second string: HOSE
The two CRCs 29915 and 29915 were the same
The two strings were different

lib–45

LIB$ Routines
LIB$CREATE_DIR

LIB$CREATE_DIR
Create a Directory

The Create a Directory routine creates a directory or subdirectory.

Format

LIB$CREATE_DIR device-directory-spec [,owner-UIC] [,protection-enable] [,protection-value]
[,maximum-versions] [,relative-volume-number] [,initial-allocation]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

device-directory-spec
OpenVMS usage: device_name
type: character string
access: read only
mechanism: by descriptor

Directory specification of the directory or subdirectory that LIB$CREATE_DIR
will create. The device-directory-spec argument is the address of a descriptor
pointing to this directory specification.

The format of the device-directory-spec string conforms to standard OpenVMS
Record Management Services (RMS) format. This specification must contain
a directory or subdirectory specification. It may contain a disk specification.
SMD$:[THIS.IS.IT] is an example of a standard RMS file specification, where
SMD$ is the disk specification and [THIS.IS.IT] is the subdirectory specification.

This specification cannot contain a node name, file name, file type, file version, or
wildcard characters. The maximum size of this string is 255 characters on VAX,
and 4095 characters on Alpha.

owner-UIC
OpenVMS usage: uic
type: longword (unsigned)
access: read only
mechanism: by reference

User identification code (UIC) identifying the owner of the created directory or
subdirectory. The owner-UIC argument is the address of an unsigned longword
that contains the UIC. If owner-UIC is zero, the owner UIC is that of the parent
directory. The specified value for owner-UIC is interpreted as a 32-bit octal
number, with two 16-bit fields:

bits 00–15 — Member number
bits 16–31 — Group number

This is an optional argument. The default is the UIC of the current process
except when the directory is in UIC format. For a directory in UIC format, for
example [123,321], the UIC of the created directory is used.

lib–46

LIB$ Routines
LIB$CREATE_DIR

protection-enable
OpenVMS usage: mask_word
type: word (unsigned)
access: read only
mechanism: by reference

Mask specifying the bits of protection-value to be set. The protection-enable
argument is the address of an unsigned word containing this protection mask.

Figure lib–1 shows the structure of a protection mask. Access is allowed for bits
set to 0.

Figure lib–1 Structure of a Protection Mask

World Group Owner System

R
E
A
D

W
R
I
T
E

E
T
U
C
E
X
ED

E
L
E
T
E

R
E
A
D

W
R
I
T
E

E
T
U
C
E
X
ED

E
L
E
T
E

R
E
A
D

W
R
I
T
E

E
T
U
C
E
X
ED

E
L
E
T
E

R
E
A
D

W
R
I
T
E

E
T
U
C
E
X
ED

E
L
E
T
E

0

ZK−1979−GE

15

Bits set in the protection-enable mask cause corresponding bits of protection-
value to be set. Bits not set in the protection-enable mask cause corresponding
bits of protection-value to take the value of the corresponding bit in the parent
directory’s file protection. Bits in the parent directory’s file protection that
indicate delete access do not cause corresponding bits of protection-value to be
set, however.

Following is an example of how the protection-value protection mask is defined:

Mask Name
Hexadecimal
Number Value

Protection enable %XDBFF S:None, O:None, G:E, W:W
Parent directory %X13FF S:RWED, O:RWED, G:RW, W:R
Protection value %X37FF S:RWE, O:RWE, G:RWE, W:RW

The protection-enable argument is optional. It should be used only when
you want to change protection values from the parent directory’s default file
protection. The default for protection-enable is a mask of all zero bits,
which results in the propagation of the parent directory’s file protection. If
the protection-enable mask contains zeros, protection-value is ignored.

lib–47

LIB$ Routines
LIB$CREATE_DIR

protection-value
OpenVMS usage: file_protection
type: word (unsigned)
access: read only
mechanism: by reference

System/Owner/Group/World protection value of the directory you are creating.
The protection-value argument is the address of an unsigned word that
contains this protection mask.

The bits of protection-value are set or cleared in the method described in the
definition of protection-enable above.

The protection-value argument is optional. The default is a word of all zero
bits, which specifies full access for all access categories. Typically, protection-
value is not omitted unless protection-enable is also omitted. If protection-
enable is omitted, protection-value is ignored.

maximum-versions
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Maximum number of versions allowed for files created in the newly created
directories. The maximum-versions argument is the address of an unsigned
word containing the value of the maximum number of versions.

The maximum-versions argument is optional. The default is the parent
directory’s default version limit. If maximum-versions is zero, the maximum
number of versions is not limited.

relative-volume-number
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Relative volume number within a volume set on which the directory or
subdirectory is created. The relative-volume-number argument is the address
of an unsigned word containing the relative volume number. The relative-
volume-number argument is optional. The default is arbitrary placement
within the volume set.

initial-allocation
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Initial number of blocks to be allocated to the directory. This argument is
useful for creating large directories, for example MAIL.DIR;1. It can improve
performance by avoiding the need for later dynamic expansion of the directory.

lib–48

LIB$ Routines
LIB$CREATE_DIR

The initial-allocation argument applies only to Files–11 Level 2 volumes; it is
ignored for other volumes.

This argument is the address of an unsigned longword that contains the initial
number of blocks to be allocated to the directory.

The initial-allocation argument is optional. The default allocation is 1 block.

Description

LIB$CREATE_DIR creates a directory. You can specify:

• The owner and protection of the directory.

• The maximum number of different versions of a file that can exist in the
directory.

• The relative volume number of the volume set member in which the directory
is to be created.

• The number of blocks to be allocated initially to the directory.

Note

This routine calls LIB$GET_EF. Please read the note in the Description
section of that routine.

Condition Values Returned

SS$_CREATED Routine successfully completed; one or more
directories created.

SS$_NORMAL Routine successfully completed; all specified
directories already exist.

LIB$_INVARG Invalid argument to Run-Time Library. Either
the required argument was omitted, or device-
directory-spec is longer than 4095 characters.

LIB$_INVFILSPE Invalid file specification. Either the file
specification did not contain an explicit directory
and device name, or it contained a node name,
file name, file type, file version, or wildcard. This
error is also produced if the device specified was
not a disk.

Any condition values returned by system services $ASSIGN, $DASSGN, $PARSE,
and $QIO, and RTL routines LIB$ANALYZE_SDESC, LIB$ANALYZE_SDESC_
64, and LIB$GET_EF.

lib–49

LIB$ Routines
LIB$CREATE_USER_VM_ZONE

LIB$CREATE_USER_VM_ZONE
Create User-Defined Storage Zone

The Create User-Defined Storage Zone routine creates a new user-defined storage
zone in the 32-bit virtual address space. †

Format

LIB$CREATE_USER_VM_ZONE zone-id [,user-argument] [,user-allocation-procedure]
[,user-deallocation-procedure] [,user-reset-procedure]
[,user-delete-procedure] [,zone-name]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

zone-id
OpenVMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a longword that receives
the identifier of the newly created zone.

user-argument
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by reference

User argument. The user-argument argument is the address of an unsigned
longword containing the user argument. LIB$CREATE_USER_VM_ZONE copies
the value of user-argument and supplies the value to all user procedures
invoked.

user-allocation-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User allocation routine.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–50

LIB$ Routines
LIB$CREATE_USER_VM_ZONE

user-deallocation-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User deallocation routine.

user-reset-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User routine invoked each time LIB$RESET_VM_ZONE is called for the zone.

user-delete-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User routine invoked when LIB$DELETE_VM_ZONE is called for the zone.

zone-name
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone-name
argument is the address of a descriptor pointing to the zone name. If zone-name
is not specified, the zone will not have an associated name.

Description

LIB$CREATE_USER_VM_ZONE creates a user-defined zone in the 32-bit virtual
address space. If an error status is returned, the zone is not created.

Each time that one of the heap management routines (LIB$GET_VM,
LIB$FREE_VM, LIB$RESET_VM_ZONE, or LIB$DELETE_VM_ZONE) is
called to perform an operation on a user-defined zone, the corresponding user
routine that you supplied is used.

You may omit any of the optional user routines. However, if you omit a routine
and later call the corresponding heap management routine, the error status
LIB$_INVOPEZON will be returned.

lib–51

LIB$ Routines
LIB$CREATE_USER_VM_ZONE

Call Format for User Routines
The user routines are called with arguments similar to those passed to LIB$GET_
VM, LIB$FREE_VM, LIB$RESET_VM_ZONE, or LIB$DELETE_VM_ZONE. In
each case, the user-argument argument from LIB$CREATE_USER_VM_ZONE
is passed to the user routine rather than a zone-id argument.

The call format for a user get or free routine is as follows:

user-rtn num-bytes ,base-adr ,user-argument

num-bytes
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of contiguous bytes to allocate or free. The num-bytes argument is
the address of a longword integer containing the number of bytes. The value of
num-bytes must be greater than zero.

base-adr
OpenVMS usage: address
type: longword (unsigned)
access: modify
mechanism: by reference

Virtual address of the first contiguous block of bytes allocated or freed. The
base-adr argument is the address of an unsigned longword containing this base
address. (This argument is write-only for a get routine and read-only for a free
routine.)

user-argument
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by reference

User argument. LIB$CREATE_USER_VM_ZONE copies user-argument as it is
supplied to all user routines invoked.

The status value returned by your routine is returned as the status value for the
corresponding call to LIB$GET_VM or LIB$FREE_VM.

The zone-id value that is returned can be used in calls to LIB$SHOW_VM_
ZONE and LIB$VERIFY_VM_ZONE.

The call format for a user reset or delete routine is as follows:

user-rtn user-argument

user-argument
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by reference

User argument. LIB$CREATE_USER_VM_ZONE copies user-argument as it is
supplied to all user routines invoked.

lib–52

LIB$ Routines
LIB$CREATE_USER_VM_ZONE

The status value returned by your routine is returned as the status value for the
corresponding call to LIB$RESET_VM_ZONE or LIB$DELETE_VM_ZONE.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor for zone-name.

lib–53

LIB$ Routines
LIB$CREATE_USER_VM_ZONE_64 (Alpha and I64 Only)

LIB$CREATE_USER_VM_ZONE_64 (Alpha and I64 Only)
Create User-Defined Storage Zone

The Create User-Defined Storage Zone routine creates a new user-defined storage
zone in the 64-bit virtual address space.

Format

LIB$CREATE_USER_VM_ZONE_64 zone-id [,user-argument] [,user-allocation-procedure]
[,user-deallocation-procedure] [,user-reset-procedure]
[,user-delete-procedure] [,zone-name]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

zone-id
OpenVMS usage: identifier
type: quadword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a quadword that receives
the identifier of the newly created zone.

user-argument
OpenVMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by reference

User argument. The user-argument argument is the address of an unsigned
quadword containing the user argument. LIB$CREATE_USER_VM_ZONE_64
copies the value of user-argument and supplies the value to all user procedures
invoked.

user-allocation-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User allocation routine.

user-deallocation-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User deallocation routine.

lib–54

LIB$ Routines
LIB$CREATE_USER_VM_ZONE_64 (Alpha and I64 Only)

user-reset-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User routine invoked each time LIB$RESET_VM_ZONE_64 is called for the zone.

user-delete-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User routine invoked when LIB$DELETE_VM_ZONE_64 is called for the zone.

zone-name
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone-name
argument is the address of a descriptor pointing to the zone name. If zone-name
is not specified, the zone will not have an associated name.

Description

LIB$CREATE_USER_VM_ZONE_64 creates a user-defined zone in the 64-bit
virtual address space. If an error status is returned, the zone is not created.

Each time that one of the heap management routines (LIB$GET_VM_64,
LIB$FREE_VM_64, LIB$RESET_VM_ZONE_64, or LIB$DELETE_VM_ZONE_
64) is called to perform an operation on a user-defined zone, the corresponding
user routine that you supplied is used.

You may omit any of the optional user routines. However, if you omit a routine
and later call the corresponding heap management routine, the error status
LIB$_INVOPEZON will be returned.

Call Format for User Routines
The user routines are called with arguments similar to those passed to LIB$GET_
VM_64, LIB$FREE_VM_64, LIB$RESET_VM_ZONE_64, or LIB$DELETE_VM_
ZONE_64. In each case, the user-argument argument from LIB$CREATE_
USER_VM_ZONE_64 is passed to the user routine rather than a zone-id
argument.

The call format for a user get or free routine is as follows:

user-rtn num-bytes ,base-adr ,user-argument

num-bytes
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

lib–55

LIB$ Routines
LIB$CREATE_USER_VM_ZONE_64 (Alpha and I64 Only)

Number of contiguous bytes to allocate or free. The num-bytes argument is
the address of a quadword integer containing the number of bytes. The value of
num-bytes must be greater than zero.

base-adr
OpenVMS usage: address
type: quadword (unsigned)
access: modify
mechanism: by reference

Virtual address of the first contiguous block of bytes allocated or freed. The
base-adr argument is the address of an unsigned quadword containing this base
address. (This argument is write-only for a get routine and read-only for a free
routine.)

user-argument
OpenVMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by reference

User argument. LIB$CREATE_USER_VM_ZONE_64 copies user-argument as
it is supplied to all user routines invoked.

The status value returned by your routine is returned as the status value for the
corresponding call to LIB$GET_VM_64 or LIB$FREE_VM_64.

The zone-id value that is returned can be used in calls to LIB$SHOW_VM_
ZONE_64 and LIB$VERIFY_VM_ZONE_64.

The call format for a user reset or delete routine is as follows:

user-rtn user-argument

user-argument
OpenVMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by reference

User argument. LIB$CREATE_USER_VM_ZONE_64 copies user-argument as
it is supplied to all user routines invoked.

The status value returned by your routine is returned as the status value for the
corresponding call to LIB$RESET_VM_ZONE_64 or LIB$DELETE_VM_ZONE_
64.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor for zone-name.

lib–56

LIB$ Routines
LIB$CREATE_VM_ZONE

LIB$CREATE_VM_ZONE
Create a New Zone

The Create a New Zone routine creates a new storage zone in the 32-bit virtual
address space, according to specified arguments. †

Format

LIB$CREATE_VM_ZONE zone-id [,algorithm] [,algorithm-argument] [,flags] [,extend-size] [,initial-size]
[,block-size] [,alignment] [,page-limit] [,smallest-block-size] [,zone-name]
[,get-page] [,free-page]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

zone-id
OpenVMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a longword that is set to
the zone identifier of the newly created zone.

algorithm
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Algorithm. The algorithm argument is the address of a longword integer that
contains a value representing one of the LIB$VM algorithms. Use one of the
predefined symbols to specify this value.

Symbol Value Algorithm

LIB$K_VM_FIRST_FIT 1 First fit
LIB$K_VM_QUICK_FIT 2 Quick fit, lookaside list
LIB$K_VM_FREQ_SIZES 3 Frequent sizes, lookaside list
LIB$K_VM_FIXED 4 Fixed-size blocks

If algorithm is not specified, a default of 1 (first fit) is used.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–57

LIB$ Routines
LIB$CREATE_VM_ZONE

algorithm-argument
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Algorithm argument. The algorithm-argument argument is the address of
a longword integer that contains a value specific to the particular allocation
algorithm as shown in the following table.

Algorithm Value

First fit Not used, may be omitted.
Quick fit The number of lookaside lists used. The number of lists

must be between 1 and 128.
Frequent sizes The number of lookaside lists used. The number of lists

must be between 1 and 16.
Fixed size blocks The fixed request size (in bytes) for each get or free

request. The request size must be greater than 0.

The algorithm-argument argument must be specified if you are using the
quick-fit, frequent-sizes or fixed-size-blocks algorithms. However, this argument
is optional, but ignored, if you are using the first-fit algorithm.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags. The flags argument is the address of a longword integer that contains flag
bits that control various options, as follows:

Bit Value Description

0 LIB$M_VM_BOUNDARY_TAGS Boundary tags for faster freeing.
Adds a minimum of 8 bytes to each
block.

1 LIB$M_VM_GET_FILL0 LIB$GET_VM; fill with bytes of 0.
2 LIB$M_VM_GET_FILL1 LIB$GET_VM; fill with bytes of FF

(hexadecimal).
3 LIB$M_VM_FREE_FILL0 LIB$FREE_VM; fill with bytes of 0.
4 LIB$M_VM_FREE_FILL1 LIB$FREE_VM; fill with bytes of

FF (hexadecimal).
5 LIB$M_VM_EXTEND_AREA Adds extents to existing areas if

possible.

lib–58

LIB$ Routines
LIB$CREATE_VM_ZONE

Bit Value Description

6 LIB$M_VM_NO_EXTEND Prevents zone from being extended
beyond its initial size. If you specify
this flag, you must also specify
an initial-size. The extend-size
argument is not used.

7 LIB$M_VM_TAIL_LARGE Adds areas larger than extend-
size areas to the end of the area
list. Allocations that are larger
than extend-size can result in
new areas. These areas are added
to the end of the area list. (This
provides better memory reuse when
allocating small and very large
blocks from the same zone.)

Bits 8 through 31 are reserved and must be 0.

This is an optional argument. If flags is omitted, the default of 0 (no fill and no
boundary tags) is used.

extend-size
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Zone extend size. The extend-size argument is the address of a longword integer
that contains the number of (512-byte) pages on VAX systems or pagelets on
Alpha and I64 systems to be added to the zone each time it is extended.

The value of extend-size must be greater than or equal to 1.

This is an optional argument. If extend-size is not specified, a default of 16
pages on VAX systems or pagelets on Alpha and I64 systems is used.

Note

The extend-size argument does not limit the number of blocks that can
be allocated from the zone. The actual extension size is the greater of
extend-size and the number of pages on VAX systems or pagelets on
Alpha and I64 systems needed to satisfy the LIB$GET_VM call that
caused the extension.

initial-size
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Initial size for the zone. The initial-size argument is the address of a longword
integer that contains the number of (512-byte) pages on VAX systems or pagelets
on Alpha and I64 systems to be allocated for the zone as the zone is created.

lib–59

LIB$ Routines
LIB$CREATE_VM_ZONE

This is an optional argument. If you specify a value for initial-size, the value
must be greater than or equal to 0; otherwise, LIB$_INVARG is returned. If
initial-size is not specified or is specified as 0, no pages on VAX systems or
pagelets on Alpha and I64 systems are allocated when the zone is created. The
first call to LIB$GET_VM for the zone allocates extend-size pages on VAX
systems or pagelets on Alpha and I64 systems.

block-size
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Block size of the zone. The block-size argument is the address of a longword
integer specifying the allocation quantum (in bytes) for the zone. All blocks
allocated are rounded up to a multiple of block-size.

The value of block-size must be a power of 2 between 8 and 512. This is an
optional argument. If block-size is not specified, a default of 8 is used.

alignment
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Block alignment. The alignment argument is the address of a longword integer
that specifies the required address alignment (in bytes) for each block allocated.

The value of alignment must be a power of 2 between 4 and 512. This is an
optional argument. If alignment is not specified, a default of 8 (quadword
alignment) is used.

page-limit
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Maximum page limit. The page-limit argument is the address of a longword
integer that specifies the maximum number of (512-byte) pages on VAX systems
or pagelets on Alpha and I64 systems that can be allocated for the zone. The
value of page-limit must be greater than or equal to 0. Note that part of the
zone is used for header information.

This is an optional argument. If page-limit is not specified or is specified as
0, the only limit is the total process virtual address space limit imposed by
OpenVMS. If page-limit is specified, then initial-size must also be specified.

smallest-block-size
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Smallest block size. The smallest-block-size argument is the address of a
longword integer that specifies the smallest block size (in bytes) that has a
lookaside list for the quick fit algorithm.

lib–60

LIB$ Routines
LIB$CREATE_VM_ZONE

If smallest-block-size is not specified, the default of block-size is used. That is,
lookaside lists are provided for the first n multiples of block-size.

zone-name
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone-name
argument is the address of a descriptor pointing to the zone name. If zone-name
is not specified, the zone will not have an associated name.

get-page
OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by value

Routine that allocates memory. The number and type of the arguments to this
routine must match those of the LIB$GET_VM_PAGE routine. If get-page is not
specified or is specified as 0, the LIB$GET_VM_PAGE routine is used to allocate
memory.

free-page
OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by value

Routine that deallocates memory. The number and type of the arguments to this
routine must match those of the LIB$FREE_VM_PAGE routine. If free-page is
not specified or if free-page is specified as 0, the LIB$FREE_VM_PAGE routine
is used to deallocate memory.

Description

LIB$CREATE_VM_ZONE creates a new storage zone. The zone identifier
value that is returned can be used in calls to LIBGET_VM, LIBFREE_VM,
LIB$RESET_VM_ZONE, LIB$DELETE_VM_ZONE, LIB$SHOW_VM_ZONE,
LIB$VERIFY_VM_ZONE, and LIB$CREATE_USER_VM_ZONE.

The following restrictions apply when you are creating a zone:

• If you want the zone to be accessible from another process or processes, you
must map the global section into the same virtual addresses in all processes.
You can use PPL$CREATE_SHARED_MEM to map to a global section after
you have first called PPL$INITIALIZE.

• The zone cannot expand; in other words, additional areas cannot be added to
the zone.

• The restrictions for LIB$RESET_VM_ZONE also apply to shared zones. That
is, it is the caller’s responsibility to ensure that the caller has exclusive access
to the zone while the reset operation is being performed.

If an error status is returned, the zone is not created.

lib–61

LIB$ Routines
LIB$CREATE_VM_ZONE

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVARG Invalid argument.
LIB$_INVSTRDES Invalid string descriptor for zone-name.

lib–62

LIB$ Routines
LIB$CREATE_VM_ZONE_64 (Alpha and I64 Only)

LIB$CREATE_VM_ZONE_64 (Alpha and I64 Only)
Create a New Zone

The Create a New Zone routine creates a new storage zone in the 64-bit virtual
address space, according to specified arguments.

Format

LIB$CREATE_VM_ZONE_64 zone-id [,algorithm] [,algorithm-argument] [,flags] [,extend-size] [,initial-size]
[,block-size] [,alignment] [,page-limit] [,smallest-block-size] [,zone-name]
[,get-page] [,free-page]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

zone-id
OpenVMS usage: identifier
type: quadword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a quadword that is set to
the zone identifier of the newly created zone.

algorithm
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Algorithm. The algorithm argument is the address of a quadword integer that
represents the code for one of the LIB$VM algorithms. Use one of the following
predefined symbols to specify this value:

Symbol Value Algorithm

LIB$K_VM_FIRST_FIT 1 First fit
LIB$K_VM_QUICK_FIT 2 Quick fit, lookaside list
LIB$K_VM_FREQ_SIZES 3 Frequent sizes, lookaside list
LIB$K_VM_FIXED 4 Fixed-size blocks

If algorithm is not specified, a default of 1 (first fit) is used.

lib–63

LIB$ Routines
LIB$CREATE_VM_ZONE_64 (Alpha and I64 Only)

algorithm-argument
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Algorithm argument. The algorithm-argument argument is the address of
a quadword integer that contains a value specific to the particular allocation
algorithm.

Algorithm Value

First fit Not used, may be omitted.
Quick fit The number of lookaside lists used. The number of lists

must be between 1 and 128.
Frequent sizes The number of lookaside lists used. The number of lists

must be between 1 and 16.
Fixed size blocks The fixed request size (in bytes) for each get or free

request. The request size must be greater than 0.

The algorithm-argument argument must be specified if you are using the
quick-fit, frequent-sizes or fixed-size-blocks algorithms. However, this argument
is optional, but ignored, if you are using the first-fit algorithm.

flags
OpenVMS usage: mask_quadword
type: quadword (unsigned)
access: read only
mechanism: by reference

Flags. The flags argument is the address of a quadword integer that contains
flag bits that control various options, as follows:

Bit Value Description

0 LIB$M_VM_BOUNDARY_TAGS Boundary tags for faster freeing.
Adds a minimum of 16 bytes to each
block.

1 LIB$M_VM_GET_FILL0 LIB$GET_VM_64; fill with bytes of
0.

2 LIB$M_VM_GET_FILL1 LIB$GET_VM_64; fill with bytes of
FF (hexadecimal).

3 LIB$M_VM_FREE_FILL0 LIB$FREE_VM_64; fill with bytes
of 0.

4 LIB$M_VM_FREE_FILL1 LIB$FREE_VM_64; fill with bytes
of FF (hexadecimal).

5 LIB$M_VM_EXTEND_AREA Adds extents to existing areas if
possible.

lib–64

LIB$ Routines
LIB$CREATE_VM_ZONE_64 (Alpha and I64 Only)

Bit Value Description

6 LIB$M_VM_NO_EXTEND Prevents zone from being extended
beyond its initial size. If you specify
this flag, you must also specify an
initial-size. Extend-size is not
used.

7 LIB$M_VM_TAIL_LARGE Adds areas larger than extend-
size areas to the end of the area
list. Allocations that are larger
than extend-size can result in
new areas. These areas are added
to the end of the area list. (This
provides better memory re-use when
allocating small and very large
blocks from the same zone.)

Bits 8 through 63 are reserved and must be 0.

This is an optional argument. If flags is omitted, the default of 0 (no fill and no
boundary tags) is used.

extend-size
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Zone extend size. The extend-size argument is the address of a quadword
integer that contains the number of Alpha and I64 pagelets to be added to the
zone each time it is extended.

The value of extend-size must be greater than or equal to 1.

This is an optional argument. If extend-size is not specified, a default of 16
Alpha or I64 pagelets is used.

Note

The extend-size argument does not limit the number of blocks that can
be allocated from the zone. The actual extension size is the greater of
extend-size and the number of Alpha or I64 pagelets needed to satisfy
the LIB$GET_VM_64 call that caused the extension.

initial-size
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Initial size for the zone. The initial-size argument is the address of a quadword
integer that contains the number of Alpha or I64 pagelets to be allocated for the
zone as the zone is created.

lib–65

LIB$ Routines
LIB$CREATE_VM_ZONE_64 (Alpha and I64 Only)

This is an optional argument. If you specify a value for initial-size, the value
must be greater than or equal to 0; otherwise, LIB$_INVARG is returned. If
initial-size is not specified or is specified as 0, no Alpha pagelets or I64 are
allocated when the zone is created. The first call to LIB$GET_VM_64 for the zone
allocates extend-size pagelets on Alpha or I64 systems.

block-size
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Block size of the zone. The block-size argument is the address of a quadword
integer specifying the allocation quantum (in bytes) for the zone. All blocks
allocated are rounded up to a multiple of block-size.

The value of block-size must be a power of 2 between 16 and 512. This is an
optional argument. If block-size is not specified, a default of 16 is used.

alignment
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Block alignment. The alignment argument is the address of a quadword integer
that specifies the required address alignment (in bytes) for each block allocated.

The value of alignment must be a power of 2 between 8 and 512. This is an
optional argument. If alignment is not specified, a default of 16 (octaword
alignment) is used.

page-limit
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Maximum page limit. The page-limit argument is the address of a quadword
integer that specifies the maximum number of Alpha or I64 pagelets that can be
allocated for the zone. The value of page-limit must be greater than or equal to
0. Note that part of the zone is used for header information.

This is an optional argument. If page-limit is not specified or is specified as
0, the only limit is the total process virtual address space limit imposed by
OpenVMS. If page-limit is specified, then initial-size must also be specified.

smallest-block-size
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Smallest block size. The smallest-block-size argument is the address of a
quadword integer that specifies the smallest block size (in bytes) that has a
lookaside list for the quick fit algorithm.

If smallest-block-size is not specified, the default of block-size is used. That is,
lookaside lists are provided for the first n multiples of block-size.

lib–66

LIB$ Routines
LIB$CREATE_VM_ZONE_64 (Alpha and I64 Only)

zone-name
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone-name
argument is the address of a descriptor pointing to the zone name. If zone-name
is not specified, the zone will not have an associated name.

get-page
OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by value

Routine that allocates memory. The number and type of the arguments to this
routine must match those of the LIB$GET_VM_PAGE_64 routine. If get-page is
not specified or is specified as 0, the LIB$GET_VM_PAGE_64 routine is used to
allocate memory.

free-page
OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by value

Routine that deallocates memory. The number and type of the arguments to this
routine must match those of the LIB$FREE_VM_PAGE_64 routine. If free-page
is not specified or if free-page is specified as 0, the LIB$FREE_VM_PAGE_64
routine is used to deallocate memory.

Description

LIB$CREATE_VM_ZONE_64 creates a new storage zone. The zone identifier
value that is returned can be used in calls to LIBGET_VM_64, LIBFREE_VM_
64, LIB$RESET_VM_ZONE_64, LIB$DELETE_VM_ZONE_64, LIB$SHOW_VM_
ZONE_64, LIB$VERIFY_VM_ZONE_64, and LIB$CREATE_USER_VM_ZONE_
64.

The following restrictions apply when you are creating a zone:

• If you want the zone to be accessible from another process or processes, you
must map the global section into the same virtual addresses in all processes.

• The zone cannot expand; in other words, additional areas cannot be added to
the zone.

• The restrictions for LIB$RESET_VM_ZONE_64 also apply to shared zones.
That is, it is the caller’s responsibility to ensure that the caller has exclusive
access to the zone while the reset operation is being performed.

If an error status is returned, the zone is not created.

lib–67

LIB$ Routines
LIB$CREATE_VM_ZONE_64 (Alpha and I64 Only)

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVARG Invalid argument.
LIB$_INVSTRDES Invalid string descriptor for zone-name.

lib–68

LIB$ Routines
LIB$CRF_INS_KEY

LIB$CRF_INS_KEY
Insert Key in Cross-Reference Table

The Insert Key in Cross-Reference Table routine inserts information about a key
into a cross-reference table. †

Format

LIB$CRF_INS_KEY control-table ,key-string ,symbol-value ,flags

Returns

None.

Arguments

control-table
OpenVMS usage: vector_longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference, array reference

Cross-reference table into which LIB$CRF_INS_KEY inserts information about
the key. The control-table argument is the address of a signed longword integer
pointing to the cross-reference table. You must name this table each time you call
a cross-reference routine because you can accumulate information for more than
one cross-reference table at a time.

key-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

A counted ASCII string that contains a symbol name or an unsigned binary
longword. The key-string argument is the address of a descriptor pointing to the
key.

symbol-value
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Symbol value, the address of which LIB$CRF_INS_KEY inserts in the cross-
reference table. The symbol-value argument is the address of a signed
longword integer containing this value. Both the key and value addresses
must be permanent addresses in the user’s symbol table.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–69

LIB$ Routines
LIB$CRF_INS_KEY

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Value used in selecting the contents of the KEY2 and VAL2 fields; flags is stored
with the entry. The flags argument is the address of an unsigned longword
containing the flags. When preparing the output line, LIB$CRF_OUTPUT uses
flags and the 16-bit mask in the field descriptor table to extract the data. The
high-order bit of the word is reserved for LIB$CRF_INS_KEY.

Description

LIB$CRF_INS_KEY stores information to be printed in the KEY1, KEY2, VAL1,
and VAL2 fields. When you call this routine, an entry for the key is made in the
cross-reference table if the key is not present in the table. If the key is present,
only the value address and value flag fields are updated.

Using LIB$CRF_INS_KEY involves the following steps:

1. Define a table of control information using the $CRFCTLTABLE macro.

2. Define each field of the output line using the $CRFFIELD macro.

3. Using the $CRFFIELDEND macro, specify the end of each set of macros that
define a field in the output line.

4. Provide data by calling LIB$CRF_INS_KEY to insert an entry for the specify
key in the specified symbol table. This data is used to build tables in virtual
memory.

5. Call LIB$CRF_OUTPUT, the cross-reference output routine, to summarize
and format the data. Supply a routine that LIB$CRF_OUTPUT calls to print
each line in the output file. Because you supply this routine, you can control
the number of lines per page and the header lines.

Condition Values Returned

None.

lib–70

LIB$ Routines
LIB$CRF_INS_REF

LIB$CRF_INS_REF
Insert Reference to a Key in the Cross-Reference Table

The Insert Reference to a Key in the Cross-Reference Table routine inserts a
reference to a key in a cross-reference symbol table. †

Format

LIB$CRF_INS_REF control-table ,longword-integer-key ,reference-string ,longword-integer-reference
,ref-definition-indicator

Returns

None.

Arguments

control-table
OpenVMS usage: vector_longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference, array reference

Control table associated with this cross-reference. The control-table argument
is the address of an array containing the control table.

longword-integer-key
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Key referred to by LIB$CRF_INS_REF. The longword-integer-key argument is
the address of a signed longword integer containing the key. The key is a counted
ASCII string that contains a symbol name or an unsigned binary longword. It
must be a permanent address in the user’s symbol table.

reference-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Counted ASCII string with a maximum of 31 characters, not including the byte
count. The reference-string argument is the address of a descriptor pointing to
the counted ASCII string.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–71

LIB$ Routines
LIB$CRF_INS_REF

longword-integer-reference
OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

The 16-bit value used in selecting the contents of the REF1 field. The longword-
integer-reference argument is the address of a signed longword integer
containing this value. When preparing the output line, LIB$CRF_OUTPUT uses
longword-integer-reference and the bit mask in the field descriptor table to
extract the data. The high-order bit of the word is reserved for LIB$CRF_INS_
REF.

ref-definition-indicator
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Reference/definition indicator that LIB$CRF_INS_REF uses to distinguish
between a reference to a symbol and the definition of the symbol. The ref-
definition-indicator argument is the address of a signed longword integer
containing this indicator. The only difference between processing a symbol
reference and a symbol definition is where LIB$CRF_INS_REF stores the
information.

The reference/definition indicator can have either of the following values:

Symbolic Name Description

CRF$K_REF Reference to a symbol
CRF$K_DEF Definition of a symbol

Description

LIB$CRF_INS_REF inserts a reference to a key in the cross-reference symbol
table. If you attempt to insert reference information for a key that was not
specified in a call to LIBCRF_INS_KEY, LIBCRF_INS_REF uses the address
of the key to locate the symbol name and set the KEY1 field. Once set, either as
a result of LIB$CRF_INS_KEY or LIB$CRF_INS_REF, the KEY1 field is never
changed. A KEY1 field set by LIB$CRF_INS_REF has a space-filled VAL1 field
associated with it unless it is overridden by a subsequent call to LIB$CRF_INS_
KEY.

Using LIB$CRF_INS_REF involves the following steps:

1. Define a table of control information using the $CRFCTLTABLE macro.

2. Define each field of the output line using the $CRFFIELD macro.

3. Using the $CRFFIELDEND macro, specify the end of each set of macros that
define a field in the output line.

lib–72

LIB$ Routines
LIB$CRF_INS_REF

4. Provide data by calling LIB$CRF_INS_REF to insert a reference to a key
in the specified symbol table. This data is used to build tables in virtual
memory.

5. Call LIB$CRF_OUTPUT, the cross-reference output routine, to summarize
and format the data. Supply a routine that LIB$CRF_OUTPUT calls to print
each line in the output file. Because you supply this routine, you can control
the number of lines per page and the header lines.

Condition Values Returned

None.

lib–73

LIB$ Routines
LIB$CRF_OUTPUT

LIB$CRF_OUTPUT
Output Cross-Reference Table Information

The Output Cross-Reference Table Information routine extracts the information
from the cross-reference tables and formats the output pages. †

Format

LIB$CRF_OUTPUT control-table ,output-line-width ,page1 ,page2 ,mode-indicator ,delete-save-indicator

Returns

None.

Arguments

control-table
OpenVMS usage: vector_longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference, array reference

Control table associated with the cross-reference. The control-table argument
is the address of an array containing the control table. The table contains the
address of the user-supplied routine that prints the lines formatted by LIB$CRF_
OUTPUT.

output-line-width
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Width of the output line. The output-line-width argument is the address of a
signed longword integer containing the width.

page1
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of lines on the first page of the output. The page1 argument is the
address of a signed longword integer containing this number. This allows
the user to reserve space to print header information on the first page of the
cross-reference.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–74

LIB$ Routines
LIB$CRF_OUTPUT

page2
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of lines per page for the other pages. The page2 argument is the address
of a signed longword integer containing this number.

mode-indicator
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Output mode indicator. The mode-indicator argument is the address of a signed
longword integer containing the mode indicator.

This indicator allows the user to select which of three output modes is desired.

Output Mode Description

CRF$K_VALUES Only the value and key fields are to be printed.
LIB$CRF_OUTPUT creates multiple columns across
the page. Each column consists of the KEY1, KEY2,
VAL1, and VAL2 fields. A minimum of one space
between each column is guaranteed.

CRF$K_VALS_REFS Requests a cross-reference summary that has no
column space saved for a defining reference. If the user
inserted a reference with the CRF$K_DEF indicator,
the entry is ignored.

CRF$K_DEFS_REFS Requests a cross-reference summary with the first
REF1 and REF2 fields used only for definition
references. If no definition reference is provided,
the fields are filled with spaces.

delete-save-indicator
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Delete/save indicator, which LIB$CRF_OUTPUT uses to determine whether the
table’s built-in accumulating symbol information is to be saved or deleted once the
cross-reference is produced. The delete-save-indicator argument is the address
of a signed longword integer containing the delete/save indicator.

The indicator can be either of the following:

CRF$K_SAVE To preserve the tables for subsequent processing
CRF$K_DELETE To delete the tables

lib–75

LIB$ Routines
LIB$CRF_OUTPUT

Description

LIB$CRF_OUTPUT can format output lines for three types of cross-reference
listings:

• A summary of symbol names and their values, as shown in Figure lib–2.

• A summary of symbol names, their values, and the names of modules that
refer to each symbol, as shown in Figure lib–3.

• A summary of symbol names, their values, the names of the defining modules,
and the names of those modules that refer to each symbol, as shown in
Figure lib–4.

Figure lib–2 Summary of Symbol Names and Values

ZK−1973−GE

00002108−RU
00002110−RU
000022F0−RU
000022E8−RU
00002310−RU
000020C8−RU
000020B8−RU
000020C0−RU
00002338−RU
00002308−RU
−−−−−
Value

BAS$VAL_F
BAS$VAL_D
BAS$UPDATE_COUN
BAS$UPDATE
BAS$UNLOCK
BAS$STR_L
BAS$STR_F
BAS$STR_D
BAS$STATUS
BAS$SCRATCH
−−−−−−
Symbol

00002268−RU
000021A8−RU
00001674−R
000021D0−RU
000021D8−RU
000021F8−RU
000021E0−RU
000021E8−RU
000021F0−RU
000020B0−RU
−−−−−
Value

BAS$MAT_INPUT
BAS$LINPUT
BAS$LINKAGE
BAS$IO_END
BAS$IN_W_R
BAS$IN_T_DX
BAS$IN_L_R
BAS$IN_F_R
BAS$IN_D_R
BAS$INSTR
−−−−−−
Symbol

Figure lib–3 Summary of Symbol Names, Values, and Names of Referring
Modules

BAS$$REC_PROC
BAS$$SIGNAL_IO
BAS$POWRR
BAS$POWII
BAS$ERROR

ALLGBL
BAS$$UDF_RL
ALLGBL
ALLGBL
BAS$POWRJ
BAS$POWDJ
ALLGBL
−−−−−−−−−−−−−−−−−
Referenced By ...

0000006C

0000000B
00000086

0000003D
−−−−−
Value

BAS$K_ENDOF_STA

BAS$K_DIVBY_ZER
−−−−−−
Symbol

ZK−1974−GE

BAS$K_ENDFILDEV
BAS$K_DUPKEYDET

lib–76

LIB$ Routines
LIB$CRF_OUTPUT

Figure lib–4 Summary Indicating Defining Modules

ALLGBL
ALLGBL
STR$REPLACE
STR$DUPL_CHAR
STR$APPEND
FOR$VM
BAS$XLATE
BAS$MARGIN
ALLGBL
−−−−−−−−−−−−−−−−−
Referenced By ...

LIB$COMMON
LIB$GET_INPUT

LIB$VM
−−−−−−−−−−
Defined By

0001E4D6−RLIB$GET_COMMON
LIB$GET_COMMAND

LIB$FREE_VM
−−−−−−
Symbol

0001E2B0−R

ZK−1971−GE

0001E185−R
−−−−−
Value

Regardless of the format of the output, LIB$CRF_OUTPUT considers the output
line as consisting of six different field types:

KEY1 Is the first field in the line. It contains a symbol name.
KEY2 Is the second field in the line. It contains a set of flags (for

example, -R) that provide information about the symbol.
VAL1 Is the third field in the line. It contains the value of the symbol.
VAL2 Is the fourth field in the line. It contains a set of flags describing

VAL1.
REF1 and
REF2 fields

Within each REF1 and REF2 pair, REF1 provides a set of flags,
and REF2 provides the name of a module that references the
symbol.

Any of these fields can be omitted from the output.

For example:

Symbol Value Symbol Value
------ ----- ------ -----
BAS$INSTR 000020B0-RU BAS$SCRATCH 00002308-RU

KEY1 VAL1 VAL2 KEY1 VAL1 VAL2

Symbol Value Defined By Referenced By ...
------ ----- ---------- -----------------
LIB$FREE_VM 0001E185-R LIB$VM ALLGBL

KEY1 VAL1 VAL2 REF2 REF2
(CRF$K_DEF) (CRF$K_REF)

Condition Values Returned

None.

lib–77

LIB$ Routines
LIB$CURRENCY

LIB$CURRENCY
Get System Currency Symbol

The Get System Currency Symbol routine returns the system’s currency symbol.

Format

LIB$CURRENCY currency-string [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

currency-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Currency symbol. The currency-string argument is the address of a descriptor
pointing to the currency symbol.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters that LIB$CURRENCY has written into the currency-
string argument, not counting padding in the case of a fixed-length string.
The resultant-length argument is the address of an unsigned word containing
the length of the currency symbol. If the input string is truncated to the size
specified in the currency-string argument, resultant-length is set to this size.
Therefore, resultant-length can always be used by the calling program to access
a valid substring of currency-string.

Description

LIB$CURRENCY attempts to translate the logical name SYS$CURRENCY as
a process, group, or system logical name, in that order. If the translation fails,
the routine returns the United States currency symbol ($). If the translation
succeeds, the text produced is returned. Thus, a system manager can define
SYS$CURRENCY as a systemwide logical name to provide a default for all users,
and an individual user with a special need can define SYS$CURRENCY as a
process logical name to override the system default.

For example, if you want to use the British pound sign (£) as the currency symbol
within your process but you want to leave the dollar sign as the system’s default,
define SYS$CURRENCY to be the pound sign in your process logical name table.
After this, any call to LIB$CURRENCY within your process returns the pound
sign (£), while any call outside your process returns the dollar sign ($).

lib–78

LIB$ Routines
LIB$CURRENCY

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error. An internal consistency

check has failed. This usually indicates
an internal error in the Run-Time Library
and should be reported to your HP support
representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

LIB$_STRTRU Successfully completed, but the currency string
was truncated.

Example

10 !+
! This BASIC program uses LIB$CURRENCY to
! return the default system currency symbol.
!-

OUTLEN = 1
CALL LIB$CURRENCY (CURR$, OUTLEN)
PRINT CURR$

99 END

This BASIC program uses LIB$CURRENCY to display the system currency
symbol default. The output generated by the program is a dollar sign ($).

lib–79

LIB$ Routines
LIB$CVTF_FROM_INTERNAL_TIME

LIB$CVTF_FROM_INTERNAL_TIME
Convert Internal Time to External Time (F-Floating-Point Value)

The Convert Internal Time to External Time (F-Floating-Point Value) routine
converts a delta internal OpenVMS system time into an external F-floating time.

Format

LIB$CVTF_FROM_INTERNAL_TIME operation ,resultant-time ,input-time

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

operation
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an
unsigned longword specifying the operation. Valid values for operation are the
following:

Operation Interpretation

LIB$K_DELTA_WEEKS_F Fractional weeks
LIB$K_DELTA_DAYS_F Fractional days
LIB$K_DELTA_HOURS_F Fractional hours
LIB$K_DELTA_MINUTES_F Fractional minutes
LIB$K_DELTA_SECONDS_F Fractional seconds

resultant-time
OpenVMS usage: floating_point
type: F_floating
access: write only
mechanism: by reference

The external time that results from the conversion. The resultant-time
argument is the address of an F-floating-point value containing the result.

lib–80

LIB$ Routines
LIB$CVTF_FROM_INTERNAL_TIME

input-time
OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Delta time to be converted. The input-time argument is the address of an
unsigned quadword containing the time.

Description

LIB$CVTF_FROM_INTERNAL_TIME converts a delta internal OpenVMS system
time into an external F-floating-point time. The operation argument specifies
the conversion. LIB$CVTF_FROM_INTERNAL_TIME converts the value of
input-time into one of the external formats listed in the operation argument
description. LIB$CVTF_FROM_INTERNAL_TIME then places the result into
resultant-time.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_DELTIMREQ Delta time required but absolute time supplied.
LIB$_INVOPER Invalid operation.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

lib–81

LIB$ Routines
LIB$CVTS_FROM_INTERNAL_TIME (Alpha and I64 Only)

LIB$CVTS_FROM_INTERNAL_TIME (Alpha and I64 Only)
Convert Internal Time toExternal Time (S-Floating-Point Value)

The Convert Internal Time to External Time (IEEE S-Floating-Point Value)
routine converts a delta internal OpenVMS system time into an external IEEE
S-floating time.

Format

LIB$CVTS_FROM_INTERNAL_TIME operation ,resultant-time ,input-time

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

operation
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an
unsigned longword specifying the operation. Valid values for operation are the
following:

Operation Interpretation

LIB$K_DELTA_WEEKS_F Fractional weeks
LIB$K_DELTA_DAYS_F Fractional days
LIB$K_DELTA_HOURS_F Fractional hours
LIB$K_DELTA_MINUTES_F Fractional minutes
LIB$K_DELTA_SECONDS_F Fractional seconds

resultant-time
OpenVMS usage: floating_point
type: IEEE S_floating
access: write only
mechanism: by reference

The external time that results from the conversion. The resultant-time
argument is the address of an IEEE S-floating-point value containing the result.

lib–82

LIB$ Routines
LIB$CVTS_FROM_INTERNAL_TIME (Alpha and I64 Only)

input-time
OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Delta time to be converted. The input-time argument is the address of an
unsigned quadword containing the time.

Description

LIB$CVTS_FROM_INTERNAL_TIME converts a delta internal OpenVMS system
time into an external IEEE S-floating-point time. The operation argument
specifies the conversion. LIB$CVTS_FROM_INTERNAL_TIME converts the
value of input-time into one of the external formats listed in the operation
argument description. LIB$CVTS_FROM_INTERNAL_TIME then places the
result into resultant-time.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_DELTIMREQ Delta time required but absolute time supplied.
LIB$_INVOPER Invalid operation.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

lib–83

LIB$ Routines
LIB$CVTF_TO_INTERNAL_TIME

LIB$CVTF_TO_INTERNAL_TIME
Convert External Time to Internal Time (F-Floating-Point Value)

The Convert External Time to Internal Time (F-Floating-Point Value) routine
converts an external time interval into an OpenVMS internal format F-floating
delta time.

Format

LIB$CVTF_TO_INTERNAL_TIME operation ,input-time ,resultant-time

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

operation
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an
unsigned longword specifying the operation. Valid values for operation are the
following:

Operation Interpretation

LIB$K_DELTA_WEEKS_F Fractional weeks
LIB$K_DELTA_DAYS_F Fractional days
LIB$K_DELTA_HOURS_F Fractional hours
LIB$K_DELTA_MINUTES_F Fractional minutes
LIB$K_DELTA_SECONDS_F Fractional seconds

input-time
OpenVMS usage: varying_arg
type: F_floating
access: read only
mechanism: by reference

Delta time to be converted. The input-time argument is the address of this
input time. The value you supply for input-time must be greater than 0.

lib–84

LIB$ Routines
LIB$CVTF_TO_INTERNAL_TIME

resultant-time
OpenVMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

The OpenVMS internal format delta time that results from the conversion. The
resultant-time argument is the address of an unsigned quadword containing the
result.

Description

LIB$CVTF_TO_INTERNAL_TIME converts an external time interval, such as 3.5
weeks, into an OpenVMS internal format F-floating delta time. The operation
argument specifies the conversion. LIB$CVTF_TO_INTERNAL_TIME converts
the value of input-time into one of the internal format delta times listed in the
operation argument description. LIB$CVTF_TO_INTERNAL_TIME then places
the result into resultant-time.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_INVOPER Invalid operation.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

lib–85

LIB$ Routines
LIB$CVTS_TO_INTERNAL_TIME (Alpha and I64 Only)

LIB$CVTS_TO_INTERNAL_TIME (Alpha and I64 Only)
Convert External Time to Internal Time (S-Floating-Point Value)

The Convert External Time to Internal Time (IEEE S-Floating-Point Value)
routine converts an external time interval into an OpenVMS internal format
IEEE S-floating delta time.

Format

LIB$CVTS_TO_INTERNAL_TIME operation ,input-time ,resultant-time

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

operation
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an
unsigned longword specifying the operation. Valid values for operation are the
following:

Operation Interpretation

LIB$K_DELTA_WEEKS_F Fractional weeks
LIB$K_DELTA_DAYS_F Fractional days
LIB$K_DELTA_HOURS_F Fractional hours
LIB$K_DELTA_MINUTES_F Fractional minutes
LIB$K_DELTA_SECONDS_F Fractional seconds

input-time
OpenVMS usage: varying_arg
type: IEEE S_floating
access: read only
mechanism: by reference

Delta time to be converted. The input-time argument is the address of this
input time. The value you supply for input-time must be greater than 0.

lib–86

LIB$ Routines
LIB$CVTS_TO_INTERNAL_TIME (Alpha and I64 Only)

resultant-time
OpenVMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

The OpenVMS internal format delta time that results from the conversion. The
resultant-time argument is the address of an unsigned quadword containing the
result.

Description

LIB$CVTS_TO_INTERNAL_TIME converts an external time interval, such as
3.5 weeks, into an OpenVMS internal format IEEE S-floating delta time. The
operation argument specifies the conversion. LIB$CVTS_TO_INTERNAL_TIME
converts the value of input-time into one of the internal format delta times listed
in the operation argument description. LIB$CVTS_TO_INTERNAL_TIME then
places the result into resultant-time.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_INVOPER Invalid operation.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

lib–87

LIB$ Routines
LIB$CVT_DX_DX

LIB$CVT_DX_DX
General Data Type Conversion Routine

The General Data Type Conversion routine converts OpenVMS standard atomic
or string data described by a source descriptor to OpenVMS standard atomic or
string data described by a destination descriptor. This conversion is supported
over a subset of the OpenVMS standard data types.

Format

LIB$CVT_DX_DX source-item ,destination-item [,word-integer-dest-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

source-item
OpenVMS usage: unspecified
type: unspecified
access: read only
mechanism: by descriptor

Source item to be converted by LIB$CVT_DX_DX. The source-item argument is
the address of a descriptor pointing to the source item to be converted. The type
of the item to be converted is contained in the descriptor.

The combination of source descriptor class and data type is restricted as described
in Table lib–1 and Table lib–2.

destination-item
OpenVMS usage: unspecified
type: unspecified
access: write only
mechanism: by descriptor

Destination of the conversion. The destination-item argument is the address of
a descriptor pointing to the destination item. The destination descriptor specifies
the data type to which the source item is converted.

The combination of destination descriptor class and data type is restricted as
described in Table lib–1 and Table lib–2.

word-integer-dest-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the destination item (when that item is a string) that has
been converted by LIB$CVT_DX_DX, not including any space filling. The
word-integer-dest-length argument contains the address of an unsigned word
containing this length.

lib–88

LIB$ Routines
LIB$CVT_DX_DX

If the destination string is truncated, the returned length reflects the truncation.
This word can be used by the calling program to determine if truncation has
occurred or to extract the exact length of the string when the string contains
space filling.

Description

LIB$CVT_DX_DX is a universal conversion utility routine. Table lib–1 shows the
complete matrix of data type and descriptor class combinations (as specified in
the fields of the descriptor) supported by LIB$CVT_DX_DX.

Conversion is defined over three sets of data types: atomic, string, and numeric
byte data strings. Although some of the functions of this routine may be found
in other Run-Time Library routines, LIB$CVT_DX_DX packages the conversion
functions with a general interface. Because of this general interface, the calling
program does not have to specify what conversion should be done for which data
type.

Refer to LIB$CVT_xTB if you want to convert the ASCII text string
representation of a decimal, hexadecimal, or octal number into a binary
representation.

The description of this routine has been divided into the following parts:

• Guidelines for Using LIB$CVT_DX_DX

• Use of Numeric Byte Data Strings (NBDS)

For more information about numeric byte data strings, see the section called Use
of Numeric Byte Data Strings (NBDS). Although the set of data types in NBDS is
actually a subset of the atomic and string data types, the three sets are mutually
exclusive in this routine. For more information on the OpenVMS atomic and
string data types and the argument descriptor classes supported by this routine,
see the HP OpenVMS Calling Standard manual.

lib–89

LIB$ Routines
LIB$CVT_DX_DX

Table lib–1 OpenVMS Descriptor Class and Data Type Combinations Accepted
by LIB$CVT_DX_DX

Descriptor Class

DSC$K_
DTYPE_yyy A D NCA S SD VS

B Non-NBDS Non-NBDS
BU NBDS NBDS Non-NBDS
D Non-NBDS Non-NBDS
F Non-NBDS Non-NBDS
FS Non-NBDS Non-NBDS
FT Non-NBDS Non-NBDS
G Non-NBDS Non-NBDS
H Non-NBDS Non-NBDS
L Non-NBDS Non-NBDS
LU Non-NBDS
NL Non-NBDS Non-NBDS
NLO Non-NBDS Non-NBDS
NR Non-NBDS Non-NBDS
NRO Non-NBDS Non-NBDS
NU Non-NBDS Non-NBDS
NZ Non-NBDS Non-NBDS
P Non-NBDS Non-NBDS
Q Non-NBDS Non-NBDS
T NBDS NBDS NBDS NBDS NBDS
VT NBDS
W Non-NBDS Non-NBDS
WU Non-NBDS

Invalid combinations are blank. Any source data can be converted into any other destination data as
long as they are both represented by one of the valid combinations.

Note: LIB$CVT_DX_DX treats an array, described by a CLASS_A or CLASS_NCA descriptor, as a
character string. NBDS must have the format defined in Table lib–2.

Guidelines for Using LIB$CVT_DX_DX
The data type and descriptor class of the source and destination arguments
determine how LIB$CVT_DX_DX performs the conversion, according to the
following rules:

• Scale is applied when indicated in the descriptor (descriptor CLASS_SD only),
and scaling is defined for the data type.

• No language-specific semantics are applied, such as BASIC scale for DSC$K_
DTYPE_D.

• Some conversions must use intermediate values to arrive at the destination
requested. Although some loss of speed is inevitable, intermediate values will
not cause a loss of precision.

lib–90

LIB$ Routines
LIB$CVT_DX_DX

• Results are always rounded instead of truncated, except for the case described
below. Note that loss of precision or range may be inherent in the destination
data type or in the NBDS destination size. No errors are reported if there is
a loss of precision or range as a result of destination data type.

• When the destination is an NBDS and has fixed-string semantics, then if the
source does not fill the destination, the destination is padded with blanks.

• When the source and destination are both NBDS and no scaling is requested,
then a straight copy is done without translation or conversion, and truncation
is possible. If scaling is requested, then a conversion takes place as defined in
Table lib–2.

• When the source is an NBDS and the destination is non-NBDS, if there is an
invalid character in the source or the value is outside the range that can be
represented by the destination, then LIB$_INVNBDS is returned.

• Attempts to convert a negative value to an unsigned data type cause the
LIB$_INVCVT error to be returned.

• If the destination is an NBDS of descriptor CLASS_D, then a new string of
appropriate size is allocated for it, if necessary.

• Invalid conversions resulting in an error produce an unpredictable result.

Use of Numeric Byte Data Strings (NBDS)
For simplicity, and to define a generic numeric string that LIB$CVT_DX_DX
understands to be a numeric string, the set Numeric Byte Data String (NBDS) is
defined to be the set of NBDS descriptors shown in Table lib–1.

The combination of data type and descriptor class determines whether an
argument is an NBDS. For example, LIB$CVT_DX_DX treats the combination
DSCK_DTYPE_B/DSCK_CLASS_S (unsigned byte scalar) as an atomic data
type. However, the routine considers DSCK_DTYPE_BU/DSCK_CLASS_NCA
(noncontiguous array of unsigned bytes) to be an NBDS.

A destination NBDS is always left-justified.

If a destination NBDS requires more than 50 digits for its format (including the
sign, if any), then it is expressed in exponential format.

For a conversion of NBDS to NBDS, this format is used if scaling is requested.
Otherwise, a straight copy is done. The format of a source NBDS is the same as
the format defined for the input argument inp in OTS$_CVT_T_z, with bits 0, 2,
and 4 set in the flags argument. That is, blanks are ignored, underflow causes
an error, and tabs are ignored.

Table lib–2 defines the format of a destination NBDS.

lib–91

LIB$ Routines
LIB$CVT_DX_DX

Table lib–2 LIB$CVT_DX_DX Destination NBDS Formats

Source Data Type Destination NBDS Format

Byte integer (signed) sdigits
Byte (unsigned) digits
Word integer (signed) sdigits
Word (unsigned) digits
Longword integer (signed) sdigits
Longword (unsigned) digits
Quadword integer (signed) sdigits
D_floating s0.min(16,w-7)E�nn
F_floating s0.min(7,w-7)E�nn
G_floating s0.min(15,w-8)E�nnn
H_floating s0.min(33,w-9)E�nnnn
FS_floating (IEEE) s0.min(7,w-7)E�nn
FT_floating (IEEE) s0.min(15,w-8)E�nnn
NBDS s0.min(33,w-9)E�nnnn
Decimal string sdigits (as defined by VAX architecture)

Key to Destination NBDS Formats

• digits: Digits 0 through 9, and a decimal point only if source descriptor specifies the value of the
SCALE field as less than 0.

• w: Width of destination in bytes.
• s: Sign. For positive numbers, the sign is implied.
• min: Minimum of two values.

The A and NCA array descriptor classes are supported with the following
restrictions:

An array is written with the semantics of a fixed string.
DIMCT = 1 Only one-dimensional arrays are recognized.
LENGTH = 1 The length of each array element must be a byte.
ARSIZE � 65,535 The total size of the array must be less than 65,535 bytes.

If ARSIZE = 0, the array has a length of zero.
S1 = 1 The stride of an array passed by a noncontiguous array

descriptor must be 1. That is, even if the class of the
array’s descriptor is noncontiguous array (NCA), the array
itself must be contiguous.

For more information about the semantics of writing output strings, see the
OpenVMS RTL String Manipulation (STR$) Manual.

If the calling program passes a descriptor to LIB$CVT_DX_DX that does not
comply with Table lib–1, one of the following error messages is returned:

LIB$_INVDTYDSC
LIB$_INVCLADSC
LIB$_INVCLADTY
LIB$_INVNBDS

lib–92

LIB$ Routines
LIB$CVT_DX_DX

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_DECOVF Packed decimal overflow error. Severe error.
LIB$_FLTOVF Floating overflow error. Severe error.
LIB$_FLTUND Floating underflow error. Severe error.
LIB$_INTOVF Integer overflow error. Severe error.
LIB$_INVCLADSC Invalid class in descriptor. This class of

descriptor is not supported. Severe error.
LIB$_INVCLADTY Invalid class and data type in descriptor. This

class and data type combination is not supported.
Severe error.

LIB$_INVCVT If the source value is negative and the
destination data type is unsigned, this error
is returned.

LIB$_INVDTYDSC Invalid data type in descriptor. This data type is
not supported. Severe error.

LIB$_INVNBDS Invalid NBDS. There is an invalid character
in the input, or the value is outside the range
that can be represented by the destination, or
the NMDS descriptor is invalid. This error is
also signaled when the array size of an NBDS is
larger than 65,535 bytes or the array is multi-
dimensional.

LIB$_OUTSTRTRU Output string truncated. This is returned only
when NBDS is both source and destination and
no scaling is requested. The result is truncated.

LIB$_ROPRAND Reserved operand error. Severe error.

lib–93

LIB$ Routines
LIB$CVT_FROM_INTERNAL_TIME

LIB$CVT_FROM_INTERNAL_TIME
Convert Internal Time to External Time

The Convert Internal Time to External Time routine converts an internal
OpenVMS system time (either absolute or delta) into an external time.

Format

LIB$CVT_FROM_INTERNAL_TIME operation ,resultant-time [,input-time]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

operation
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an
unsigned longword containing the operation. The following table shows valid
values for operation:

Operation Type Return Range

LIB$K_MONTH_OF_YEAR Absolute 1 to 12
LIB$K_DAY_OF_YEAR Absolute 1 to 366
LIB$K_HOUR_OF_YEAR Absolute 1 to 8784
LIB$K_MINUTE_OF_YEAR Absolute 1 to 527,040
LIB$K_SECOND_OF_YEAR Absolute 1 to 31,622,400
LIB$K_DAY_OF_MONTH Absolute 1 to 31
LIB$K_HOUR_OF_MONTH Absolute 1 to 744
LIB$K_MINUTE_OF_MONTH Absolute 1 to 44,640
LIB$K_SECOND_OF_MONTH Absolute 1 to 2,678,400
LIB$K_DAY_OF_WEEK Absolute 1 1 to 7
LIB$K_HOUR_OF_WEEK Absolute 2 1 to 168
LIB$K_MINUTE_OF_WEEK Absolute 3 1 to 10,080
LIB$K_SECOND_OF_WEEK Absolute 4 1 to 604,800
LIB$K_HOUR_OF_DAY Absolute 0 to 23
LIB$K_MINUTE_OF_DAY Absolute 0 to 1439

1Day 1 is Monday.
2Hours since midnight on previous Monday.
3Minutes since midnight on previous Monday.
4Seconds since midnight on previous Monday.

lib–94

LIB$ Routines
LIB$CVT_FROM_INTERNAL_TIME

Operation Type Return Range

LIB$K_SECOND_OF_DAY Absolute 0 to 86,399
LIB$K_MINUTE_OF_HOUR Absolute 0 to 59
LIB$K_SECOND_OF_HOUR Absolute 0 to 3599
LIB$K_SECOND_OF_MINUTE Absolute 0 to 59
LIB$K_JULIAN_DATE Absolute 5 Julian date
LIB$K_DELTA_WEEKS Delta 6

LIB$K_DELTA_DAYS Delta 7

LIB$K_DELTA_HOURS Delta 8

LIB$K_DELTA_MINUTES Delta 9

LIB$K_DELTA_SECONDS Delta 10

5Number of days since system zero time (17–Nov–1858).
6Whole weeks.
7Whole days.
8Whole hours.
9Whole minutes.
10Whole seconds.

resultant-time
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The external time that results from the conversion. The resultant-time
argument is the address of an unsigned longword containing the result.

input-time
OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Optional absolute or delta time to be converted. The input-time argument is
the address of an unsigned quadword containing the time. If you do not supply a
value for input-time, the current system time is used.

Description

LIB$CVT_FROM_INTERNAL_TIME converts an internal OpenVMS system
time (either absolute or delta) into an external time. The operation argument
specifies the conversion. LIB$CVT_FROM_INTERNAL_TIME converts the value
of input-time (or the current system time if input-time is not supplied) into one
of the external formats listed in the operation argument description. LIB$CVT_
FROM_INTERNAL_TIME then places the result into resultant-time.

See the HP OpenVMS Programming Concepts Manual for a description of
system date and time operations as well as a detailed description of the format
mnemonics used in these routines.

lib–95

LIB$ Routines
LIB$CVT_FROM_INTERNAL_TIME

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_ABSTIMREQ Absolute time required but delta time supplied.
LIB$_DELTIMREQ Delta time required but absolute time supplied.
LIB$_INVOPER Invalid operation.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

lib–96

LIB$ Routines
LIB$CVT_TO_INTERNAL_TIME

LIB$CVT_TO_INTERNAL_TIME
Convert External Time to Internal Time

The Convert External Time to Internal Time routine converts an external time
interval into an OpenVMS internal format delta time.

Format

LIB$CVT_TO_INTERNAL_TIME operation ,input-time ,resultant-time

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

operation
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an
unsigned longword specifying the operation. Valid values for operation are the
following:

Operation Interpretation

LIB$K_DELTA_WEEKS Whole weeks in delta time
LIB$K_DELTA_DAYS Whole days in delta time
LIB$K_DELTA_HOURS Whole hours in delta time
LIB$K_DELTA_MINUTES Whole minutes in delta time
LIB$K_DELTA_SECONDS Whole seconds in delta time

input-time
OpenVMS usage: varying_arg
type: longword (signed)
access: read only
mechanism: by reference

Delta time to be converted. The input-time argument is the address of this
input time. The value you supply for input-time must be greater than 0.

lib–97

LIB$ Routines
LIB$CVT_TO_INTERNAL_TIME

resultant-time
OpenVMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

The OpenVMS internal format delta time that results from the conversion. The
resultant-time argument is the address of an unsigned quadword containing the
result.

Description

LIB$CVT_TO_INTERNAL_TIME converts an external time interval, such as
three weeks, into an OpenVMS internal format delta time. The operation
argument specifies the conversion. LIB$_CVT_TO_INTERNAL_TIME converts
the value of input-time into one of the internal format delta times listed in the
operation argument description. LIB$_CVT_TO_INTERNAL_TIME then places
the result into resultant-time.

See the HP OpenVMS Programming Concepts Manual for a description of
system date and time operations as well as a detailed description of the format
mnemonics used in these routines.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_INVOPER Invalid operation.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

lib–98

LIB$ Routines
LIB$CVT_VECTIM

LIB$CVT_VECTIM
Convert 7-Word Vector to Internal Time

The Convert 7-Word Vector to Internal Time routine converts a 7-word vector into
an OpenVMS internal format delta or absolute time.

Format

LIB$CVT_VECTIM input-time ,resultant-time

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

input-time
OpenVMS usage: vector_word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference, array reference

Time to be converted. The input-time argument is the address of a 7-word
structure containing this time. This vector directly corresponds to a $NUMTIM
timbuf structure. The following diagram depicts the fields in this structure:

Month of Year

Hour of Day

Second of Minute

Year Since 0

Day of Month

Minute of Hour

Hundredths of Second

31 15 0

ZK−7968−GE

The input-time argument can represent an absolute or a delta time. In order
for input-time to represent a delta time, the year since 0 and month of year
fields must equal zero. If those fields do not equal zero, an absolute time is
returned.

resultant-time
OpenVMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

The OpenVMS internal format delta or absolute time that results from the
conversion. The resultant-time argument is the address of an unsigned
quadword containing the result.

lib–99

LIB$ Routines
LIB$CVT_VECTIM

Description

LIB$CVT_VECTIM converts a 7-word vector (in the format output by the
$NUMTIM system service) into an OpenVMS internal format delta or absolute
time. LIB$CVT_VECTIM then places the result into resultant-time.

See the HP OpenVMS System Services Reference Manual: GETUTC–Z for more
information about $NUMTIM.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

lib–100

LIB$ Routines
LIB$CVT_xTB

LIB$CVT_xTB
Convert Numeric Text to Binary

The Convert Numeric Text to Binary routines return a binary representation of
the ASCII text string representation of a decimal, hexadecimal, or octal number.

Format

LIB$CVT_DTB byte-count ,numeric-string ,result

LIB$CVT_HTB byte-count ,numeric-string ,result

LIB$CVT_OTB byte-count ,numeric-string ,result

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

byte-count
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Byte count of the input ASCII text string. The byte-count argument is a signed
longword integer containing the byte count of the input string.

numeric-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by reference

ASCII text string representation of a decimal, hexadecimal, or octal number that
LIB$CVT_xTB converts to binary representation. The numeric-string argument
is the address of a character string containing this input string to be converted.

The syntax of a valid ASCII text input string is as follows:
�
� +

– <radix-characters>

�
�

LIB$CVT_xTB allows only an optional plus (+) or minus (–) sign followed by a
string of decimal, hexadecimal, or octal characters appropriate to the routine
being called.

result
OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

lib–101

LIB$ Routines
LIB$CVT_xTB

Binary representation of the input string. The result argument is the address of
a signed longword integer containing the converted string.

Description

LIB$CVT_DTB converts the ASCII text string representation of a decimal
number into binary representation. LIB$CVT_HTB converts the ASCII text
string representation of a hexadecimal number into binary representation.
LIB$CVT_OTB converts the ASCII text string representation of an octal number
into binary representation.

Note

LIBCVT_DTB, LIBCVT_HTB, and LIB$CVT_OTB are intended to
be called primarily from BLISS and MACRO programs. Therefore, the
routines expect input scalar arguments to be passed by value and strings
by reference.

Condition Values Returned

1 Routine successfully completed.
0 Nonradix character in the input string or a sign

in any position other than the first character. An
overflow from 32 bits (unsigned) causes an error.

lib–102

LIB$ Routines
LIB$CVT_xTB_64 (Alpha and I64 Only)

LIB$CVT_xTB_64 (Alpha and I64 Only)
Convert Numeric Text to Binary

The Convert Numeric Text to Binary routines return a binary representation of
the ASCII text string representation of a decimal, hexadecimal, or octal number.

Format

LIB$CVT_DTB_64 byte-count ,numeric-string ,result

LIB$CVT_HTB_64 byte-count ,numeric-string ,result

LIB$CVT_OTB_64 byte-count ,numeric-string ,result

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

byte-count
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Byte count of the input ASCII text string. The byte-count argument is a signed
longword integer containing the byte count of the input string.

numeric-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by reference

ASCII text string representation of a decimal, hexadecimal, or octal number
that LIB$CVT_xTB_64 converts to binary representation. The numeric-string
argument is the address of a character string containing this input string to be
converted.

The syntax of a valid ASCII text input string is as follows:
�
� +

– <radix-characters>

�
�

LIB$CVT_xTB_64 allows only an optional plus (+) or minus (–) sign followed by
a string of decimal, hexadecimal, or octal characters appropriate to the routine
being called.

lib–103

LIB$ Routines
LIB$CVT_xTB_64 (Alpha and I64 Only)

result
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: write only
mechanism: by reference

Binary representation of the input string. The result argument is the address of
a signed quadword integer containing the converted string.

Description

LIB$CVT_DTB_64 converts the ASCII text string representation of a decimal
number into binary representation. LIB$CVT_HTB_64 converts the ASCII
text string representation of a hexadecimal number into binary representation.
LIB$CVT_OTB_64 converts the ASCII text string representation of an octal
number into binary representation.

Note

LIBCVT_DTB_64, LIBCVT_HTB_64, and LIB$CVT_OTB_64 are
intended to be called primarily from BLISS and MACRO programs.
Therefore, the routines expect input scalar arguments to be passed by
value and strings by reference.

Condition Values Returned

1 Routine successfully completed.
0 Nonradix character in the input string or a sign

in any position other than the first character. An
overflow from 64 bits (unsigned) causes an error.

lib–104

LIB$ Routines
LIB$DATE_TIME

LIB$DATE_TIME
Date and Time Returned as a String

The Date and Time Returned as a String routine returns the OpenVMS system
date and time in the semantics of a user-provided string.

Format

LIB$DATE_TIME date-time-string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

date-time-string
OpenVMS usage: time_name
type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB$DATE_TIME writes the system date and time.
The date-time-string argument is the address of a descriptor pointing to the
destination string. This string is 23 characters long; its format is as follows:

dd-mmm-yyyy hh:mm:ss.hh

See the HP OpenVMS Programming Concepts Manual for a description of
system date and time operations as well as a detailed description of the format
mnemonics used in these routines.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Success, but destination string was truncated.
LIB$_INSVIRMEM Insufficient virtual memory. Your program has

exceeded the image quota for virtual memory.
LIB$_INVSTRDES Invalid string descriptor. A string descriptor has

an invalid value in its CLASS field.

lib–105

LIB$ Routines
LIB$DATE_TIME

Example

10 !+
! This BASIC program demonstrates the use of LIB$DATE_TIME.
!-
CALL LIB$DATE_TIME(DSTSTR$)
PRINT DSTSTR$

99 END

This BASIC program uses LIB$DATE_TIME to display the current system date
and time. The output generated by one run of this program follows:

26-JUL-2000 13:41:22.67

lib–106

LIB$ Routines
LIB$DAY

LIB$DAY
Day Number Returned as a Longword Integer

The Day Number Returned as a Longword Integer routine returns the number
of days since the system zero date of November 17, 1858, or the number of days
from November 17, 1858, to a user-supplied date.

Format

LIB$DAY number-of-days [,user-time] [,day-time]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

number-of-days
OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Number of days since the system zero date. The number-of-days argument is
the address of a signed longword integer containing the day number.

user-time
OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

User-supplied time, in 100-nanosecond units. The user-time argument is the
address of a signed quadword integer containing the user time. A positive value
indicates an absolute time, while a negative value indicates a delta time. This is
an optional argument. If user-time is omitted, the default is the current system
time. This quadword time value is obtained by calling the $BINTIM system
service.

If time is passed as zero by value, the numeric value for the current day
is returned. If time is passed as a zero by reference, the number returned
represents the day of November 17, 1858, rather than the current day.

day-time
OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Number of 10-millisecond units since midnight of the user-time argument.
The day-time argument is the address of a signed longword integer into which
LIB$DAY writes this number of units.

lib–107

LIB$ Routines
LIB$DAY

Description

LIB$DAY returns the number of days since the system zero date of November 17,
1858. Optionally, the caller can supply a time in system time format to be used
instead of the current system time. In this case, LIB$DAY returns the number of
days from November 17, 1858, to the user-supplied date.

The number of 10-millisecond units since midnight is an optional return
argument.

Note

If the caller supplies a quadword time, it is not verified. If it is negative
(bit 63 on), the number-of-days value returned is negative.

The Run-Time Library provides the date/time utility routines for languages that
do not have built-in time and date functions and for particular applications that
require the time or date in a different format from the one that the language
supplies. In general, it is simpler to call the Run-Time Library routines for the
system date and time than to call a system service.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_INTOVF The optional argument user-time is present and

represents a date and time well beyond the year
9999.

Example

PROGRAM DAY(INPUT, OUTPUT);

{+}
{ This is a VAX Pascal example program showing
{ the use of LIB$DAY.
{-}

VAR
DAYNUMBER : INTEGER;

routine LIB$DAY(VAR DAYNUM : INTEGER);
EXTERN;

BEGIN
LIB$DAY(DAYNUMBER);
WRITELN(’The day number is ’, DAYNUMBER);

END.

This Pascal program retrieves and prints the day number. A sample of the output
generated by this program is as follows.

The day number is 46738

lib–108

LIB$ Routines
LIB$DAY_OF_WEEK

LIB$DAY_OF_WEEK
Show Numeric Day of Week

The Show Numeric Day of Week routine returns the numeric day of the week for
an input time value. If 0 is the input time value, the current day of the week
is returned. The days are numbered 1 through 7, with Monday as day 1 and
Sunday as day 7.

Format

LIB$DAY_OF_WEEK [user-time,] day-number

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

user-time
OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Time to be translated to a day of the week, or zero. The optional user-time
argument is the address of an unsigned quadword containing the value of time.
Time must be supplied as an absolute system time. To obtain this time value in
proper quadword format, call the $BINTIM system service.

If time is passed as zero by value, the numeric value for the current day
is returned. If time is passed as a zero by reference, the number returned
represents the day of November 17, 1858. If the user-time argument is omitted,
it is equivalent to passing a zero by value.

day-number
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Numeric day of week. The day-number argument is the address of a longword
into which LIB$DAY_OF_WEEK writes the integer value representing the day of
the week.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

lib–109

LIB$ Routines
LIB$DAY_OF_WEEK

Example

PROGRAM DAYOFWEEK(INPUT, OUTPUT);

{+}
{ This is an example showing
{ the use of LIB$DAY_OF_WEEK.
{-}

VAR
OUTDAT : INTEGER;

routine LIB$DAY_OF_WEEK(TIM : INTEGER; %REF OUTDA : INTEGER); EXTERN;

BEGIN

LIB$DAY_OF_WEEK(%IMMED 0, OUTDAT);
WRITELN(OUTDAT);

END.

This Pascal program shows the use of LIB$DAY_OF_WEEK. This example was
tested on a Monday, and the output generated was 1.

lib–110

LIB$ Routines
LIB$DECODE_FAULT

LIB$DECODE_FAULT
Decode Instruction Stream During Fault

The Decode Instruction Stream During Fault routine is a tool for building
condition handlers that process instruction fault exceptions. It is called from
a condition handler. †

This routine is not available to native OpenVMS Alpha and I64 programs but is
available to translated VAX images.

Format

LIB$DECODE_FAULT signal-arguments ,mechanism-arguments ,user-procedure
[,unspecified-user-argument] [,instruction-definitions]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

signal-arguments
OpenVMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Signal arguments array that was passed from the OpenVMS operating system to
your condition handler. The signal-arguments argument is the address of the
signal arguments array.

mechanism-arguments
OpenVMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Mechanism arguments array that was passed from OpenVMS to your condition
handler. The mechanism-arguments argument is the address of the mechanism
arguments array.

user-procedure
OpenVMS usage: procedure
type: procedure value
access: call after stack unwind
mechanism: by descriptor, procedure descriptor

User-supplied action routine that LIB$DECODE_FAULT calls to handle the
exception. The user-procedure argument is the address of a descriptor pointing
to your user action routine. The user-procedure argument may be of type

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–111

LIB$ Routines
LIB$DECODE_FAULT

‘‘procedure value’’ when called by languages with up-level addressing. If user-
procedure is not of type ‘‘bound routine value,’’ it is assumed to be the address
of an entry mask.

For further information on the user action routine, see the section called Call
Format for a User Action Routine in the Description section.

unspecified-user-argument
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Additional information passed from your handler without interpretation to your
user action routine. The unspecified-user-argument argument contains the
value of this additional information. The unspecified-user-argument argument
is optional; if it is omitted, zero is used as the default.

instruction-definitions
OpenVMS usage: vector_byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference, array reference

Array of bytes specifying instruction opcodes and operand definitions that are
to replace or supplement the standard instruction definitions. The instruction-
definitions argument is the address of this array.

If instruction-definitions is omitted, only the standard instruction definitions
are used. If supplied, instruction-definitions is searched first, followed by the
standard definitions.

Each instruction definition consists of a series of bytes, the first one or two of
which is the instruction opcode. If the instruction is a 2-byte opcode, the escape
byte, which must be hex FD, FE, or FF, is placed in the first of the two bytes.
Following the opcode may be from 0 to 16 operand definition bytes. These bytes
indicate the operand’s access type and data type.

The end of each instruction definition is denoted by a byte containing the value
LIB$K_DCFOPR_END (zero). The list of instruction definitions is terminated
by two bytes, each of which contains the value –1 (hexadecimal FF). For further
information, see the section called Instruction Operand Definition Codes in the
Description section.

Description

The Description section of the LIB$DECODE_FAULT routine is divided into the
following parts:

• Guidelines for Using LIB$DECODE_FAULT

• Exceptions Recognized by LIB$DECODE_FAULT

• Instruction Operand Definition Codes

• Call Format for a User Action Routine

• Call Format for a Signal Routine

lib–112

LIB$ Routines
LIB$DECODE_FAULT

Guidelines for Using LIB$DECODE_FAULT
LIB$DECODE_FAULT is a tool for building condition handlers that process
instruction fault exceptions. Called from a condition handler, LIB$DECODE_
FAULT performs the following actions:

1. Unwinds intermediate stack frames back to that of the exception

2. Decodes the instruction stream to determine the operation and its operands

3. Calls a user-supplied action routine and passes it a consistent and easy-to-
access description of the instruction’s context

Your user action routine performs whatever tasks are necessary to handle the
fault and returns to LIB$DECODE_FAULT. LIB$DECODE_FAULT then restores
the context as modified by your user action routine and continues execution.

Your condition handler must first decide whether or not it wants to handle the
exception. The signal arguments list contains the exception code and the address
of the program context (PC) that is usually sufficient for this determination. Once
LIB$DECODE_FAULT is called, if the exception is a fault LIB$DECODE_FAULT
can analyze, control does not return to the condition handler. Therefore, your
handler must not depend on regaining control by a routine return once it has
called LIB$DECODE_FAULT. With your user action routine, LIB$DECODE_
FAULT makes the original fault disappear.

Note

Your user action routine is capable of generating a new exception,
including one that looks identical to the original exception. Your user
action routine may also resignal, but if the decision to resignal is made
inside the user action routine, all post-signal stack frames are lost.

Once your condition handler has decided that it wants to handle the exception,
it calls LIB$DECODE_FAULT, passing as arguments the addresses of the signal
and mechanism argument lists and a descriptor for your user action routine entry
point. LIB$DECODE_FAULT then performs the following actions:

1. Determines if the exception is a fault it understands. If not, it returns SS$_
RESIGNAL.

2. Determines the context in which the exception occurred, including register
and processor status longword (PSL) contents, and saves it.

3. Unwinds all stack frames back to that frame in which the exception occurred.

4. Evaluates each operand’s addressing mode, computing the resulting location
for the operand. Immediate mode operands are expanded into their full form.
If an invalid addressing mode is found, an SS$_RADRMOD exception is
generated.

5. Unless the original exception was SS$_ACCVIO, tests each operand for
accessibility. If necessary, an access violation is signaled as if the instruction
had tried to execute normally. See the paragraph following this list for more
information.

6. Unless the original exception was SS$_ROPRAND, tests each floating-point
operand that is to be read for a reserved floating operand. If necessary, a
reserved operand fault is signaled. See the paragraph following this list for
more information.

lib–113

LIB$ Routines
LIB$DECODE_FAULT

7. Determines the address of the next sequential instruction.

8. Calls your user action routine with arguments as described below.

9. Upon return from your user action routine, reflects changes to the registers
and PSL and continues execution at the instruction address specified by your
user action routine. Optionally, your user action routine may resignal the
original exception.

Some instructions can generate more than one fault if evaluation of one operand
causes a fault that occurs before a later operand (which would also cause a fault).
An example of this is the possibility that a floating-point divide instruction might
report a divide-by-zero fault upon seeing a zero divisor before noticing that the
dividend was a reserved operand or was inaccessible.

In these cases, operand-specific faults are signaled immediately by
LIB$DECODE_FAULT in the expectation that another condition handler (or the
same one) can repair the situation. This may reorder the sequence of exceptions
as seen by a program. If the operand exception is corrected, the original exception
reoccurs, and the proper action is taken.

If at all possible, try to determine if a resignal is necessary inside the condition
handler that calls LIB$DECODE_FAULT, rather than inside your user action
routine. The reason for this is that LIB$DECODE_FAULT removes all post-signal
stack frames before calling your user action routine.

Your user action routine may fetch and store the operands, registers, and PSL
as necessary for handling the exception. You should follow the VAX architecture
rule of reading all input operands in left-to-right order, then writing all output
operands in left-to-right order, to avoid inconsistent results with overlapping
operands. This is especially necessary with register operands.

PSL may be modified in a manner consistent with the VAX architecture. If the
T-bit in the PSL was set at the beginning of the instruction, LIB$DECODE_
FAULT sets the TP bit. To initiate tracing, you must set only the T bit. To
disable tracing, you must clear both the T and TP bits. See the VAX Architecture
Reference Manual for more information.

If the first-part-done (FPD) bit in the PSL was set when the instruction faulted,
LIB$DECODE_FAULT only advances the PC over the instruction; it does not
reevaluate the operands, and it sets operand-count to zero. It is assumed that
if FPD is set, the operands are in known locations (typically the registers).

For the CASEB, CASEW, and CASEL instructions, only the selector, base,
and limit operands are represented in operand-count and read-operand-
locations. The element of registers that corresponds to the PC, described in the
following text as R15, points to the first of the word-length displacements. Your
user action routine must modify R15 to reflect the location of the next instruction
to execute.

The standard instruction definitions used by LIB$DECODE_FAULT specify the
XFC instruction (which causes an SS$_OPCCUS fault) as having zero operands.
You may redefine XFC if needed using the instruction-definitions argument to
LIB$DECODE_FAULT.

If you do not want instruction execution to resume with the next sequential
instruction, you must modify R15 appropriately. Your user action routine then
returns to LIB$DECODE_FAULT, which restores the registers and PSL, and
resumes instruction execution. See also the LIB$_RESTART condition value in
the section called Condition Values Returned from the User Action Routine.

lib–114

LIB$ Routines
LIB$DECODE_FAULT

Note

Vector context is not saved or restored.

Exceptions Recognized by LIB$DECODE_FAULT
LIB$DECODE_FAULT recognizes the following VAX faults:

• SS$_ACCVIO, access violation.

• SS$_BREAK, breakpoint fault.

• SS$_FLTDIV_F, floating divide by zero.

• SS$_FLTOVF_F, floating overflow.

• SS$_FLTUND_F, floating underflow.

• SS$_OPCCUS, opcode reserved to customers.

• SS$_OPCDEC, opcode reserved to HP.

• SS$_ROPRAND, reserved operand.

• SS$_TBIT, T-bit pending trap. This is actually a fault caused by the TP bit
being set at the beginning of instruction execution. It allows you to interpret
all instructions by setting the PSL T-bit and allowing each instruction to
trace-fault.

All other exceptions, including SS$_COMPAT and SS$_RADRMOD, cause
LIB$DECODE_FAULT to return immediately with the return status SS$_
RESIGNAL.

SS$_COMPAT is generated by compatibility-mode instructions. LIB$DECODE_
FAULT does not handle compatibility-mode instructions.

SS$_RADRMOD is generated by a reserved addressing-mode fault.
LIB$DECODE_FAULT assumes that all instructions follow VAX addressing-mode
specifications.

Instruction Operand Definition Codes
Each instruction operand has an access type (read, write, . . .) and a data type
(byte, word, . . .) associated with it. The operand definition codes used in both
the instruction-definitions argument passed to LIB$DECODE_FAULT and in
the operand-types argument passed to the user action routine encode the access
and data types in a byte. The fields and values for operand access and data types
are described using the symbols in Table lib–3. These symbols are defined in
definition libraries supplied by HP as macro or module name $LIBDCFDEF.

lib–115

LIB$ Routines
LIB$DECODE_FAULT

Table lib–3 Symbols for Fields and Values for Operand Access and Data Types
Using LIB$DECODE_FAULT

Symbol Description

LIB$V_DCFACC The field of the operand description code that describes the
operand access type (bits 0–2).

LIB$S_DCFACC The size of the access type field (3 bits).
LIB$M_DCFACC The mask for the access type field. This is a 3-bit field that

can contain any binary value from 000 through 111. The
integer value of these bit settings defines the operand access
type code for the LIB$M_DCFACC field. Currently, six codes
are defined. These codes have symbolic names and are
explained below. It is important to remember that LIB$M_
DCFACC is not a bit mask. The values 0 through 6 do not
refer to bits 0 through 6. They represent the binary values
001 through 110 as contained in the 3-bit field.
The operand access type codes defined for the LIB$M_
DCFACC field are:
LIB$K_DCFACC_R = 1 Operand is read-only.
LIB$K_DCFACC_M = 2 Operand is to be modified.
LIB$K_DCFACC_W = 3 Operand is write-only.
LIB$K_DCFACC_A = 4 Operand is an address (must

not be a register).
LIB$K_DCFACC_V = 5 Operand is the base of a bit

field (same as address except
that it may be a register).

LIB$K_DCFACC_B = 6 Operand is a branch address.
LIB$V_DCFTYP The field of the operand descriptor code that describes the

operand data type (bits 3–7).
LIB$S_DCFTYP The size of the operand data type field (5 bits).

(continued on next page)

lib–116

LIB$ Routines
LIB$DECODE_FAULT

Table lib–3 (Cont.) Symbols for Fields and Values for Operand Access and
Data Types Using LIB$DECODE_FAULT

Symbol Description

LIB$M_DCFTYP The mask for the operand data type field. This is a 5-bit
field (bits 3–7) that can contain any binary value from 00000
through 11111. The integer value of these bit settings defines
the operand access type code for the LIB$M_DCFACC field.
Currently, nine codes are defined. These codes have symbolic
names and are explained below. It is important to remember
that LIB$M_DCFTYP is not a bit mask. The values 0
through 9 do not refer to bits 0 through 9. They represent
the binary values 00001 through 01001 as contained in the
5-bit field. The operand access type codes defined for the
LIB$V_DCFTYP field are:
LIB$K_DCFTYP_B = 1 Operand is a byte.
LIB$K_DCFTYP_W = 2 Operand is a word.
LIB$K_DCFTYP_L = 3 Operand is a longword.
LIB$K_DCFTYP_Q = 4 Operand is a quadword.
LIB$K_DCFTYP_O = 5 Operand is an octaword.
LIB$K_DCFTYP_F = 6 Operand is F_floating.
LIB$K_DCFTYP_D = 7 Operand is D_floating.
LIB$K_DCFTYP_G = 8 Operand is G_floating.
LIB$K_DCFTYP_H = 9 Operand is H_floating.

Symbols of the form LIB$K_DCFOPR_xy, where x is the access type and y is the
data type, are also defined. These combine the notions of access and data type.
For example, LIB$K_DCFOPR_MF has the following value:

50 (2+(6*8))

It denotes modify access of an F_floating item. For the branch access type, only
the types BB, BW, and BL are defined; otherwise, all combinations are available.

Call Format for a User Action Routine
LIB$DECODE_FAULT calls the user action routine when it finds an exception to
be handled. Your user action routine handles the exception in any manner that
you specify and then returns to LIB$DECODE_FAULT.

action-routine opcode ,instr-PC ,PSL ,registers ,operand-count
,operand-types ,read-operand-locations
,write-operand-locations ,signal-arguments
,signal-procedure ,context
,unspecified-user-argument ,original-registers

opcode
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

lib–117

LIB$ Routines
LIB$DECODE_FAULT

Opcode of the instruction that caused the fault. The opcode argument is the
address of a longword that contains this opcode. LIB$DECODE_FAULT supplies
this opcode when it calls the user action routine.

For 2-byte opcodes, the escape code (for example, hex FD) is in the low-order byte.
You must use this argument to examine the opcode instead of reading the bytes
pointed to by instr-PC. This is because if a debugger breakpoint has been set on
the instruction, only opcode contains the original instruction.

instr-PC
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Value of the PC for the instruction that caused the fault. The instr-PC argument
is the address of a longword that contains the PC value.

Note the difference between this value and the contents of the registers array
element that corresponds to the PC. R15 of the registers array element contains
the address of the byte after the instruction that caused the fault.

PSL
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference

Processor status longword (PSL) at the time of the fault. The PSL argument is
the address of a longword that contains this PSL. Your user action routine may
modify this PSL within the restrictions of the VAX architecture.

registers
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference, array reference

Contents of registers R0 through R15 (PC) at the time of the fault but after
operand addressing-mode processing. This includes any autoincrements or
autodecrements. The registers argument is the address of this 16-longword
array. Each longword of the registers array contains the contents of one register.

Your user action routine may modify these values. If it does, the new values will
be reflected when instruction execution continues.

To modify vector registers, execute a vector instruction. Executing a vector
instruction in the handler modifies the state of the vector processor. The state of
the vector processor is not restored when the handler returns. This has the effect
of altering the state when the execution continues.

R15 denotes the sixteenth longword in the registers array, which corresponds to
the PC. R15 contains the address of the next byte after the current instruction.
Unless this value is modified by your user action routine, instruction execution
will resume at that address. An exception is for the CASEB, CASEW, and CASEL
instructions; R15 contains the address of the first displacement word. For these
instructions, your user action routine must modify R15 to point to the next
instruction to execute.

lib–118

LIB$ Routines
LIB$DECODE_FAULT

Upon instruction completion, registers R0-R15 are restored from this array.
However, if signal-procedure is used to cause a fault or if instruction restart is
specified by returning LIB$_RESTART, original-registers is used instead.

operand-count
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Number of operands in the instruction currently being decoded. The operand-
count is the address of a longword that contains this number.

operand-types
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Array of longwords, one element for each operand, that contains the type codes
for the associated operand. The operand-types argument is the address of this
array.

The operand type codes are further defined in the section called Instruction
Operand Definition Codes.

read-operand-locations
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Array of longwords, one element for each operand, that contains the addresses of
the operands to be read. The read-operand-locations argument is the address
of this array.

The address given in the array may not be the actual address of the operand if
the operand is not a memory location. If the operand is a register, the address
indicates a copy of the register values at the time of operand evaluation. If the
operand access type is ADDRESS or FIELD and the operand is not a register,
the address is the address of the item. If the operand access type is FIELD
and the operand is a register, the address refers to the appropriate element in
the registers array. If the operand access type is BRANCH, the address is the
destination PC of the branch. For WRITE access operands, the address value is
zero.

write-operand-locations
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Array of longwords, one element for each operand, that contains the addresses
of operands that are to be written. The write-operand-locations argument is
the address of this array. If the operand access type is not MODIFY, WRITE,
ADDRESS, or FIELD, the pointer value is zero.

lib–119

LIB$ Routines
LIB$DECODE_FAULT

signal-arguments
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Signal arguments list of the original exception, as passed from OpenVMS to your
condition handler and then to LIB$DECODE_FAULT. The signal-arguments
argument is the address of an array of longwords that contains these signal
arguments.

signal-procedure
OpenVMS usage: procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

Entry mask of a routine that your user action routine must call if it wants to
report an exception for the instruction that faulted. The signal-procedure
argument is the address of this entry mask.

For further information, see the section called Call Format for a Signal Routine.

context
OpenVMS usage: context
type: unspecified
access: read only
mechanism: by value

Context in which the exception occurs, including the register and PSL contents,
to be used when calling the signal-procedure. The context argument contains
the value of this context.

unspecified-user-argument
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Optional argument passed to LIB$DECODE_FAULT. If the argument was
not specified, the value zero is substituted. The unspecified-user-argument
argument contains the value of this optional argument.

original-registers
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference, array reference

Array containing the values of registers R0 through R15 (PC) at the time of
the fault, before operand processing. The original-registers argument is the
address of this 16-longword array.

If the action routine specifies that the instruction should restart or that a fault
should be generated, the registers are restored from original-registers. See also
the description of registers above.

lib–120

LIB$ Routines
LIB$DECODE_FAULT

Condition Values Returned from the User Action Routine The user action
routine can return the following condition values to LIB$DECODE_FAULT:

Condition Value Description

SS$_CONTINUE If the user action routine returns a value of SS$_
CONTINUE, instruction execution will continue as
specified by the current contents of the registers
element for the PC.

SS$_RESIGNAL If the user action routine returns SS$_RESIGNAL, the
original exception is resignaled, with the only changes
reflected being those specified by registers elements
for R0 and R1 (which are stored in the mechanism
arguments vector), PC, and PSL. All other registers are
restored from original registers.

LIB$_RESTART If the user action routine returns LIB$_RESTART, the
current instruction is restarted with registers restored
from original-registers and a PSL from PSL. This
feature is useful for writing trace handlers.

Call Format for a Signal Routine
Your action routine calls the signal routine using this format:

signal-procedure fault-flag ,context ,signal-arguments

fault-flag
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Longword flag whose low-order bit determines whether the exception is to be
signaled as a fault or as a trap. The fault-flag argument contains the address of
this longword.

If the low-order bit of fault-flag is set to 1, the exception is signaled as a fault.
If the low-order bit of fault-flag is set to 0, the exception is signaled as a trap;
the current contents of the registers array are used. In either case, the current
contents of PSL are used to set the exception PSL.

context
OpenVMS usage: context
type: unspecified
access: read only
mechanism: by reference

Context in which the new exception is to occur, as passed to your user action
routine by LIB$DECODE_FAULT. The context argument is the address of this
context value.

signal-arguments
OpenVMS usage: arg_list
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

lib–121

LIB$ Routines
LIB$DECODE_FAULT

Signal arguments to be used. The signal-arguments argument is the address of
an array of longwords that contains these signal arguments.

The first longword contains the number of following longwords; the remainder of
the list contains signal names and arguments. Unlike the signal argument list
passed to a condition handler, no PC or PSL is present.

Before the exception is signaled, the stack frames are unwound back to the
original exception. You should be careful when causing a new signal that a loop
of faults is not inadvertently generated. For example, the condition handler that
called LIB$DECODE_FAULT will usually be called for the second signal. If the
handler does not analyze the second signal as such, it may cycle through the
identical path as for the first signal.

To resignal the current exception, have the user action routine return a value of
SS$_RESIGNAL instead of calling the signal routine (unless you want previously
called condition handlers to be called again).

Condition Values Returned

SS$_RESIGNAL Resignal condition to next handler. The exception
described by signal-arguments was not an
instruction fault handled by LIB$DECODE_
FAULT. If LIB$DECODE_FAULT can process the
fault, it does not return to its caller.

Condition Value Signaled

LIB$_INVARG Invalid argument to Run-Time Library. The
instruction definition contained more than 16
operands or an operand definition contained an
invalid data type or access code. This message
is signaled after the stack frames have been
unwound so that it appears to have been signaled
from a routine that was called by the instruction
that faulted.

Example

The following Fortran example implements a simple recovery scheme for floating
underflow and overflow faults, replacing the result of the instruction with the
correctly signed, smallest possible value for underflows or largest possible value
for overflows.

lib–122

LIB$ Routines
LIB$DECODE_FAULT

C+
C Example condition handler and user-action routine using
C LIB$DECODE_FAULT. This example demonstrates the use of
C most of the features of LIB$DECODE_FAULT. Its purpose
C is to handle floating underflow and overflow faults,
C replacing the result of the instruction with the correctly
C signed smallest possible value for underflows, or greatest
C possible value for overflows.
C
C For simplicity, faults involving the POLYx instructions are
C not handled.
C
C***
C FIXUP_RESULT is the condition handler enabled by the program
C desiring the fixup of overflows and underflows.
C***
C-

INTEGER*4 FUNCTION FIXUP_RESULT(SIGARGS, MECHARGS)

IMPLICIT NONE
INCLUDE ’($SSDEF)’ ! SS$_ symbols
INCLUDE ’($LIBDCFDEF)’ ! LIB$DECODE_FAULT symbols
INTEGER*4 SIGARGS(1:*) ! Signal arguments list
INTEGER*4 MECHARGS(1:*) ! Mechanism arguments list

C+
C This is a sample redefinition of MULH3 instruction.
C-

BYTE OPTABLE(8) /’FD’X,’65’X, ! MULH3 opcode
1 LIB$K_DCFOPR_RH, ! Read H_floating
2 LIB$K_DCFOPR_RH, ! Read H_floating
3 LIB$K_DCFOPR_WH, ! Write H_floating
4 LIB$K_DCFOPR_END, ! End of operands
5 ’FF’X,’FF’X/ ! End of instructions

INTEGER*4 LIB$DECODE_FAULT ! External function
EXTERNAL FIXUP_ACTION ! Action routine to do the fixup

C+
C Determine if the exception is one we want to handle.
C-

IF ((SIGARGS(2) .EQ. SS$_FLTOVF_F) .OR.
1 (SIGARGS(2) .EQ. SS$_FLTUND_F)) THEN

C+
C We think we can handle the fault. Call
C LIB$DECODE_FAULT and pass it the signal arguments and
C the address of our action routine and opcode table.
C-

FIXUP_RESULT = LIB$DECODE_FAULT (SIGARGS,
1 MECHARGS, %DESCR(FIXUP_ACTION),, OPTABLE)

RETURN
END IF

C+
C We can only get here if we couldn’t handle the fault.
C Resignal the exception.
C-

FIXUP_RESULT = SS$_RESIGNAL
RETURN
END

lib–123

LIB$ Routines
LIB$DECODE_FAULT

C+
C User action routine to handle the fault.
C-

INTEGER*4 FUNCTION FIXUP_ACTION (OPCODE,INSTR_PC,PSL,
1 REGISTERS,OP_COUNT,
2 OP_TYPES,READ_OPS,
3 WRITE_OPS,SIGARGS,
4 SIGNAL_ROUT,CONTEXT,
5 USER_ARG,ORIG_REGS)

IMPLICIT NONE
INCLUDE ’($SSDEF)’ ! SS$_ definitions
INCLUDE ’($PSLDEF)’ ! PSL$ definitions
INCLUDE ’($LIBDCFDEF)’ ! LIB$DECODE_FAULT

! definitions

INTEGER*4 OPCODE ! Instruction opcode
INTEGER*4 INSTR_PC ! PC of this instruction
INTEGER*4 PSL ! Processor status

! longword
INTEGER*4 REGISTERS(0:15) ! R0-R15 contents
INTEGER*4 OP_COUNT ! Number of operands
INTEGER*4 OP_TYPES(1:*) ! Types of operands
INTEGER*4 READ_OPS(1:*) ! Addresses of read operands
INTEGER*4 WRITE_OPS(1:*) ! Addresses of write operands
INTEGER*4 SIGARGS(1:*) ! Signal argument list
INTEGER*4 SIGNAL_ROUT ! Signal routine address
INTEGER*4 CONTEXT ! Signal routine context
INTEGER*4 USER_ARG ! User argument value
INTEGER*4 ORIG_REGS(0:15) ! Original registers

C+
C Declare and initialize table of class codes for each of the
C "real" opcodes. We’ll index into this by the first byte of
C one-byte opcodes, the second byte of two-byte opcodes. The
C class codes will be used in a computed GOTO (CASE). The
C codes are:
C 0 - Unsupported
C 1 - ADD
C 2 - SUB
C 3 - MUL,DIV
C 4 - ACB
C 5 - CVT
C 6 - EMOD
C
C The class mainly determines how we compute the sign of the
C result, except for ACB.
C-

BYTE INST_CLASS_TABLE(0:255)
DATA INST_CLASS_TABLE /
1 48*0, ! 00-2F
2 0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0, ! 30-3F
3 1,1,2,2,3,3,3,3,0,0,0,0,0,0,0,4, ! 40-4F
4 0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0, ! 50-5F
5 1,1,2,2,3,3,3,3,0,0,0,0,0,0,0,4, ! 60-6F
6 0,0,0,0,6,0,5,0,0,0,0,0,0,0,0,0, ! 70-7F
7 112*0, ! 80-EF
8 0,0,0,0,0,0,5,5,0,0,0,0,0,0,0,0/ ! F0-FF

C+
C Table of operand sizes in 8-bit bytes, indexed by the
C datatype code contained in the OP_TYPES array. Only floating
C types matter.
C-

BYTE OP_SIZES(9) /0,0,0,0,0,4,8,8,16/

lib–124

LIB$ Routines
LIB$DECODE_FAULT

INTEGER*4 LIB$EXTV ! External function
INTEGER*4 RESULT_NEGATIVE ! -1 if result negative,

! 0 if positive
INTEGER*4 SIGN1,SIGN2,SIGN3 ! Signs of operands
INTEGER*4 INST_BYTE ! Current opcode byte
INTEGER*4 INST_CLASS ! Class of instruction

! from table
INTEGER*4 OP_DTYPE ! Datatype of operand
INTEGER*4 OP_SIZE ! Size of operand in

! 8-bit bytes
INTEGER*4 RESULT_OP ! Position of result

! in WRITE_OPS array
LOGICAL*4 OVERFLOW ! TRUE if SS$_FLTOVF_F
LOGICAL*4 SMALLER ! Function which

! compares operands
PARAMETER ESCD = ’0FD’X ! First byte of G,H instructions

INTEGER*2 SMALL_F(2) ! Smallest F_floating
DATA SMALL_F /’0080’X,0/
INTEGER*2 SMALL_D(4) ! Smallest D_floating
DATA SMALL_D /’0080’X,0,0,0/
INTEGER*2 SMALL_G(4) ! Smallest G_floating

DATA SMALL_G /’0010’X,0,0,0/
INTEGER*2 SMALL_H(8) ! Smallest H_floating
DATA SMALL_H /’0001’X,0,0,0,0,0,0,0/
INTEGER*2 BIGGEST(8) ! Biggest value (all datatypes)
DATA BIGGEST /’7FFF’X,7*’FFFF’X/

INTEGER*4 SIGNAL_ARRAY(2) ! Array for signalling new
! exception

C+
C
C NOTE: Because the operands arrays contain the locations of
C the operands, rather than the operands themselves,
C we must call a routine using the %VAL function to
C "fool" the called routine into considering the
C contents of an operands array element as the address
C of an item. This would not be necessary in a
C language that understood the concept of pointer
C variables, such as PASCAL.
C
C
C If FPD is set in the PSL, signal SS$_ROPRAND (reserved operand). In
C reality this shouldn’t happen since none of the instructions we
C handle can set FPD, but do it as an example.
C-

IF (BTEST(PSL,PSL$V_FPD)) THEN
SIGNAL_ARRAY(1) = 1 ! Count of signal arguments
SIGNAL_ARRAY(2) = SS$_ROPRAND ! Error status value
CALL SIGNAL_ROUT (

1 1, ! Fault flag - signal as fault
2 SIGNAL_ARRAY, ! Signal arguments array
3 CONTEXT) ! Context as passed to us

! Call will never return
END IF

C+
C Set OVERFLOW according to the exception type. We assume that
C the only alternatives are SS$_FLTOVF_F and SS$_FLTUND_F.
C-

OVERFLOW = (SIGARGS(2) .EQ. SS$_FLTOVF_F)

lib–125

LIB$ Routines
LIB$DECODE_FAULT

C+
C Determine the datatype of the instruction by that of its
C second operand, since that is always the type of the
C destination.
C-

OP_DTYPE = IBITS(OP_TYPES(2),LIBV_DCFTYP,LIBS_DCFTYP)

C+
C Get the size of the datatype in words.
C-

OP_SIZE = OP_SIZES (OP_DTYPE)

C+
C Determine the class of instruction and dispatch to the
C appropriate routine.
C-

INST_BYTE = IBITS(OPCODE,0,8) ! Get first byte
IF (INST_BYTE .EQ. ESCD) INST_BYTE = IBITS(OPCODE,8,8)
INST_CLASS = INST_CLASS_TABLE(INST_BYTE)
GO TO (1000,2000,3000,4000,5000,6000),INST_CLASS

C+
C If we get here, the instruction’s entry in the
C INST_CLASS_TABLE is zero. This might happen if the instruction was
C a POLYx, or was some other unsupported instruction. Resignal the
C original exception.
C-

FIXUP_ACTION = SS$_RESIGNAL ! Resignal condition to next handler
RETURN ! Return to LIB$DECODE_FAULT

C+
C 1000 - ADDF2, ADDF3, ADDD2, ADDD3, ADDG2, ADDG3, ADDH2, ADDH3
C
C Result’s sign is the same as that of the first operand,
C unless this is an underflow, in which case the magnitudes of
C the values may change the sign.
C-

1000 RESULT_NEGATIVE = LIB$EXTV (15,1,%VAL(READ_OPS(1)))
IF (.NOT. OVERFLOW) THEN
IF (SMALLER(OP_SIZE,%VAL(READ_OPS(1)),

1 %VAL(READ_OPS(2))))
2 RESULT_NEGATIVE = .NOT. RESULT_NEGATIVE
END IF

GO TO 9000

C+
C 2000 - SUBF2, SUBF3, SUBD2, SUBD3, SUBG2, SUBG3, SUBH2, SUBH3
C
C Result’s sign is the opposite of that of the first operand,
C unless this is an underflow, in which case the magnitudes of
C the values may change the sign.
C-

2000 RESULT_NEGATIVE = .NOT. LIB$EXTV (15,1,%VAL(READ_OPS(1)))
IF (.NOT. OVERFLOW) THEN
IF (SMALLER(OP_SIZE,%VAL(READ_OPS(1)),

1 %VAL(READ_OPS(2))))
2 RESULT_NEGATIVE = .NOT. RESULT_NEGATIVE
END IF

GO TO 9000

lib–126

LIB$ Routines
LIB$DECODE_FAULT

C+
C 3000 - MULF2, MULF3, MULD2, MULD3, MULG2, MULG3, MULH2, MULH3,
C DIVF2, DIVF3, DIVD2, DIVD3, DIVG2, DIVG3, DIVH2, DIVH3,
C
C If the signs of the first two operands are the same, then the
C result’s sign is positive, if they are not it is negative.
C-

3000 SIGN1 = LIB$EXTV (15,1,%VAL(READ_OPS(1)))
SIGN2 = LIB$EXTV (15,1,%VAL(READ_OPS(2)))
RESULT_NEGATIVE = SIGN1 .XOR. SIGN2

GOTO 9000

C+
C 4000 - ACBF, ACBD, ACBG, ACBH
C
C The result’s sign is the same as that of the second operand
C (addend), unless this is underflow, in which case the
C magnitudes of the addend and index may change the sign.
C We must also determine if the branch is to be taken.
C-

4000 SIGN2 = LIB$EXTV (15,1,%VAL(READ_OPS(2)))
RESULT_NEGATIVE = SIGN2
IF (.NOT. OVERFLOW) THEN
IF (SMALLER(OP_SIZE,%VAL(READ_OPS(2)),

1 %VAL(READ_OPS(3))))
2 RESULT_NEGATIVE = .NOT. RESULT_NEGATIVE
END IF

C+
C If this is overflow, then the branch is not taken, since the
C result is always going to be greater or equal in magnitude
C to the limit, and will be the correct sign. If underflow,
C the branch is ALMOST always taken. The only case where the
C branch might not be taken is when the result is exactly
C equal to the limit. For this example, we are going to ignore
C this exceptional case.
C-

IF (.NOT. OVERFLOW)
1 REGISTERS(15) = READ_OPS(4) ! Branch destination
GO TO 9000

C+
C 5000 - CVTDF, CVTGF, CVTHF, CVTHD, CVTHG
C
C Result’s sign is the same as that of the first operand.
C-

5000 RESULT_NEGATIVE = LIB$EXTV (15,1,%VAL(READ_OPS(1)))
GO TO 9000

C+
C 6000 - EMODF, EMODD, EMODG, EMODH
C
C If the signs of the first and third operands are the same, then the
C result’s sign is positive, else it is negative.
C-

6000 SIGN1 = LIB$EXTV (15,1,%VAL(READ_OPS(1)))
SIGN2 = LIB$EXTV (15,1,%VAL(READ_OPS(3)))
RESULT_NEGATIVE = SIGN1 .XOR. SIGN2
GOTO 9000

lib–127

LIB$ Routines
LIB$DECODE_FAULT

C+
C All code paths merge here to store the result value. We also
C set the PSL appropriately. First, determine which operand is
C the result.
C-

9000 RESULT_OP = OP_COUNT
IF (INST_CLASS .EQ. 4)
1 RESULT_OP = RESULT_OP - 1 ! ACBx

C+
C Select result based on datatype and exception type.
C-

IF (OVERFLOW) THEN
CALL LIB$MOVC3 (OP_SIZE,BIGGEST,%VAL(WRITE_OPS(RESULT_OP)))

ELSE
GO TO (9100,9200,9300,9400), OP_DTYPE-(LIB$K_DCFTYP_F-1)

C+
C Should never get here. Resignal original exception.
C-

FIXUP_ACTION = SS$_RESIGNAL
RETURN

C+
C 9100 - F_floating result
C-

9100 CALL LIB$MOVC3 (OP_SIZE,SMALL_F,%VAL(WRITE_OPS(RESULT_OP)))
GOTO 9500

C+
C 9200 - D_floating result
C-

9200 CALL LIB$MOVC3 (OP_SIZE,SMALL_D,%VAL(WRITE_OPS(RESULT_OP)))
GOTO 9500

C+
C 9300 - G_floating result
C-

9300 CALL LIB$MOVC3 (OP_SIZE,SMALL_G,%VAL(WRITE_OPS(RESULT_OP)))
GOTO 9500

C+
C 9400 - H_floating result
C-

9400 CALL LIB$MOVC3 (OP_SIZE,SMALL_H,%VAL(WRITE_OPS(RESULT_OP)))
GOTO 9500

9500 END IF

C+
C Modify the PSL to reflect the stored result. If the result was
C negative, set the N bit. Clear the V (overflow) and Z (zero) bits.
C If the instruction was an ACBx, leave the C (carry) bit unchanged,
C otherwise clear it.
C-

IF (RESULT_NEGATIVE) THEN
PSL = IBSET (PSL,PSL$V_N) ! Set N bit

ELSE

lib–128

LIB$ Routines
LIB$DECODE_FAULT

PSL = IBCLR (PSL,PSL$V_N) ! Clear N bit
END IF
PSL = IBCLR (PSL,PSL$V_V) ! Clear V bit
PSL = IBCLR (PSL,PSL$V_Z) ! Clear Z bit
IF (INST_CLASS .NE. 4)
1 PSL = IBCLR (PSL,PSL$V_C) ! Clear C bit if not ACBx

C+
C Set the sign of result.
C-

IF (RESULT_NEGATIVE)
1 CALL LIB$INSV (1,15,1,%VAL(WRITE_OPS(RESULT_OP)))

C+
C Fixup is complete. Return to LIB$DECODE_FAULT.
C-

FIXUP_ACTION = SS$_CONTINUE
RETURN
END

C+
C Function which compares two floating values. It returns .TRUE. if
C the first argument is smaller in magnitude than the second.
C-

LOGICAL*4 FUNCTION SMALLER(NBYTES,VAL1,VAL2)

INTEGER*4 NBYTES ! Number of bytes in values
INTEGER*2 VAL1(*),VAL2(*) ! Floating values to compare
INTEGER*4 WORDA,WORDB

SMALLER = .TRUE. ! Initially return true

C+
C Zero extend to a longword for unsigned compares.
C Compare first word without sign bit.
C-

WORDA = IBCLR(ZEXT(VAL1(1)),15)
WORDB = IBCLR(ZEXT(VAL2(1)),15)
IF (WORDA .LT. WORDB) RETURN

DO I=2,NBYTES/2
WORDA = ZEXT(VAL1(I))
WORDB = ZEXT(VAL2(I))
IF (WORDA .LT. WORDB) RETURN
END DO

SMALLER = .FALSE. ! VAL1 not smaller than VAL2
RETURN
END

lib–129

LIB$ Routines
LIB$DEC_OVER

LIB$DEC_OVER
Enable or Disable Decimal Overflow Detection

The Enable or Disable Decimal Overflow Detection routine enables or disables
decimal overflow detection for the calling routine activation. The previous decimal
overflow setting is returned. †

This routine is available on OpenVMS Alpha and I64 systems in translated form
and is applicable to translated VAX images only.

Format

LIB$DEC_OVER new-setting

Returns

OpenVMS usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The old decimal overflow enable setting (the previous contents of SF$W_
PSW[PSW$V_DV] in the caller’s frame).

Argument

new-setting
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

New decimal overflow enable setting. The new-setting argument is the address
of an unsigned longword that contains the new decimal overflow enable setting.
Bit 0 set to 1 means enable; bit 0 set to 0 means disable.

Description

The caller’s stack frame is modified by this routine.

A call to LIB$DEC_OVER affects only the current routine activation and does not
affect any of its callers or any routines that it may call. However, the setting does
remain in effect for any routines that are subsequently entered through a JSB
entry point.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–130

LIB$ Routines
LIB$DEC_OVER

Example

DECOVF: ROUTINE OPTIONS (MAIN);

DECLARE LIB$DEC_OVER ENTRY (FIXED BINARY (7)) /* Address of byte for
/* enable/disable
/* setting */

RETURNS (FIXED BINARY (31)); /* Old setting */

DECLARE DISABLE FIXED BINARY (7) INITIAL (0) STATIC READONLY;
DECLARE RESULT FIXED BINARY (31);
DECLARE (A,B) FIXED DECIMAL (4,2);

ON FIXEDOVERFLOW PUT SKIP LIST (’Overflow’);

RESULT = LIB$DEC_OVER (DISABLE); /* Disable recognition of decimal
/* overflow in this block */

A = 99.99;
B = A + 2;
PUT SKIP LIST (’In MAIN’);

BEGIN;
B = A + 2;
PUT LIST (’In BEGIN block’);
CALL Q;

Q: ROUTINE;
B = A + 2;
PUT LIST (’In Q’);
END Q;

END /* Begin */;
END DECOVF;

This PL/I program shows how to use LIB$DEC_OVER to enable or disable the
detection of decimal overflow. Note that in PL/I, disabling decimal overflow
using this routine causes the condition to be disabled only in the current block;
descendent blocks will enable the condition unless this routine is called in each
block.

lib–131

LIB$ Routines
LIB$DELETE_FILE

LIB$DELETE_FILE
Delete One or More Files

The Delete One or More Files routine deletes one or more files. The specification
of the files to be deleted may include wildcards.

LIB$DELETE_FILE is similar in function to the DCL command DELETE.

Format

LIB$DELETE_FILE filespec [,default-filespec] [,related-filespec] [,user-success-procedure]
[,user-error-procedure] [,user-confirm-procedure] [,user-specified-argument]
[,resultant-name] [,file-scan-context] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String containing the OpenVMS Record Management Services (RMS) file
specification of the files to be deleted. The filespec argument is the address
of a descriptor pointing to the file specification. If the specification includes
wildcards, each file that matches the specification is deleted. If running on Alpha
or I64 and flag LIB$M_FIL_LONG_NAMES is set, the string must not contain
more characters than specified by NAML$C_MAXRSS, otherwise the string must
not contain more than 255 characters. Any string class is supported.

default-filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Default file specification of the files to be deleted. The default-filespec argument
is the address of a descriptor pointing to the default file specification. This is an
optional argument; if the argument is omitted, the default is the null string. Any
string class is supported.

See the OpenVMS Record Management Services Reference Manual for information
about default file specifications.

related-filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

lib–132

LIB$ Routines
LIB$DELETE_FILE

Related file specification of the files to be deleted. The related-filespec argument
is the address of a descriptor pointing to the related file specification. Any string
class is supported. This is an optional argument; if the argument is omitted, the
default is the null string.

Input file parsing is used. See the OpenVMS Record Management Services
Reference Manual for information on related file specifications and input file
parsing.

The related file specification is useful when you are processing lists of file
specifications. Unspecified portions of the file specification are inherited from the
last file processed.

user-success-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied success routine that LIB$DELETE_FILE calls after it successfully
deletes a file.

The success routine can be used to display a log of the files that were deleted. For
more information on the success routine, see Call Format for a Success Routine
in the Description section.

user-error-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied error routine that LIB$DELETE_FILE calls when it detects an
error.

The error routine returns a success/fail value that LIB$DELETE_FILE uses to
determine if more files should be processed. For more information on the error
routine, see Call Format for an Error Routine in the Description section.

user-confirm-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied confirm routine that LIB$DELETE_FILE calls before each file is
deleted. The value returned by the confirm routine determines whether or not
the file will be deleted. The confirm routine can be used to select specific files
for deletion based on criteria such as expiration date, size, and so on. For more
information about the confirm routine, see Call Format for a Confirm Routine in
the Description section.

user-specified-argument
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

lib–133

LIB$ Routines
LIB$DELETE_FILE

User-supplied argument that LIB$DELETE_FILE passes to the error, success,
and confirm routines each time they are called. Whatever mechanism is used to
pass user-specified-argument to LIB$DELETE_FILE is also used to pass it to
the routines. This is an optional argument; if the argument is omitted, zero is
passed by value.

resultant-name
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String into which LIB$DELETE_FILE writes the RMS resultant file specification
of the last file processed. The resultant-name argument is the address of a
descriptor pointing to the resultant name.

If present, resultant-name is used to store the file specification passed to the
user-supplied routines, instead of a default class S, type T string. Therefore, this
argument should be specified when the user-supplied routines are used and those
routines require a descriptor type other than class S, type T. Any string class is
supported.

If you specify one or more of the user-supplied action routines, the descriptor used
to pass resultant-name must be:

• Of the same class as the descriptor required by the filespec argument of any
action routines. For example, VAX Ada requires a class SB descriptor for
string arguments to Ada routines but will use a class A descriptor by default
when calling external routines. Refer to your language manual to determine
the proper descriptor class to use.

• (Alpha and I64 only) Of the same form as the descriptor required by the
filespec argument of all action routines. For example, if the filespec
argument of an action routine uses a 64-bit descriptor, then the resultant-
name argument must also use a 64-bit descriptor.

file-scan-context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context for deleting a list of file specifications. The file-scan-context argument
is the address of a longword containing the context value.

You must initialize the file scan context to zero before the first of a series of calls
to LIB$DELETE_FILE. LIB$FILE_SCAN uses this context to retain the file
context for multiple input files. You must specify this context only when you are
dealing with multiple input files, as the DCL command DELETE does. You may
deallocate the context allocated by LIB$FILE_SCAN by calling LIB$FILE_SCAN_
END after all calls to LIB$DELETE_FILE have been completed.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

lib–134

LIB$ Routines
LIB$DELETE_FILE

User flags. The flags argument is the address of an unsigned longword
containing the user flags.

The flag bits and their corresponding symbols are described in the following table:

Bit Symbol Description

0 Reserved to HP.
1 Reserved to HP.
2 LIB$M_FIL_LONG_NAMES (Alpha or I64 only) If set, LIB$DELETE_

FILE can process file names with a
maximum length of NAML$C_MAXRSS.
If clear, LIB$DELETE_FILE can process
file specifications with a maximum length
of 255 (default).

Description

This Description section is divided into the following parts:

• Call Format for a Success Routine

• Call Format for an Error Routine

• Call Format for a Confirm Routine

Call Format for a Success Routine
The success routine is called only if the user-success-procedure argument was
specified in the LIB$DELETE_FILE argument list.

The calling format of a success routine is as follows:

user-success-procedure filespec [,user-specified-argument]

filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the file being deleted. The filespec argument
is the address of a descriptor pointing to the file specification. If the resultant-
name argument was specified, it is used to pass the string to the success routine.
Otherwise, a class S, type T string is passed. Any string class is supported.

On Alpha and I64 systems, the descriptor specified by each of the action routines
for the filespec argument and the descriptor specified by the LIB$DELETE_FILE
resultant-name argument, if any, must be of the same form. They must all be
32-bit descriptors or all 64-bit descriptors. If you do not specify a resultant-
name argument, then the filespec argument must use a 32-bit descriptor.

user-specified-argument
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: unspecified

lib–135

LIB$ Routines
LIB$DELETE_FILE

Value of user-specified-argument passed by LIB$DELETE_FILE to the success
routine. The same passing mechanism that was used to pass user-specified-
argument to LIB$DELETE_FILE is used by LIB$DELETE_FILE to pass
user-specified-argument to the success routine. This is an optional argument.

Call Format for an Error Routine
The error routine is called only if the user-error-procedure argument was
specified in the LIB$DELETE_FILE argument list.

The calling format of an error routine is as follows:

user-error-procedure filespec ,rms-sts ,rms-stv ,error-source [,user-specified-argument]

filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String containing the RMS resultant file specification of the file being deleted. If
resultant-name was specified, it is used to pass the string to the error routine.
Otherwise, a class S, type T string is passed. Any string class is supported.

On Alpha and I64 systems, the descriptor specified by each of the action routines
for the filespec argument and the descriptor specified by the LIB$DELETE_FILE
resultant-name argument, if any, must be of the same form. They must all be
32-bit descriptors or all 64-bit descriptors. If you specify no resultant-name
argument, then the filespec argument must use a 32-bit descriptor.

rms-sts
OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

Primary condition code (FAB$L_STS) that describes the error that occurred. The
rms-sts argument is the address of an unsigned longword that contains the
primary condition code.

rms-stv
OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

Secondary condition code (FAB$L_STV) that describes the error that occurred.
The rms-stv argument is the address of an unsigned longword that contains the
secondary condition code.

error-source
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Integer code that indicates the point at which the error was found. The error-
source argument is the address of a longword integer containing the code of the
error source.

lib–136

LIB$ Routines
LIB$DELETE_FILE

Possible values for the error code are as follows:

0 Error searching for file specification
1 Error deleting file

user-specified-argument
OpenVMS usage: user_arg
type: unspecified
access: read only
mechanism: unspecified

Value passed to LIB$DELETE_FILE that is then passed to user-error-
procedure using the same passing mechanism that was used to pass it to
LIB$DELETE_FILE. This is an optional argument.

If the error routine returns a success status (bit 0 set), then LIB$DELETE_
FILE continues processing files. If a failure status (bit 0 clear) is returned, then
processing ceases immediately, and LIB$DELETE_FILE returns with the error
status.

If the user-error-procedure argument is not specified, LIB$DELETE_FILE
returns to its caller the most severe error status encountered while deleting
the files. If the error routine is called for an error, the success status LIB$_
ERRROUCAL is returned.

The error routine is not called for errors related to string copying.

Call Format for a Confirm Routine
The confirm routine is called only if the user-confirm-procedure argument was
specified in the call to LIB$DELETE_FILE.

The calling format of the confirm routine is as follows:

user-confirm-procedure filespec ,fab [,user-specified-argument]

filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the file to be deleted. The filespec argument
is the address of a descriptor pointing to the file specification.

If resultant-name was specified, it is used to pass the string to the confirm
routine. Otherwise, a class S, type T string is passed. Any string class is
supported.

On Alpha and I64 systems, the descriptor specified by each of the action routines
for the filespec argument and the descriptor specified by the LIB$DELETE_FILE
resultant-name argument, if any, must be of the same form. They must all be
32-bit descriptors or all 64-bit descriptors. If you do not specify a resultant-
name argument, then the filespec argument must use a 32-bit descriptor.

fab
OpenVMS usage: fab
type: unspecified
access: read only
mechanism: by reference

lib–137

LIB$ Routines
LIB$DELETE_FILE

RMS file access block (FAB) that describes the file being deleted. Your program
may perform an RMS $OPEN on the FAB to obtain file attributes to determine
whether the file should be deleted, but it must close the file with $CLOSE before
returning to LIB$DELETE_FILE.

On Alpha and I64 systems, if the LIB$M_FIL_LONG_NAMES FLAGS is set, the
FAB references a NAML block rather than a NAM block. The NAML block
supports the use of long file names with a maximum length of NAML$C_
MAXRSS. See the OpenVMS Record Management Services Reference Manual
for information on NAML blocks.

user-specified-argument
OpenVMS usage: user_arg
type: unspecified
access: read only
mechanism: unspecified

The value of the user-specified-argument argument that LIB$DELETE_FILE
passes to the confirm routine using the same passing mechanism that was used
to pass it to LIB$DELETE_FILE. This is an optional argument.

If confirm routine returns a success status (bit 0 set), the file is then deleted;
otherwise, the file is not deleted.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_ERRROUCAL Success, but an error routine was called. A file

error was encountered, but the error routine was
called to handle the condition.

LIB$INVARG Invalid argument. The flags argument has one
or more undefined bits set.

LIB$_INVFILSPE Invalid file specification. Filespec or default-
filespec is longer than 4095 characters.

LIB$_INVSTRDES Invalid string descriptor. The descriptor for a
string argument was not a valid string descriptor.

LIB$_WRONUMARG Wrong number of arguments. An incorrect
number of arguments was passed to
LIB$DELETE_FILE.

Any condition value returned by LIB$SCOPY_xxx except those condition values
specifying truncation errors.

Any condition value returned by RMS. If user-error-procedure is not specified,
this is the most severe of the RMS errors encountered while deleting the files.

Example

PROGRAM DELETE_EXAMPLE(INPUT, OUTPUT);

{+}
{ Declare external function LIB$DELETE_FILE. Throughout this
{ example, the user-arg argument is not used.
{-}

lib–138

LIB$ Routines
LIB$DELETE_FILE

FUNCTION LIB$DELETE_FILE(
FILESPEC: VARYING [A] OF CHAR;
DEFAULT_FILESPEC: VARYING [B] OF CHAR;
REL_FILESPEC : VARYING [D] OF CHAR;
%IMMED [UNBOUND] ROUTINE SUCCESS_ROUTINE

(FILESPEC : VARYING [A] OF CHAR) := %IMMED 0;
%IMMED [UNBOUND] FUNCTION ERROR_ROUTINE

(FILESPEC : VARYING [A] OF CHAR; RMS_STS, RMS_STV : INTEGER)
: BOOLEAN := %IMMED 0;

%IMMED [UNBOUND] FUNCTION CONFIRM_ROUTINE
(FILESPEC: VARYING [A] OF CHAR): BOOLEAN := %IMMED 0;

VAR USER_ARG : [UNSAFE] INTEGER := %IMMED 0;
VAR RESULT_NAME : VARYING [C] OF CHAR := %IMMED 0

) : INTEGER; EXTERN;

{+}
{ Declare a routine which will display the names of the files
{ as they are deleted.
{-}

ROUTINE LOG_ROUTINE(FILESPEC : VARYING [A] OF CHAR);
BEGIN

WRITELN(’File ’, FILESPEC, ’ successfully deleted’);
END;

{+}
{ Declare a routine which will notify the user that an error
{ occurred.
{-}

FUNCTION ERR_ROUTINE(FILESPEC: VARYING [A] OF CHAR;
RMS_STS, RMS_STV: INTEGER): BOOLEAN;

BEGIN
WRITELN(’Delete of ’, FILESPEC, ’ failed ’, HEX(RMS_STS));
ERR_ROUTINE := TRUE;

END;

{+}
{ Declare a routine which checks to see if the file should be
{ deleted. If the filename contains the string ’XYZ’, then it is
{ deleted.
{-}

FUNCTION CONFIRM_ROUTINE(FILESPEC: VARYING [A] OF CHAR): BOOLEAN;
BEGIN

IF INDEX(FILESPEC, ’XYZ’) <> 0
THEN

CONFIRM_ROUTINE := TRUE
ELSE

CONFIRM_ROUTINE := FALSE;
END;

{+}
{ The main program begins here.
{-}

VAR
FILES_TO_DELETE, RESULTANT_NAME : VARYING [255] OF CHAR;
RET_STATUS : INTEGER;

lib–139

LIB$ Routines
LIB$DELETE_FILE

BEGIN
WRITE (’Files to delete: ’);
READLN(FILES_TO_DELETE);
RET_STATUS := LIB$DELETE_FILE(

FILES_TO_DELETE, ’*;’, ’’, LOG_ROUTINE, ERR_ROUTINE,
CONFIRM_ROUTINE,,RESULTANT_NAME);

IF NOT ODD(RET_STATUS)
THEN

WRITELN(’Delete failed. The error was ’, HEX(RET_STATUS));
END.

This Pascal program prompts the user for file specifications of files to be deleted.
Of those, it deletes only files that contain the string XYZ somewhere in their
resultant file specification. The names of deleted files are displayed.

lib–140

LIB$ Routines
LIB$DELETE_LOGICAL

LIB$DELETE_LOGICAL
Delete Logical Name

The Delete Logical Name routine requests the calling process’ command
language interpreter (CLI) to delete a supervisor-mode process logical name.
LIB$DELETE_LOGICAL provides the same function as the DCL command
DEASSIGN.

Format

LIB$DELETE_LOGICAL logical-name [,table-name]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

logical-name
OpenVMS usage: logical_name
type: character string
access: read only
mechanism: by descriptor

Logical name to be deleted. The logical-name argument is the address of a
descriptor pointing to this logical name string. The maximum length of a logical
name is 255 characters.

table-name
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the table from which the logical name is to be deleted. The table-name
argument is the address of a descriptor pointing to this name string. This is
an optional argument. If the argument is omitted, the LNM$PROCESS table is
used.

Description

LIB$DELETE_LOGICAL requests the calling process’s command language
interpreter (CLI) to delete a supervisor-mode process logical name. If the optional
table-name argument is defined, the logical name is deleted from that table.
Otherwise, the logical name is deleted from the LNM$PROCESS table.

Unlike the system service $DELLOG and $DELLNM, LIB$DELETE_LOGICAL
does not require the caller to be executing in supervisor mode to delete a
supervisor-mode logical name.

This routine is supported for use with the DCL and MCR command language
interpreters.

lib–141

LIB$ Routines
LIB$DELETE_LOGICAL

This routine does not support the DCL DEFINE and DEASSIGN commands’
special side effect of opening and closing a process-permanent file if the logical
name ‘‘SYS$OUTPUT’’ is specified.

If an image is run directly as a subprocess or as a detached process, there is no
CLI present to perform this function. In that case, the error status LIB$_NOCLI
is returned.

See the HP OpenVMS DCL Dictionary for a description of the DCL command
DEASSIGN.

Condition Values Returned

SS$_ACCVIO Access violation. The logical name could not be
read.

SS$_IVLOGNAM Invalid logical name. The logical name contained
illegal characters or more than 255 characters.

SS$_IVLOGTAB Invalid logical name table
SS$_NOLOGNAM No logical name match. The logical name was

not defined as a supervisor-mode process logical
name.

SS$_NOPRIV No privilege for attempted operation.
SS$_NORMAL Routine successfully completed.
SS$_TOOMANYLNAM Logical name translation exceeded allowed depth.
LIB$_INVSTRDES Invalid string descriptor. A string descriptor has

an invalid value in its CLASS field.
LIB$_NOCLI No CLI present to perform function. The calling

process did not have a CLI to perform the
function, or the CLI did not support the request
type. Note that an image run as a subprocess or
detached process does not have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an
error status that was not recognized. This error
may be caused by use of a nonstandard CLI. If
this error occurs while using the DCL command
language interpreter, please report the problem
to your HP support representative.

lib–142

LIB$ Routines
LIB$DELETE_SYMBOL

LIB$DELETE_SYMBOL
Delete CLI Symbol

The Delete CLI Symbol routine requests the calling process’s command language
interpreter (CLI) to delete an existing CLI symbol.

Format

LIB$DELETE_SYMBOL symbol [,table-type-indicator]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

symbol
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the symbol to be deleted by LIB$DELETE_SYMBOL. The symbol
argument is the address of a descriptor pointing to this symbol string. The
symbol name is converted to uppercase, and trailing blanks are removed before
use.

Symbol must begin with a letter, a digit, a dollar sign ($), a hyphen (-), or an
underscore (_). The maximum length of symbol is 255 characters.

table-type-indicator
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Indicator of the table that contains the symbol to be deleted. The table-type-
indicator argument is the address of a signed longword integer that is this table
indicator.

If table-type-indicator is omitted, the local symbol table is used. The following
are possible values for the table-type-indicator argument:

Symbolic Name Value Table Used

LIB$K_CLI_LOCAL_SYM 1 Local symbol table
LIB$K_CLI_GLOBAL_SYM 2 Global symbol table

lib–143

LIB$ Routines
LIB$DELETE_SYMBOL

Description

LIB$DELETE_SYMBOL is supported for use with the DCL CLI. The error status
LIB$_NOCLI is returned if LIB$DELETE_SYMBOL is used with the MCR CLI
or called from an image run directly as a subprocess or as a detached process.

LIB$K_CLI_LOCAL_SYM and LIB$K_CLI_GLOBAL_SYM are defined in symbol
libraries supplied by HP (macro or module name $LIBCLIDEF) and as global
symbols.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error. An internal consistency

check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to HP.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

LIB$_INVARG Invalid argument. The value of table-type-
indicator was invalid.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

LIB$_INVSYMNAM Invalid symbol name. The symbol name
contained more than 255 characters or did
not begin with a letter, a digit, a dollar sign, a
hyphen, or an underscore.

LIB$_NOCLI No CLI present to perform the function. The
calling process did not have a CLI to perform the
function, or the CLI did not support the request
type. Note that an image run as a subprocess or
detached process does not have a CLI.

LIB$_NOSUCHSYM No such symbol. The symbol was not defined.
LIB$_UNECLIERR Unexpected CLI error. The CLI returned an

error status that was not recognized. This error
may be caused by use of a nonstandard CLI. If
this error occurs while using the DCL command
language interpreter, please report the problem
to your HP support representative.

lib–144

LIB$ Routines
LIB$DELETE_VM_ZONE

LIB$DELETE_VM_ZONE
Delete Virtual Memory Zone

The Delete Virtual Memory Zone routine deletes a zone from the 32-bit virtual
address space and returns all pages on VAX systems or pagelets on Alpha and I64
systems owned by the zone to the processwide 32-bit page pool. †

Format

LIB$DELETE_VM_ZONE zone-id

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

zone-id
OpenVMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id is the address of a longword that contains the
identifier of a zone created by a previous call to LIB$CREATE_VM_ZONE or
LIB$CREATE_USER_VM_ZONE.

Description

LIB$DELETE_VM_ZONE deletes a zone and returns all pages on VAX systems
or pagelets on Alpha and I64 systems owned by the zone to the processwide pool
managed by LIB$GET_VM_PAGE. The pages or pagelets are then available for
reallocation by later calls to LIB$GET_VM or LIB$GET_VM_PAGE.

It takes less time to free memory in a single operation by calling LIB$DELETE_
VM_ZONE than to individually account for and free every block of memory that
was allocated by calling LIB$GET_VM.

You must ensure that your program is no longer using any of the memory in the
zone before you call LIB$DELETE_VM_ZONE. Your program must not do any
further operations on the zone after you call LIB$DELETE_VM_ZONE.

If you specified deallocation filling when you created the zone, LIB$DELETE_
VM_ZONE will fill all of the allocated blocks that are freed.

If the zone you are deleting was created using the LIB$CREATE_USER_VM_
ZONE routine, then you must have an appropriate action routine for the delete
operation. That is, in your call to LIB$CREATE_USER_VM_ZONE, you must
have specified a user-delete-procedure.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–145

LIB$ Routines
LIB$DELETE_VM_ZONE

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR An invalid zone-id argument or a corrupted

zone.

lib–146

LIB$ Routines
LIB$DELETE_VM_ZONE_64 (Alpha and I64 Only)

LIB$DELETE_VM_ZONE_64 (Alpha and I64 Only)
Delete Virtual Memory Zone

The Delete Virtual Memory Zone routine deletes a zone from the 64-bit virtual
address space and returns all Alpha and I64 system pagelets owned by the zone
to the processwide 64-bit page pool.

Format

LIB$DELETE_VM_ZONE_64 zone-id

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

zone-id
OpenVMS usage: identifier
type: quadword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id is the address of a quadword that contains the
identifier of a zone created by a previous call to LIB$CREATE_VM_ZONE_64 or
LIB$CREATE_USER_VM_ZONE_64.

Description

LIB$DELETE_VM_ZONE_64 deletes a zone and returns all pagelets on Alpha
and I64 systems owned by the zone to the processwide pool managed by
LIB$GET_VM_PAGE_64. The pagelets are then available for reallocation by
later calls to LIB$GET_VM_64 or LIB$GET_VM_PAGE_64.

It takes less time to free memory in a single operation by calling LIB$DELETE_
VM_ZONE_64 than to individually account for and free every block of memory
that was allocated by calling LIB$GET_VM_64.

You must ensure that your program is no longer using any of the memory in the
zone before you call LIB$DELETE_VM_ZONE_64. Your program must not do
any further operations on the zone after you call LIB$DELETE_VM_ZONE_64.

If you specified deallocation filling when you created the zone, LIB$DELETE_
VM_ZONE_64 will fill all of the allocated blocks that are freed.

If the zone you are deleting was created using the LIB$CREATE_USER_VM_
ZONE_64 routine, then you must have an appropriate action routine for the
delete operation. That is, in your call to LIB$CREATE_USER_VM_ZONE_64,
you must have specified a user-delete-procedure.

lib–147

LIB$ Routines
LIB$DELETE_VM_ZONE_64 (Alpha and I64 Only)

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR An invalid zone-id argument or a corrupted

zone.

lib–148

LIB$ Routines
LIB$DIGIT_SEP

LIB$DIGIT_SEP
Get Digit Separator Symbol

The Get Digit Separator Symbol routine returns the system’s digit separator
symbol.

Format

LIB$DIGIT_SEP digit-separator-string [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

digit-separator-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Digit separator symbol returned by LIB$DIGIT_SEP. The digit-separator-string
argument is the address of a descriptor pointing to the digit separator.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters written into digit-separator-string, not counting padding
in the case of a fixed-length string. The resultant-length argument is the
address of an unsigned word containing the length of the digit separator symbol.
If the input string is truncated to the size specified in the digit-separator-string
descriptor, resultant-length is set to this size. Therefore, resultant-length can
always be used by the calling program to access a valid substring of digit-
separator-string.

Description

LIB$DIGIT_SEP returns the symbol that is used to separate groups of three
digits in the integer part of a number, for readability. A common digit separator
is a comma (,) as in 3,006,854.

LIB$DIGIT_SEP attempts to translate the logical name SYS$DIGIT_SEP as
a process, group, or system logical name. If the translation fails, LIB$DIGIT_
SEP returns a comma (,), the United States digit separator. If the translation
succeeds, the text produced is returned. Thus, a system manager can define
SYS$DIGIT_SEP as a systemwide logical name to provide a default for all users,
and an individual user with a special need can define SYS$DIGIT_SEP as a
process logical name to override the default symbol. For example, you may want
to use the European digit separator, the period (.).

lib–149

LIB$ Routines
LIB$DIGIT_SEP

BASIC implicitly uses LIB$DIGIT_SEP.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error. An internal consistency

check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to HP.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

LIB$_STRTRU Successfully completed, but the digit separator
string was truncated.

Example

PROGRAM DIGIT_SEP(INPUT, OUTPUT);

{+}
{ This program uses LIB$DIGIT_SEP to return current
{ value of SYS$DIGIT_SEP.
{-}

routine LIB$DIGIT_SEP(%DESCR DIGIT_SEPSTR : VARYING [A]
OF CHAR; %REF OUT_LEN : INTEGER); EXTERN;

VAR
SEPARATOR : VARYING [256] OF CHAR;
LENGTH : INTEGER;

BEGIN
LIB$DIGIT_SEP(SEPARATOR, LENGTH);
WRITELN(’104’,SEPARATOR,’567’,SEPARATOR,’934’);

END.

This Pascal example demonstrates how to use LIB$DIGIT_SEP. The output
generated by this program is as follows:

104,567,934

lib–150

LIB$ Routines
LIB$DISABLE_CTRL

LIB$DISABLE_CTRL
Disable CLI Interception of Control Characters

The Disable CLI Interception of Control Characters routine requests the calling
process’s command language interpreter (CLI) to not intercept the selected
control characters when they are entered during an interactive terminal session.
LIB$DISABLE_CTRL provides the same function as the DCL command SET
NOCONTROL.

Format

LIB$DISABLE_CTRL disable-mask [,old-mask]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

disable-mask
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask indicating which control characters are not to be intercepted. The
disable-mask argument is the address of an unsigned longword containing this
bit mask.

Each of the 32 bits corresponds to one of the 32 possible control characters. If a
bit is set, the corresponding control character is no longer intercepted by the CLI.
Currently, only bits 20 and 25, corresponding to Ctrl/T and Ctrl/Y, are recognized.

The following mask is defined in symbol libraries supplied by HP to specify the
value of disable-mask:

Symbol Hex Value Function

LIB$M_CLI_CTRLT %X’00100000’ Disables Ctrl/T
LIB$M_CLI_CTRLY %X’02000000’ Disables Ctrl/Y

If a set bit does not correspond to a character that the CLI can intercept,
LIB$DISABLE_CTRL returns an error.

lib–151

LIB$ Routines
LIB$DISABLE_CTRL

old-mask
OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Previous bit mask. The old-mask argument is the address of an unsigned
longword into which LIB$DISABLE_CTRL writes the old bit mask. The old bit
mask is of the same form as disable-mask and indicates those control characters
that were previously enabled. It may therefore be given to LIB$ENABLE_CTRL
to reinstate the previous condition.

Description

The DCL and MCR CLIs can intercept the Ctrl/Y control character. The DCL
CLI can intercept the Ctrl/T character. See the HP OpenVMS DCL Dictionary for
information on how the DCL CLI processes control characters.

LIB$DISABLE_CTRL is supported for use with the DCL and MCR CLIs. If an
image is run directly as a subprocess or as a detached process, there is no CLI
present to perform this function. In those cases, LIB$DISABLE_CTRL returns
the error status LIB$_NOCLI.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. A bit in disable-mask was

set that did not correspond to a control character
supported by the CLI.

LIB$_NOCLI No CLI present. Either the calling process did
not have a CLI to perform the function, or the
CLI did not support the request type. Note that
an image run as a subprocess or detached process
does not have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an
error status that was not recognized. This error
may be caused by use of a nonstandard CLI. If
this error occurs while using the DCL or MCR
CLIs, please report the problem to your HP
support representative.

lib–152

LIB$ Routines
LIB$DO_COMMAND

LIB$DO_COMMAND
Execute Command

The Execute Command routine stops program execution and directs the command
language interpreter (CLI) to execute a command that you supply as the
argument. If successful, LIB$DO_COMMAND does not return control to the
calling program. Instead, LIB$DO_COMMAND begins execution of the specified
command.

If you want control to return to the caller, use LIB$SPAWN instead.

Format

LIB$DO_COMMAND command-string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

command-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Text of the command that LIB$DO_COMMAND executes. The command-string
argument is the address of a descriptor pointing to the command text. The
maximum length of the command is 255 characters.

Description

LIB$DO_COMMAND terminates your current image and then executes the
contents of command-string as a command. The command is parsed using
normal DCL rules.

LIB$DO_COMMAND is especially useful when you want to execute a CLI
command after your program has finished executing. For example, you could use
the routine to execute a SUBMIT or PRINT command to handle a file that your
program has created.

Because of the following restrictions on LIB$DO_COMMAND, you should be
careful when you incorporate it in your program:

• During the call to LIB$DO_COMMAND, the current image exits and control
cannot return to it.

• The text of the command is passed to the current command language
interpreter. Because you can define your own CLI in addition to DCL and
MCR, you must make sure that the command will be handled by the intended
CLI.

lib–153

LIB$ Routines
LIB$DO_COMMAND

• If LIB$DO_COMMAND is called from an image run directly as a subprocess
or detached process, it will not execute correctly, because no CLI is associated
with a subprocess.

LIB$DO_COMMAND is supported for use with the DCL and MCR CLIs. If an
image is run directly as a subprocess or as a detached process, there is no CLI
present to perform this function. In those cases, the error status LIB$_NOCLI is
returned. Note that the command can execute an indirect file using the at sign
(@) feature of DCL.

Condition Values Returned

LIB$_INVARG Invalid argument. command-string was more
than 255 characters.

LIB$_NOCLI No CLI present. The calling process did not have
a CLI to perform the function, or the CLI did not
support the request type. Note that an image
run as a subprocess or detached process does not
have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an
error status that was not recognized. This error
may be caused by use of a nonstandard CLI. If
this error occurs while using the DCL or MCR
CLIs, please report the problem to your HP
support representative.

Example

PROGRAM DO_COMMAND(INPUT, OUTPUT);

{+}
{ This example uses LIB$DO_COMMAND to execute
{ any DCL command that is entered by the user
{ at the prompt.
{-}

PROCEDURE LIB$DO_COMMAND(CMDTXT : VARYING [A] OF CHAR);
EXTERN;

VAR
COMMAND : VARYING [256] OF CHAR;

BEGIN
WRITELN(’ENTER THE COMMAND YOU WANT TO EXECUTE: ’);
READLN(COMMAND);
LIB$DO_COMMAND(COMMAND);

END.

This Pascal program shows how to call LIB$DO_COMMAND. An example of the
output of this program is as follows:

$ RUN DO_COMMAND
ENTER THE COMMAND YOU WANT TO EXECUTE: SHOW TIME
30-MAY-2000 14:07:28

lib–154

LIB$ Routines
LIB$EDIV

LIB$EDIV
Extended-Precision Divide

The Extended-Precision Divide routine performs extended-precision division.
LIB$EDIV makes the VAX EDIV instruction available as a callable routine. 1

Format

LIB$EDIV longword-integer-divisor ,quadword-integer-dividend ,longword-integer-quotient ,remainder

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

longword-integer-divisor
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Divisor. The longword-integer-divisor argument is the address of a signed
longword integer containing the divisor.

quadword-integer-dividend
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Dividend. The quadword-integer-dividend argument is the address of a signed
quadword integer containing the dividend.

longword-integer-quotient
OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Quotient. The longword-integer-quotient argument is the address of a signed
longword integer containing the quotient.

remainder
OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Remainder. The remainder argument is the address of a signed longword
integer containing the remainder.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–155

LIB$ Routines
LIB$EDIV

Condition Values Returned

SS$_NORMAL Normal successful operation.
SS$_INTDIV Integer divide by zero. The quotient is replaced

by bits 31:0 of the dividend, and the remainder is
replaced by zero.

SS$_INTOVF Integer overflow. The quotient is replaced by
bits 31:0 of the dividend, and the remainder is
replaced by zero.

Example

C+
C This Fortran program demonstrates how to use LIB$EDIV.
C-

INTEGER DIVISOR,DIVIDEND(2),QUOTIENT,REMAINDER

C+
C Find the quotient and remainder of 4600387192 divided by 4096.
C Because 4600387192 is too large to store as a longword, use LIB$EDIV.
C-

DIVISOR = 4096

C+
C The dividend must be represented as a quadword. To do this use a vector
C of length 2. The first element is the low-order longword, and the second
C element is the high-order longword.
C Now, 4600387192 = ’00000000112345678’x. So,
C-

DIVIDEND(1) = ’12345678’X
DIVIDEND(2) = ’00000001’X

C+
C Compute the quotient and remainder of 4600387192 divided by 4096.
C-

RETURN = LIB$EDIV(DIVISOR,DIVIDEND,QUOTIENT,REMAINDER)
TYPE *,’The longword integer quotient of 4600387192/4096 is:’
TYPE *,’ ’,QUOTIENT
TYPE *,’The longword integer remainder of 4600387192/4096 is:’
TYPE *,’ ’, REMAINDER
END

This Fortran example demonstrates how to call LIB$EDIV. The output generated
by this program is as follows:

The longword integer quotient of 4600387192/4096 is:
1123141

The longword integer remainder of 4600387192/4096 is:
1656

lib–156

LIB$ Routines
LIB$EMODD

LIB$EMODD
Extended Multiply and Integerize Routine for D-Floating-Point Values

The Extended Multiply and Integerize routine (D-Floating-Point Values) allows
higher-level language users to perform accurate range reduction of D-floating
arguments.

On Alpha and I64 systems, D-floating-point values are not supported in full
precision in native OpenVMS Alpha and I64 programs. They are precise to 56
bits on VAX systems, 53 or 56 bits in translated VAX images, and 53 bits in
native OpenVMS Alpha and I64 programs.

Format

LIB$EMODD floating-point-multiplier ,multiplier-extension ,floating-point-multiplicand ,integer-portion
,fractional-portion

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

floating-point-multiplier
OpenVMS usage: floating_point
type: D_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is a D-floating number.

multiplier-extension
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument
is an unsigned byte.

floating-point-multiplicand
OpenVMS usage: floating_point
type: D_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is a D-floating
number.

lib–157

LIB$ Routines
LIB$EMODD

integer-portion
OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address
of a signed longword integer containing the integer portion of the result.

fractional-portion
OpenVMS usage: floating_point
type: D_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is a
D-floating number.

Description

The floating-point multiplier extension operand (second operand) is concatenated
with the floating-point multiplier (first operand) to gain x additional low-order
fraction bits. The multiplicand is multiplied by the extended multiplier. After
multiplication, the integer portion is extracted, and a y-bit floating-point number
is formed from the fractional part of the product by truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a
fraction field of y bits. With respect to the result as the sum of an integer and
fraction of the same sign, the integer operand is replaced by the integer part of
the result and the fraction operand is replaced by the rounded fractional part of
the result.

The values of x and y are as follows:

Routine x Bits y

LIB$EMODD 8 7:0 64

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTUND Floating underflow. The integer and fraction

operands are replaced by zero (0).
SS$_INTOVF Integer overflow. The integer operand is replaced

by the low-order bits of the true result. Floating
overflow is indicated by SS$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction
operands are unaffected.

lib–158

LIB$ Routines
LIB$EMODF

LIB$EMODF
Extended Multiply and Integerize Routine for F-Floating-Point Values

The Extended Multiply and Integerize routine (F-Floating-Point Values) allows
higher-level language users to perform accurate range reduction of F-floating
arguments.

Format

LIB$EMODF floating-point-multiplier ,multiplier-extension ,floating-point-multiplicand ,integer-portion
,fractional-portion

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

floating-point-multiplier
OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is the address of an
F-floating number containing the number.

multiplier-extension
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument
is the address of an unsigned byte containing these multiplier extension bits.

floating-point-multiplicand
OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is an F-floating
number.

integer-portion
OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address
of a signed longword integer containing the integer portion of the result.

lib–159

LIB$ Routines
LIB$EMODF

fractional-portion
OpenVMS usage: floating_point
type: F_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is the
address of an F-floating number containing the fractional portion of the result.

Description

LIB$EMODF allows higher-level language users to perform accurate range
reduction of F-floating arguments.

The floating-point multiplier-extension operand (second operand) is
concatenated with the floating-point-multiplier (first operand) to gain x
additional low-order fraction bits. The multiplicand is multiplied by the extended
multiplier. After multiplication, the integer portion is extracted and a y-bit
floating-point number is formed from the fractional part of the product by
truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a
fraction field of y bits. With respect to the result as the sum of an integer and
fraction of the same sign, the integer operand is replaced by the integer part of
the result and the fraction operand is replaced by the rounded fractional part of
the result.

The values of x and y are as follows:

Routine x Bits y

LIB$EMODF 8 7:0 32

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTUND Floating underflow. The integer and fraction

operands are replaced by zero.
SS$_INTOVF Integer overflow. The integer operand is replaced

by the low-order bits of the true result. Floating
overflow is indicated by SS$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction
operands are unaffected.

lib–160

LIB$ Routines
LIB$EMODG

LIB$EMODG
Extended Multiply and Integerize Routine for G-Floating-Point Values

The Extended Multiply and Integerize routine (G-Floating-Point Values) allows
higher-level language users to perform accurate range reduction of G-floating
arguments.

Format

LIB$EMODG floating-point-multiplier ,multiplier-extension ,floating-point-multiplicand ,integer-portion
,fractional-portion

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

floating-point-multiplier
OpenVMS usage: floating_point
type: G_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is a G-floating number.

multiplier-extension
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument
is an unsigned word.

floating-point-multiplicand
OpenVMS usage: floating_point
type: G_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is a G-floating
number.

integer-portion
OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address
of a signed longword integer containing the integer portion of the result.

lib–161

LIB$ Routines
LIB$EMODG

fractional-portion
OpenVMS usage: floating_point
type: G_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is a
G-floating number.

Description

The floating-point multiplier extension operand (second operand) is concatenated
with the floating-point multiplier (first operand) to gain x additional low-order
fraction bits. The multiplicand is multiplied by the extended multiplier. After
multiplication, the integer portion is extracted and a y-bit floating-point number
is formed from the fractional part of the product by truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a
fraction field of y bits. With respect to the result as the sum of an integer and
fraction of the same sign, the integer operand is replaced by the integer part of
the result and the fraction operand is replaced by the rounded fractional part of
the result.

The values of x and y are as follows:

Routine x Bits y

LIB$EMODG 11 15:5 64

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTUND Floating underflow. The integer and fraction

operands are replaced by zero.
SS$_INTOVF Integer overflow. The integer operand is replaced

by the low-order bits of the true result. Floating
overflow is indicated by SS$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction
operands are unaffected.

lib–162

LIB$ Routines
LIB$EMODH

LIB$EMODH
Extended Multiply and Integerize Routine for H-Floating-Point Values

On OpenVMS VAX systems, the Extended Multiply and Integerize routine (H-
Floating-Point Values) allows higher-level language users to perform accurate
range reduction of H-floating arguments.

This routine is not available to native OpenVMS Alpha programs but is available
to translated VAX images.

Format

LIB$EMODH floating-point-multiplier ,multiplier-extension ,floating-point-multiplicand ,integer-portion
,fractional-portion

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

floating-point-multiplier
OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is an H-floating
number.

multiplier-extension
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument
is an unsigned word.

floating-point-multiplicand
OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is an H-floating
number.

lib–163

LIB$ Routines
LIB$EMODH

integer-portion
OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address
of a signed longword integer containing the integer portion of the result.

fractional-portion
OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is an
H-floating number.

Description

The floating-point multiplier extension operand (second operand) is concatenated
with the floating-point multiplier (first operand) to gain x additional low-order
fraction bits. The multiplicand is multiplied by the extended multiplier. After
multiplication, the integer portion is extracted and a y-bit floating-point number
is formed from the fractional part of the product by truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a
fraction field of y bits. With respect to the result as the sum of an integer and
fraction of the same sign, the integer operand is replaced by the integer part of
the result and the fraction operand is replaced by the rounded fractional part of
the result.

The values of x and y are as follows:

Routine x Bits y

LIB$EMODH 15 15:1 128

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTUND Floating underflow. The integer and fraction

operands are replaced by zero.
SS$_INTOVF Integer overflow. The integer operand is replaced

by the low-order bits of the true result. Floating
overflow is indicated by SS$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction
operands are unaffected.

lib–164

LIB$ Routines
LIB$EMODS (Alpha and I64 Only)

LIB$EMODS (Alpha and I64 Only)
Extended Multiply and Integerize Routine for S-Floating-Point Values

The Extended Multiply and Integerize routine (IEEE S-Floating-Point Values)
allows higher-level language users to perform accurate range reduction of IEEE
S-floating arguments.

Format

LIB$EMODS floating-point-multiplier ,multiplier-extension ,floating-point-multiplicand ,integer-portion
,fractional-portion

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

floating-point-multiplier
OpenVMS usage: floating_point
type: IEEE S_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is the address of an
IEEE S-floating number containing the number.

multiplier-extension
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument
is the address of an unsigned byte containing these multiplier extension bits.

floating-point-multiplicand
OpenVMS usage: floating_point
type: IEEE S_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is an IEEE
S-floating number.

integer-portion
OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address
of a signed longword integer containing the integer portion of the result.

lib–165

LIB$ Routines
LIB$EMODS (Alpha and I64 Only)

fractional-portion
OpenVMS usage: floating_point
type: IEEE S_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is the
address of an IEEE S-floating number containing the fractional portion of the
result.

Description

LIB$EMODS allows higher-level language users to perform accurate range
reduction of IEEE S-floating arguments.

The floating-point multiplier-extension operand (second operand) is
concatenated with the floating-point-multiplier (first operand) to gain x
additional low-order fraction bits. The multiplicand is multiplied by the extended
multiplier. After multiplication, the integer portion is extracted and a y-bit
floating-point number is formed from the fractional part of the product by
truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a
fraction field of y bits. With respect to the result as the sum of an integer and
fraction of the same sign, the integer operand is replaced by the integer part of
the result and the fraction operand is replaced by the rounded fractional part of
the result.

The values of x and y are as follows:

Routine x Bits y

LIB$EMODS 8 7:0 32

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTUND Floating underflow. The integer and fraction

operands are replaced by zero.
SS$_INTOVF Integer overflow. The integer operand is replaced

by the low-order bits of the true result. Floating
overflow is indicated by SS$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction
operands are unaffected.

lib–166

LIB$ Routines
LIB$EMODT (Alpha and I64 Only)

LIB$EMODT (Alpha and I64 Only)
Extended Multiply and Integerize Routine for T-Floating-Point Values

The Extended Multiply and Integerize routine (IEEE T-Floating-Point Values)
allows higher-level language users to perform accurate range reduction of IEEE
T-floating arguments.

Format

LIB$EMODT floating-point-multiplier ,multiplier-extension ,floating-point-multiplicand ,integer-portion
,fractional-portion

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

floating-point-multiplier
OpenVMS usage: floating_point
type: IEEE T_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is the address of an
IEEE T-floating number containing the number.

multiplier-extension
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument
is the address of an unsigned byte containing these multiplier extension bits.

floating-point-multiplicand
OpenVMS usage: floating_point
type: IEEE T_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is an IEEE
T-floating number.

integer-portion
OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address
of a signed longword integer containing the integer portion of the result.

lib–167

LIB$ Routines
LIB$EMODT (Alpha and I64 Only)

fractional-portion
OpenVMS usage: floating_point
type: IEEE T_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is the
address of an IEEE T-floating number containing the fractional portion of the
result.

Description

LIB$EMODT allows higher-level language users to perform accurate range
reduction of IEEE T-floating arguments.

The floating-point multiplier-extension operand (second operand) is
concatenated with the floating-point-multiplier (first operand) to gain x
additional low-order fraction bits. The multiplicand is multiplied by the extended
multiplier. After multiplication, the integer portion is extracted and a y-bit
floating-point number is formed from the fractional part of the product by
truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a
fraction field of y bits. With respect to the result as the sum of an integer and
fraction of the same sign, the integer operand is replaced by the integer part of
the result and the fraction operand is replaced by the rounded fractional part of
the result.

The values of x and y are as follows:

Routine x Bits y

LIB$EMODT 11 11:0 64

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTUND Floating underflow. The integer and fraction

operands are replaced by zero.
SS$_INTOVF Integer overflow. The integer operand is replaced

by the low-order bits of the true result. Floating
overflow is indicated by SS$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction
operands are unaffected.

lib–168

LIB$ Routines
LIB$EMUL

LIB$EMUL
Extended-Precision Multiply

The Extended-Precision Multiply routine performs extended-precision
multiplication. LIB$EMUL makes the VAX EMUL instruction available as a
callable routine. 1

Format

LIB$EMUL longword-integer-multiplier ,longword-integer-multiplicand ,addend ,product

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

longword-integer-multiplier
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Multiplier used by LIB$EMUL in the extended-precision multiplication. The
longword-integer-multiplier argument is the address of a signed longword
integer containing the multiplier.

longword-integer-multiplicand
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Multiplicand used by LIB$EMUL in the extended-precision multiplication. The
longword-integer-multiplicand argument is the address of a signed longword
integer containing the multiplicand.

addend
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Addend used by LIB$EMUL in the extended-precision multiplication. The
addend argument is the address of a signed longword integer containing the
addend.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–169

LIB$ Routines
LIB$EMUL

product
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: write only
mechanism: by reference

Product of the extended-precision multiplication. The product argument is the
address of a signed quadword integer into which LIB$EMUL writes the product.

Description

The multiplicand argument is multiplied by the multiplier argument giving a
double-length result. The addend argument is sign-extended to double-length
and added to the result. LIB$EMUL then writes the result into the product
argument.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

Example

INTEGER MULT1,MULT2,ADDEND,PRODUCT(2)
C+
C Find the extended precision multiplication of 268435456 times 4096.
C That is, find the extended precision product of 2**28 times 2**12.
C Since 268435456 times 4096 is 2**40, a quadword value is needed for
C the calculation: use LIB$EMUL.
C-

MULT1 = 4096
MULT2 = 268435456
APPEND = 0

C+
C Compute 268435456*4096.
C Note that product will be stored as a quadword. This value will be stored
C in the 2 dimensional vector PRODUCT. The first element of PRODUCT will
C contain the low order bits, while the second element will contain the high
C order bits.
C-

RETURN = LIB$EMUL(MULT1,MULT2,APPEND,PRODUCT)
TYPE *,’PRODUCT(2) =’,PRODUCT(2),’ and PRODUCT(1) = ’,PRODUCT(1)
TYPE *,’ ’
TYPE *,’Note that 256 and 0 represent the hexadecimal value’
type *,14H’10000000000’x,’, which in turn, represents 2**40.’
END

This Fortran program demonstrates how to use LIB$EMUL. The output
generated by this program is as follows:

PRODUCT(2) = 256 and PRODUCT(1) = 0

Note that 256 and 0 represent the hexadecimal value ’10000000000’x, which in
turn represents 240.

lib–170

LIB$ Routines
LIB$ENABLE_CTRL

LIB$ENABLE_CTRL
Enable CLI Interception of Control Characters

The Enable CLI Interception of Control Characters routine requests the calling
process’s command language interpreter (CLI) to resume interception of the
selected control characters when they are typed during an interactive terminal
session. LIB$ENABLE_CTRL provides the same function as the DCL command
SET CONTROL.

Format

LIB$ENABLE_CTRL enable-mask [,old-mask]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

enable-mask
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask indicating for which control characters LIB$ENABLE_CTRL is to
enable interception. The enable-mask argument is the address of an unsigned
longword containing this bit mask. Each of the 32 bits corresponds to one of the
32 possible control characters. If a bit is set, the corresponding control character
is intercepted by the CLI. Currently, only bits 20 and 25, corresponding to Ctrl/T
and Ctrl/Y, are recognized.

The following mask is defined in symbol libraries supplied by HP to specify the
value of enable-mask:

Symbol Hex Value Function

LIB$M_CLI_CTRLT %X’00100000’ Enables Ctrl/T
LIB$M_CLI_CTRLY %X’02000000’ Enables Ctrl/Y

If a set bit does not correspond to a character that the CLI can intercept, an error
is returned.

old-mask
OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Previous bit mask. The old-mask argument is the address of an unsigned
longword containing the old bit mask. The old bit mask is of the same form as
enable-mask.

lib–171

LIB$ Routines
LIB$ENABLE_CTRL

Description

LIB$ENABLE_CTRL provides the functions of the DCL command SET
CONTROL. Normally, Ctrl/Y interrupts the current command, command
procedure, or image. After a call to LIB$DISABLE_CTRL, Ctrl/Y is treated
like Ctrl/U followed by a carriage return. LIB$ENABLE_CTRL restores the
normal operation of Ctrl/Y or Ctrl/T.

Both the DCL and MCR CLIs can intercept control characters. See the HP
OpenVMS DCL Dictionary for information on how the CLI processes control
characters.

LIB$ENABLE_CTRL is supported for use with the DCL or MCR CLIs.

If an image is run directly as a subprocess or as a detached process, there is
no CLI present to perform this function. In those cases, the error status LIB$_
NOCLI is returned.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. A bit in enable-mask was set

which did not correspond to a control character
supported by the CLI.

LIB$_NOCLI No CLI present. The calling process did not have
a CLI to perform the function, or the CLI did not
support the request type. Note that an image
run as a subprocess or detached process does not
have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an
error status which was not recognized. This
error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL or
MCR CLIs, please report the problem to your HP
support representative.

lib–172

LIB$ Routines
LIB$ESTABLISH

LIB$ESTABLISH
Establish a Condition Handler

The Establish a Condition Handler routine moves the address of a condition
handling routine (which can be a user-written or a library routine) to longword 0
of the stack frame of the caller of LIB$ESTABLISH. †

This routine is not available to native OpenVMS Alpha and I64 programs but is
recognized and handled appropriately by most HP high-level language compilers.

Format

LIB$ESTABLISH new-handler

Returns

OpenVMS usage: routine
type: procedure value
access: write only
mechanism: by reference

Previous contents of SF$A_HANDLER (longword 0) of the caller’s stack frame;
zero if no handler existed.

Argument

new-handler
OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by value

Routine to be set up as the condition handler. The new-handler argument is the
address of the procedure value to this routine.

Description

LIB$ESTABLISH moves the address of a condition-handling routine to longword
0 of the stack frame of the caller of LIB$ESTABLISH. This condition-handling
routine then becomes the caller’s condition handler. LIB$ESTABLISH returns
the previous contents of longword 0. This can either be the address of the caller’s
previous condition handler or zero if no handler existed.

The new condition handler remains in effect for your routine until you call
LIB$REVERT or until control returns to the caller of the routine that called
LIB$ESTABLISH. Once this happens, you must call LIB$ESTABLISH again if
the same (or a new) condition handler is to be associated with the routine that
called LIB$ESTABLISH.

LIB$ESTABLISH modifies the caller’s stack frame.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–173

LIB$ Routines
LIB$ESTABLISH

LIB$ESTABLISH is provided primarily for use with languages without built-in
error handling facilities. Do not use LIB$ESTABLISH with languages that
provide error handling, such as BASIC, COBOL, Pascal, and PL/I. The language-
support library for these languages depends on predefined language-specific
handlers, and use of LIB$ESTABLISH with these languages may adversely
affect the behavior of your program. See the language documentation for more
information about how each language handles errors.

In VAX MACRO, use the following instruction instead of calling
LIB$ESTABLISH:

MOVAB HANDLER, (FP) ; set handler address
; in current stack frame

Condition Values Returned

None.

Example

C+
C This Fortran program demonstrates the
C use of LIB$ESTABLISH.
C
C This is the main program.
C-

EXTERNAL LOG_HANDL
CHARACTER TIMBUF
OPEN (UNIT=99, FILE = ’ERRLOG’, STATUS = ’NEW’)
CALL LIB$ESTABLISH (LOG_HANDL)

CALL SYS$BINTIM (TIMBUF, TIMADR)
C+
C The rest of the main program would go here.
C-

END

INTEGER*4 FUNCTION LOG_HANDL (SIGARGS, MECHARGS)
INTEGER*4 SIGARGS (*), MECHARGS (5)

C+
C This is the handler to journal any signaled error messages.
C-

INCLUDE ’($SSDEF)’
EXTERNAL PUT_LINE
LOG_HANDL = SS$_RESIGNAL
CALL SYS$PUTMSG (SIGARGS, PUT_LINE,)
RETURN
END

C+
C This is the action subroutine.
C-

LOGICAL*4 FUNCTION PUT_LINE (LINE)
CHARACTER*(*)LINE
PUT_LINE = .FALSE.

100 WRITE (99,200)LINE
200 FORMAT (A)

RETURN
END

In this Fortran example, the function log_handl is the condition handler for the
program, and thus receives control when an error occurs.

lib–174

LIB$ Routines
LIB$EXPAND_NODENAME

LIB$EXPAND_NODENAME
Expand a Node Name to Its Full Name Equivalent

The Expand a Node Name to Its Full Name Equivalent routine expands a node
name to its full name equivalent. †

Format

LIB$EXPAND_NODENAME nodename, fullname [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

nodename
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Node name to be expanded. The nodename argument contains the address of a
descriptor pointing to this node-name string.

The error LIB$_INVARG is returned if nodename contains an invalid node
name, points to a null string, or contains more than 1024 characters. The error
LIB$_INVSTRDES is returned if nodename is an invalid descriptor.

fullname
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Expanded node name. The fullname argument contains the address of
a descriptor pointing to the expanded node-name string. LIB$EXPAND_
NODENAME writes the expanded node-name string into the buffer pointed
to by the fullname descriptor.

The error LIB$_INVSTRDES is returned if fullname is an invalid descriptor.

The length field of the fullname descriptor is not updated unless fullname is
a dynamic descriptor with a length less than the resulting expanded full name.
Refer to the OpenVMS RTL String Manipulation (STR$) Manual for dynamic
string descriptor usage.

The fullname argument contains an unusable result when LIB$EXPAND_
NODENAME returns in error.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–175

LIB$ Routines
LIB$EXPAND_NODENAME

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the expanded node name. The resultant-length argument is the
address of an unsigned word that contains this length in bytes.

The resultant-length argument contains an unusable result when
LIB$EXPAND_NODENAME returns in error.

Description

This routine expands the input node name to its full name equivalent. Input is
validated against the supported form of node names. The error LIB$_INVARG is
returned if the input node name is invalid.

If the returned full name overflows the buffer pointed to by fullname, the
returned full name is truncated, and the alternate successful status LIB$_
STRTRU is returned. The resultant-length argument is set to the value of the
length field of the fullname descriptor if this argument is supplied.

If the length of the returned full name is less than or equal to the output buffer,
the expanded full name is returned in fullname. Resultant-length is set to the
actual length of the expanded full name if this argument is supplied.

In a DECnet environment, expanding a DECnet-Plus node name results in the
error condition LIB$_INVARG.

LIB$EXPAND_NODENAME uses the underlying network directory services
to look up the full name. In a DECnet-Plus for OpenVMS environment,
LIB$EXPAND_NODENAME verifies the existence of the expanded full name
in the naming environment. If the expanded full name does not exist in the
naming environment, an error condition is returned from the underlying network
services and is propagated back to the caller of LIB$EXPAND_NODENAME.

It is recommended that applications use full names instead of the short form of
full names whenever possible. Because the short form of a full name is intended
to be used only in a specific naming environment, make sure the short form of a
full name is expanded in the right naming environment to avoid ambiguity. See
LIB$COMPRESS_NODENAME for more information about where and when to
use the short form of a full name.

Any error resulting from calling the underlying network services is propagated
and returned as condition values in this routine.

LIB$EXPAND_NODENAME supports any string class for the nodename and
fullname string arguments.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Routine successfully completed. Characters are

truncated in the output buffer pointed to by the
fullname descriptor.

lib–176

LIB$ Routines
LIB$EXPAND_NODENAME

LIB$_INVARG Invalid argument:

• nodename is invalid.

• nodename points to a null string.

• The length of the node name is more than
1024 characters.

• The expanded DECnet Phase V node name
is invalid in a DECnet for OpenVMS
environment.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by RTL routine LIB$SCOPY_R_DX or DECnet
service $IPC.

lib–177

LIB$ Routines
LIB$EXTV

LIB$EXTV
Extract a Field and Sign-Extend

The Extract a Field and Sign-Extend routine returns a sign-extended longword
field that has been extracted from the specified variable bit field. LIB$EXTV
makes the VAX EXTV instruction available as a callable routine. 1

Format

LIB$EXTV position ,size ,base-address

Returns

OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

Field extracted by LIB$EXTV, sign-extended to a longword.

Arguments

position
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Position (relative to the base address) of the first bit in the field that LIB$EXTV
extracts. The position argument is the address of a signed longword integer
containing the position.

size
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field LIB$EXTV extracts. The size argument is the address of an
unsigned byte containing the size. The maximum size is 32 bits.

base-address
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Base address of the bit field LIB$EXTV extracts from the specified variable bit
field. The base-address argument is an unsigned longword containing the base
address.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–178

LIB$ Routines
LIB$EXTV

Description

The variable-length bit field is an OpenVMS data type used to store small
integers packed together in a larger data structure. It is often used to store
single flag bits.

Three scalar attributes define a variable bit field:

• The base address is the address of a byte in memory that serves as a reference
point for locating the bit field.

• The bit position is a signed longword containing the displacement of the least
significant bit of the field with respect to bit 0 of the base address.

• The size is a byte integer indicating the size of the bit field in bits (in the
range 0 � size � 32). That is, a bit field can be no more than one longword in
length.

A variable-length bit field has the following format. The area containing asterisks
indicates the field.

P+S−1 P 0

**************** :A LIB$EXTV

S = Size of Field in Bits

ZK−1940−GE

 from Bit Zero of Address A
P = Bit Displacement of Field

Bit fields are zero-origin, which means that the routine regards the first bit in the
field as being the zero position.

Condition Value Signaled

SS$_ROPRAND A reserved operand fault occurs if a size greater
than 32 is specified.

Example

SIGN_EXTEND: ROUTINE OPTIONS (MAIN);

DECLARE LIB$EXTV ENTRY
(FIXED BINARY (31), /* Address of longword containing

/* beginning bit position */
FIXED BINARY (7), /* Address of byte containing size

/* of field */
FIXED BINARY (31)) /* Address of field */
RETURNS (FIXED BINARY (31)); /* Return value */

DECLARE (VALUE, SMALL_INT) FIXED BINARY (31);

ON ENDFILE (SYSIN) STOP;

lib–179

LIB$ Routines
LIB$EXTV

DO WHILE (’1’B); /* Loop continuously, until end of file */
PUT SKIP(2);
GET LIST (VALUE) OPTIONS (PROMPT (’Value: ’));
SMALL_INT = LIB$EXTV (0, 4, VALUE); /* Extract and sign-extend

/* first 4 bits */
PUT SKIP LIST (VALUE, SMALL_INT);
END;

END SIGN_EXTEND;

This PL/I program extracts a field and returns it sign-extended into a longword.

lib–180

LIB$ Routines
LIB$EXTZV

LIB$EXTZV
Extract a Zero-Extended Field

The Extract a Zero-Extended Field routine returns a longword zero-extended field
that has been extracted from the specified variable bit field. LIB$EXTZV makes
the VAX EXTZV instruction available as a callable routine. 1

Format

LIB$EXTZV position ,size ,base-address

Returns

OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

Field extracted by LIB$EXTZV, zero-extended to a longword.

Arguments

position
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Position (relative to the base address) of the first bit in the field LIB$EXTZV
extracts. The position argument is the address of a signed longword integer
containing the position.

size
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field LIB$EXTZV extracts. The size argument is the address of an
unsigned byte containing the size. The maximum size is 32 bits.

base-address
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Base address of the bit field LIB$EXTZV extracts. The base-address argument
is an unsigned longword containing the base address.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–181

LIB$ Routines
LIB$EXTZV

Description

The variable-length bit field is an OpenVMS data type used to store small
integers packed together in a larger data structure. It is often used to store
single flag bits.

Three scalar attributes define a variable bit field:

• The base address is the address of the byte in memory that serves as a
reference point for locating the bit field.

• The bit position is a signed longword containing the displacement of the least
significant bit of the field with respect to bit 0 of the base address.

• The size is a byte integer indicating the size of the bit field in bits (in the
range 0 � size � 32). That is, a bit field can be no more than one longword in
length.

A variable-length bit field has the following format. The area containing asterisks
indicates the field.

P+S−1 P 0

**************** :A LIB$EXTZV

S = Size of Field in Bits

ZK−1941−GE

 from Bit Zero of Address A
P = Bit Displacement of Field

Bit fields are zero-origin fields, which means that the routine regards the first bit
in the field as being the zero position.

Condition Value Signaled

SS$_ROPRAND A reserved operand fault occurs if a size greater
than 32 is specified.

lib–182

LIB$ Routines
LIB$FFx

LIB$FFx
Find First Clear or Set Bit

The Find First Clear or Set Bit routines search the field specified by the start
position, size, and base for the first clear or set bit. LIB$FFC and LIB$FFS make
the VAX FFC and VAX FFS instructions available as callable routines. 1

Format

LIB$FFC position ,size ,base ,find-position

LIB$FFS position ,size ,base ,find-position

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

position
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Starting position, relative to the base address, of the bit field to be searched by
LIB$FFx. The position argument is the address of a signed longword integer
containing the starting position.

size
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Number of bits to be searched by LIB$FFx. The size argument is the address
of an unsigned byte containing the size of the bit field to be searched. The
maximum size is 32 bits.

base
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

The base argument is the address of the bit field that LIB$FFx searches.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–183

LIB$ Routines
LIB$FFx

find-position
OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Bit position of the first bit in the specified state (clear or set), relative to the
base address. The find-position argument is the address of a signed longword
integer into which LIB$FFC writes the position of the first clear bit and into
which LIB$FFS writes the position of the first set bit.

Description

LIB$FFC searches the field specified by the start position, size, and base for the
first clear bit. LIB$FFS searches the field for the first set bit.

If a bit in the specified state is found, LIB$FFx writes the position (relative to the
base) of that bit into find-position and returns a success status. If no bits are
in the specified state or if size is zero, LIB$FFx returns LIB$_NOTFOU and sets
find-position to the starting position plus the size.

LIB$FFx regards the first bit in the field as being the zero position.

Condition Values Returned

SS$_NORMAL Routine successfully completed. A bit in the
specified state was found.

LIB$_NOTFOU A bit in the specified state was not found.

Condition Value Signaled

SS$_ROPRAND Reserved operand fault. A size greater than 32
was specified.

lib–184

LIB$ Routines
LIB$FID_TO_NAME

LIB$FID_TO_NAME
Convert Device and File ID to File Specification

The Convert Device and File ID to File Specification routine converts a disk
device name and file identifier to a file specification.

Format

LIB$FID_TO_NAME device-name ,file-id ,filespec [,filespec-length] [,directory-id] [,acp-status]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

device-name
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Device name to be converted. The device-name argument is the address of a
descriptor pointing to the device name. It must reference a disk device, and must
contain 64 characters or less. LIB$FID_TO_NAME obtains device-name from
the NAM$T_DVI field of an OpenVMS RMS name block.

file-id
OpenVMS usage: vector_word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference, array reference

Specifies the file identifier. The file-id argument is the address of an array of
three words containing the file identification. LIB$FID_TO_NAME obtains file-id
from the NAM$W_FID field of an OpenVMS RMS name block. The $FIDDEF
macro defines the structure of file-id.

filespec
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Receives the file specification. The filespec argument is the address of a
descriptor pointing to the file specification string. As of OpenVMS Version 7.2,
the maximum file specification string that can be returned is 4095 bytes on Alpha
and I64 systems, and 510 bytes on VAX systems. On versions prior to Version 7.2,
the maximum is 510 bytes on both platforms. Refer to the Description section for
more information about the file specification returned.

lib–185

LIB$ Routines
LIB$FID_TO_NAME

filespec-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Receives the number of characters written into filespec, excluding padding in
the case of a fixed-length string. The optional filespec-length argument is the
address of an unsigned word containing the number of characters.

If the output string is truncated to the number of characters specified in filespec,
then filespec-length is set to that truncated size. Therefore, you can always use
filespec-length to access a valid substring of filespec.

directory-id
OpenVMS usage: vector_word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference, array reference

Specifies a directory file identifier. The directory-id argument is the address
of an array of three words containing the directory file identifier. LIB$FID_TO_
NAME obtains this array from the NAM$W_DID field of an OpenVMS RMS
name block. The $FIDDEF macro defines the structure of directory-id.

This parameter is relevant only for a structure level-1 disk on OpenVMS VAX
systems. This parameter is ignored on OpenVMS Alpha and I64 systems because
level-1 disks are not supported on OpenVMS Alpha and I64 systems.

acp-status
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The status resulting from traversing the backward links. The optional acp-
status argument is the address of an unsigned longword containing the status.

Description

LIB$FID_TO_NAME converts a disk device name and file identifier to a file
specification by requesting the ACP file specification attribute.

On OpenVMS Alpha and I64 systems, if the file specification is longer than can
be accommodated by the filespec buffer, a directory in the path may be replaced
by a DID abbreviation (see the Guide to OpenVMS File Applications). If the file
specification, even after DID abbreviation, is longer than can be accommodated
by the buffer, the file specification is truncated, and LIB$STRTRU is returned as
an alternate success status.

On OpenVMS VAX systems, if you use the LIB$FID_TO_NAME routine on
a structure level 1 disk, specify the directory-id argument to ensure proper
operation of the routine.

LIB$FID_TO_NAME uses the directory backpointer stored in the file header.
With files in SYS$COMMON, the directory structure is duplicated because of
some SET FILE/ENTERs of directory names. If directory names have been
renamed or the tree structure modified (which the OpenVMS operating system

lib–186

LIB$ Routines
LIB$FID_TO_NAME

does with the [SYCOMMON] tree), the file specification returned by this routine
may not be useful.

LIB$FID_TO_NAME stores the output arguments (filespec, filespec-length,
and acp-status) only if the routine successfully finishes.

Note

This routine calls LIB$GET_EF. Please read the note in the Description
section of that routine.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$STRTRU Output string truncated (qualified success).
LIB$_INVARG Required argument omitted, or device-name is

longer than 64 characters.
LIB$_INVFILSPE The device-name argument does not reference a

disk.

Any condition value returned by RTL routine LIB$ANALYZE_SDESC, or the
$ASSIGN, $QIO, or $DASSGN system services.

lib–187

LIB$ Routines
LIB$FILE_SCAN

LIB$FILE_SCAN
File Scan

The File Scan routine searches an area, such as a directory, for all files matching
the file specification given and transfers program execution to the specified user-
written routine. Wildcards are acceptable. An action routine is called for each
file and/or error found. LIB$FILE_SCAN allows the search sequence to continue
even if an error occurs while processing a particular file.

Format

LIB$FILE_SCAN fab ,user-success-procedure ,user-error-procedure [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

fab
OpenVMS usage: fab
type: unspecified
access: read only
mechanism: by reference

File Access Block (FAB) referencing a valid NAM block or NAML block. The
fab argument is the address of the FAB that contains the address and length
of the file specification being searched for by LIB$FILE_SCAN. On Alpha and
I64 systems, NAML blocks support the use of file specifications with a maximum
length of NAML$C_MAXRSS. See the OpenVMS Record Management Services
Reference Manual for information on NAML blocks.

user-success-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied success routine that LIB$FILE_SCAN calls when a file is found.
The success routine is invoked with the FAB address that was passed to
LIB$FILE_SCAN. The user context may be pased to this routine using the
FAB$L_CTX field in the FAB.

user-error-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied error routine that LIB$FILE_SCAN calls when it encounters an
error. The error routine is called with the FAB argument that was passed to
LIB$FILE_SCAN.

lib–188

LIB$ Routines
LIB$FILE_SCAN

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Default file context used in processing file specifications for multiple input files.
The context argument is the address of a longword, which must be initialized
to zero by your program before the first call to LIB$FILE_SCAN. After the first
call, LIB$FILE_SCAN maintains this longword. You must not change the value
of context in subsequent calls to LIB$FILE_SCAN.

Name blocks and file specification strings are allocated by LIB$FILE_SCAN, and
context is used to retain their addresses so they may be deallocated later. If
the context argument is not passed, unspecified portions of the file specification
will be inherited from the previous file specification processed, rather than from
multiple input file specifications.

Description

LIB$FILE_SCAN is called with the address of a File Access Block (FAB) and calls
an action routine for each file found and/or error returned. LIB$FILE_SCAN
allows the search sequence to continue even if an error occurs while processing a
particular file.

If this routine is called once for each file specification argument in a command
line, portions of the file specifications which are not specified by the user are
inherited from the last files processed.

On Alpha and I64 systems, support for a file specification greater than 255
characters is provided by the use of NAML blocks rather than NAM blocks. See
the OpenVMS Record Management Services Reference Manual for information on
NAML blocks.

You must call LIB$FILE_SCAN_END before initiating a new sequence of calls to
LIB$FILE_SCAN.

Condition Values Returned

Any condition value returned by the RMS Parse service.

lib–189

LIB$ Routines
LIB$FILE_SCAN_END

LIB$FILE_SCAN_END
End-of-File Scan

The End-of-File Scan routine is called after each sequence of calls to LIB$FILE_
SCAN. LIB$FILE_SCAN_END deallocates any saved OpenVMS RMS context
and/or deallocates the virtual memory that had been allocated for holding the
related file specification information.

Format

LIB$FILE_SCAN_END [fab] [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

fab
OpenVMS usage: fab
type: unspecified
access: modify
mechanism: by reference

File access block (FAB) used with LIB$FILE_SCAN. The optional fab argument
is the address of the FAB that contains the address and length of the file
specification.

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Temporary default context used in LIB$FILE_SCAN. The optional context
argument is the address of a longword containing this temporary default context.

Description

Your program should call LIB$FILE_SCAN_END after each sequence of calls to
LIB$FILE_SCAN. The function that LIB$FILE_SCAN_END performs depends
upon the arguments you specify. If you specify fab, LIB$FILE_SCAN_END
parses the null string to deallocate any saved RMS context. If you specify
context, LIB$FILE_SCAN_END deallocates any virtual memory that was
allocated for holding the related file specification information. If you specify both
fab and context, LIB$FILE_SCAN_END performs both functions. However, if
you do not specify either argument, LIB$FILE_SCAN_END does nothing.

lib–190

LIB$ Routines
LIB$FILE_SCAN_END

If LIB$FILE_SCAN is directed to process the specifications for multiple input
files, LIB$FILE_SCAN_END is used to deallocate those saved file specifications.
If LIB$FILE_SCAN_END is called by your program after each sequence of calls
to LIB$FILE_SCAN, it will prevent the defaults from the previous call from
affecting context value in the next call to LIB$FILE_SCAN. LIB$FILE_SCAN_
END does this by replacing the context value passed to it with a temporary
context value that your program passes to LIB$FILE_SCAN the next time it is
called.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
RMS$_FAB The fab argument is not the address of a valid

FAB.

lib–191

LIB$ Routines
LIB$FIND_FILE

LIB$FIND_FILE
Find File

The Find File routine is called with a file specification for which it searches.
LIB$FIND_FILE returns one file specification for each call. The file specification
may contain wildcards.

Format

LIB$FIND_FILE filespec ,resultant-filespec ,context [,default-filespec] [,related-filespec] [,status-value]
[,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification, which may contain wildcards, that LIB$FIND_FILE uses to
search for the desired file. The filespec argument is the address of a descriptor
pointing to the file specification. If running on Alpha or I64 and flag LIB$M_FIL_
LONG_NAMES is set, the maximum length of a file specification is specified by
NAML$C_MAXRSS, otherwise the maximum length of a file specification is 255
bytes.

The file specification used may also contain a search list logical name. If present,
the search list logical name elements can be used as accumulative to related file
specifications, so that portions of file specifications not specified by the user are
inherited from previous file specifications.

resultant-filespec
OpenVMS usage: char_string
type: character string
access: modify
mechanism: by descriptor

Resultant file specification that LIB$FIND_FILE returns when it finds a file
that matches the specification in the filespec argument. The resultant-filespec
argument is the address of a descriptor pointing to the resultant file specification.

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

lib–192

LIB$ Routines
LIB$FIND_FILE

A longword integer variable into which the routine stores a context value
for use by future calls to LIB$FIND_FILE or LIB$FIND_FILE_END. The
context argument is an unsigned longword integer containing the address of
the context. This variable must be set to zero before the first call to LIB$FIND_
FILE. You can use the same context argument from one LIB$FIND_FILE
call to another provided you have not called LIB$FIND_FILE_END for that
context first. LIB$FIND_FILE uses this argument to retain the context when
processing multiple input files. Portions of file specifications that the user does
not specify may be inherited from the last files processed because the file contexts
are retained in this argument. You must not change the value of context in
subsequent calls to LIB$FIND_FILE.

default-filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Default file specification. The default-filespec argument is the address of a
descriptor pointing to the default file specification. See the OpenVMS Record
Management Services Reference Manual for information about default file
specifications.

related-filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Related file specification containing the context of the last file processed. The
related-filespec argument is the address of a descriptor pointing to the related
file specification.

The related file specification is useful when you are processing lists of file
specifications. Unspecified portions of the file specification are inherited from the
last file processed. For more information on related file specifications, see the
OpenVMS Record Management Services Reference Manual.

status-value
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

RMS secondary status value from a failing RMS operation. The status-value
argument is an unsigned longword containing the address of a longword-length
buffer to receive the RMS secondary status value (usually returned in the file
access block field, FAB$L_STV).

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

User flags. The flags argument is the address of an unsigned longword
containing the user flags.

lib–193

LIB$ Routines
LIB$FIND_FILE

The flag bits and their corresponding symbols are described in the following table:

Bit Symbol Description

0 LIB$M_FIL_NOWILD If set, LIB$FIND_FILE returns an error
if a wildcard character is input.

1 LIB$M_FIL_MULTIPLE If set, this performs temporary defaulting
for multiple input files and the related-
filespec argument is ignored. See
description of context in LIB$FILE_
SCAN. Each time LIB$FIND_FILE is
called with a different file specification,
the specification from the previous call
is automatically used as a related file
specification. This allows parsing of the
elements of a search-list logical name such
as DISK2:[SMITH] FIL1.TYP,FIL*2.TYP,
and so on. Use of this feature is required
to get the desired defaulting with search
list logical name. LIB$FIND_FILE_END
must be called between each command
line in interactive use or the defaults
from the previous command line affect the
current file specification.

2 LIB$M_FIL_LONG_NAMES (Alpha and I64 only) If set, LIB$FIND_
FILE can process file specifications with a
maximum length of NAML$C_MAXRSS.
If clear, LIB$FIND_FILE can process file
specifications with a maximum length of
255 (default).

Description

LIB$FIND_FILE returns one file specification per call unless it fails to find the
target file specification. In this case, the routine returns the condition value
RMS$_NMF (no more files). Each successful call to LIB$FIND_FILE results in a
new resultant-filespec.

When you call LIB$FIND_FILE repeatedly using the same context, filespec is
saved only if you set the MULTIPLE bit. If you specify a different filespec on
your next call and set the MULTIPLE bit, the file specification from the previous
call defaults as the related file specification.

For each LIB$FIND_FILE call, RMS first applies the defaults from default-
filespec and then uses the defaults from related-filespec, if relevant. Default
file specifications are used only if components are missing from the filespec
argument and the needed components are found in default-filespec. The
related-filespec argument is used when you process lists of file specifications.
Unspecified portions of the file specification are inherited from the last file
processed. This provides an extra level of file specification defaults. For
additional information on related file specifications and input file parsing,
see the Guide to OpenVMS File Applications.

lib–194

LIB$ Routines
LIB$FIND_FILE

The filespec argument can contain wildcard characters. LIB$FIND_FILE can be
called repeatedly using the same context argument until the error RMS$_NMF
(no more files) is returned.

LIB$FIND_FILE searches for a certain wildcard file specification and returns all
file specifications that satisfy that wildcard file specification.

If you make multiple calls to LIB$FIND_FILE, be aware of the following
behavior:

• If the NOWILD bit is not set and the file specification does not contain any
wildcard characters, LIB$FIND_FILE returns the appropriate file name on
the first call and the condition value RMS$_NMF on the next call.

• If the NOWILD bit is set and you use the same nonwildcard file specification,
LIB$FIND_FILE returns the file name on the first call as well as each
subsequent call.

On Alpha and I64 systems, support for file specifications longer than 255
characters is provided only when the LIB$M_FIL_LONG_NAMES flag is set in
the flags argument. When this flag is set, a NAML block (rather than a NAM
block) is part of the context, and file specifications can have a maximum length
of NAML$C_MAXRSS. See the OpenVMS Record Management Services Reference
Manual for information on NAML blocks.

You must call LIB$FIND_FILE_END before initiating a new sequence of calls to
LIB$FIND_FILE to properly deallocate all of the internal data structures that
were allocated in the calls to LIB$FIND_FILE. After you call LIB$FIND_FILE_
END, the context value is no longer valid and cannot be used on any subsequent
LIB$FIND_FILE calls.

If the error RMS$_CHN is returned, RMS has no more channels to assign. There
are two possible reasons for this:

• You did not call LIB$FIND_FILE_END before initiating a new call with a
context variable to LIB$FIND_FILE. (This is the most common reason.)

• The system parameter CHANNELCNT is too low.

Condition Values Returned

RMS$_NORMAL Routine successfully completed.
LIB$_NOWILD A wildcard character was present in the file

specification parsed, and the wildcard flag bit
was set to no wildcard. (This is actually the
SHR$_NOWILD error message after application
of the LIB$ facility code.)

RMS$_CHN No more channels.
RMS$_NMF No more files.

Any condition value returned by RMS Parse and Search services, LIB$GET_VM,
LIBGET_VM_64, LIBFREE_VM, LIB$FREE_VM_64, LIB$SCOPY_R_DX, or
LIB$SCOPY_R_DX_64.

lib–195

LIB$ Routines
LIB$FIND_FILE_END

LIB$FIND_FILE_END
End of Find File

The End of Find File routine is called once after each sequence of calls to
LIB$FIND_FILE. LIB$FIND_FILE_END deallocates any saved OpenVMS RMS
context and deallocates the virtual memory used to hold the allocated context
block.

Format

LIB$FIND_FILE_END context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

context
OpenVMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference

Zero or the address of a FAB/NAM buffer from a previous call to LIB$FIND_
FILE. The context argument is the address of a longword that contains this
context.

Description

LIB$FIND_FILE_END should be called by your program after each sequence of
calls to LIB$FIND_FILE. This will prevent the default values from the previous
call from affecting the next file specification.

LIB$FIND_FILE_END deallocates the context used in the last call to LIB$FIND_
FILE so that the context retained will not be used in subsequent calls to
LIB$FIND_FILE. If LIB$FIND_FILE was directed to process file specifications
for multiple input files, the saved file specifications are also deallocated.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
RMS$_FAB File access block argument is not the address of

a valid FAB.

lib–196

LIB$ Routines
LIB$FIND_IMAGE_SYMBOL

LIB$FIND_IMAGE_SYMBOL
Find Universal Symbol in Shareable Image File

The Find Universal Symbol in Shareable Image File routine reads universal
symbols from the shareable image file. This routine then dynamically activates a
shareable image into the P0 address space of a process.

Format

LIB$FIND_IMAGE_SYMBOL filename ,symbol ,symbol-value [,image-name] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

filename
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the file for which LIB$FIND_IMAGE_SYMBOL is searching. The
filename argument is the address of a descriptor pointing to this file name
string. This argument may contain only the file name. File type cannot be
indicated. If any file specification punctuation characters (:, [, <, ;, .) are present,
the error SS$_IVLOGNAM is returned.

You can specify a file specification for the image name with the optional
image-name argument. If you do not specify image-name, a default file
specification of SYS$SHARE:.EXE is applied to the file name. If the file is not in
SYS$SHARE:.EXE, a logical name must be used to direct this routine to locate
the correct file. Only logical names defined in the system logical name table with
the /EXEC attribute will be considered while the image activator is processing a
request from an image that was installed with privileges. If the calling image was
installed with privileges, the image being activated and any shareable images
or message sections it references must be installed as a known image with the
INSTALL utility. Running an image to which you have only Execute (not Read)
access results in the same restrictions on logical names and shareable images as
does running a privileged image.

On VAX systems, the filename descriptor must be class D, S, or Z.

symbol
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Symbol for which LIB$FIND_IMAGE_SYMBOL is searching in the filename file.
The symbol argument is the address of a descriptor pointing to the symbol name

lib–197

LIB$ Routines
LIB$FIND_IMAGE_SYMBOL

string. The symbol name string can be input in uppercase, lowercase, or mixed
case letters.

symbol-value
OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Symbol value that LIB$FIND_IMAGE_SYMBOL has located. The symbol-value
argument is the address of a signed longword integer into which LIB$FIND_
IMAGE_SYMBOL returns the symbol value. If the symbol is relocatable, the
starting virtual address of the shareable image in memory is added to the symbol
value.

image-name
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Default file specification applied to the image name. The optional image-name
argument is a string used as the RMS default file specification when parsing
filename as the primary filename. If image-name is not supplied, then a
default file specification of SYS$SHARE:.EXE is applied to the image name.

On VAX systems, the image-name descriptor must be class D, S, or Z.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Control flags. The flags argument is the address of a longword integer that
contains the control flags.

Bit Value Description

0 Reserved to HP
1 Reserved to HP
2 Reserved to HP
3 Reserved to HP
4 LIB$M_FIS_MIXEDCASE Causes LIB$FIND_IMAGE_

SYMBOL to look for the
symbol without converting it
to uppercase.

This is an optional argument. If omitted, the default is 0. If omitted, or if
LIB$M_FIS_MIXEDCASE (bit 4) is 0, LIB$FIND_IMAGE_SYMBOL converts the
specified symbol to uppercase before it is used.

lib–198

LIB$ Routines
LIB$FIND_IMAGE_SYMBOL

Description

The shareable image that LIB$FIND_IMAGE_SYMBOL activates must have
been already linked and must be position independent. You must have read
access to the shareable image file to use this routine.

LIB$FIND_IMAGE_SYMBOL writes the symbol value that it has located into the
symbol-value argument.

After the first call to LIB$FIND_IMAGE_SYMBOL for a particular image,
successive calls for that image are processed quickly. The image is activated only
once and an in-memory database is maintained. There is no way to deallocate
this database, nor is there any supported method to remove an activated image
from the address space. All images are activated into P0 space.

LIB$FIND_IMAGE_SYMBOL locates the universal symbol in its database
qualified by the file name exactly as given in the filename argument. Therefore,
a reference to a lexically different but equivalent file name causes a new copy
of the same shareable image to be loaded and searched. To avoid this situation,
always specify the desired file name in the same form.

To work properly with translated VAX images on Alpha and I64 systems,
LIB$FIND_IMAGE_SYMBOL may modify the name of the file being searched
and may retry the search if the first search failed. If called from a translated
image, LIB$FIND_IMAGE_SYMBOL appends ‘‘_TV’’ to the file name before
searching. This locates the translated version of the image being searched. If
the search fails to find the file or the file does not define the symbol, LIB$FIND_
IMAGE_SYMBOL trys again with the unmodified original file name. This locates
the native Alpha or I64 version of the image. If the second search also fails, an
error is returned. If LIB$FIND_IMAGE_SYMBOL is called from a native Alpha
or I64 program, the order of the searches is reversed. The first search is done
with the unmodified original file name. If that fails, the second search is done
with ‘‘_TV’’ appended to the file name. If the second search fails, an error is
returned.

LIB$FIND_IMAGE_SYMBOL disables AST recognition while it is executing.
AST recognition is reenabled before returning to the caller only if AST recognition
was previously enabled.

LIB$FIND_IMAGE_SYMBOL signals all errors and returns the status in R0.

LIB$FIND_IMAGE_SYMBOL may signal a warning (LIB$EOMWARN) to
indicate that the image being activated contains modules that had compilation
warnings. A condition handler used with LIB$FIND_IMAGE_SYMBOL should
probably handle this as a special case.

To allow LIB$FIND_IMAGE_SYMBOL to continue executing after signaling
LIB$EOMWARN, the condition handler should exit with SS$CONTINUE. For
this reason, you may choose not to use LIB$SIG_TO_RET as a condition handler
for LIB$FIND_IMAGE_SYMBOL.

lib–199

LIB$ Routines
LIB$FIND_IMAGE_SYMBOL

Condition Values Returned

LIB$_BADCCC Illegal compilation code.
LIB$_EOMERROR Compilation errors.
LIB$_EOMFATAL Fatal compilation errors.
LIB$_EOMWARN Compilation warnings.
LIB$_GSDTYP Illegal universal symbol directory record type.
LIB$_ILLFMLCNT Maximum argument count exceeds maximum for

routine.
LIB$_ILLMODNAM Illegal module name length.
LIB$_ILLPSCLEN Illegal program section length.
LIB$_ILLRECLEN Illegal record length in module.
LIB$_ILLRECLN2 Illegal record length.
LIB$_ILLRECTYP Illegal record type in module.
LIB$_ILLRECTY2 Illegal record type.
LIB$_ILLSYMLEN Illegal symbol length.
LIB$_NOEOM No end of module record contained in the module.
LIB$_RECTOOSML Record too small; data overflows object record in

module.
LIB$_SEQUENCE Illegal record sequence in module.
LIB$_SEQUENCE2 Illegal record sequence.
LIB$_STRVL Illegal object language structure level in module.
Note that all of the above
error messages indicate a
format error in the shareable
image.
LIB$_INSVIRMEM Insufficient virtual memory.
SS$_IVLOGNAM The filename argument contained more

than just a file name; a device or directory
specification was found in the string.

Any condition values returned by RTL routines LIB$INSERT_TREE or
LIB$LOOKUP_TREE.

Any condition values returned by RMS.

lib–200

LIB$ Routines
LIB$FIND_VM_ZONE

LIB$FIND_VM_ZONE
Return the Next Valid Zone Identifier

The Return the Next Valid Zone Identifier routine returns the zone identifier of
the next valid zone in the heap management 32-bit database. †

Format

LIB$FIND_VM_ZONE context ,zone-id

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context specifier. The context argument is the address of an unsigned longword
used to keep the scan context for finding the next valid zone. The context
argument must be 0 to initialize the scan and to start with the first returnable
zone identifier.

zone-id
OpenVMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of an unsigned longword
that receives the zone identifier for the next zone.

Description

At each call, LIB$FIND_VM_ZONE scans the heap management 32-bit zone
database and returns the zone-id of the next valid zone. (The first and second
calls to LIB$FIND_VM_ZONE return the zone-id of the 32-bit default zone and
the 32-bit string zone, respectively.) This capability allows a program to deal
with each 32-bit VM zone created during the invocation, including those created
outside of the program.

Note

LIB$FIND_VM_ZONE finds only 32-bit zones. You must use LIB$FIND_
VM_ZONE and LIB$FIND_VM_ZONE_64 to loop through all VM zones.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–201

LIB$ Routines
LIB$FIND_VM_ZONE

The context argument controls the state of the scan. It determines what zone
to return (the first, the next, and so forth). On the initial call, specified by
context=0, LIB$VERIFY_VM_ZONE is called to verify the heap management
zone database. If the database is corrupt, further calls to this routine will produce
no additional useful output.

When no more zones can be found, the routine returns the condition value LIB$_
NOTFOU.

If a zone has been corrupted in some major way (for example, if the validity code
has been changed), then this routine may not be able to locate it in the zone
database.

Note that ASTs may be disabled while LIB$FIND_VM_ZONE is executing code
that depends on the stability of the heap management zone database. In general
it is the caller’s responsibility to ensure that the calling program has exclusive
access to the zone database while scanning for multiple zones with this routine.
Results are unpredictable if another thread of control modifies the zone database
or the associated areas during the scanning.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADZONE Invalid zone.
LIB$_NOTFOU Zone identifier not found (alternate success

status).
LIB$_WRONUMARG Wrong number of arguments.

Example

IMPLICIT NONE
INTEGER*4 status,context,zone_id
INTEGER*4 lib$find_vm_zone,lib$show_vm_zone

context = 0
status = lib$find_vm_zone (context, zone_id)
DO WHILE (status)

print *
status = lib$show_vm_zone (zone_id, 0)
status = lib$find_vm_zone (context, zone_id)

END DO
END

Sample output for this Fortran program is shown below:

Zone Id = 00020020, Zone name = "DEFAULT_ZONE"

Zone Id = 000200B0, Zone name = "STRING_ZONE"

lib–202

LIB$ Routines
LIB$FIND_VM_ZONE_64 (Alpha and I64 Only)

LIB$FIND_VM_ZONE_64 (Alpha and I64 Only)
Return the Next Valid Zone Identifier

The Return the Next Valid Zone Identifier routine returns the zone identifier of
the next valid zone in the heap management 64-bit database.

Format

LIB$FIND_VM_ZONE_64 context ,zone-id

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

context
OpenVMS usage: context
type: quadword (unsigned)
access: modify
mechanism: by reference

Context specifier. The context argument is the address of an unsigned quadword
used to keep the scan context for finding the next valid zone. The context
argument must be 0 to initialize the scan and to start with the first returnable
zone identifier.

zone-id
OpenVMS usage: identifier
type: quadword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of an unsigned quadword
that receives the zone identifier for the next zone.

Description

At each call, LIB$FIND_VM_ZONE_64 scans the heap management 64-bit zone
database and returns the zone-id of the next valid zone. (The first and second
calls to LIB$FIND_VM_ZONE_64 return the zone-id of the 64-bit default zone
and the 64-bit string zone, respectively.) This capability allows a program to deal
with each VM 64-bit zone created during the invocation, including those created
outside of the program.

Note

LIB$FIND_VM_ZONE_64 finds only 64-bit zones. You must use
LIB$FIND_VM_ZONE and LIB$FIND_VM_ZONE_64 to loop through
all VM zones.

lib–203

LIB$ Routines
LIB$FIND_VM_ZONE_64 (Alpha and I64 Only)

The context argument controls the state of the scan. It determines what zone
to return (the first, the next, and so forth). On the initial call, specified by
context=0, LIB$VERIFY_VM_ZONE_64 is called to verify the heap management
zone database. If the database is corrupt, further calls to this routine will produce
no additional useful output.

When no more zones can be found, the routine returns the condition value LIB$_
NOTFOU.

If a zone has been corrupted in some major way (for example, if the validity code
has been changed), then this routine may not be able to locate it in the zone
database.

Note that ASTs may be disabled while LIB$FIND_VM_ZONE_64 is executing
code that depends on the stability of the heap management zone database. In
general it is the caller’s responsibility to ensure that the calling program has
exclusive access to the zone database while scanning for multiple zones with this
routine. Results are unpredictable if another thread of control modifies the zone
database or the associated areas during the scanning.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADZONE Invalid zone.
LIB$_NOTFOU Zone identifier not found (alternate success

status).
LIB$_WRONUMARG Wrong number of arguments.

Example

IMPLICIT NONE
INTEGER*4 status
INTEGER*8 context,zone_id
INTEGER*4 lib$find_vm_zone_64,lib$show_vm_zone_64

context = 0
status = lib$find_vm_zone_64 (context, zone_id)
DO WHILE (status)

print *
status = lib$show_vm_zone_64 (zone_id, 0)
status = lib$find_vm_zone_64 (context, zone_id)

END DO
END

Sample output for this Fortran program is as follows:

Zone Id = 0000000000020040, Zone name = "DEFAULT_ZONE"

Zone Id = 0000000000020140, Zone name = "STRING_ZONE"

lib–204

LIB$ Routines
LIB$FIT_NODENAME

LIB$FIT_NODENAME
Fit a Node Name into an Output Field

The Fit a Node Name Into an Output Field routine fits a node name into an
output field. It attempts to compress the node name to fit the output field. If this
fails, it trims the node name. †

Format

LIB$FIT_NODENAME nodename, output-buffer [,output-width][,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

nodename
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Node name to be fitted into the desired output field. The nodename argument
contains the address of a descriptor pointing to this node-name string.

The error LIB$_INVARG is returned if nodename contains an invalid node
name, points to a null string, or contains more than 1024 characters. The error
LIB$_INVSTRDES is returned if nodename is an invalid descriptor.

output-buffer
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

The output buffer. The output-buffer argument contains the address of a
descriptor pointing to the output buffer. LIB$FIT_NODENAME writes the final
output node name into the buffer pointed to by output-buffer.

The error LIB$_INVSTRDES is returned if output-buffer is an invalid
descriptor.

The length field of the output-buffer descriptor is not updated unless output-
buffer is a dynamic descriptor with a length less than the resulting fitted node
name. Refer to the OpenVMS RTL String Manipulation (STR$) Manual for
dynamic string descriptor usage.

The output-buffer argument contains an unusable result when LIB$FIT_
NODENAME returns in error.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–205

LIB$ Routines
LIB$FIT_NODENAME

output-width
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Field width desired for the fit operation. The output-width argument is the
address of an unsigned word that contains this field width in bytes.

If output-width is omitted, the current length of output-buffer is used. If
output-buffer is not a fixed-length string, specify output-width to ensure that
the desired width is used.

If the lengths of both output-buffer and output-width are specified, the length
in output-width is used. In this case, if the current length of output-buffer is
smaller than the length of output-width, the output node name is truncated at
the end, and the alternate successful status LIB$_STRTRU is returned.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the output node name. The resultant-length argument is the address
of an unsigned word that contains this length in bytes.

The resultant-length argument contains an unusable result when LIB$FIT_
NODENAME returns in error.

Description

This routine fits the input node name into the desired output field for display
purposes. It first attempts to get the usable short form of the input node name
by calling LIB$COMPRESS_NODENAME. If that fails, the input node name
is expanded by LIB$EXPAND_NODENAME and then trimmed by LIB$TRIM_
FULLNAME to fit the desired output width.

The input is validated against the supported form of input node names. The error
LIB$_INVARG is returned if the input node name is invalid.

Node-name compression is always attempted even if the length of the input node
name is less than or equal to the desired output width. This is to ensure that the
short form of a full name is always chosen for display purposes.

When the compressed node name is too long to fit the desired output width, the
input node name is expanded using LIB$EXPAND_NODENAME and trimmed
using LIB$TRIM_FULLNAME. In this case, the alternate success status LIB$_
STRTRU is returned.

When LIB$FIT_NODENAME encounters errors from the underlying network
services, it tries to return the string-truncated compressed node name. If it is
the compression operation that fails, LIB$FIT_NODENAME returns the string-
truncated input node name. The alternate successful status LIB$_STRTRU is
returned.

lib–206

LIB$ Routines
LIB$FIT_NODENAME

Note that the returned node name can be either a compressed usable short form
of the input node name or an unusable trimmed or truncated node name. The
caller should always assume an unusable node name is returned when it finds
the alternate success return status LIB$_STRTRU. On the other hand, the SS$_
NORMAL return status means that a usable form of a node name is returned.

LIB$FIT_NODENAME adds padding spaces to the end of the output buffer if the
output node name is shorter than the size of the output buffer. The argument
resultant-length, if supplied, is set to the length of the output node name,
excluding any padding spaces.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Routine successfully completed. Characters are

truncated in the output buffer pointed to by
output-buffer.

LIB$_INVARG Invalid argument:

• nodename is invalid.

• nodename points to a null string.

• The length of the node name is more than
1024 characters.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by LIB$SCOPY_R_DX.

lib–207

LIB$ Routines
LIB$FIXUP_FLT

LIB$FIXUP_FLT
Fix Floating Reserved Operand

The Fix Floating Reserved Operand routine finds the reserved operand of any
F-floating, D-floating, G-floating, or H-floating instruction (with some exceptions)
after a reserved operand fault has been signaled.† LIB$FIXUP_FLT changes
the reserved operand from –0.0 to the value of the new-operand argument, if
present; or to +0.0 if new-operand is absent.

This routine is available on OpenVMS Alpha and I64 systems in translated form
and is applicable to translated VAX images only.

Format

LIB$FIXUP_FLT signal-arguments ,mechanism-arguments [,new-operand]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

signal-arguments
OpenVMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Signal argument vector. The signal-arguments argument is the address of an
array of unsigned longwords containing the signal argument vector.

mechanism-arguments
OpenVMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Mechanism argument vector. The mechanism-arguments argument is the
address of an array of unsigned longwords containing the mechanism argument
vector.

new-operand
OpenVMS usage: floating-point
type: F_floating
access: read only
mechanism: by reference

An F-floating value to replace the reserved operand. The new-operand
argument is the address of an F-floating number containing the new operand.
This is an optional argument. If omitted, the default value is +0.0.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–208

LIB$ Routines
LIB$FIXUP_FLT

Description

LIB$FIXUP_FLT finds the reserved operand of any F-floating, D-floating, G-
floating, or H-floating instruction (with some exceptions) after a reserved operand
fault has been signaled. LIB$FIXUP_FLT changes the reserved operand from
–0.0 to the value of the new-operand argument, if present; or to +0.0 if new-
operand is absent. LIB$FIXUP_FLT cannot handle the following cases and will
return a status of SS$_RESIGNAL if any of them occur:

• The currently active signaled condition is not SS$_ROPRAND.

• The reserved operand’s data type is not F-floating, D-floating, G-floating, or
H-floating.

• The reserved operand is an element in the coefficient table for one of the VAX
POLYx instructions.

If the status value returned from LIB$FIXUP_FLT is seen by the condition
handling facility (as would be the case if LIB$FIXUP_FLT was the handler), any
success value is equivalent to SS$_CONTINUE, which causes the instruction to
be restarted. Any failure value is equivalent to SS$_RESIGNAL, which causes
the condition to be resignaled to the next handler. This resignal status is because
the condition handler (LIB$FIXUP_FLT) was unable to handle the condition
correctly.

LIB$FIXUP_FLT can be enabled directly as a condition handler. The signal-
arguments and mechanism-arguments arguments are passed to the condition
handler by OpenVMS exception dispatching.

Condition Values Returned

SS$_NORMAL Routine successfully completed. The reserved
operand was found and has been fixed.

SS$_ACCVIO Access violation. An argument to LIB$FIXUP_
FLT or an operand of the faulting instruction
could not be read or written.

SS$_RESIGNAL The signaled condition was not SS$_ROPRAND,
or the reserved operand was not a floating-point
value or was an element in a POLYx table.

SS$_ROPRAND Reserved operand fault. The optional argument
new-operand was supplied but was itself an
F-floating reserved operand.

LIB$_BADSTA Bad stack. The stack frame linkage has been
corrupted since the time of the reserved operand
exception.

lib–209

LIB$ Routines
LIB$FLT_UNDER

LIB$FLT_UNDER
Floating-Point Underflow Detection

The Floating-Point Underflow Detection routine enables or disables floating-point
underflow detection for the calling routine activation. The previous setting is
returned as a function value. †

This routine is available on OpenVMS Alpha and I64 systems in translated form
and is applicable to translated VAX images only.

Format

LIB$FLT_UNDER new-setting

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The old floating-point underflow enable setting (the previous contents of the
SF$W_PSW[PSW$V_FU] in the caller’s frame).

Argument

new-setting
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

New floating-point underflow enable setting. The new-setting argument is the
address of an unsigned byte containing the new setting. Bit 0 set to 1 means
enable; bit 0 set to 0 means disable.

Description

LIB$FLT_UNDER affects only the current routine activation and does not affect
any of its callers or any routines that it may call. However, the setting does
remain in effect for any routines entered through a JSB entry point.

The caller’s stack frame will be modified by this routine.

Condition Values Returned

None.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–210

LIB$ Routines
LIB$FLT_UNDER

Example

C+
C This Fortran example program shows
C the use of LIB$FLT_UNDER.
C-

INTEGER*4 NEW_SETTING
REAL*4 X , Y , Z

NEW_SETTING = 0
X = 1E-20
Y = 1E20

CALL LIB$FLT_UNDER(NEW_SETTING)

TYPE *,’First Case: This should not have an underflow exception’

Z = X / Y

TYPE *, ’If this lines prints then the underflow exception
1 was disabled.’

TYPE *

NEW_SETTING = 1
X = 1E-20
Y = 1E20

CALL LIB$FLT_UNDER(NEW_SETTING)

TYPE * , ’Second Case: This should have an underflow exception
1 and then stop.’

Z = X / Y

TYPE * , ’If this line prints, then the underflow exception
1 was disabled.’

END

In this Fortran example, floating-point underflow detection is disabled the first
time X is divided by Y. The second time, underflow detection is enabled, and the
program stops because of the error generated.

lib–211

LIB$ Routines
LIB$FORMAT_DATE_TIME

LIB$FORMAT_DATE_TIME
Format Date and/or Time

The Format Date and/or Time routine allows the user to select at run time a
specific output language and format for a date or time, or both.

Format

LIB$FORMAT_DATE_TIME date-string [,date] [,user-context] [,date-length] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

date-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Receives the requested date or time, or both, that has been formatted for output
according to the currently selected format and language. The date-string
argument is the address of a descriptor pointing to this string.

date
OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

The date or time, or both, to be formatted for output. The date argument is the
address of an unsigned quadword that contains the absolute date or time, or both
to be formatted. If you omit this argument, or if you supply a zero passed by
value, then the current system time is used. Note that the date argument must
represent an absolute time, not a delta time.

user-context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context that retains the translation context over multiple calls to this
routine. The user-context argument is the address of an unsigned longword
that contains this context. The initial value of the context variable must be zero.
Thereafter, the user program must not write to the cell.

lib–212

LIB$ Routines
LIB$FORMAT_DATE_TIME

The user-context parameter is optional. However, if a context cell is not passed,
the routine LIB$FORMAT_DATE_TIME may abort if two threads of execution
attempt to manipulate the context area concurrently. Therefore, when calling this
routine in situations where reentrancy might occur, such as from AST level, HP
recommends that users specify a different context cell for each calling thread.

date-length
OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Number of bytes of text written to the date-string argument. The date-length
argument is the address of a signed longword that receives this string length.
Note that date-length specifies the number of bytes of text, not the number of
characters, written to date-string.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask that allows the user to specify whether the date, time, or both are
output. The flags argument is the address of an unsigned bit mask containing
the specified values. Valid values are LIB$M_DATE_FIELDS and LIB$M_TIME_
FIELDS.

Default values are determined as follows:

• If the flags argument is omitted, LIB$FORMAT_DATE_TIME determines
which fields to format according to the current definition of LIB$DT_
FORMAT.

• If the flags argument is specified, LIB$FORMAT_DATE_TIME uses the flags
value to determine which fields to format. That is, the flags argument can be
used to override the definition of LIB$DT_FORMAT when specifying which
fields should be formatted for output. If the field specified by flags was not
assigned a format through the definition of LIB$DT_FORMAT, the standard
OpenVMS format is used.

Description

The LIB$FORMAT_DATE_TIME routine formats an OpenVMS internal format
date-time quadword into a textual string of some predefined format. The
language to be used and the format in which to output the information are
programmable using either of the following methods.

• The language and format are programmable at compile time through the use
of the routine LIB$INIT_DATE_TIME_CONTEXT.

• The language and format are determined at run time through the translation
of the logical names SYS$LANGUAGE and LIB$DT_FORMAT.

In general, if an application is formatting text for internal storage or
transmission, the language and format should be specified at compile time.
If this is the case, use the routine LIB$INIT_DATE_TIME_CONTEXT to specify
the language and format of your choice.

lib–213

LIB$ Routines
LIB$FORMAT_DATE_TIME

If an application is formatting text for presentation to a user, the logical name
method of specifying language and format should be used. In this method, the
user assigns equivalence names to the logical names SYS$LANGUAGE and
LIB$DT_FORMAT, thereby selecting the language and format of the date and
time at run time.

If the logical name method is used, the translations of the logical names
SYS$LANGUAGE and LIB$DT_FORMAT specify one or more executive mode
logicals, which in turn must be translated to determine the actual format string.
These additional logicals supply such things as the names of the days of the week
and the months in the selected language (determined by SYS$LANGUAGE).
All of these logicals are predefined, so that a non-privileged user can select any
one of these languages and formats. A user can create his or her own languages
and formats; however, the CMEXEC, SYSNAME, and SYSPRV privileges are
required.

With the exception of SYS$LANGUAGE and LIB$DT_FORMAT, all logical names
used by this routine must be defined from the executive mode.

See the HP OpenVMS Programming Concepts Manual for a description of
system date and time operations as well as a detailed description of the format
mnemonics used in these routines.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_ABSTIMREQ Absolute time required.
LIB$_DEFFORUSE Default format used; unable to determine the

desired format.
LIB$_ENGLUSED English used; unable to determine or use the

specified language.
LIB$_REENTRANCY Reentrant invocation with same context variable.
LIB$_STRTRU Output string truncated.
LIB$_UNRFORCOD Unrecognized format code.

Any condition values returned by the $NUMTIM system service, or RTL routines
LIBGET_VM, LIBGET_VM_64, LIB$ANALYZE_SDESC, or LIB$ANALYZE_
SDESC_64.

lib–214

LIB$ Routines
LIB$FORMAT_SOGW_PROT

LIB$FORMAT_SOGW_PROT
Format Protection Mask

The Format Protection Mask routine translates a protection mask into a
formatted string.

Format

LIB$FORMAT_SOGW_PROT protection-mask, [access-names], [ownership-names],
[ownership-separator], [list-separator], protection-string, [protection-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

protection-mask
OpenVMS usage: protection
type: word (unsigned)
access: read only
mechanism: by reference

The address of a word that holds a 16-bit protection mask to be translated.

access-names
OpenVMS usage: access_names
type: array [0..31] of quadword string descriptor
access: read only
mechanism: by reference

The address of the access name table for the associated object class. For example,
it is the value returned in accnam by LIB$GET_ACCNAM. This parameter
defaults to the access name table for the FILE object class.

ownership-names
OpenVMS usage: char_string
type: array [0..3] of quadword string descriptor
access: read only
mechanism: by reference

The address of a vector of 4 quadword descriptors that points to the ownership
name. The default value is the full ownership category names (System, Owner,
Group, World).

ownership-separator
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

lib–215

LIB$ Routines
LIB$FORMAT_SOGW_PROT

The address of a descriptor that points to the ownership separator string. The
separator string is inserted after the ownership name to introduce a nonempty
set of access names. By default, the value is ‘‘: ’’ (the colon and space characters).

list-separator
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

The address of a descriptor that points to the list separator string. The list
separator string is inserted between ownership-access type pairs. By default, the
value is ‘‘, ’’ (the comma and space characters).

protection-string
OpenVMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor

The address of a character-string descriptor that receives the output of the
routine call. The protection-string argument points to the formatted protection
string at the end of a call. The protection string has the following components
repeated for each of: System, Owner, Group, World:

ownership-name[ownership-separator][access-types][list-separator]

An example of a formatted protection string is

System: RWED, Owner: RWED, Group: RW, World: R

protection-length
OpenVMS usage: word_signed
type: word (signed)
access: write only
mechanism: by reference

The address of a word that receives the length of the string returned in the
protection-string argument.

Description

LIB$FORMAT_SOGW_PROT translates a 16-bit protection mask into a formatted
string. This routine works for any protected object class by specifying the correct
access name table. The address of the access name table can be obtained from
the LIB$GET_ACCNAM routine.

Several formatting options are available. The caller can specify ownership names,
ownership separators, or list separators.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Required parameter missing.
LIB$_WRONGNUMARG Wrong number of arguments.
STR$_TRU String truncation warning.

lib–216

LIB$ Routines
LIB$FREE_DATE_TIME_CONTEXT

LIB$FREE_DATE_TIME_CONTEXT
Free the Context Area Used When Formatting Dates and Times for
Input or Output

The Free the Context Area Used When Formatting Dates and Times for Input or
Output routine frees the virtual memory associated with the context area used by
the date/time input and output formatting routines.

Format

LIB$FREE_DATE_TIME_CONTEXT [user-context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

user-context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context that retains the translation context over multiple calls to the
date/time input and output formatting routines. The user-context argument
is the address of an unsigned longword that contains this context. If the user-
context argument was not specified in the call to LIB$FORMAT_DATE_TIME,
LIB$CONVERT_DATE_STRING, or LIB$GET_MAXIMUM_DATE_LENGTH,
then no argument should be supplied when calling this routine.

Description

The LIB$FREE_DATE_TIME_CONTEXT routine frees the virtual memory
associated with the context area used by the date/time input and output
formatting routines. A call to this routine is optional, since the same functions
are performed at image exit.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

Any condition value returned by LIB$FREE_VM. If one of these condition values
is returned, it indicates either an internal coding error or that memory was
corrupted by the user’s program.

lib–217

LIB$ Routines
LIB$FREE_EF

LIB$FREE_EF
Free Event Flag

The Free Event Flag routine frees a local event flag previously allocated by
LIB$GET_EF or by LIB$RESERVE_EF. LIB$FREE_EF is the complement of
LIB$GET_EF.

Format

LIB$FREE_EF event-flag-number

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

event-flag-number
OpenVMS usage: ef_number
type: longword integer (unsigned)
access: read only
mechanism: by reference

Event flag number to be deallocated by LIB$FREE_EF. The event-flag-number
argument is the address of a signed longword integer that contains the event
flag number, which is the value allocated to the user by LIB$GET_EF or
LIB$RESERVE_EF.

Description

When a local event flag allocated by calling LIB$GET_EF or LIB$RESERVE_EF
is no longer needed, LIB$FREE_EF should be called to free the event flag for use
by other routines.

See the HP OpenVMS Programming Concepts Manual for more information.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_EF_ALRFRE Event flag already free.
LIB$_EF_RESSYS Event flag reserved to system. This error occurs

if the event flag number is outside the ranges of
1 to 23 and 32 to 63.

lib–218

LIB$ Routines
LIB$FREE_LUN

LIB$FREE_LUN
Free Logical Unit Number

The Free Logical Unit Number routine releases a logical unit number allocated
by LIB$GET_LUN to the pool of available numbers. LIB$FREE_LUN is the
complement of LIB$GET_LUN.

Format

LIB$FREE_LUN logical-unit-number

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

logical-unit-number
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Logical unit number to be deallocated. The logical-unit-number argument is
the address of a signed longword integer that contains this logical unit number,
which is the value previously returned by LIB$GET_LUN.

Description

When a logical unit number allocated by calling LIB$GET_LUN is no longer
needed, it should be released for use by other routines.

This routine is useful only in BASIC or Fortran programs.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_LUNALRFRE Logical unit number is already free.
LIB$_LUNRESSYS Logical unit number reserved to system. This

occurs if the specified logical unit number is
outside the range of 100 through 299.

lib–219

LIB$ Routines
LIB$FREE_TIMER

LIB$FREE_TIMER
Free Timer Storage

The Free Timer Storage routine frees the storage allocated by LIB$INIT_TIMER.

Format

LIB$FREE_TIMER handle-address

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

handle-address
OpenVMS usage: address
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to a block of storage containing the value returned by a previous call to
LIB$INIT_TIMER; this is the storage that LIB$FREE_TIMER deallocates. The
handle-address argument is the address of an unsigned longword containing
that value.

Description

LIB$FREE_TIMER frees a block of storage previously allocated by LIB$INIT_
TIMER. LIB$FREE_TIMER assumes that handle-address was returned by a
previous call to LIB$INIT_TIMER. If the block referred to by handle-address
was not allocated by LIB$INIT_TIMER, LIB$FREE_TIMER returns an error. If
the routine completes successfully, LIB$FREE_TIMER sets handle-address to
zero.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR Bad block address; LIB$FREE_TIMER could not

deallocate the block to which handle-address
points.

LIB$_INVARG Invalid argument; handle-address was not
supplied or did not point to a timer block.

lib–220

LIB$ Routines
LIB$FREE_VM

LIB$FREE_VM
Free Virtual Memory from Program Region

The Free Virtual Memory from Program Region routine deallocates an entire
block of contiguous bytes that was allocated by a previous call to LIB$GET_VM.
The arguments passed are the same as for LIB$GET_VM. †

Format

LIB$FREE_VM number-of-bytes ,base-address [,zone-id]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

number-of-bytes
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of contiguous bytes to be deallocated by LIB$FREE_VM. The number-
of-bytes argument is the address of a signed longword integer that contains this
number. The value of number-of-bytes must be greater than zero.

Byte counts are rounded in the same manner as in LIB$GET_VM.

Note

You may omit the number-of-bytes argument if you are using boundary
tags (LIB$M_VM_BOUNDARY_TAGS).

base-address
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of the first byte to be deallocated by LIB$FREE_VM. The base-address
argument contains the address of an unsigned longword that is this address.
The value of base-address must be the address of a block of memory that was
allocated by a previous call to LIB$GET_VM.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–221

LIB$ Routines
LIB$FREE_VM

zone-id
OpenVMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

The address of a longword that contains a zone identifier created by a previous
call to LIB$CREATE_VM_ZONE or LIB$CREATE_USER_VM_ZONE.

You must specify the same zone-id value as when you called LIB$GET_VM to
allocate the block. An error status will be returned if you specify an incorrect
zone-id. The zone-id argument is optional. If zone-id is omitted or if the
longword contains the value 0, the 32-bit default zone is used.

Description

LIB$FREE_VM returns the block of memory to a free list associated with the
zone, so the block is available on a subsequent call to LIB$GET_VM for the zone.

The base-address argument must contain the address of the first byte of memory
that was allocated by a previous call to LIB$GET_VM. LIB$FREE_VM rounds up
the value of number-of-bytes to a multiple of the block size for the zone.

Note

You cannot free part of a block that was allocated by a call to LIB$GET_
VM. The whole block must be freed by a single call to LIB$FREE_VM.

Neither can you combine contiguous blocks of memory that were allocated
by several calls to LIB$GET_VM into one larger block that is freed by a
single call to LIB$FREE_VM.

If you specified deallocation filling when you created the zone, LIB$FREE_VM
will fill each byte freed. Note that part of a free block is used to store control
information, so some bytes will not contain the fill value.

LIB$FREE_VM is fully reentrant, so it can be called by routines executing at
AST-level or in an Ada multitasking environment.

If the zone you are freeing was created using the LIB$CREATE_USER_VM_
ZONE routine, then you must have an appropriate action routine for the free
operation. That is, in your call to LIB$CREATE_USER_VM_ZONE, you must
have specified a user deallocation procedure.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR The base-address argument contained a bad

block address. Either an address was outside of
the area allocated by LIB$GET_VM, the contents
of base-address were not properly aligned, part
of the space being deallocated was previously
deallocated, or a zone was found to be corrupt.

lib–222

LIB$ Routines
LIB$FREE_VM

LIB$_BADBLOSIZ The number-of-bytes argument is less than or
equal to 0, or the number-of-bytes argument is
incorrect for a zone containing fixed size blocks.

LIB$_BADTAGVAL For a zone that uses boundary tags, the tag field
was corrupted.

lib–223

LIB$ Routines
LIB$FREE_VM_64 (Alpha and I64 Only)

LIB$FREE_VM_64 (Alpha and I64 Only)
Free Virtual Memory from Program Region

The Free Virtual Memory from Program Region routine deallocates an entire
block of contiguous bytes that was allocated by a previous call to LIB$GET_VM_
64. The arguments passed are the same as for LIB$GET_VM_64.

Format

LIB$FREE_VM_64 number-of-bytes ,base-address [,zone-id]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

number-of-bytes
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Number of contiguous bytes to be deallocated by LIB$FREE_VM_64. The
number-of-bytes argument is the address of a signed quadword integer that
contains this number. The value of number-of-bytes must be greater than zero.

Byte counts are rounded in the same manner as in LIB$GET_VM_64.

Note

You may omit the number-of-bytes argument if you are using boundary
tags (LIB$M_VM_BOUNDARY_TAGS).

base-address
OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by reference

Address of the first byte to be deallocated by LIB$FREE_VM_64. The base-
address argument contains the address of an unsigned quadword that is this
address. The value of base-address must be the address of a block of memory
that was allocated by a previous call to LIB$GET_VM_64.

lib–224

LIB$ Routines
LIB$FREE_VM_64 (Alpha and I64 Only)

zone-id
OpenVMS usage: identifier
type: quadword (unsigned)
access: read only
mechanism: by reference

The address of a quadword that contains a zone identifier created by a previous
call to LIB$CREATE_VM_ZONE_64 or LIB$CREATE_USER_VM_ZONE_64.

You must specify the same zone-id value as when you called LIB$GET_VM_64
to allocate the block. An error status will be returned if you specify an incorrect
zone-id. The zone-id argument is optional. If zone-id is omitted or if the
quadword contains the value 0, the 64-bit default zone is used.

Description

LIB$FREE_VM_64 returns the block of memory to a free list associated with the
zone, so the block is available on a subsequent call to LIB$GET_VM_64 for the
zone.

The base-address argument must contain the address of the first byte of memory
that was allocated by a previous call to LIB$GET_VM_64. LIB$FREE_VM_64
rounds up the value of number-of-bytes to a multiple of the block size for the
zone.

Note

You cannot free part of a block that was allocated by a call to LIB$GET_
VM_64. The whole block must be freed by a single call to LIB$FREE_
VM_64.

Neither can you combine contiguous blocks of memory that were allocated
by several calls to LIB$GET_VM_64 into one larger block that is freed by
a single call to LIB$FREE_VM_64.

If you specified deallocation filling when you created the zone, LIB$FREE_VM_64
will fill each byte freed. Note that part of a free block is used to store control
information, so some bytes will not contain the fill value.

LIB$FREE_VM_64 is fully reentrant, so it can be called by routines executing at
AST-level or in an Ada multitasking environment.

If the zone you are freeing was created using the LIB$CREATE_USER_VM_
ZONE_64 routine, then you must have an appropriate action routine for the free
operation. That is, in your call to LIB$CREATE_USER_VM_ZONE_64, you must
have specified a user deallocation procedure.

lib–225

LIB$ Routines
LIB$FREE_VM_64 (Alpha and I64 Only)

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR The base-address argument contained a bad

block address. Either an address was outside
of the area allocated by LIB$GET_VM_64, the
contents of base-address were not properly
aligned, part of the space being deallocated was
previously deallocated, or a zone was found to be
corrupt.

LIB$_BADBLOSIZ The number-of-bytes argument is less than or
equal to 0, or the number-of-bytes argument is
incorrect for a zone containing fixed size blocks.

LIB$_BADTAGVAL For a zone that uses boundary tags, the tag field
was corrupted.

lib–226

LIB$ Routines
LIB$FREE_VM_PAGE

LIB$FREE_VM_PAGE
Free Virtual Memory Page

The Free Virtual Memory Page routine deallocates a block of contiguous pages
on VAX systems or pagelets on Alpha and I64 systems that were allocated by
previous calls to LIB$GET_VM_PAGE. †

Format

LIB$FREE_VM_PAGE number-of-pages ,base-address

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

number-of-pages
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of pages on VAX systems or pagelets on Alpha and I64 systems. The
number-of-pages argument is the address of a longword integer that specifies
the number of contiguous pages on VAX systems or pagelets on Alpha and I64
systems to be deallocated. The value of number-of-pages must be greater than
zero.

base-address
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Block address. The base-address argument is the address of a longword that
contains the address of the first byte of the first VAX page or Alpha or I64 pagelet
to be deallocated.

Description

LIB$FREE_VM_PAGE deallocates a block of contiguous 512-byte pages starting
at base-address. Each of the pages or pagelets specified by number-of-pages
and base-address must have been allocated by previous calls to LIB$GET_
VM_PAGE. The pages or pagelets are returned to the processwide pool and are
available to satisfy subsequent calls to LIB$GET_VM_PAGE.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–227

LIB$ Routines
LIB$FREE_VM_PAGE

You can free a smaller group of pages or pagelets than you allocated. That
is, if you allocated a group of contiguous pages or pagelets by a single call to
LIB$GET_VM_PAGE, you can deallocate them in several calls to LIB$FREE_
VM_PAGE. You can also combine contiguous groups of pages or pagelets that
were allocated in several calls to LIB$GET_VM_PAGE into one large group that
is freed by a single call to LIB$FREE_VM_PAGE.

LIB$FREE_VM_PAGE is fully reentrant, so it may be called by routines executing
at AST level or in an Ada multitasking environment.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR Pages on VAX systems or pagelets on Alpha and

I64 systems not allocated by LIB$GET_VM_
PAGE, the value of base-address is not a page
boundary, or the pages were previously freed.

LIB$_BADBLOSIZ The number-of-pages argument is less than or
equal to zero.

lib–228

LIB$ Routines
LIB$FREE_VM_PAGE_64 (Alpha and I64 Only)

LIB$FREE_VM_PAGE_64 (Alpha and I64 Only)
Free Virtual Memory Page

The Free Virtual Memory Page routine deallocates a block of contiguous Alpha or
I64 pagelets that was allocated by previous calls to LIB$GET_VM_PAGE_64.

Format

LIB$FREE_VM_PAGE_64 number-of-pages ,base-address

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

number-of-pages
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Number of Alpha or I64 pagelets. The address of a quadword integer that
specifies the number of contiguous Alpha or I64 pagelets to be deallocated. The
value of number-of-pages must be greater than zero.

base-address
OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by reference

Block address. The base-address argument is the address of a quadword that
contains the address of the first byte of the first Alpha or I64 pagelet to be
deallocated.

Description

LIB$FREE_VM_PAGE_64 deallocates a block of contiguous Alpha or I64 pagelets
starting at base-address. Each of the pagelets specified by number-of-pages
and base-address must have been allocated by previous calls to LIB$GET_VM_
PAGE_64. The pagelets are returned to the processwide pool and are available to
satisfy subsequent calls to LIB$GET_VM_PAGE_64.

You can free a smaller group of pagelets than you allocated. That is, if you
allocated a group of contiguous pagelets by a single call to LIB$GET_VM_PAGE_
64, you can deallocate them in several calls to LIB$FREE_VM_PAGE_64. You
can also combine contiguous groups of pagelets that were allocated in several
calls to LIB$GET_VM_PAGE_64 into one large group that is freed by a single call
to LIB$FREE_VM_PAGE_64.

LIB$FREE_VM_PAGE_64 is fully reentrant, so it may be called by routines
executing at AST level or in an Ada multitasking environment.

lib–229

LIB$ Routines
LIB$FREE_VM_PAGE_64 (Alpha and I64 Only)

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR Alpha pagelets not allocated by LIB$GET_VM_

PAGE_64, the value of base-address is not a
pagelet boundary, or the pagelets were previously
freed.

LIB$_BADBLOSIZ The number-of-pages argument is less than or
equal to zero.

lib–230

LIB$ Routines
LIB$GETDVI

LIB$GETDVI
Get Device/Volume Information

The Get Device/Volume Information routine provides a simplified interface to
the $GETDVI system service. It returns information about the primary and
secondary device characteristics of an I/O device. The calling process need not
have a channel assigned to the device about which it wants information.

Format

LIB$GETDVI item-code [,channel] [,device-name] [,longword-integer-value] [,resultant-string]
[,resultant-length] [,pathname]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

item-code
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Code specifying the item of information you are requesting. The item-code
argument is the address of a signed longword containing the item code. All valid
$GETDVI item codes whose names begin with DVI$_ are accepted.

See the Description section for more information on item codes.

channel
OpenVMS usage: channel
type: word (unsigned)
access: read only
mechanism: by reference

OpenVMS I/O channel assigned to the device for which LIB$GETDVI returns
information. The channel argument is the address of an unsigned word
containing the channel specification. If channel is not specified, device-name is
used instead. You must specify either channel or device-name, but not both. If
neither is specified, the error status SS$_IVDEVNAM is returned.

device-name
OpenVMS usage: device_name
type: character string
access: read only
mechanism: by descriptor

Name of the device for which LIB$GETDVI returns information. The device-
name argument is the address of a descriptor pointing to the device name string.
If this string contains a colon, the colon and the characters that follow it are
ignored.

lib–231

LIB$ Routines
LIB$GETDVI

The device-name may be either a physical device name or a logical name. If
the first character in the string is an underscore character (_), the name is
considered a physical device name. Otherwise, the name is considered a logical
name, and logical name translation is performed until either a physical device
name is found or the system default number of translations has been performed.

If device-name is not specified, channel is used instead. You must specify
either channel or device-name, but not both. If neither is specified, the error
status SS$_IVDEVNAM is returned. The device name must not be longer than
255 characters.

longword-integer-value
OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Numeric value of the information requested. The longword-integer-value
argument is the address of a signed longword containing the numeric value. If an
item is listed as only returning a string value, this argument is ignored.

resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String representation of the information requested. The resultant-string
argument is the address of a descriptor pointing to this information. If resultant-
string is not specified and if the value returned has only a string representation,
the error status LIB$_INVARG is returned.

Refer to Table lib–4 for a description of the string representation used for each
item.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string by LIB$GETDVI.
The resultant-length argument is the address of an unsigned word containing
this length.

pathname
OpenVMS usage: path_name
type: character text string
access: read only
mechanism: by descriptor

(I64 and Alpha only) The name of the path about which $GETDVI is to return
information. The pathname argument is the address of a character string
descriptor pointing to this name string. The path name may be used with either
the channel or device-name arguments.

lib–232

LIB$ Routines
LIB$GETDVI

Check the definitions of the item codes to see if the pathname argument is used.
In general, item codes that return information that may vary by path will make
use of the pathname argument. The paths for a multipath device can be seen
with the SHOW DEVICE /FULL command, the SYS$DEVICE_PATH_SCAN
system service, or the F$MULTIPATH DCL lexical function.

If the pathname argument is used, it will be validated against the existing paths
for the device specified. If the path does not exist, the error SS$_NOSUCHPATH
will be returned, even if the item codes(s) used do not make use of the pathname
argument.

Description

LIB$GETDVI returns two categories of information:

• Primary device characteristics

• Secondary device characteristics

LIB$GETDVI does not allow you to get more than one item of information in a
single call.

LIB$GETDVI provides the following features in addition to those provided by the
$GETDVI system service.

• Instead of a list of item descriptors, which may be difficult to construct in
high-level languages, the single item desired is specified as an integer code
which is passed by reference. Results are written to separate arguments.

• For items which return numeric values, LIB$GETDVI can optionally provide
a formatted string interpretation of the value. For example, if the device
owner UIC is requested, LIB$GETDVI can return the UIC formatted as
[identifier].

• For string arguments, LIB$GETDVI understands all string classes supported
by the Run-Time Library.

• Calls to LIB$GETDVI are synchronous; LIB$GETDVI calls LIB$GET_EF to
allocate a local event flag number for synchronization.

See the description of the $GETDVI system service in the HP OpenVMS System
Services Reference Manual: A–GETUAI for more detailed information.

Item Codes
All item codes that can be used with the $GETDVI system service may be used
as the item-code argument to LIB$GETDVI. These codes have symbolic names
beginning with DVI$_.

The use of a DVI$_ code by itself will return the primary device characteristic
associated with that code. To obtain the secondary device characteristics, add
1 to the code. See the description of the $GETDVI system service for a list of
the defined item codes. The symbolic names for these items are defined in HP
supplied symbol libraries in module $DVIDEF (where appropriate).

lib–233

LIB$ Routines
LIB$GETDVI

Value Formats
By using the longword-integer-value and resultant-string arguments to
LIB$GETDVI, the information requested can be returned in two different
fashions.

• For each item described as a ‘‘string’’ in the table of Item Codes for the
$GETDVI service, the value is returned in resultant-string.

• For all other items—those that have numeric values—the numeric
representation is returned in longword-integer-value (if specified), and a
formatted string interpretation of the value is returned in resultant-string.

Each formatted item is written left-justified; resultant-length, if specified, gives
the number of characters used. Table lib–4 lists the formats used for the string
interpretations.

lib–234

LIB$ Routines
LIB$GETDVI

Table lib–4 Formats Used for LIB$GETDVI Strings

Item or Format Description

DVI$_ACPPID The string value is returned as an 8-digit hexadecimal
number.

DVI$_PID The string value is returned as an 8-digit hexadecimal
number.

DVI$_ACPTYPE The ACP type string is one of the following:
NONE No ACP
F11V1 Files-11 Level 1
F11V2 Files-11 Level 2
F11V3 Files-11 presentation of ISO 9660
F11V4 Files-11 presentation of High Sierra
F11V5 Files-11 structure level 5 (ODS-5)
F11V6 Files-11 structure level 5 (ODS-6)
F64 Files 64 support for Spiralog
HBS Not currently defined
HBVS ACP for Host Based Volume Shadowing
MTA Magnetic Tape
NET Networks
REM Remote I/O
UCX ACP for TCP/IP Services for OpenVMS

DVI$_OWNUIC The standard UIC format [group,member] is used. If the
format of a UIC includes identifiers from the access rights
database in place of the octal group and member numbers,
the UIC string returned will have these identifiers, if
available.

DVI$_VPROT The volume protection string is in the following form:

SYSTEM=RWLP,OWNER=RWLP,GROUP=RWLP,WORLD=RWLP

If a category has no access, the equal sign is omitted. The
string will not contain any embedded spaces.

Boolean The value string returned is TRUE if the low bit of the
value is set, or FALSE if the low bit is clear.

All others The value string is returned in the form of an unsigned
decimal integer.

Note

This routine calls LIB$GET_EF. Please read the note in the Description
section of that routine.

lib–235

LIB$ Routines
LIB$GETDVI

Condition Values Returned

SS$_NORMAL Normal successful completion.
LIB$_STRTRU String truncated. This is an alternate success

return status. The resultant-string argument
could not contain all the characters of the
returned item.

SS$_BADPARAM Unrecognized item code. The item-code
argument was not recognized as valid by
$GETDVI.

SS$_IVDEVNAM The device name string contains invalid
characters, or neither the channel nor device-
name arguments were specified.

LIB$_INSEF Insufficient event flags. A local event flag
number could not be allocated by a call to
LIB$GET_EF.

LIB$_INVARG Invalid arguments. The $GETDVI Item
Code describes the item as a ‘‘string’’, and no
resultant-string argument was specified.

LIB$_INVSTRDES Invalid string descriptor. The descriptor of
the resultant-string argument is not a valid
descriptor.

LIB$_WRONUMARG Wrong number of arguments. An incorrect
number of arguments was passed to
LIB$GETDVI.

Any condition values returned by LIB$SCOPY_xxx, or the $GETDVI system
service.

lib–236

LIB$ Routines
LIB$GETJPI

LIB$GETJPI
Get Job/Process Information

The Get Job/Process Information routine provides a simplified interface to the
$GETJPI system service. It provides accounting, status, and identification
information about a specified process.

LIB$GETJPI obtains only one item of information in a single call.

Format

LIB$GETJPI item-code [,process-id] [,process-name] [,resultant-value] [,resultant-string]
[,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

item-code
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Item identifier code specifying the item of information you are requesting. The
item-code argument is the address of a signed longword containing the item
code. You may request only one item in each call to LIB$GETJPI.

LIB$GETJPI accepts all $GETJPI item codes. These names begin with JPI$_ and
are defined in symbol libraries in module $JPIDEF supplied by HP.

process-id
OpenVMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identifier of the process for which you are requesting information. The
process-id argument is the address of an unsigned longword containing the
process identifier. If you do not specify process-id, process-name is used.

The process-id is updated to contain the process identifier actually used,
which may be different from what you originally requested if you specified
process-name or used wildcard process searching.

lib–237

LIB$ Routines
LIB$GETJPI

process-name
OpenVMS usage: process_name
type: character string
access: read only
mechanism: by descriptor

A 1- to 15-character string specifying the name of the process for which you
are requesting information. The process-name argument is the address of
a descriptor pointing to the process name string. The name must correspond
exactly to the name of the process for which you are requesting information;
LIB$GETJPI does not allow trailing blanks or abbreviations.

If you do not specify process-name, process-id is used. If you specify neither
process-name nor process-id, the caller’s process is used. Also, if you do not
specify process-name and you specify zero for process-id, the caller’s process
is used. In this way, you can fetch the item you want and the caller’s PID in a
single call to LIB$GETJPI.

resultant-value
OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

Numeric value of the information you request. The resultant-value argument
is the address of a longword or quadword into which LIB$GETJPI writes the
numeric value of this information. Refer to Table lib–5 for information on which
items return longword values and which return quadword values. If the item you
request returns only a string value, this argument is ignored.

resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String representation of the information you request. The resultant-string
argument is the address of the descriptor for a character string into which
LIB$GETJPI writes the string representation. Table lib–5 describes the string
representation used for each item.

If you do not include resultant-string, but the item you request has only a string
representation, the error status LIB$_INVARG is returned.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string by LIB$GETJPI.
The resultant-length argument is the address of an unsigned word integer into
which LIB$GETJPI writes the number of characters.

lib–238

LIB$ Routines
LIB$GETJPI

Description

LIB$GETJPI provides the following features in addition to those provided by the
$GETJPI system service:

• Instead of a list of item descriptors, which may be difficult to construct in
high-level languages, the single item desired is specified as an integer code
which is passed by reference. Results are written to separate arguments.

• For items which return numeric values, LIB$GETJPI can optionally provide a
formatted string interpretation of the value. For example, if the process UIC
is requested, LIB$GETJPI can return the UIC formatted as [g,m].

• For string arguments, all string classes supported by the Run-Time Library
are understood.

• Calls to LIB$GETJPI are synchronous. LIB$GETJPI calls LIB$GET_EF to
allocate a local event flag number for synchronization.

See the description of the $GETJPI system service in the HP OpenVMS System
Services Reference Manual: A–GETUAI for more information.

By using the resultant-value and resultant-string arguments to LIB$GETJPI,
you can request that the information be returned in two ways. For each item
described as a ‘‘string’’ in the table of Item Codes for the $GETJPI service, the
value is returned in resultant-string. For all other items—those which have
numeric values—the numeric representation is returned in resultant-value
(if specified), and a formatted string interpretation of the value is returned in
resultant-string.

Each formatted item is written left-justified; resultant-length, if specified, gives
the number of characters used.

Table lib–5 lists the formats used for the string interpretations.

Table lib–5 Item Code Formats for LIB$GETJPI

Item or Format Description

JPI$_AUTHPRIV The string representation of these quadword privilege
masks is a list of each privilege that is enabled. The
privilege names are in uppercase, and are separated by
commas.

JPI$_CURPRIV Same as for JPI$AUTHPRIV.
JPI$_IMAGPRIV Same as for JPI$AUTHPRIV.
JPI$_PROCPRIV Same as for JPI$AUTHPRIV.
JPI$_LOGINTIM The string representation of the quadword time is a

standard absolute date-time string.
JPI$_PID The process identification string is an 8-digit

hexadecimal number.
(continued on next page)

lib–239

LIB$ Routines
LIB$GETJPI

Table lib–5 (Cont.) Item Code Formats for LIB$GETJPI

Item or Format Description

JPI$_STATE The process state string is one of the following:
CEF Common event flag wait
COM Computable
COMO Computable, outswapped
CUR Current process
COLPG Collided page wait
FPG Free page wait
HIB Hibernate wait
HIBO Hibernate wait, outswapped
LEF Local event flag wait
LEFO Local event flag wait, outswapped
MWAIT Mutex and miscellaneous resource wait
PFW Page fault wait
SUSP Suspended
SUSPO Suspended, outswapped

JPI$_UIC The standard UIC format [group,member] is used. If
the format of a UIC includes identifiers from the access
rights database in place of the octal group and member
numbers, the UIC string returned will have these
identifiers, if available.

JPI$_MODE The current mode string is one of the following: BATCH,
INTERACTIVE or NETWORK.

All others The string value is returned as an unsigned decimal
integer.

Note

This routine calls LIB$GET_EF. Please read the note in the Description
section of that routine.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU String truncated. This is an alternate success

return status. The resultant-string argument
could not contain all the characters of the
returned item.

SS$_BADPARAM Unrecognized item code. The item-code
argument was not recognized as valid by
$GETJPI.

lib–240

LIB$ Routines
LIB$GETJPI

LIB$_INSEF Insufficient event flags. A local event flag
number could not be allocated by a call to
LIB$GET_EF.

LIB$_INVARG Invalid arguments. The $GETJPI Item Code
describes the item as a ‘‘string’’, and no
resultant-string argument was specified.

LIB$_INVSTRDES Invalid string descriptor. The descriptor for a
string argument was not a valid string descriptor.

LIB$_WRONUMARG Wrong number of arguments. An incorrect
number of arguments was passed to
LIB$GETJPI.

Any condition value returned by LIB$SCOPY_xxx, or the $GETJPI system
service.

lib–241

LIB$ Routines
LIB$GETQUI

LIB$GETQUI
Get Queue Information

The Get Queue Information routine provides a simplified interface to the
$GETQUI system service. It provides queue, job, file, characteristic, and form
information about a specified process.

LIB$GETQUI obtains only one item of information in a single call.

Format

LIB$GETQUI function-code [,item-code] [,search-number] [,search-name] [,search-flags] [,resultant-value]
[,resultant-string] [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

function-code
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Function code specifying the function that LIB$GETQUI is to perform. The
function-code argument is the address of a signed longword containing the
function code.

LIB$GETQUI accepts all $GETQUI function codes. These names begin with
QUI$_ and are defined in symbol libraries in module $QUIDEF supplied by HP.

item-code
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Item identifier code specifying the item of information you are requesting. The
item-code argument is the address of a signed longword containing the item
code. You may request only one item in each call to LIB$GETQUI.

LIB$GETQUI accepts all $GETQUI item codes. These names begin with QUI$_
and are defined in symbol libraries in module $QUIDEF supplied by HP.

lib–242

LIB$ Routines
LIB$GETQUI

search-number
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Numeric value used to process your request. The search-number argument
is the address of a signed longword integer containing the number needed to
process your request. The search-number argument corresponds directly to
QUI$_SEARCH_NUMBER as described by the $GETQUI system service.

search-name
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Character string used to process your request. The search-name argument is
the address of a string descriptor that provides the name needed to process your
request. The search-name argument corresponds directly to QUI$_SEARCH_
NAME as described by the $GETQUI system service.

search-flags
OpenVMS usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by reference

Optional bit mask indicating request to be performed. The search-flags
argument is the address of an unsigned longword integer containing the bit
mask. The search-flags argument directly corresponds to $QUI_SEARCH_
FLAGS as described by the $GETQUI system service.

resultant-value
OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

Numeric value of the information you requested. The resultant-value argument
is the address of a longword, quadword or octaword into which LIB$GETQUI
writes the numeric value of this information. Refer to Table lib–6 for information
on which items return values other than longwords.

If the item you requested returns only a string value, this argument is ignored.

resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String representation of the information you requested. The resultant-string
argument is the address of the descriptor for a character string into which
LIB$GETQUI writes the string representation. Table lib–6 describes the string
representation used for each item.

lib–243

LIB$ Routines
LIB$GETQUI

If you do not include resultant-string, but the item you request has only a string
representation, the error status LIB$_INVARG is returned.

resultant-length
OpenVMS usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string by LIB$GETQUI.
The resultant-length argument is the address of a signed word integer into
which LIB$GETQUI writes the number of characters.

Description

LIB$GETQUI provides a simplified interface to the $GETQUI system service. It
provides queue, job, file, characteristic, and form information about a specified
process. This routine obtains only one item of information in a single call.

LIB$GETQUI provides the following features in addition to those provided by the
$GETQUI system service.

• Instead of a list of item descriptors that may be difficult to construct in high-
level languages, the single item desired is specified as an integer code which
is passed by reference. Results are written to separate arguments.

• For items that return numeric values, LIB$GETQUI optionally can provide a
formatted string interpretation of the value. For example, if you request the
characteristics of a queue, LIB$GETQUI can return the list of characteristics
as ‘‘23,42,76,98,125’’.

• For string arguments, all string classes supported by the Run-Time Library
are understood.

• Calls to LIB$GETQUI are synchronous. LIB$GETQUI calls $GETQUIW to
force the synchronization.

LIB$GETQUI retains context. This means that previous calls to LIB$GETQUI
affect current calls to LIB$GETQUI.

See the description of the $GETQUI system service in the HP OpenVMS System
Services Reference Manual: A–GETUAI for more information.

By using the resultant-value and resultant-string arguments to LIB$GETQUI,
you can request that the information be returned in two ways. For items that
have numeric values, the numeric representation is returned in resultant-value
(if specified), and a formatted string interpretation of the value is returned in
resultant-string. For each item described as a ‘‘string’’ in the table of Item
Codes for the $GETQUI service, the value is returned in resultant-string.

Each formatted item is written left-justified; resultant-length, if specified, gives
the number of characters used.

The $GETQUI system service requires some item codes. LIB$GETQUI provides
those item codes for you by corresponding your input to LIB$GETQUI directly to
the required input codes.

lib–244

LIB$ Routines
LIB$GETQUI

The following table describes all of the required and optional input needed to
perform your task with LIB$GETQUI:

Function Input Description

QUI$_CANCEL Accepts no input.
QUI$_DISPLAY_CHARACTERISTIC A characteristic name or number,

or both. Optionally, a search flags
number.

QUI$_DISPLAY_ENTRY Optionally, an entry number, user
name, and search flags number. The
default user name is that of the calling
process.

QUI$_DISPLAY_FILE Optionally, a search flags number.
QUI$_DISPLAY_FORM A form name or number, or both.

Optionally, a search flags number.
QUI$_DISPLAY_JOB Optionally, a search flags number.
QUI$_DISPLAY_QUEUE A queue name. Optionally, a search

flags number.
QUI$_TRANSLATE_QUEUE A queue name.

Table lib–6 lists the formats used for the string interpretations.

Table lib–6 Item Code Formats for LIB$GETQUI

Item or Format Description

QUI$_AFTER_TIME Returns a quadword resultant-value as
well as a resultant-string.

QUI$_CHARACTERISTICS Returns an octaword resultant-value as
well as a comma-separated list that lists
all the characteristic numbers, output as
a resultant-string.

QUI$_SUBMISSION_TIME Returns a quadword resultant-value as
well as a resultant-string.

QUI$_UIC Returns a formatted resultant-string as
well as a longword.

Note

This routine calls LIB$GET_EF. Please read the note in the Description
section of that routine.

lib–245

LIB$ Routines
LIB$GETQUI

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU String truncated. This is an alternate success

return status. The resultant-string argument
could not contain all the characters of the
returned item.

SS$_BADPARAM Unrecognized item code. The item-code
argument was not recognized as valid by
$GETQUI.

LIB$_INSEF Insufficient event flags. A local event flag
number could not be allocated by a call to
LIB$GET_EF.

LIB$_INVARG Invalid arguments. The $GETQUI Item
Code describes the item as a ‘‘string’’, and no
resultant-string argument was specified.

LIB$_INVSTRDES Invalid string descriptor. The descriptor for a
string argument was not a valid string descriptor.

LIB$_WRONUMARG Wrong number of arguments. An incorrect
number of arguments was passed to
LIB$GETQUI.

Any condition value returned by LIB$SCOPY_xxx, or the $GETQUI system
service.

lib–246

LIB$ Routines
LIB$GETSYI

LIB$GETSYI
Get Systemwide Information

The Get Systemwide Information routine provides a simplified interface to the
$GETSYI system service. The $GETSYI system service obtains status and
identification information about the system. LIB$GETSYI returns only one item
of information in a single call.

Format

LIB$GETSYI item-code [,resultant-value] [,resultant-string] [,resultant-length] [,cluster-system-id]
[,node-name]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

item-code
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Item code specifying the desired item of information. The item-code argument
is the address of a signed longword containing this item code. All valid $GETSYI
item codes are accepted.

resultant-value
OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

Numeric value returned by LIB$GETSYI. The resultant-value argument is the
address of a longword or quadword containing this value. If an item is listed as
returning only a string value, this argument is ignored.

resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Information returned by LIB$GETSYI. The resultant-string argument is the
address of a descriptor pointing to the character string that will receive this
information.

See the Description section for more information about value formats. If
resultant-string is not specified and if the returned value has only a string
representation, the error status LIB$_INVARG is returned.

lib–247

LIB$ Routines
LIB$GETSYI

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string, not including
blank padding or truncated characters. The resultant-length argument is the
address of an unsigned word into which LIB$GETSYI returns this number.

cluster-system-id
OpenVMS usage: identifier
type: longword (unsigned)
access: modify
mechanism: by reference

Cluster system identification (CSID) of the node for which information is to
be returned. The cluster-system-id argument is the address of this CSID.
If cluster-system-id is specified and is nonzero, node-name is not used. If
cluster-system-id is specified as zero, LIB$GETSYI uses node-name and
writes into the cluster-system-id argument the CSID corresponding to the node
identified by node-name.

The cluster-system-id of an OpenVMS node is assigned by the cluster-
connection software and may be obtained by the DCL command SHOW
CLUSTER. The value of the cluster-system-id for an OpenVMS node is not
permanent; a new value is assigned to an OpenVMS node whenever it joins or
rejoins the OpenVMS Cluster.

If cluster-system-id is specified as –1, LIB$GETSYI assumes a wildcard
operation and returns the requested information for each OpenVMS node in the
cluster, one node per call.

If cluster-system-id is not specified, node-name is used.

node-name
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the node for which information is to be returned. The node-name
argument is the address of a descriptor pointing to the node name string. If
cluster-system-id is not specified or is specified as zero, node-name is used. If
neither node-name nor cluster-system-id is specified, the caller’s node is used.
See the cluster-system-id argument for more information.

The node name string must contain from 1 to 15 characters and must correspond
exactly to the OpenVMS node name; no trailing blanks nor abbreviations are
permitted.

lib–248

LIB$ Routines
LIB$GETSYI

Description

LIB$GETSYI provides the following features in addition to those provided by the
$GETSYI system service:

• Instead of a list of item descriptors, which may be difficult to construct in
high-level languages, the single item desired is specified as an integer code
which is passed by reference. Results are written to separate arguments.

• For items which return numeric values, LIB$GETSYI can optionally provide
a formatted string interpretation of the value.

• For string arguments, all string classes supported by the Run-Time Library
are understood.

• Calls to LIB$GETSYI are synchronous. LIB$GETSYI calls LIB$GET_EF to
allocate a local event flag number for synchronization.

All item codes that can be used with the $GETSYI system service may be used
as the item-code argument to LIB$GETSYI. See the description of the $GETSYI
system service for a list of the defined item codes. Note that the symbolic names
for these items are defined in symbol libraries in module $SYIDEF (where
appropriate) supplied by HP.

Value Formats
By using the resultant-value and resultant-string arguments to LIB$GETSYI,
you can request that the information be returned in two ways. For each item
described as a ‘‘string’’ in the table of Item Codes for the $GETSYI service,
the value is returned in resultant-string. For all other items—those which
have numeric values—the numeric representation is returned in resultant-
value (if specified), and an unsigned decimal integer representation is stored in
resultant-string.

Each formatted item is written left-justified; resultant-length, if specified, gives
the number of characters used.

See the HP OpenVMS System Services Reference Manual: A–GETUAI for a
description of the $GETSYI system service.

Note

This routine calls LIB$GET_EF. Please read the note in the Description
section of that routine.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_BADPARAM Unrecognized item code. The item-code

argument was not recognized as valid by
$GETSYI.

LIB$_INSEF Insufficient event flags. A local event flag
number could not be allocated by a call to
LIB$GET_EF.

lib–249

LIB$ Routines
LIB$GETSYI

LIB$_INVARG Invalid arguments. The $GETSYI Item Code
describes the item as a ‘‘string’’, and no
resultant-string argument was specified.

LIB$_INVSTRDES Invalid string descriptor. The descriptor of
the resultant-string argument is not a valid
descriptor.

LIB$_STRTRU String truncated. This is an alternate success
return status. The resultant-string argument
could not contain all the characters of the
returned item.

LIB$_WRONUMARG Wrong number of arguments. An incorrect
number of arguments was passed to
LIB$GETSYI.

Any condition values returned by LIB$SCOPY_xxx, or the $GETSYI system
service.

lib–250

LIB$ Routines
LIB$GET_ACCNAM

LIB$GET_ACCNAM
Get Access Name Table for Protected Object Class (by Name)

The Get Access Name Table for Protected Object Class (by Name) routine is
a simplified interface to the $GET_SECURITY system service, and returns a
pointer to the access name table for a protected object class that is specified by
name.

Format

LIB$GET_ACCNAM [clsnam] , [objnam] ,accnam

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

clsnam
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

The address of a character-string descriptor pointing to the name of a protected
object class. This argument is optional and defaults to FILE.

objnam
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

The address of a character-string descriptor pointing to the name of a protected
object. This argument is optional. If it is omitted, the access name table returned
is that used for objects of the class specified by the clsnam argument.

accnam
OpenVMS usage: access_names
type: longword (unsigned)
access: write only
mechanism: by reference

The address of a longword into which this routine writes the address of the access
name table.

lib–251

LIB$ Routines
LIB$GET_ACCNAM

Description

LIB$GET_ACCNAM returns the address of the access name table for the specified
protected object. The format of the table is a vector of 32 quadword string
descriptors. Each table entry points to the name of an access type. The index into
the vector is the bit position in an access-desired mask. Undefined access types
have zero-length names. The table can be used as input to the LIB$PARSE_
SOGW_PROT, LIB$FORMAT_SOGW_PROT, LIB$PARSE_ACCESS_CODE,
$PARSE_ACL, and $FORMAT_ACL routines.

The semantics of this routine are as follows:

1. If the clsnam parameter is omitted, clsnam defaults to ‘‘FILE.’’

2. If clsnam is not the name of an object class, then the routine returns an
error status (SS$_NOCLASS), and the value of accnam is undefined.

3. If the objnam parameter is omitted, then accnam points to the table
corresponding to clsnam, and the routine returns a success status (SS$_
NORMAL). The table returned is the table of access names for a new object of
class clsnam.

4. Otherwise, if clsnam and objnam do in fact name a protected object, then
accnam points to the table corresponding to the protected object class, and
the routine returns a success status (SS$_NORMAL).

5. Otherwise, if clsnam and objnam do not name a protected object, then
the routine returns an error status (the exact status value depends on the
security class), and the value of accnam is undefined.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_NOCLASS No matching object class was found.
LIB$_INVARG The accnam argument was omitted.
LIB$_WRONUMARG Wrong number of arguments.

In addition, any completion status may be returned from $GET_SECURITY.

lib–252

LIB$ Routines
LIB$GET_ACCNAM_BY_CONTEXT

LIB$GET_ACCNAM_BY_CONTEXT
Get Access Name Table for Protected Object Class (by Context)

The Get Access Name Table for Protected Object Class (by Context) routine is
a simplified interface to the $GET_SECURITY system service, and returns a
pointer to the access name table for a protected object class that is specified by a
context longword returned from $GET_SECURITY or $SET_SECURITY.

Format

LIB$GET_ACCNAM_BY_CONTEXT contxt ,accnam

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

contxt
OpenVMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference

The address of a nonzero longword context value returned by $GET_SECURITY
or $SET_SECURITY.

accnam
OpenVMS usage: access_names
type: longword (unsigned)
access: write only
mechanism: by reference

The address of a longword into which this routine writes the address of the access
name table.

Description

LIB$GET_ACCNAM_BY_CONTEXT returns the address of the access name table
for the specified protected object class. The format of the table is a vector of 32
quadword string descriptors. Each table entry points to the name of an access
type. The index into the vector is the bit position in an access-desired mask.
Undefined access types have zero-length names. The table can be used as input
to the LIB$PARSE_SOGW_PROT, LIB$FORMAT_SOGW_PROT, LIB$PARSE_
ACCESS_CODE, $PARSE_ACL, and $FORMAT_ACL routines.

lib–253

LIB$ Routines
LIB$GET_ACCNAM_BY_CONTEXT

The semantics of this routine are as follows:

• If the contxt argument is valid, then the accnam argument points to the
table corresponding to the protected object class, and the routine returns a
success status (SS$_NORMAL).

• If the contxt argument is not valid, then the routine returns an error status,
and the value of accnam is undefined.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_WRONUMARG Wrong number of arguments.

In addition, error status may be returned from $GET_SECURITY.

lib–254

LIB$ Routines
LIB$GET_COMMAND

LIB$GET_COMMAND
Get Line from SYS$COMMAND

The Get Line from SYS$COMMAND routine gets one record of ASCII text
from the current controlling input device, specified by the logical name
SYS$COMMAND.

Format

LIB$GET_COMMAND resultant-string [,prompt-string] [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String that LIB$GET_COMMAND gets from SYS$COMMAND. The resultant-
string argument is the address of a descriptor pointing to this string.

prompt-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Prompt message that LIB$GET_COMMAND displays on the controlling terminal.
The prompt-string argument is the address of a descriptor pointing to the
prompt. Any string can be a valid prompt. By convention however, a prompt
string consists of text followed by a colon (:), a space, and no carriage-return/line-
feed combination. The maximum size of the prompt message is 255 characters. If
the controlling input device is not a terminal, this argument is ignored.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of bytes written into resultant-string by LIB$GET_COMMAND, not
counting padding in the case of a fixed string. The resultant-length argument
is the address of an unsigned word containing this length. If the input string
is truncated to the size specified in the resultant-string descriptor, resultant-
length is set to this size. Therefore, resultant-length can always be used by the
calling program to access a valid substring of resultant-string.

lib–255

LIB$ Routines
LIB$GET_COMMAND

Description

LIB$GET_COMMAND uses the OpenVMS RMS $GET service (see the OpenVMS
Record Management Services Reference Manual) to get one record of ASCII text
from the current controlling input device, specified by SYS$COMMAND.

When you log in, the OpenVMS operating system creates three files as default I/O
control streams for your process.

• SYS$INPUT, your default input device

• SYS$OUTPUT, your default output device

• SYS$COMMAND, the device that supplies the commands to your process

These files remain open until you log out. They are the interface between
your interactive input and output or your batch commands and the OpenVMS
software. Initially, all three files are equated with the terminal. However,
with the DCL command ASSIGN, you can change these assignments to
obtain information from a file or put information into a file. SYS$INPUT and
SYS$COMMAND are usually identical, but the input and command streams can
be different. For example, during the execution of an indirect command file from
an interactive terminal, SYS$COMMAND refers to the terminal and SYS$INPUT
refers to the command file.

LIB$GET_COMMAND opens file SYS$COMMAND on the first call. The RMS
internal stream identifier (ISI) is stored in the routine’s static storage for
subsequent calls. Hence, this routine is not AST reentrant.

If prompt-string is provided and if the SYS$COMMAND device is a terminal,
LIB$GET_COMMAND displays the prompt message. If the device is not a
terminal, the prompt-string is ignored.

LIB$GET_COMMAND is used when a program needs input from some source
other than the current input stream. Usually, it is used to input from the
terminal rather than from an indirect command file. For example, a program
may ask a question which cannot be answered by an indirect command file entry.
In this case the program would call LIB$GET_COMMAND to get one record of
ASCII text from SYS$COMMAND, the terminal.

Condition Values Returned

SS$_NORMAL Routine successfully completed. RMS completion
status.

LIB$_FATERRLIB An internal consistency check on Run-Time
Library data structures has failed. This may
indicate a programming error in the Run-
Time Library, or that your program may have
overwritten those data structures.

LIB$_INPSTRTRU The input string has been truncated to the size
specified in the resultant-string descriptor
(fixed-length strings only). The resultant-
length argument is also set to this size. This is
an error (as opposed to LIB$_STRTRU which is
a success) because the truncation is not under
program control.

lib–256

LIB$ Routines
LIB$GET_COMMAND

LIB$_INSVIRMEM Insufficient virtual memory to allocate the
dynamic string.

LIB$_INVARG Invalid arguments. The descriptor class field is
not a recognized code or is zero.

Any valid RMS status code.

Any code returned by LIBGET_VM, LIBGET_VM_64, LIB$SCOPY_R_DX, or
LIB$SCOPY_R_DX_64.

lib–257

LIB$ Routines
LIB$GET_COMMON

LIB$GET_COMMON
Get String from Common

The Get String from Common routine copies a string in the common area to the
destination string. (The common area is an area of storage that remains defined
across multiple image activations in a process.) The string length is taken from
the first longword of the common area.

Format

LIB$GET_COMMON resultant-string [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB$GET_COMMON writes the string copied from
the common area. The resultant-string argument is the address of a descriptor
pointing to the destination string.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters written into resultant-string by LIB$GET_COMMON,
not counting padding in the case of a fixed-length string. The resultant-length
argument is the address of an unsigned word integer containing the number of
characters copied. If the input string is truncated to the size specified in the
resultant-string descriptor, resultant-length is set to this size. Therefore,
resultant-length can always be used by the calling program to access a valid
substring of resultant-string.

Description

LIB$PUT_COMMON allows a program to copy a string into the process’s common
storage area. This area remains defined during multiple image activations.
LIB$GET_COMMON allows a program to copy a string from the common area
into a destination string. The programs reading and writing the data in the
common area must agree upon its amount and format.

The maximum number of characters that can be copied is 252. The actual
number of characters copied is returned by the optional argument, resultant-
length (if given).

lib–258

LIB$ Routines
LIB$GET_COMMON

You can use LIB$PUT_COMMON and LIB$GET_COMMON to pass information
between images run successively, such as chained images run by LIB$RUN_
PROGRAM. Since the common area is unique to each process, do not use
LIB$GET_COMMON and LIB$PUT_COMMON to share information across
processes.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error. An internal consistency

check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to HP.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

LIB$_STRTRU Successfully completed. The string was longer
than the buffer and was truncated.

lib–259

LIB$ Routines
LIB$GET_CURR_INVO_CONTEXT (Alpha and I64 Only)

LIB$GET_CURR_INVO_CONTEXT (Alpha and I64 Only)
Get Current Invocation Context

The Get Current Invocation Context routine gets the current invocation context
of any active procedure.

A thread can obtain the invocation context of a current procedure using the
following function format:

Format

LIB$GET_CURR_INVO_CONTEXT invo_context

Returns

None.

Argument

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: write only
mechanism: by reference

Address of an invocation context block into which the procedure context of the
caller will be written.

Description

LIB$GET_CURR_INVO_CONTEXT gets the current invocation context of any
active procedure.

See the HP OpenVMS Calling Standard manual for additional information.

Condition Values Returned

None.

lib–260

LIB$ Routines
LIB$GET_DATE_FORMAT

LIB$GET_DATE_FORMAT
Get the User’s Date Input Format

The Get the User’s Date Input Format routine returns information about the
user’s choice of a date/time input format.

Format

LIB$GET_DATE_FORMAT format-string [,user-context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

format-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Receives the translation of LIB$DT_INPUT_FORMAT. The format-string
argument is the address of a descriptor pointing to this format string.

user-context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context variable that retains the translation context over multiple calls to this
routine. The user-context argument is the address of an unsigned longword
that contains this context. The initial value of the context variable must be zero.
Thereafter, the user program must not write to the cell.

The user-context argument is optional. However, if a context cell is not passed,
LIB$GET_DATE_FORMAT may abort if two threads of execution attempt to
manipulate the context area concurrently. Therefore, when calling this routine in
situations where reentrancy might occur, such as from AST level, HP recommends
that users specify a different context cell for each calling thread.

Description

Depending on which method was used to specify the input formats, LIB$GET_
DATE_FORMAT either translates the logicals LIB$DT_INPUT_FORMAT and
LIB$FORMAT_MNEMONICS, or uses the preinitialized context components
LIB$K_FORMAT_MNEMONICS and LIB$K_INPUT_FORMAT to return the
user’s specified date/time input format in a ‘‘legible’’ form. This format string can
then be used as a guideline for entering date/time strings.

lib–261

LIB$ Routines
LIB$GET_DATE_FORMAT

The string returned by LIB$GET_DATE_FORMAT parallels the currently defined
input format string, consisting of the format punctuation (with most whitespace
compressed) and ‘‘legible’’ mnemonics representing the various format fields. The
English (default) versions of these mnemonics are as follows:

Format Field Legible Mnemonic (Default)

Year YYYY1

Numeric month MM
Alphabetic month MONTH
Numeric day DD
Hours (12- or 24-hour) HH
Minutes MM
Seconds SS
Fractional seconds CC1

Meridiem indicator AM/PM

1This variable-length field mnemonic has a numeric suffix representing the number of digits allowed
or required in the field. For instance, YYYY4 indicates a four-digit year field.

For example, consider the following input format string:

$ DEFINE LIB$DT_INPUT_FORMAT -
_$ "!MAAU !D0, !Y2 !H02:!M0:!S0.!C4 !MIU"

If LIB$GET_DATE_FORMAT were called for this format string, the format string
returned would be as follows:

MONTH DD, YYYY2 HH:MM:SS.CC4 AM/PM

See the HP OpenVMS Programming Concepts Manual for a description of
system date and time operations as well as a detailed description of the format
mnemonics used in these routines.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_DEFFORUSE Default format used; unable to determine desired

format.
LIB$_ENGLUSED English used; unable to determine or use desired

language.
LIB$_ILLFORMAT Illegal format string.
LIB$_INVARG Invalid argument; a required argument was not

specified.
LIB$_INVSTRDES Invalid input string descriptor.
LIB$_REENTRANCY Reentrancy detected.
LIB$_STRTRU String truncated.
LIB$_UNRFORCOD Unrecognized format code.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by LIBGET_VM, LIBSCOPY_R_DX, and
LIB$SFREE1_DD.

lib–262

LIB$ Routines
LIB$GET_EF

LIB$GET_EF
Get Event Flag

The Get Event Flag routine allocates one local event flag from a processwide
pool and returns the number of the allocated flag to the caller. If no flags are
available, LIB$GET_EF returns an error as its function value.

Format

LIB$GET_EF event-flag-number

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

event-flag-number
OpenVMS usage: ef_number
type: longword (unsigned)
access: write only
mechanism: by reference

Number of the local event flag that LIB$GET_EF allocated, or –1 if no local event
flag was available. The event-flag-number argument is the address of a signed
longword integer into which LIB$GET_EF writes the number of the local event
flag that it allocates.

Description

LIB$GET_EF and LIB$FREE_EF cause local event flags to be allocated and
deallocated at run time, so that your routine remains independent of other
routines executing in the same process.

LIB$GET_EF provides your program with an arbitrary event flag number. You
can obtain a specific event flag number by calling LIB$RESERVE_EF.

Note

Beware of running multiple images linked with /NOSYSSHR in the same
process and having more than one image make calls to LIB$GET_EF.
Each image contains its own copy of the event flag bit array that is
designed to be process-wide and synchronize ownership of event flags.
Multiple calls to LIB$GET_EF could cause the same event flag to be
allocated more than once.

See the HP OpenVMS Programming Concepts Manual for more information.

lib–263

LIB$ Routines
LIB$GET_EF

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSEF Insufficient event flags. There were no more

event flags available for allocation.

lib–264

LIB$ Routines
LIB$GET_FOREIGN

LIB$GET_FOREIGN
Get Foreign Command Line

The Get Foreign Command Line routine requests the calling image’s command
language interpreter (CLI) to return the contents of the ‘‘foreign command’’ line
that activated the current image.

Format

LIB$GET_FOREIGN resultant-string [,prompt-string] [,resultant-length] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String that LIB$GET_FOREIGN uses to receive the foreign command line. The
resultant-string argument is the address of a descriptor pointing to this string.
If the foreign command text returned was obtained by a prompt to SYS$INPUT
(see the description of flags), the text is translated to uppercase so as to be more
consistent with text returned from the CLI.

prompt-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Optional user-supplied prompt for text that LIB$GET_FOREIGN uses if no
command-line text is available. The prompt-string argument is the address of
a descriptor pointing to the user prompt. If omitted, no prompting is performed.
It is recommended that prompt-string be specified. If prompt-string is omitted
and if no command-line text is available, a zero-length string will be returned.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of bytes written into resultant-string by LIB$GET_FOREIGN, not
counting padding in the case of a fixed-length resultant-string. The resultant-
length argument is the address of an unsigned word into which LIB$GET_
FOREIGN writes the number of bytes.

lib–265

LIB$ Routines
LIB$GET_FOREIGN

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: modify
mechanism: by reference

Value that LIB$GET_FOREIGN uses to control whether or not prompting is
to be performed. The flags argument is the address of an unsigned longword
integer containing this value. If the low bit of flags is zero, or if flags is omitted,
prompting is done only if the CLI does not return a command line. If the low
bit is 1, prompting is done unconditionally. If specified, flags is set to 1 before
returning to the caller.

The primary use of flags is to allow a utility program to be invoked once
with subcommand text on the command line, and then to repeatedly prompt
for further subcommands from SYS$INPUT. This is accomplished by calling
LIB$GET_FOREIGN repeatedly, specifying in the call a prompt-string string
and a flags variable that is initialized to zero at the beginning of the program.
The first call gets the subcommand text from the command line, after which flags
will be set to 1, causing further subcommands to be requested through prompts
to SYS$INPUT.

Description

LIB$GET_FOREIGN returns the contents of the command line that you use to
activate an image. It can be used to give your program access to the qualifiers of
a foreign command or to prompt for further command line text.

A foreign command is a command that you can define and then use as if it were
a DCL or MCR command in order to run a program. When you use the foreign
command at command level, the CLI parses the foreign command only and
activates the image. It ignores any options or qualifiers that you have defined for
the foreign command. Once the CLI has activated the image, the program can
call LIB$GET_FOREIGN to obtain and parse the remainder of the command line
(after the command itself) for whatever options it may contain. See the OpenVMS
User’s Manual for information on how to define a foreign command.

If no command line is available, LIB$GET_FOREIGN can optionally call
LIB$GET_INPUT to prompt the user for command text. If desired, LIB$GET_
FOREIGN can be called repetitively, returning the command line on the first call,
but prompting for further text on subsequent calls.

LIB$GET_FOREIGN can also be used for images invoked by the RUN command,
for which further text must be obtained by prompting. Such an image can also be
invoked by the DCL command MCR or by the MCR CLI. The text following the
image name will be returned to the executing image.

The action of LIB$GET_FOREIGN depends on the environment in which the
image is activated.

• If you use a foreign command to invoke the image, you can call LIB$GET_
FOREIGN to obtain the command qualifiers following the foreign command.
You can also use LIB$GET_FOREIGN to prompt repeatedly for more
qualifiers after the command. This technique is shown in the example.

• If the image is in the SYS$SYSTEM: directory, the image can be invoked
by the DCL command MCR or by the MCR CLI. In this case, LIB$GET_
FOREIGN returns the command line text following the image name.

lib–266

LIB$ Routines
LIB$GET_FOREIGN

• If the image is invoked by a DCL command RUN, LIB$GET_FOREIGN can
be used to prompt for additional text.

• If the image is not invoked by a foreign command or MCR, or if there is no
information remaining on the command line, and the user-supplied prompt
is present, LIB$GET_INPUT is called to prompt for a command line. If the
prompt is not present, LIB$GET_FOREIGN returns a zero length string.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB A fatal internal error was detected.
LIB$_INPSTRTRU The input string was truncated. The resultant-

string argument could not contain all of the
characters. The resultant-length argument
reflects the truncated length.

LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor.

A condition value returned by OpenVMS RMS. SYS$INPUT was prompted for
command text and RMS returned an error. The most typical error will be RMS$_
EOF, end-of-file.

Example

EXAMPLE: ROUTINE OPTIONS (MAIN);

%INCLUDE $STSDEF; /* Status-testing definitions */

DECLARE COMMAND_LINE CHARACTER(80) VARYING,
PROMPT_FLAG FIXED BINARY(31) INIT(0),
LIB$GET_FOREIGN ENTRY (CHARACTER(*) VARYING,

CHARACTER(*) VARYING,
FIXED BINARY(15),
FIXED BINARY(31))

OPTIONS(VARIABLE) RETURNS (FIXED BINARY(31)),
RMS$_EOF GLOBALREF FIXED BINARY(31) VALUE;

/* Repeat forever calling LIB$GET_FOREIGN to obtain
subcommand text and print the text. Exit when an
end-of-file is found. */

DO WHILE (’1’B); /* Do while TRUE */
STS$VALUE = LIB$GET_FOREIGN

(COMMAND_LINE,’Input: ’,,
PROMPT_FLAG);

IF STS$SUCCESS THEN
PUT LIST (’ Command was ’,COMMAND_LINE);

ELSE DO;
IF STS$VALUE ^= RMS$_EOF THEN
PUT LIST (’Error encountered’);

RETURN;
END;

PUT SKIP; /* Skip to next line */
END; /* End of DO WHILE loop */

END;

This PL/I example shows the use of the optional flags argument to permit
repeated calls to LIB$GET_FOREIGN. The command line text is retrieved on the
first pass only; after the first pass, the program prompts from SYS$INPUT.

lib–267

LIB$ Routines
LIB$GET_FULLNAME_OFFSET

LIB$GET_FULLNAME_OFFSET
Get the Offset to the Starting Position of the Most Significant Part of
a Full Name

The Get the Offset to the Starting Position of the Most Significant Part of a Full
Name routine returns the offset to the starting position of the most significant
part of a full name.† The most significant part of a full name is determined by
the underlying network services.

Format

LIB$GET_FULLNAME_OFFSET fullname, offset

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

fullname
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Full name. The fullname argument contains the address of the descriptor
pointing to this full name string.

The error LIB$_INVARG is returned if fullname contains an invalid full name,
points to a null string, or contains more than 1024 characters. The error LIB$_
INVSTRDES is returned if fullname is an invalid descriptor.

offset
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

The offset in bytes of the starting position of the most significant part of
fullname. The offset argument is the address of an unsigned word that contains
this offset.

The offset argument contains an unusable result when LIB$GET_FULLNAME_
OFFSET returns in error.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–268

LIB$ Routines
LIB$GET_FULLNAME_OFFSET

Description

This routine returns the byte offset of the starting position of the most significant
part of the input full name. The returned offset can be used to position the
display of a full name in a fixed-size output region, for example, scroll regions in
DECwindows applications. The most significant part of a full name is determined
by the underlying network services.

You must validate fullname by expanding it with LIB$EXPAND_NO DENAME
before calling LIB$GET_FULLNAME_OFFSET. LIB$GET_FULLNAME_OFFSET
returns the error LIB$_INVARG if fullname is invalid.

In a DECnet for OpenVMS environment, processing a DECnet-Plus for OpenVMS
full name using LIB$GET_FULLNAME_OFFSET results in the error condition
LIB$_INVARG.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument:

• fullname is invalid.

• fullname points to a null string.

• The length of the full name is more than
1024 characters.

• Processing a DECnet-Plus for OpenVMS
node name in a DECnet for OpenVMS
environment is invalid.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by the $IPC DECnet service.

Examples

The following table gives some examples of the results of LIB$GET_
FULLNAME_OFFSET:

Full Name Offset

NODE 0
DEC:.FOO.NODE 9

lib–269

LIB$ Routines
LIB$GET_HOSTNAME

LIB$GET_HOSTNAME
Get Host Node Name

The Get Host Node Name routine returns the host node name of the local system.
†

Format

LIB$GET_HOSTNAME hostname [,resultant-length] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

hostname
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

The host node name. The hostname argument contains the address of a
descriptor pointing to the host node name. LIB$GET_HOSTNAME writes the
host node-name string into the buffer pointed to by the hostname descriptor.

The error LIB$_INVSTRDES is returned if hostname is an invalid descriptor.

The length field of the hostname descriptor is not updated unless hostname is
a dynamic descriptor with a length less than the host node name to be returned.
Refer to the OpenVMS RTL String Manipulation (STR$) Manual for dynamic
string descriptor usage.

The hostname argument contains an unusable result when LIB$GET_
HOSTNAME returns in error.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the host node name. The resultant-length argument is the address of
an unsigned word that contains this length in bytes.

The resultant-length argument contains an unusable result when LIB$GET_
HOSTNAME returns in error.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–270

LIB$ Routines
LIB$GET_HOSTNAME

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

The value LIB$GET_HOSTNAME uses to control the form of the host node name
that it returns in the output descriptor hostname. If flags is equal to 0, or if
flags is omitted, the host node name returned is in the network usable form. If
flags is equal to 1, the host node name returned is in the parsable form.

Unused bits in flags must be 0. Nonzero unused bits result in the error condition
LIB$_INVARG.

Description

This routine returns the host node name. The routine searches for the first host
node name using the following order:

1. Get host node name from $GETSYI system service.

2. Translate the executive mode logical SYS$NODE_FULLNAME once.

3. Translate the executive mode logical SYS$NODE once.

The error LIB$_NOHOSNAM is returned if no host node name is found.

LIB$GET_HOSTNAME can return the host node name in the following two
forms:

• Network usable form — The form that can be passed directly to the network.
This form does not contain unnecessary double quotation marks (double
quotation marks ["] that are not part of the node name) and also does not
contain trailing double colons, for example: DEC:.FOO."simple name with
spaces".

• Parsable form — The form that can be passed directly to the part of the
system that does node-name syntax parsing, for example, $FILESCAN and
DCL command parsing. This form contains trailing double colons and is
fully quoted if there are special characters. Individual double quotation
marks (") that are part of a simple name are doubled (""), for example:
"DEC:.FOO.""simple name with spaces"""::.

You must use double quotation marks for a node name with special characters
to facilitate correct parsing.

If the returned node name overflows the buffer pointed to by hostname, the
host node name is truncated at the end, and the alternate success status LIB$_
STRTRU is returned.

The resultant-length argument, if supplied, is set to the length of the node-
name string copied to the output buffer pointed to by hostname.

lib–271

LIB$ Routines
LIB$GET_HOSTNAME

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Routine successfully completed. Characters are

truncated in the output buffer pointed to by
hostname.

LIB$_INVARG Invalid input argument. Unused bits in flags are
not set to 0.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.
LIB$_NOHOSNAM No host node name found.

Any condition value returned by LIB$SCOPY_R_DX, or the $FILESCAN system
service.

lib–272

LIB$ Routines
LIB$GET_INPUT

LIB$GET_INPUT
Get Line from SYS$INPUT

The Get Line from SYS$INPUT routine gets one record of ASCII text from the
current controlling input device, specified by SYS$INPUT.

Format

LIB$GET_INPUT resultant-string [,prompt-string] [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String that LIB$GET_INPUT gets from the input device. The resultant-string
argument is the address of a descriptor pointing to the character string into
which LIB$GET_INPUT writes the text received from the current input device.

prompt-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Prompt message that is displayed on the controlling terminal. The prompt-
string argument is the address of a descriptor containing the prompt. Any
string can be a valid prompt. By convention however, a prompt consists of text
followed by a colon (:), a space, and no carriage-return/line-feed combination.
The maximum size of the prompt message is 255 characters. If the controlling
input device is not a terminal, this argument is ignored.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of bytes written into resultant-string by LIB$GET_INPUT, not
counting padding in the case of a fixed string. The resultant-length argument
is the address of an unsigned word containing this number. If the input string
is truncated to the size specified in the resultant-string descriptor, resultant-
length is set to this size. Therefore, resultant-length can always be used by the
calling program to access a valid substring of resultant-string.

lib–273

LIB$ Routines
LIB$GET_INPUT

Description

LIB$GET_INPUT uses the OpenVMS RMS $GET service to get one record of
ASCII text from the current controlling input device, specified by SYS$INPUT.
(For more information about the RMS $GET service, see the OpenVMS Record
Management Services Reference Manual.)

When you log in, the OpenVMS operating system creates three files as default I/O
control streams for your process.

• SYS$INPUT, your default input device

• SYS$OUTPUT, your default output device

• SYS$COMMAND, the device that supplies the commands to your process

These files remain open until you log out. They are the interface between
your interactive input and output or your batch commands and the OpenVMS
software. Initially, all three names are equated with the terminal. However,
with the DCL command ASSIGN, you can change these assignments to
obtain information from a file or put information into a file. SYS$INPUT and
SYS$COMMAND are usually identical, but the input and command streams can
be different. For example, during the execution of an indirect command file from
an interactive terminal, SYS$COMMAND refers to the terminal and SYS$INPUT
refers to the command file.

LIB$GET_INPUT opens file SYS$INPUT on the first call. The RMS internal
stream identifier (ISI) is stored in the routine’s static storage for subsequent calls.

If prompt-string is provided and the SYS$INPUT device is a terminal,
LIB$GET_INPUT displays the prompt message. If the device is not a terminal,
the prompt-string argument is ignored.

If you want to get input from some source other than the current input stream,
use LIB$GET_COMMAND.

Condition Values Returned

SS$_NORMAL Routine successfully completed. RMS completion
status.

LIB$_FATERRLIB An internal consistency check on Run-Time
Library data structures has failed. This may
indicate a programming error in the Run-
Time Library, or that your program may have
overwritten those data structures.

LIB$_INPSTRTRU The input string has been truncated to the size
specified in the resultant-string descriptor
(fixed-length strings only). The resultant-
length argument is also set to this size. This is
an error (as opposed to LIB$_STRTRU, which is
a success) because the truncation is not under
program control.

LIB$_INSVIRMEM Insufficient virtual memory to allocate the
dynamic string.

lib–274

LIB$ Routines
LIB$GET_INPUT

LIB$_INVARG Invalid arguments. The descriptor class field is
not a recognized code or is zero.

Any RMS condition value returned by $GET.

Any condition value returned by LIBGET_VM, LIBGET_VM_64, LIB$SCOPY_
R_DX, or LIB$SCOPY_R_DX_64.

lib–275

LIB$ Routines
LIB$GET_INVO_CONTEXT (Alpha and I64 Only)

LIB$GET_INVO_CONTEXT (Alpha and I64 Only)
Get Invocation Context

The Get Invocation Context routine gets the invocation context of any active
procedure.

Format

LIB$GET_INVO_CONTEXT invo_handle, invo_context

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

invo_handle
OpenVMS usage: invo_handle
type: longword (unsigned)
access: read only
mechanism: by value

Handle for the desired invocation. Returned by LIB$GET_INVO_HANDLE.

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: write only
mechanism: by reference

Address of an invocation context block into which the procedure context of the
frame specified by invo_handle will be written.

Description

LIB$GET_INVO_CONTEXT gets the invocation context of any active procedure.

Note

If invo_handle does not represent any procedure context in the
active call chain, the new contents of the invocation context block are
unpredictable.

See the HP OpenVMS Calling Standard manual for additional information.

Condition Values Returned

0 Indicates failure.
0 Indicates success.

lib–276

LIB$ Routines
LIB$GET_INVO_HANDLE (Alpha and I64 Only)

LIB$GET_INVO_HANDLE (Alpha and I64 Only)
Get Invocation Handle

The Get Invocation Handle routine gets an invocation handle of any active
procedure.

A thread can obtain an invocation handle corresponding to any invocation context
block by using the following function format.

Format

LIB$GET_INVO_HANDLE invo_context

Returns

OpenVMS usage: invo_handle
type: longword (unsigned)
access: write only
mechanism: by value

Invocation handle of the invocation context that was passed. If the returned
value is LIB$K_INVO_HANDLE_NULL, the invocation context that was passed
was invalid.

Argument

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: read only
mechanism: by reference

Address of an invocation context block. Here, only the frame pointer and stack
pointer fields of an invocation context block must be defined.

Description

LIB$GET_INVO_HANDLE gets an invocation handle of any active procedure.

See the HP OpenVMS Calling Standard manual for additional information.

Condition Values Returned

None.

lib–277

LIB$ Routines
LIB$GET_LOGICAL

LIB$GET_LOGICAL
Get Logical Name

The Get Logical Name routine calls the system service routine $TRNLNM to
return information about a logical name.

Format

LIB$GET_LOGICAL logical-name [,resultant-string] [,resultant-length] [,table-name] [,max-index] [,index]
[,acmode] [,flags]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

Arguments

logical-name
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Logical name for which LIB$GET_LOGICAL searches. The logical-name
argument is the address of a descriptor pointing to the logical name string.

resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Logical name equivalent returned. The resultant-string argument is the
address of a descriptor pointing to a character string into which LIB$GET_
LOGICAL writes the equivalence name of the logical.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the equivalence name string returned by LIB$GET_LOGICAL. The
resultant-length argument is the address of an unsigned word integer into
which LIB$GET_LOGICAL writes the length.

table-name
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

lib–278

LIB$ Routines
LIB$GET_LOGICAL

Name of the table in which to search for the logical name. The table-name
argument contains the address of a descriptor pointing to a character string
which contains the table name. If no table is specified, LNM$FILE_DEV is used.

max-index
OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Largest equivalence name index. Each equivalence name for the logical name
has an index associated with it. The max-index argument is the address of a
signed longword integer into which LIB$GET_LOGICAL write the value. If no
equivalence names (and, therefore, no index values) exist, LIB$GET_LOGICAL
returns a value of -1.

index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Equivalence name index value. LIB$GET_LOGICAL will return the equivalence
name string that has the specified index value. The index argument is the
address of an unsigned longword integer specifying the index value.

acmode
OpenVMS usage: access_mode
type: byte (unsigned)
access: read only
mechanism: by reference

Access mode to be used in the translation. The acmode argument is the address
of a byte specifying the access mode. The $PSLDEF macro defines symbolic
names for the four access modes.

When you specify the acmode argument, all names at access modes which are
less privileged than the specified access mode are ignored.

If you do not specify acmode, the translation is performed without regard to
access mode; however, the translation process proceeds from the outermost to the
innermost access modes. Thus, if two logical names with the same name, but
at different access modes, exist in the same table, the name with the outermost
access mode is translated.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags controlling the search for the logical name. The flags argument is the
address of a longword integer that contains the control flags. The $LNMDEF
macro defines these flags. Currently only bit 0 of this argument is used.

lib–279

LIB$ Routines
LIB$GET_LOGICAL

Bit Value Description

0 LNM$M_CASE_BLIND If set, LIB$GET_LOGICAL does not
distinguish between uppercase and lowercase
letters in the logical name to be translated.

This is an optional argument. If omitted the default is 0.

Description

LIB$GET_LOGICAL provides a simplified interface to the $TRNLNM system
service. It provides most of the features found in $TRNLNM with some additional
benefits. For string arguments, all string classes supported by the Run-Time
Library are understood. The list of item descriptors, which may be difficult to
construct in high-level languages, is handled internally by LIB$GET_LOGICAL.

See the description of the $TRNLNM system service in the HP OpenVMS System
Services Reference Manual for more information.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_ACCVIO Access violation. Cannot access the location

specified.
SS$_BADPARAM Bad parameter value.
SS$_IVLOGNAM Invalid logical name. The logical name or its

value contained more than 255 characters.
SS$_IVLOGTAB Invalid logical name table.
SS$_NOLOGNAM The logical name was not found in the specified

table.
SS$_NOPRIV No privileges for attempted operation.
SS$_TOOMANYNAM Logical name translation exceeded allowed depth.
LIB$_INVARG Required argument is missing.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor.
LIB$_STRTRU Success, but source string truncated.
LIB$_WRONUMARG Wrong number of arguments.

lib–280

LIB$ Routines
LIB$GET_LUN

LIB$GET_LUN
Get Logical Unit Number

The Get Logical Unit Number routine allocates one logical unit number from
a processwide pool. If a unit is available, its number is returned to the caller.
Otherwise, an error is returned as the function value.

Format

LIB$GET_LUN logical-unit-number

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

logical-unit-number
OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Allocated logical unit number or –1 if none was available. The logical-unit-
number argument is the address of a longword into which LIB$GET_LUN
returns the value of the allocated logical unit. LIB$GET_LUN can allocate logical
unit numbers 100 through 119 on VAX, and 100 through 299 on Alpha and I64.

Description

LIB$GET_LUN allocates one logical unit number from a processwide pool. If
a unit is available, its number is returned to the caller. Otherwise, an error is
returned as the function value.

On VAX systems, LIB$GET_LUN reserves logical unit numbers starting at 119
and continues in descending order through 100.

On Alpha and I64 systems, LIB$GET_LUN reserves logical unit numbers 100
through 299. To maintain compatibility with VAX systems, LIB$GET_LUN
reserves logical unit numbers starting at 119 and continues in descending order
through 100. When these are exhausted, LIB$GET_LUN reserves logical unit
numbers starting at 299 and continues in descending order through 120.

LIB$GET_LUN assumes that the logical unit numbers in the range 0 through
99 may be in use by your program, but it cannot determine which logical unit
numbers are actually in use by your program.

lib–281

LIB$ Routines
LIB$GET_LUN

Call LIB$GET_LUN only from Fortran or BASIC programs. Those languages and
LIB$GET_LUN share the concept of unit numbers and a similar number space.

Note

Beware of running multiple images linked with /NOSYSSHR in the same
process and having more than one image make calls to LIB$GET_LUN.
Each image contains its own copy of the event flag bit array that is
designed to be process-wide and synchronize ownership of event flags.
Multiple calls to LIB$GET_EF could cause the same event flag to be
allocated more than once.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSLUN Insufficient logical unit numbers. No logical unit

numbers were available.

lib–282

LIB$ Routines
LIB$GET_MAXIMUM_DATE_LENGTH

LIB$GET_MAXIMUM_DATE_LENGTH
Retrieve the Maximum Length of a Date/Time String

Given an output format and language, the Retrieve the Maximum Length of
a Date/Time String routine determines the maximum possible length for the
date-string string returned by LIB$FORMAT_DATE_TIME.

Format

LIB$GET_MAXIMUM_DATE_LENGTH date-length [,user-context] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

date-length
OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Receives the maximum possible length of the date-string argument returned
to LIB$FORMAT_DATE_TIME. The date-length argument is the address of
a signed longword that receives this maximum length. The length written to
date-length reflects the greatest possible length of an output date/time string for
the currently selected output format and natural language.

For example, if the selected output date/time format includes the alphabetic,
unabbreviated month name (assuming English as the natural language), the
longest month name (September) would have to be taken into consideration when
determining the maximum possible length of date-string.

user-context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context variable that retains the translation context over multiple calls to this
routine. The user-context argument is the address of an unsigned longword
that contains this context. The initial value of the context variable must be zero.
Thereafter, the user program must not write to the cell.

The user-context parameter is optional. However, if a context cell is not passed,
the routine LIB$GET_MAXIMUM_DATE_LENGTH may abort if two threads of
execution attempt to manipulate the context area concurrently. Therefore, when
calling this routine in situations where reentrancy might occur, such as from AST
level, HP recommends that users specify a different context cell for each calling
thread.

lib–283

LIB$ Routines
LIB$GET_MAXIMUM_DATE_LENGTH

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask that allows the user to specify whether the date, time, or both are to be
included in the calculation of the maximum date length. The flags argument is
the address of an unsigned bit mask containing the specified values. Valid values
are LIB$M_DATE_FIELDS and LIB$M_TIME_FIELDS. The values specified for
flags must correspond to the flags argument passed to LIB$FORMAT_DATE_
TIME.

Description

The LIB$GET_MAXIMUM_DATE_LENGTH routine determines the maximum
possible length for a formatted date/time string as returned by LIB$FORMAT_
DATE_TIME. The maximum length returned takes into account the currently
specified output format and natural language; date-length represents the
maximum possible length of the string written to the date-string argument of
LIB$FORMAT_DATE_TIME.

Consider the following example, in which the output format is defined as follows.

DEFINE LIB$DT_FORMAT LIB$DATE_FORMAT_012, LIB$TIME_FORMAT_012

This date/time format would appear as follows:

!MAU !DD, !Y4 !HH2:!M0 !MIU

Given this format, the maximum possible length for this date/time string is
calculated using the longest possible date string followed by a space and the
longest possible time string. One example that meets these requirements is as
follows (assuming English as the selected language):

SEPTEMBER 21, 2000 11:24 PM

The maximum possible length of this date-string would then be 28.

See the HP OpenVMS Programming Concepts Manual for a description of
system date and time operations as well as a detailed description of the format
mnemonics used in these routines.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_ABSTIMREQ Absolute time required.
LIB$_DEFFORUSE Default format used; unable to determine desired

format.
LIB$_ENGLUSED English used by default; unable to translate

SYS$LANGUAGE.
LIB$_REENTRANCY Reentrant invocation with same context variable.
LIB$_STRTRU Output string truncated.
LIB$_UNRFORCOD Unrecognized format code.

Any condition value returned by LIB$GET_VM.

lib–284

LIB$ Routines
LIB$GET_PREV_INVO_CONTEXT (Alpha and I64 Only)

LIB$GET_PREV_INVO_CONTEXT (Alpha and I64 Only)
Get Previous Invocation Context

The Get Previous Invocation Context routine gets the previous invocation context
of any active procedure.

A thread can obtain the invocation context of the procedure context preceding any
other procedure context using the following function format.

Format

LIB$GET_PREV_INVO_CONTEXT invo_context

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Argument

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: modify
mechanism: by reference

Address of an invocation context block. The given context block is updated to
represent the context of the previous (calling) frame.

For the purposes of this function, the minimum fields of an invocation block
that must be defined are those IREG and FREG fields corresponding to registers
used by a context whether the registers are preserved or not. Note that the
invocation context blocks written by the routines specified in these sections define
all possible fields in a context block. Such context blocks satisfy this minimum
requirement.

Description

LIB$GET_PREV_INVO_CONTEXT gets the previous invocation context of any
active procedure.

See the HP OpenVMS Calling Standard manual for more information.

Condition Values Returned

0 The initial context represents the bottom of the
call chain.

1 Indicates success.

lib–285

LIB$ Routines
LIB$GET_PREV_INVO_HANDLE (Alpha and I64 Only)

LIB$GET_PREV_INVO_HANDLE (Alpha and I64 Only)
Get Previous Invocation Handle

The Get Previous Invocation Handle routine gets the previous invocation handle
of any active procedure.

A thread can obtain an invocation handle of the procedure context preceding that
of a specified procedure context by using the following function format.

Format

LIB$GET_PREV_INVO_HANDLE invo_handle

Returns

OpenVMS usage: invo_handle
type: longword (unsigned)
access: write only
mechanism: by value

An invocation handle for the invocation context that is previous to that which
was specified as the target.

Argument

invo_handle
OpenVMS usage: invo_handle
type: longword (unsigned)
access: read only
mechanism: by value

An invocation handle that represents a target invocation context.

Description

LIB$GET_PREV_INVO_HANDLE gets the previous invocation handle of any
active procedure.

See the HP OpenVMS Calling Standard manual for more information.

Condition Values Returned

None.

lib–286

LIB$ Routines
LIB$GET_SYMBOL

LIB$GET_SYMBOL
Get Value of CLI Symbol

The Get Value of CLI Symbol routine requests the calling process’s command
language interpreter (CLI) to return the value of a CLI symbol as a string.
LIB$GET_SYMBOL then returns the string to the caller. Optionally, LIB$GET_
SYMBOL can return the length of the returned value and the table in which the
symbol was found.

Format

LIB$GET_SYMBOL symbol ,resultant-string [,resultant-length] [,table-type-indicator]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

symbol
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the symbol for which LIB$GET_SYMBOL searches. The symbol
argument is the address of a descriptor pointing to the name of the symbol.
LIB$GET_SYMBOL converts the symbol name to uppercase and removes trailing
blanks before the search. The symbol argument must begin with a letter, a digit,
a dollar sign ($), a hyphen (-), or an underscore (_). The maximum length of
symbol is 255 characters.

resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Value of the returned symbol. The resultant-string argument is the address of
a descriptor pointing to a character string into which LIB$GET_SYMBOL writes
the value of the symbol.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the symbol value returned by LIB$GET_SYMBOL. The resultant-
length argument is the address of an unsigned word integer into which
LIB$GET_SYMBOL writes the length.

lib–287

LIB$ Routines
LIB$GET_SYMBOL

table-type-indicator
OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Indicator of which table contained the symbol. The table-type-indicator
argument is the address of a signed longword integer into which LIB$GET_
SYMBOL writes the table indicator.

Possible values of the table indicator are listed below.

Symbolic Name Value Table

LIB$K_CLI_LOCAL_SYM 1 Local symbol table
LIB$K_CLI_GLOBAL_SYM 2 Global symbol table

LIB$K_CLI_LOCAL_SYM and LIB$K_CLI_GLOBAL_SYM are defined in symbol
libraries supplied by HP (macro or module name $LIBCLIDEF) and as global
symbols.

Description

LIB$GET_SYMBOL first searches the local symbol table for the symbol name,
then searches the global symbol table. Numeric values are converted to an ASCII
representation of a signed decimal number before being returned.

LIB$GET_SYMBOL is supported for use with the DCL command language
interpreter. If used with the MCR CLI, the error status LIB$_NOCLI will be
returned.

If an image is run directly as a subprocess or as a detached process, there is no
CLI present to get the symbol. In that case, LIB$GET_SYMBOL returns the
error status LIB$_NOCLI.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Routine successfully completed; string truncated.

The destination string could not contain all the
characters in the symbol value.

LIB$_FATERRLIB Fatal internal error. An internal consistency
check has failed. This usually indicates
an internal error in the Run-Time Library
and should be reported to your HP support
representative.

LIB$_INSCLIMEM Insufficient CLI memory. The CLI could not
obtain enough virtual memory to perform the
function. This may be caused by having too
many symbols defined. Deleting some symbol
definitions may relieve the situation.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

lib–288

LIB$ Routines
LIB$GET_SYMBOL

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

LIB$_INVSYMNAM Invalid symbol name. The symbol name
contained more than 255 characters or did not
begin with a letter or dollar sign ($).

LIB$_NOCLI No CLI present. The calling process did not have
a CLI to perform the function or the CLI did not
support the request type. Note that an image
run as a subprocess or detached process does not
have a CLI.

LIB$_NOSUCHSYM No such symbol. The symbol was not defined in
either the local or global symbol table.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an
error status which was not recognized. This
error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL
command language interpreter, please report the
problem to your HP support representative.

lib–289

LIB$ Routines
LIB$GET_UIB_INFO

LIB$GET_UIB_INFO
Unwind Routine

Returns information from the unwind information block (UIB).

Format

LIB$GET_UIB_INFO uib_va [,gp_value] [,uw_desc_va] [,uw_desc_len] [,handler_fv] [,ossd_va] [,lsda_va]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

uib_va
OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by reference

Address of a quadword that contains the virtual address of an unwind information
block (UIB).

gp_value
OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by reference

Address of a quadword that contains the GP value that must be added to the UIB
condition handler value. Must be specified if handler_fv is specified.

uw_desc_va
OpenVMS usage: address
type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the virtual address of the unwind descriptor area.
If none is present, then zero is returned. This is an optional argument.

un_desc_len
OpenVMS usage: address
type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the length (in bytes) of the unwind descriptor
area. If none are present, then zero is returned. This is an optional argument.

lib–290

LIB$ Routines
LIB$GET_UIB_INFO

handler_fv
OpenVMS usage: address
type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the function value of the condition handler. If
none is present, then zero is returned. This is an optional argument.

ossd_va
OpenVMS usage: address
type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the address of the operating system-specific data
area. If none is present, then zero is returned. This is an optional argument.

lsda_va
OpenVMS usage: address
type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the address of the language-specific data area
(LSDA). If none is present, then zero is returned. This is an optional argument.

Description

Takes in the address of an uwind information block (UIB) and the GP value for a
routine and returns the addresses of the start of the unwind descriptors (if any),
the handler function descriptor (if any), and the operating system-specific data
area (if any). The size in bytes of the unwind descriptors is also returned.

Related Services
SYSSET_UNWIND_TABLE, SYSCLEAR_UNWIND_TABLE, SYS$GET_
UNWIND_ENTRY_INFO,

Condition Values Returned

SS$_NORMAL Routine completed successfully.
LIB$_INVARG Bad UIB virtual address.

lib–291

LIB$ Routines
LIB$GET_USERS_LANGUAGE

LIB$GET_USERS_LANGUAGE
Return the User’s Language

The Return the User’s Language routine determines the user’s choice of a natural
language. The choice is determined by translating the logical SYS$LANGUAGE.

Format

LIB$GET_USERS_LANGUAGE language

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

language
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Receives the translation of SYS$LANGUAGE. The language argument is the
address of a descriptor pointing to this language name.

Description

The LIB$GET_USERS_LANGUAGE routine translates the logical
SYS$LANGUAGE and returns the user’s choice of a natural language. If the
logical SYS$LANGUAGE does not translate for some reason, then the language
defaults to English and the status LIB$_ENGLUSED is returned.

If a failure or truncation occurs while copying the language name to the
language string argument, that error status overrides the LIB$_ENGLUSED or
SS$_NORMAL status.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_ENGLUSED English used by default; unable to translate

SYS$LANGUAGE.

Any condition value returned by LIB$SCOPY_R_DX.

lib–292

LIB$ Routines
LIB$GET_VM

LIB$GET_VM
Allocate Virtual Memory

The Allocate Virtual Memory routine allocates a specified number of contiguous
bytes in the program region and returns the 32-bit virtual address of the first
byte allocated. †

Format

LIB$GET_VM number-of-bytes, base-address [,zone-id]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

number-of-bytes
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of contiguous bytes that LIB$GET_VM allocates. The number-of-
bytes argument is the address of a longword integer containing the number
of bytes. LIB$GET_VM allocates enough memory to satisfy the request. Your
program should not reference an address before the first byte address allocated
(base-address) or beyond the last byte allocated (base-address + number-of-
bytes—1) since that space may be assigned to another routine. The value of
number-of-bytes must be greater than zero.

base-address
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

First virtual address of the contiguous block of bytes allocated by LIB$GET_VM.
The base-address argument is the address of an unsigned longword containing
this base address.

zone-id
OpenVMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

The zone-id argument is the address of a longword that contains a zone identifier
created by a previous call to LIB$CREATE_VM_ZONE or LIB$CREATE_USER_

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–293

LIB$ Routines
LIB$GET_VM

VM_ZONE. This argument is optional. If zone-id is omitted or if the longword
contains the value 0, the 32-bit default zone is used.

Description

LIB$GET_VM satisfies an allocation request by reusing free memory in the
zone, or by obtaining additional memory from the processwide 32-bit page pool
managed by LIB$GET_VM_PAGE.

LIB$GET_VM rounds up the value of number-of-bytes to a multiple of the
block-size specified for the zone. The first byte allocated is aligned on the
boundary specified by the alignment value for the zone.

If you specified allocation filling when you created the zone, LIB$GET_VM will
fill each byte allocated. Otherwise, LIB$GET_VM does not initialize the memory
and its contents are unpredictable.

All memory allocated by LIB$GET_VM has user mode read/write access, even if
the call to LIB$GET_VM was made from a more privileged access mode.

The space allocated by successive calls to LIB$GET_VM may be noncontiguous
because another routine can call LIB$GET_VM between your calls. If AST
interrupts occur, LIB$GET_VM may allocate space to another routine between
execution of any two statements in your program. Even if successive calls to
LIB$GET_VM return two contiguous blocks, you must not combine them into one
large block that is freed by a single call to LIB$FREE_VM.

LIB$GET_VM is fully reentrant, so it may be called by routines executing at AST
level or in an Ada multitasking environment.

Your program must retain the address of the allocated area. This allows you to
access or deallocate the space later.

If the zone you are getting was created using the LIB$CREATE_USER_VM_
ZONE routine, then you must have an appropriate action routine for the get
operation. That is, in your call to LIB$CREATE_USER_VM_ZONE, you must
have specified a user-get-routine.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR Invalid zone-id or a corrupt zone.
LIB$_BADBLOSIZ Bad block size. The value of number-of-bytes

was less than or equal to 0. For the fixed-size
blocks algorithm, LIB$_BADBLOSIZ can also be
generated if the value of algorithm-argument
specified in the call to LIB$CREATE_VM_ZONE
is less than number-of-bytes.

LIB$_INSVIRMEM Insufficient virtual memory. The request
required more dynamic memory than was
available from the operating system. No partial
allocation is made in this case.

LIB$_PAGLIMEXC Allocation exceeds the page-limit, set when the
zone was create.

lib–294

LIB$ Routines
LIB$GET_VM_64 (Alpha and I64 Only)

LIB$GET_VM_64 (Alpha and I64 Only)
Allocate Virtual Memory

The Allocate Virtual Memory routine allocates a specified number of contiguous
bytes in the program region and returns the 64-bit virtual address of the first
byte allocated.

Format

LIB$GET_VM_64 number-of-bytes, base-address [,zone-id]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

number-of-bytes
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Number of contiguous bytes that LIB$GET_VM_64 allocates. The number-of-
bytes argument is the address of a quadword integer containing the number of
bytes. LIB$GET_VM_64 allocates enough memory to satisfy the request. Your
program should not reference an address before the first byte address allocated
(base-address) or beyond the last byte allocated (base-address + number-of-
bytes ����� 1) since that space may be assigned to another routine. The value
of number-of-bytes must be greater than zero.

base-address
OpenVMS usage: address
type: quadword (unsigned)
access: write only
mechanism: by reference

First virtual address of the contiguous block of bytes allocated by LIB$GET_
VM_64. The base-address argument is the address of an unsigned quadword
containing this base address.

zone-id
OpenVMS usage: identifier
type: quadword (unsigned)
access: read only
mechanism: by reference

The zone-id argument is the address of a quadword that contains a zone
identifier created by a previous call to LIB$CREATE_VM_ZONE_64 or
LIB$CREATE_USER_VM_ZONE_64. This argument is optional. If zone-id
is omitted or if the quadword contains the value 0, the 64-bit default zone is used.

lib–295

LIB$ Routines
LIB$GET_VM_64 (Alpha and I64 Only)

Description

LIB$GET_VM_64 satisfies an allocation request by reusing free memory in the
zone, or by obtaining additional memory from the processwide 64-bit page pool
managed by LIB$GET_VM_PAGE_64.

LIB$GET_VM_64 rounds up the value of number-of-bytes to a multiple of
the block-size specified for the zone. The first byte allocated is aligned on the
boundary specified by the alignment value for the zone.

If you specified allocation filling when you created the zone, LIB$GET_VM_64
will fill each byte allocated. Otherwise, LIB$GET_VM_64 does not initialize the
memory and its contents are unpredictable.

All memory allocated by LIB$GET_VM_64 has user mode read/write access, even
if the call to LIB$GET_VM_64 was made from a more privileged access mode.

The space allocated by successive calls to LIB$GET_VM_64 may be noncontiguous
because another routine can call LIB$GET_VM_64 between your calls. If AST
interrupts occur, LIB$GET_VM_64 may allocate space to another routine between
execution of any two statements in your program. Even if successive calls to
LIB$GET_VM_64 return two contiguous blocks, you must not combine them into
one large block that is freed by a single call to LIB$FREE_VM_64.

LIB$GET_VM_64 is fully reentrant, so it may be called by routines executing at
AST level or in an Ada multitasking environment.

Your program must retain the address of the allocated area. This allows you to
access or deallocate the space later.

If the zone you are getting was created using the LIB$CREATE_USER_VM_
ZONE_64 routine, then you must have an appropriate action routine for the get
operation. That is, in your call to LIB$CREATE_USER_VM_ZONE_64, you must
have specified a user-get-routine.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR Invalid zone-id or a corrupt zone.
LIB$_BADBLOSIZ Bad block size. The value of number-of-bytes

was less than or equal to 0. For the fixed-size
blocks algorithm, LIB$_BADBLOSIZ can also be
generated if the value of algorithm-argument
specified in the call to LIB$CREATE_VM_ZONE_
64 is less than number-of-bytes.

LIB$_INSVIRMEM Insufficient virtual memory. The request
required more dynamic memory than was
available from the operating system. No partial
allocation is made in this case.

LIB$_PAGLIMEXC Allocation exceeds the page-limit, set when the
zone was create.

lib–296

LIB$ Routines
LIB$GET_VM_PAGE

LIB$GET_VM_PAGE
Get Virtual Memory Page

The Get Virtual Memory Page routine allocates a specified number of contiguous
pages on VAX systems or pagelets on Alpha and I64 systems of memory in the
program region and returns the virtual address of the first allocated page on VAX
or pagelet on Alpha or I64. †

Format

LIB$GET_VM_PAGE number-of-pages ,base-address

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

number-of-pages
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of pages on VAX systems or pagelets on Alpha and I64 systems. The
number-of-pages argument is the address of a longword integer that specifies
the number of contiguous pages on VAX systems or pagelets on Alpha and I64
systems to be allocated. The value of number-of-pages must be greater than 0.

base-address
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Block address. The base-address argument is the address of a longword that is
set to the address of the first byte of the newly allocated block of pages on VAX
systems or pagelets on Alpha and I64 systems.

Description

LIB$GET_VM_PAGE allocates blocks of contiguous (512 byte) pages on VAX
systems and pagelets on Alpha and I64 systems in the program region.
LIB$GET_VM_PAGE manages a processwide pool of free pages. If there are
not enough contiguous free pages or pagelets to satisfy an allocation request,
additional pages are created by calling the system service $EXPREG. All memory
allocated by LIB$GET_VM_PAGE is pagelet aligned; that is, the low-order nine
bits of the base address are zero.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–297

LIB$ Routines
LIB$GET_VM_PAGE

All memory allocated by LIB$GET_VM_PAGE has user-mode read/write access,
even if the call to LIB$GET_VM_PAGE is made from a more privileged access
mode.

The contents of memory allocated by LIB$GET_VM_PAGE are unpredictable.
Your program must assign values to all locations that it uses.

LIB$GET_VM_PAGE is designed for request sizes ranging from one page or
pagelet to a few hundred pages or pagelets. For very large request sizes (over
1000 pages or pagelets in a single request), you should call the system service
$EXPREG.

LIB$GET_VM_PAGE is fully reentrant, so it can be called by routines executing
at AST level or in an Ada multitasking environment.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOSIZ The value of the number-of-pages argument is

less than or equal to 0.
LIB$_INSVIRMEM Insufficient virtual memory. The request

required more dynamic memory than was
available from the operating system. No partial
allocation is made in this case.

lib–298

LIB$ Routines
LIB$GET_VM_PAGE_64 (Alpha and I64 Only)

LIB$GET_VM_PAGE_64 (Alpha and I64 Only)
Get Virtual Memory Page

The Get Virtual Memory Page routine allocates a specified number of contiguous
Alpha or I64 pagelets of memory in the program region and returns the virtual
address of the first allocated pagelet.

Format

LIB$GET_VM_PAGE_64 number-of-pages ,base-address

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

number-of-pages
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Number of Alpha or I64 pagelets. The number-of-pages argument is the
address of a quadword integer that specifies the number of contiguous Alpha or
I64 pagelets to be allocated. The value of number-of-pages must be greater
than 0.

base-address
OpenVMS usage: address
type: quadword (unsigned)
access: write only
mechanism: by reference

Block address. The base-address argument is the address of a quadword that
is set to the address of the first byte of the newly allocated block of Alpha or I64
pagelets.

Description

LIB$GET_VM_PAGE_64 allocates blocks of contiguous Alpha or I64 pagelets
in the program region. LIB$GET_VM_PAGE_64 manages a processwide pool
of free pagelets. If there are not enough contiguous free pagelets to satisfy an
allocation request, additional pagelets are created by calling the system service
$EXPREG_64. All memory allocated by LIB$GET_VM_PAGE_64 is aligned to
physical page size.

All memory allocated by LIB$GET_VM_PAGE_64 has user-mode read/write
access, even if the call to LIB$GET_VM_PAGE_64 is made from a more privileged
access mode.

The contents of memory allocated by LIB$GET_VM_PAGE_64 are unpredictable.
Your program must assign values to all locations that it uses.

lib–299

LIB$ Routines
LIB$GET_VM_PAGE_64 (Alpha and I64 Only)

LIB$GET_VM_PAGE_64 is fully reentrant, so it can be called by routines
executing at AST level or in an Ada multitasking environment.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOSIZ The value of the argument number-of-pages is

less than or equal to 0.
LIB$_INSVIRMEM Insufficient virtual memory. The request

required more dynamic memory than was
available from the operating system. No partial
allocation is made in this case.

lib–300

LIB$ Routines
LIB$I64_CREATE_INVO_CONTEXT (I64 Only)

LIB$I64_CREATE_INVO_CONTEXT (I64 Only)
Create Invocation Context

The Create Invocation Context routine allocates an invocation context block from
heap storage and initializes it.

Format

LIB$I64_CREATE_INVO_CONTEXT [malloc] [,free] [,ident]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

malloc
OpenVMS usage: function_value
type: procedure
access: read
mechanism: by value

A procedure reference for a user callback routine that allocates memory. This
is an optional argument. The default is to use an implementation of the C RTL
routine malloc. If specified, this routine is used to allocate the invocation context
block field LIBICB$PH_UO_MALLOC for use during the stack walk.

free
OpenVMS usage: function_value
type: procedure
access: read
mechanism: by value

A procedure reference for a user callback routine that deallocates memory. This
value is placed in the invocation context block field LIBICB$PH_UO_FREE. This
is an optional argument; however, it must be specified if malloc is specified. The
default is to use an implementation of the C RTL routine free.

ident
OpenVMS usage: user_value
type: quadword
access: read
mechanism: by value

Specifies a user ident value to be placed in the invocation context block
LIBICB$IH_UO_IDENT field. In turn, this value is passed to the malloc
and free routines. This is an optional argument; the default value is zero.

lib–301

LIB$ Routines
LIB$I64_CREATE_INVO_CONTEXT (I64 Only)

Description

LIB$I64_CREATE_INVO_CONTEXT simplifies creating and properly initializing
an invocation context block. The routine allocates an invocation context block
from heap storage and initializes it. Users of this routine should call LIB$I64_
FREE_INVO_CONTEXT when the invocation context block is no longer required.

This routine sets the cache unwind flag LIBICB$V_UO_FLAG_CACHE_UNWIND
in the invocation context block to speed up the stack walk. Do not use this routine
in conjunction with LIB$I64_INIT_INVO_CONTEXT, as the same initialization is
performed by both routines.

Condition Values Returned

0 Indicates failure.
any non-zero value Represents the address of the allocated

invocation context block.

lib–302

LIB$ Routines
LIB$I64_FREE_INVO_CONTEXT (I64 Only)

LIB$I64_FREE_INVO_CONTEXT (I64 Only)
Deallocate Invocation Context Block

The Free Invocation Context Block routine deallocates an invocation context block
that was previously allocated.

Format

LIB$I64_FREE_INVO_CONTEXT invo_context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: modify only
mechanism: by reference

Address of an invocation context block.

Description

LIB$I64_FREE_INVO_CONTEXT deallocates an invocation context block that
was previously allocated using LIB$I64_CREATE_INVO_CONTEXT. This routine
calls LIB$I64_PREV_INVO_END as a convenience.

Condition Values Returned

None.

lib–303

LIB$ Routines
LIB$I64_GET_CURR_INVO_CONTEXT (I64 Only)

LIB$I64_GET_CURR_INVO_CONTEXT (I64 Only)
Get Current Invocation Context

The Get Current Invocation Context routine gets the invocation context of a
current procedure.

Format

LIB$I64_GET_CURR_INVO_CONTEXT invo_context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: modify only
mechanism: by reference

Address of an invocation context block into which the procedure context of the
caller will be written.

Description

LIB$I64_GET_CURR_INVO_CONTEXT gets the invocation context of a current
procedure. The invocation context block must be properly initialized as described
in the HP OpenVMS Calling Standard manual before calling this routine.

Condition Value Returned

0 Facilitates use in the implementation of the C
language unwind setjmp or longjmp function.
Check the LIBICB$L_ALERT_CODE field of
the invocation context block for further status
indication.

lib–304

LIB$ Routines
LIB$I64_GET_CURR_INVO_HANDLE (I64 Only)

LIB$I64_GET_CURR_INVO_HANDLE (I64 Only)
Get Current Invocation Handle

The Get Current Invocation Handle routine gets the invocation handle for the
current procedure.

Format

LIB$I64_GET_CURR_INVO_HANDLE invo_handle

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

invo_handle
OpenVMS usage: invo_handle
type: quadword
access: write only
mechanism: by reference

Address of a quadword into which the invocation handle of the caller will be
written.

Description

LIB$I64_GET_CURR_INVO_HANDLE gets the invocation handle for the current
procedure.

Condition Values Returned

0 The initial context represents the bottom of the
call stack.

1 Indicates success.
3 The current operation completed without error,

but a stack corruption was detected at the next
level down.

lib–305

LIB$ Routines
LIB$I64_GET_FR (I64 Only)

LIB$I64_GET_FR (I64 Only)
Get Floating-Point Register

The Get Floating-Point Register routine copies the value of the floating-point
register.

Format

LIB$I64_GET_FR invo_context, index, fr_copy

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: read
mechanism: by reference

Address of a valid invocation context block.

index
OpenVMS usage: index
type: longword
access: read
mechanism: by value

Floating point register index.

fr_copy
OpenVMS usage: floating-point value
type: octaword
access: write
mechanism: by value

Address of an octaword to receive the contents of the specified floating-point
register.

Description

Given an invocation context block and floating-point register index such that
0 <= index < 128, LIB$I64_GET_FR copies the register value to fr_copy. For
example, an index value of 4 fetches the value, which represents the contents of
F4 for the context.

LIB$I64_GET_FR returns failure status if the index represents a scratch register
whose contents have not been realized.

lib–306

LIB$ Routines
LIB$I64_GET_FR (I64 Only)

Condition Values Returned

0 Indicates failure.
1 Indicates success.

lib–307

LIB$ Routines
LIB$I64_GET_GR (I64 Only)

LIB$I64_GET_GR (I64 Only)
Get Invocation Context Block Value

The Get Invocation Context Block Value routine fetches the invocation context
block IREG[4] value.

Format

LIB$I64_GET_GR invo_context, index, gr_copy

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Argument

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: read
mechanism: by reference

Address of a valid invocation context block.

index
OpenVMS usage: index
type: longword
access: read
mechanism: by value

Index into the IREG array of the invocation context block.

gr_copy
OpenVMS usage: floating-point value
type: octaword
access: write
mechanism: by value

Address of an octaword to receive the value from the invocation context block.

Description

Given an invocation context block and general register index such that
0 <= index < 128, LIB$I64_GET_GR copies the register value to gr_copy,
for example, index 4 fetches the invocation context block IREG[4] value, which
represents the contents of R4 for the context.

If the register represented by index has its corresponding NaT bit set, the
read succeeds and the return status is set to 3. If the register represented by
index lies beyond the allocated general registers, the read fails and gr_copy is
unchanged. That is, the highest allowed index is 32 + ICB.CFM.SOF - 1.

LIB$I64_GET_GR fails if the index represents a scratch register whose contents
have not been realized.

lib–308

LIB$ Routines
LIB$I64_GET_GR (I64 Only)

Condition Values Returned

0 Indicates failure.
1 Indicates success, and that the NaT bit was clear.
3 Indicates success, and that the NaT bit was set.

lib–309

LIB$ Routines
LIB$I64_GET_INVO_CONTEXT (I64 Only)

LIB$I64_GET_INVO_CONTEXT (I64 Only)
Get Invocation Context

The Get Invocation Context routine gets the invocation context of any active
procedure.

Format

LIB$I64_GET_INVO_CONTEXT invo_handle, invo_context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

invo_handle
OpenVMS usage: invo_handle
type: quadword
access: modify only
mechanism: by reference

Address of an invocation context block into which the procedure context of the
frame specified by invo_handle will be written.

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: write only
mechanism: by reference

Address of an invocation context block into which the procedure context of the
frame specified by invo_handle will be written.

Description

LIB$I64_GET_INVO_CONTEXT gets the invocation context of any active
procedure.

Note

The invocation context block must be properly initialized as described in
the HP OpenVMS Calling Standard manual before calling this routine.

lib–310

LIB$ Routines
LIB$I64_GET_INVO_CONTEXT (I64 Only)

Condition Value Returned

0 Facilitates use in the implementation of the C
language unwind setjmp or longjmp function.
Check the LIBICB$L_ALERT_CODE field of
the invocation context block for further status
indication.

lib–311

LIB$ Routines
LIB$I64_GET_INVO_HANDLE (I64 Only)

LIB$I64_GET_INVO_HANDLE (I64 Only)
Get Invocation Handle

The Get Invocation Handle routine obtains the invocation handle corresponding
to any invocation context block.

Format

LIB$I64_GET_INVO_HANDLE invo_context, invo_handle

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: read only
mechanism: by reference

Address of a valid invocation context block.

invo_handle
OpenVMS usage: invo_handle
type: quadword (unsigned)
access: write only
mechanism: by reference

Address of the location into which the invocation context handle is to be written.
If the call fails, the value of the invocation context handle is LIB$K_INVO_
HANDLE_NULL.

Description

LIB$GET_INVO_HANDLE gets the invocation context of any active procedure.

Condition Values Returned

0 Indicates failure.
1 Indicates success.

lib–312

LIB$ Routines
LIB$I64_GET_PREV_INVO_CONTEXT (I64 Only)

LIB$I64_GET_PREV_INVO_CONTEXT (I64 Only)
Get Previous Invocation Context

The Get Current Invocation Context routine obtains the invocation context of the
procedure context preceding any other procedure context.

Format

LIB$I64_GET_PREV_INVO_CONTEXT invo_context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: modify only
mechanism: by reference

Address of a valid invocation context block. The given invocation context block is
updated to represent the context of the previous (calling) frame.

The LIBICB$V_BOTTOM_OF_STACK flag of the invocation context block is set
if the target frame represents the end of the invocation call chain or if stack
corruption is detected.

Description

The LIB$I64_GET_PREV_INVO_CONTEXT routine obtains the invocation
context of the procedure context preceding any other procedure context.

Condition Values Returned

0 The initial context represents the bottom of the
call stack.

1 Indicates success.
3 The current operation completed without error,

but a stack corruption was detected at the next
level down.

lib–313

LIB$ Routines
LIB$I64_GET_PREV_INVO_HANDLE (I64 Only)

LIB$I64_GET_PREV_INVO_HANDLE (I64 Only)
Get Previous Invocation Handle

The Get Previous Invocation Handle routine gets an invocation handle of the
procedure context preceding that of a specified procedure context.

Format

LIB$I64_GET_PREV_INVO_HANDLE invo_handle_in, invo_handle_out

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

invo_handle_in
OpenVMS usage: invo_handle
type: quadword
access: read only
mechanism: by reference

The address of an invocation handle that represents a target invocation context.

invo_handle_out
OpenVMS usage: invo_handle
type: quadword
access: write only
mechanism: by reference

Address of the location into which the invocation context handle of the previous
context is to be written. If the call fails, the value of the previous invocation
context handle is LIB$K_INVO_HANDLE_NULL.

Description

LIB$I64_GET_PREV_INVO_HANDLE gets an invocation handle of the procedure
context preceding that of a specified procedure context.

Condition Values Returned

0 Indicates failure.
1 Indicates success.

lib–314

LIB$ Routines
LIB$I64_GET_UNWIND_HANDLER_FV (I64 Only)

LIB$I64_GET_UNWIND_HANDLER_FV (I64 Only)
Get Function Value For Condition Handler

The Get Function Value For Condition Handler routine finds the function value
(address of the procedure descriptor) for the condition handler.

Format

LIB$I64_GET_UNWIND_HANDLER_FV pc_value, handler_fv

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

pc_value
OpenVMS usage: PC value
type: quadword
access: read
mechanism: by reference

Address of a location that contains the PC value.

pc_value is used to find the unwind information block and the unwind
information block condition handler pointer.

handler_fv
OpenVMS usage: address
type: quadword
access: write
mechanism: by reference

A quadword to receive the function value of the procedure descriptor for the
condition handler, if there is one.

Description

Given a pc_value, LIB$I64_GET_UNWIND_HANDLER_FV finds the function
value (address of the procedure descriptor) for the condition handler, if present,
and writes it to handler_fv. If not present, then it writes 0 to handler_fv.

Condition Values Returned

0 Indicates failure.
1 Indicates success.

lib–315

LIB$ Routines
LIB$I64_GET_UNWIND_LSDA (I64 Only)

LIB$I64_GET_UNWIND_LSDA (I64 Only)
Find Address of Unwind Information Block Language-Specific Data

The Find Address of Unwind Information Block Language-Specific Data routine
finds the address of the unwind information block language-specific data area.

Format

LIB$I64_GET_UNWIND_LSDA pc_value, unwind_lsda_p

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

pc_value
OpenVMS usage: PC value
type: quadword
access: read
mechanism: by reference

Address of a quadword to receive the address of the language-specific data area,
if there is one.

unwind_lsda_p
OpenVMS usage: address
type: quadword
access: write
mechanism: by reference

Address of a location that contains the PC value. pc_value is used to find the
unwind information block and the unwind information block language-specific
data area address.

Description

Given a pc_value, LIB$I64_GET_UNWIND_LSDA finds the address of the
unwind information block language-specific data area (LSDA), and writes it to
unwind_lsda_p. If not present, it then writes 0 to unwind_lsda_p.

Condition Values Returned

0 Indicates failure.
1 Indicates success.

lib–316

LIB$ Routines
LIB$I64_GET_UNWIND_OSSD (I64 Only)

LIB$I64_GET_UNWIND_OSSD (I64 Only)
Find Address of the Unwind Information Block Operating System-
Specific Data Area

The Find Address of the Unwind Information Block Operating System-Specific
Data Area routine finds the address of the unwind information block operating
system-specific data area.

Format

LIB$I64_GET_UNWIND_OSSD pc_value, unwind_ossd_p

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

pc_value
OpenVMS usage: PC value
type: quadword
access: read
mechanism: by reference

Address of a location that contains the PC value. pc_value is used to find
the unwind information block and the unwind information block operating
system-specific data area address.

unwind_ossd_p
OpenVMS usage: address
type: quadword
access: write
mechanism: by reference

Address of a quadword to receive the address of the operating system-specific
data area.

Description

Given a pc_value, LIB$I64_GET_UNWIND_OSSD finds the address of the
unwind information block operating system-specific data area, if present, and
writes it to unwind_ossd_p. If not present, then it writes 0 to unwind_ossd_p.

Condition Values Returned

0 Indicates failure.
1 Indicates success.

lib–317

LIB$ Routines
LIB$I64_INIT_INVO_CONTEXT (I64 Only)

LIB$I64_INIT_INVO_CONTEXT (I64 Only)
Initialize an Invocation Context Block

The Initialize Invocation Context routine initializes an invocation context block
that has already been allocated by the user.

Format

LIB$I64_INIT_INVO_CONTEXT invo_context, invo_version [,cache_unwind_flag]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: modify only
mechanism: by reference

Address of an invocation context block.

invo_version
OpenVMS usage: version_number
type: byte
access: read only
mechanism: by value

The value LIBICB$K_INVO_CONTEXT_VERSION. This is used to verify the
operating environment.

cache_unwind_flag
OpenVMS usage: flag
type: longword
access: read only
mechanism: by value

A flag indicating if the cache unwind flag, LIBICB$V_UO_FLAG_CACHE_
UNWIND, should be set in the invocation context block. A value of zero clears
the flag; a value of one sets the flag. This is an optional argument. The default is
zero.

Description

LIB$I64_INIT_INVO_CONTEXT initializes an invocation context block that the
user has already allocated (on the stack, or from heap, or other storage). Use
this routine as an alternative to LIB$I64_CREATE_INVO_CONTEXT, which both
allocates and initializes an invocation context block.

lib–318

LIB$ Routines
LIB$I64_INIT_INVO_CONTEXT (I64 Only)

Condition Values Returned

0 Indicates a version number mismatch.
1 Indicates success.

lib–319

LIB$ Routines
LIB$I64_IS_AST_DISPATCH_FRAME (I64 Only)

LIB$I64_IS_AST_DISPATCH_FRAME (I64 Only)
Determine AST Exception Frame Dispatch

The Determine AST Exception Frame Dispatch routine determines whether a
given PC value represents an AST dispatch frame.

Format

LIB$I64_IS_AST_DISPATCH_FRAME pc_value

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

pc_value
OpenVMS usage: PC value
type: quadword
access: read
mechanism: by reference

Address of a quadword that contains the PC value.

The pc_value is used to find the operating system-specific data area in the
unwind information for this routine.

Description

LIB$I64_IS_AST_DISPATCH_FRAME determines whether a given PC value
represents an AST dispatch frame.

Condition Values Returned

0 The operating system-specific data area is
present and the EXCEPTION_FRAME flag is
clear. Returns 0 if the operating system-specific
data area is not present.

1 The operating system-specific data area is
present and the EXCEPTION_FRAME flag is
set.

lib–320

LIB$ Routines
LIB$I64_IS_EXC_DISPATCH_FRAME (I64 Only)

LIB$I64_IS_EXC_DISPATCH_FRAME (I64 Only)
Determine Exception Frame Dispatch

The Determine Exception Frame Dispatch routine determines whether a given
PC value represents an exception dispatch frame.

Format

LIB$I64_IS_EXC_DISPATCH_FRAME pc_value

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

pc_value
OpenVMS usage: PC value
type: quadword
access: read
mechanism: by reference

Address of a quadword that contains the PC value.

The pc_value is used to find the operating system-specific data area in the
unwind information for this routine.

Description

LIB$I64_IS_EXC_DISPATCH_FRAME determines whether a given PC value
represents an exception dispatch frame.

Condition Values Returned

0 The operating system-specific data area is
present and the EXCEPTION_FRAME flag is
clear. Returns 0 if the operating system-specific
data area is not present.

1 The operating system-specific data area is
present and the EXCEPTION_FRAME flag is
set.

lib–321

LIB$ Routines
LIB$I64_PREV_INVO_END (I64 Only)

LIB$I64_PREV_INVO_END (I64 Only)
End Call Tracing Operations

The End Call Tracing Operations routine should be called at the conclusion of call
tracing operations to free the memory used to process unwind descriptors.

Format

LIB$I64_PREV_INVO_END (invo_context)

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: modify only
mechanism: by reference

Address of a valid invocation context block previously used for call tracing.

Description

LIB$I64_PREV_INVO_END should be called at the conclusion
of call tracing operations to free the memory used to
process unwind descriptors. The call tracing routines are
LIB$I64_GET_INVO_CONTEXT, LIB$I64_GET_PREV_INVO_CONTEXT, and
LIB$I64_GET_CURR_INVO_CONTEXT.

To provide efficient call tracing, some unwind information is tracked in heap
storage from one call to the next. This heap storage should be freed before you
release or reuse the invocation context block.

Calling this routine is necessary if the LIBICB$V_UO_FLAG_CACHE_UNWIND
flag is set in the LIBICB$Q_UO_FLAGS field of the invocation context block. If
this flag is not set, unwind information is released and re-created at each call,
and calling this routine is not required.

Condition Values Returned

0 Indicates failure.
1 Indicates success.

lib–322

LIB$ Routines
LIB$I64_PUT_INVO_REGISTERS (I64 Only)

LIB$I64_PUT_INVO_REGISTERS (I64 Only)
Put Invocation Registers

The Put Invocation Registers routine updates the fields of a given procedure
invocation context.

Note that if user override routines are specified in the invocation context block,
then they are used to find and modify the invocation context.

Format

LIB$I64_PUT_INVO_REGISTERS invo_handle, invo_context, [,gr_mask] [,fr_mask]
[,br_mask] [,pr_mask] [,misc_mask]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

invo_handle
OpenVMS usage: invo_handle
type: quadword (unsigned)
access: read only
mechanism: by reference

Handle for the invocation to be updated.

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: read only
mechanism: by reference

Address of a valid invocation context block that contains new register contents.

Each register that is set in the xx_mask argument (along with its NaT bit, if
any) is updated using the value found in the corresponding IREG[n], FREG[n],
BRANCH[n], or PRED[n] field. GP, TP, and AI can also be updated in this way.

No other fields of the invocation context block are used.

gr_mask
OpenVMS usage: mask_octaword
type: 128-bit vector
access: read only
mechanism: by reference

Address of a 128-bit bit vector, where each bit corresponds to a register field in
the invo_context argument. Bits 0 through 127 correspond to IREG[0] through
IREG[127].

Bit 0 corresponds to R0, which cannot be written, and is ignored.

Bit 1 corresponds to the global data pointer (GP).

lib–323

LIB$ Routines
LIB$I64_PUT_INVO_REGISTERS (I64 Only)

Bit 13 corresponds to the thread pointer (TP).

Bit 25 corresponds to the argument information register (AI).

If bit 12, which corresponds to SP, is set, then no changes are made.

fr_mask
OpenVMS usage: mask_octaword
type: 128-bit vector
access: read only
mechanism: by reference

Address of a 128-bit bit vector, where each bit corresponds to a register field in
the passed invo_context.

To update floating-point registers F32-F127, provide a pointer to an array of 96
octawords in LIBICB$PH_F32_F127.

Bits 0 through 127 correspond to FREG[0] through FREG[127].

Bit 0 corresponds to F0, which cannot be written, and is ignored.
Bit 1 corresponds to F1, which cannot be written, and is ignored.

br_mask
OpenVMS usage: mask_byte
type: 8-bit vector
access: read only
mechanism: by reference

Address of a 8-bit bit vector, where each bit corresponds to a register field in
the passed invo_context. Bits 0 through 7 correspond to BRANCH[0] through
BRANCH[7].

pr_mask
OpenVMS usage: mask_quadword
type: 64-bit vector
access: read only
mechanism: by reference

Address of a 64-bit bit vector, where each bit corresponds to a register field in
the passed invo_context. Bits 0 through 63 correspond to PRED[0] through
PRED[63].

misc_mask
OpenVMS usage: mask_quadword
type: 64-bit vector
access: read only
mechanism: by reference

Address of a 64-bit bit vector, where each bit corresponds to a register field in the
passed invo_context as follows:

Bit 0=PC.
Bit 1=FPSR.
Bits 2–63 are reserved.

lib–324

LIB$ Routines
LIB$I64_PUT_INVO_REGISTERS (I64 Only)

Description

LIB$I64_PUT_INVO_REGISTERS updates the fields of a given procedure
invocation context.

Caution

Great care must be taken to ensure that a valid stack frame and execution
environment result; otherwise, execution may become unpredictable.

Condition Values Returned

0 In the following circumstances:

• When the invocation handle does not
represent an active invocation context.

• When bit 12 of the gr_mask argument is set

• When a scratch register has not been saved,
or a register’s save location or status cannot
be determined (valid bit clear).

1 Indicates success.

lib–325

LIB$ Routines
LIB$I64_SET_FR (I64 Only)

LIB$I64_SET_FR (I64 Only)
Set Floating-Point Register

The Set Floating-Point Register routine writes the invocation context block
floating-point registry entry corresponding to a floating-point register value.

Format

LIB$I64_SET_FR invo_context, index, fr_copy

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: modify
mechanism: by reference

Address of a valid invocation context block.

index
OpenVMS usage: index
type: longword
access: read
mechanism: by value

Index into the FREG array of the invocation context block.

fr_copy
OpenVMS usage: floating-point value
type: octaword
access: write
mechanism: by value

Address of an octaword that contains the floating-point value to be written to the
invocation context block.

Description

Given an invocation context block, a floating-point register index, and a floating-
point register value in fr_copy, writes the corresponding invocation context block
FREG entry, and calls LIB$I64_PUT_INVO_REGISTERS to write the actual
context. The invocation context block remains unchanged if the routine fails.

LIB$I64_SET_FR fails if LIB$I64_PUT_INVO_REGISTERS fails.

lib–326

LIB$ Routines
LIB$I64_SET_FR (I64 Only)

Condition Values Returned

0 Indicates failure.
1 Indicates success.

lib–327

LIB$ Routines
LIB$I64_SET_GR (I64 Only)

LIB$I64_SET_GR (I64 Only)
Copy Invocation Block General Register

The Copy Invocation Block General Register routine writes the invocation context
block general register.

Format

LIB$I64_SET_GR invo_context, index, fr_copy

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: modify
mechanism: by reference

Address of a valid invocation context block.

index
OpenVMS usage: index
type: longword
access: read
mechanism: by value

Index into the IREG array of the invocation context block.

gr_copy
OpenVMS usage: integer value
type: quadword
access: write
mechanism: by value

Address of a quadword that contains the value to be written to the invocation
context block.

Description

Given an invocation context block, a general register index such that
1 <= index < 128, and a quadword value gr_copy, LIB$I64_SET_GR writes the
corresponding invocation context block general register, clears the corresponding
NaT bit and uses LIB$I64_PUT_INVO_REGISTERS to write to the actual
context. The invocation context block remains unchanged if the routine fails.

LIB$I64_SET_GR fails if LIB$I64_PUT_INVO_REGISTERS fails.

lib–328

LIB$ Routines
LIB$I64_SET_GR (I64 Only)

Condition Values Returned

0 Indicates failure.
1 Indicates success.

lib–329

LIB$ Routines
LIB$I64_SET_PC (I64 Only)

LIB$I64_SET_PC (I64 Only)
Write Context Block and Quadword PC Value

The Write Context Block and Quadword PC Value routine writes invocation
context block PC.

Format

LIB$I64_SET_PC invo_context, pc_copy

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: modify
mechanism: by reference

Address of a valid invocation context block.

pc_copy
OpenVMS usage: PC value
type: quadword
access: read
mechanism: by reference

Address of a quadword that contains the PC value to be written to the invocation
context block.

Description

Given an invocation context block and a quadword PC value in pc_copy,
LIB$I64_SET_PC writes the pc_copy value to the invocation context block PC
and then uses LIB$I64_PUT_INVO_REGISTERS to write to the actual context.
The invocation context block remains unchanged if the routine fails.

LIB$I64_SET_PC fails if LIB$I64_PUT_INVO_REGISTERS fails.

Condition Values Returned

0 Indicates failure.
1 Indicates success.

lib–330

LIB$ Routines
LIB$ICHAR

LIB$ICHAR
Convert First Character of String to Integer

The Convert First Character of String to Integer routine converts the first
character of a source string to an 8-bit ASCII integer extended to a longword.

Format

LIB$ICHAR source-string

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

First character of the source string. This character is returned by LIB$ICHAR as
an 8-bit ASCII value extended to a longword. If the source string has zero length,
LIB$ICHAR returns a zero.

Argument

source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string whose first character is converted to an integer by LIB$ICHAR. The
source-string argument is the address of a descriptor pointing to this source
string.

Description

Although Fortran users can call LIB$ICHAR, it is more efficient to use the
Fortran intrinsic function ICHAR, which generates equivalent code in line.

Condition Values Returned

None.

Example

PROGRAM ICHAR(INPUT, OUTPUT);

{+}
{ This program demonstrates how to call LIB$ICHAR
{ to convert the first character of string to an
{ integer value.
{-}

FUNCTION LIB$ICHAR(SRCSTR : VARYING [A] OF CHAR) : INTEGER;
EXTERN;

{+}
{ Declare the variables to be used.
{-}

lib–331

LIB$ Routines
LIB$ICHAR

VAR
CHARSTR : VARYING [256] OF CHAR;
RET_STATUS : INTEGER;

{+}
{ Begin the main program. Read the character string,
{ call LIBN$ICHAR, and print the result.
{-}

BEGIN
WRITELN(’Enter string: ’);
READLN(CHARSTR);
RET_STATUS := LIB$ICHAR(CHARSTR);
WRITELN(RET_STATUS);

END.

The output generated by this Pascal program is as follows:

$ RUN ICHAR
Enter string:
Pencil sharpener

80
$ RUN ICHAR
Enter string:
pencil sharpener

112

Notice that this routine changes any uppercase characters to lowercase.

lib–332

LIB$ Routines
LIB$INDEX

LIB$INDEX
Index to Relative Position of Substring

The Index to Relative Position of Substring routine returns an index, which is the
relative position of the first occurrence of a substring in the source string.

Format

LIB$INDEX source-string ,sub-string

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The relative position of the first character of the substring if found, or zero if not
found.

On Alpha and I64 systems, if the relative position of the substring can exceed
�

32 � �, assign the return value to a quadword to ensure that you retrieve the
correct relative position.

Arguments

source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string to be searched by LIB$INDEX. The source-string argument is the
address of a descriptor pointing to this source string.

sub-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Substring to be found. The sub-string argument is the address of a descriptor
pointing to this substring.

Description

The relative character positions returned by LIB$INDEX are numbered 1, 2, ...,
n. Zero means that the substring was not found.

If the substring has a zero length, LIB$INDEX returns the value 1, indicating
success, no matter how long the source string is. If the source string has a zero
length and the substring has a nonzero length, zero is returned, indicating that
the substring was not found.

Fortran users may use the built-in INDEX function rather than calling
LIB$INDEX directly.

lib–333

LIB$ Routines
LIB$INDEX

Condition Values Returned

None.

lib–334

LIB$ Routines
LIB$INIT_DATE_TIME_CONTEXT

LIB$INIT_DATE_TIME_CONTEXT
Initialize the Context Area Used in Formatting Dates and Times for
Input or Output

The Initialize the Context Area Used in Formatting Dates and Times for
Input or Output routine allows the user to initialize the context area used by
LIB$FORMAT_DATE_TIME or LIB$CONVERT_DATE_STRING with specific
strings, instead of through logical name translation.

Format

LIB$INIT_DATE_TIME_CONTEXT user-context ,component ,init-string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

user-context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context that retains the translation context over multiple calls to this
routine. The user-context argument is the address of an unsigned longword
that contains this context. The initial value of the context variable must be zero.
Thereafter, the user program must not write to the cell.

component
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

The component of the context that is being initialized. The component argument
is the address of a signed longword that indicates this component. Only one
component can be initialized per call to LIB$INIT_DATE_TIME; these component
codes are shown in the following list.

• LIB$K_MONTH_NAME

• LIB$K_MONTH_NAME_ABB

• LIB$K_FORMAT_MNEMONICS

• LIB$K_WEEKDAY_NAME

• LIB$K_WEEKDAY_NAME_ABB

• LIB$K_RELATIVE_DAY_NAME

lib–335

LIB$ Routines
LIB$INIT_DATE_TIME_CONTEXT

• LIB$K_MERIDIEM_INDICATOR

• LIB$K_OUTPUT_FORMAT

• LIB$K_INPUT_FORMAT

• LIB$K_LANGUAGE

init-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The characters that are to be used in formatting dates and times for input or
output. The init-string argument is the address of a descriptor pointing to this
string.

Description

The LIB$INIT_DATE_TIME_CONTEXT routine allows the user to initialize the
context area used by either LIB$CONVERT_DATE_STRING or LIB$FORMAT_
DATE_TIME with specific strings instead of through logical name translations.
This routine is therefore useful when the application is formatting either input
or output strings that are used only by other computer applications and are not
intended for presentation to users.

When the text will be parsed by another program, you must specify all of the
context (including spellings). For applications where the context specifies a user’s
preferred format style, spellings can be looked up from the logical name tables.

Therefore, when the text will be parsed by another program, the minimum effort
required to initialize the necessary format strings would be a call to LIB$INIT_
DATE_TIME_CONTEXT specifying the input or output format strings to be
used. If the specified format requires spelled items, such as month names or day
names, then additional calls to LIB$INIT_DATE_TIME_CONTEXT are required
to provide the spellings of these items. Applications where the context specifies a
user’s preferred format style can specify only the language name, and allow the
strings to be looked up from logical name tables.

The format of the strings used by this routine is as follows:

[delim][string-1][delim] [string-2][delim] . . . [delim][string-n][delim]

In this format, [delim] is any character that is not in any of the strings, and
[string-x] is the spelling of that instance of the component.

For example, a string passed to this routine to specify the English spellings of the
month names might be as follows:

| JAN | FEB | MAR | APR | MAY | JUN
| JUL | AUG | SEP | OCT | NOV | DEC |

Note that the string starts and ends with a delimiter. Thus, there is one more
delimiter than there are string elements. Each type of component has a natural
number of elements associated. The string must contain exactly that number of
elements.

lib–336

LIB$ Routines
LIB$INIT_DATE_TIME_CONTEXT

Month names (full or abbreviated) 12
Format mnemonics 9
Day names (full or abbreviated) 7
Relative day names 3
Meridiem indicators 2
Output format strings 2
Input format string 1
Language 1

In order to specify the input format mnemonics using LIB$INIT_DATE_
TIME_CONTEXT, the user must initialize the component LIB$K_FORMAT_
MNEMONICS with the appropriate values. The following table lists in order the
9 fields that must be initialized, along with their default (English) values.

Order Format Field Legible Mnemonic (Defaults)

1 Year YYYY
2 Numeric month MM
3 Numeric day DD
4 Hours (12- or 24-hour) HH
5 Minutes MM
6 Seconds SS
7 Fractional seconds CC
8 Meridiem indicator AM/PM
9 Alphabetic month MONTH

For example, the following would be a valid definition of LIB$K_FORMAT_
MNEMONICS using Austrian as the natural language:

|JJJJ|MM|TT|SS|MM|SS|HH| |MONAT|

To specify an output format using LIB$INIT_DATE_TIME_CONTEXT, the user
must initialize the variable LIB$K_OUTPUT_FORMAT. There are two elements
associated with this output format string. One describes the date format fields,
the other the time format fields. The order in which they appear in the string
determines the order in which they are output. A single space is inserted into
the output stream between the two elements, if the call to LIB$FORMAT_DATE_
TIME specifies that both be output. In the following example, the two elements
associated with the output format string are delimited by vertical bars.

| !DB-!MAAU-!Y4 | !H04:!M0:!S0.!C2 |

This output format string represents the format used by the $ASCTIM system
service for outputting times. Note that the middle delimiter is replaced by a
space in the resultant output.

See the HP OpenVMS Programming Concepts Manual for a description of
system date and time operations as well as a detailed description of the format
mnemonics used in these routines.

lib–337

LIB$ Routines
LIB$INIT_DATE_TIME_CONTEXT

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_ILLCOMPONENT Illegal value for the component.
LIB$_ILLINISTR Illegally formed init-string.
LIB$_NUMELEMENTS Incorrect number of elements for the component.
LIB$_UNRFORCOD Unrecognized format code.

Any condition value returned by LIB$GET_VM or LIB$ANALYZE_SDESC.

lib–338

LIB$ Routines
LIB$INIT_TIMER

LIB$INIT_TIMER
Initialize Times and Counts

The Initialize Times and Counts routine stores the current values of specified
times and counts for use by LIB$SHOW_TIMER or LIB$STAT_TIMER.

Format

LIB$INIT_TIMER [context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context variable that retains the values of the times and counts. The context
argument contains the address of an unsigned longword that is this context.
When you call LIB$INIT_TIMER, you must use the optional context argument
only if you want to maintain several sets of statistics simultaneously.

• If context is omitted, the control block is allocated in static storage. This
method is not AST reentrant.

• If context is zero, a control block is allocated in dynamic heap storage. The
times and counts will be stored in that block and the address of the block
returned in context. This method is fully reentrant and modular.

• If context is nonzero, it is considered to be the address of a control block
previously allocated by a call to LIB$INIT_TIMER. If so, the control block is
reused, and fresh times and counts are stored in it.

When LIB$INIT_TIMER returns, the block of storage referred to by context will
contain the times and counts.

Description

LIB$INIT_TIMER stores the current values of specified times and counts in one
of three places, depending on the value of the optional context argument.

You need to call LIB$FREE_TIMER only if you have specified context in
LIB$INIT_TIMER and you want to deallocate all heap storage resources.

lib–339

LIB$ Routines
LIB$INIT_TIMER

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM The context argument is zero, and there is

insufficient virtual memory to allocate a storage
block.

LIB$_INVARG Invalid argument; context is nonzero and the
block to which it refers was not initialized on a
previous call to LIB$INIT_TIMER.

lib–340

LIB$ Routines
LIB$INSERT_TREE

LIB$INSERT_TREE
Insert Entry in a Balanced Binary Tree

The Insert Entry in a Balanced Binary Tree routine inserts a node in a balanced
binary tree. †

Format

LIB$INSERT_TREE treehead ,symbol ,flags ,user-compare-routine ,user-allocation-procedure ,new-node
[,user-data]

Returns

OpenVMS usage: cond_value
type: longword (signed)
access: write only
mechanism: by value

Arguments

treehead
OpenVMS usage: address
type: address
access: modify
mechanism: by reference

Tree head for the binary tree. The treehead argument is the address of a
longword that is this tree head. The initial value of treehead is 0.

symbol
OpenVMS usage: user_arg
type: longword (unsigned)
access: unspecified
mechanism: unspecified

Key to be inserted.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Control flags. The flags argument is the address of the control flags. Currently
only bit 0 is used.

Bit Action if Set Action if Clear

0 Duplicate entries are
inserted.

The address of the existing duplicate entry is
returned to the new-node argument.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–341

LIB$ Routines
LIB$INSERT_TREE

user-compare-routine
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied compare routine that LIB$INSERT_TREE calls to compare
a symbol with a node. The user-compare-routine argument is required;
LIB$INSERT_TREE calls the compare routine for every node except the first
node in the tree. The value returned by the compare routine indicates the
relationship between the symbol key and the node.

For more information on the compare routine, see Call Format for a Compare
Routine in the Description section.

user-allocation-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied allocate routine that LIB$INSERT_TREE calls to allocate virtual
memory for a node. The user-allocation-procedure argument is required;
LIB$INSERT_TREE always calls the allocate routine.

For more information on the allocate routine, see Call Format for an Allocate
Routine in the Description section.

new-node
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Location where the new key is inserted. The new-node argument is the address
of an unsigned longword that is the address of the new node.

user-data
OpenVMS usage: user_arg
type: unspecified
access: unspecified
mechanism: by value

User data that LIB$INSERT_TREE passes to the compare and allocate routines.
The user-data argument is optional.

Description

This Description section contains three parts:

• Guidelines for Using LIB$INSERT_TREE

• Call Format for a Compare Routine

• Call Format for an Allocate Routine

lib–342

LIB$ Routines
LIB$INSERT_TREE

Guidelines for Using LIB$INSERT_TREE
LIB$INSERT_TREE inserts a node in a balanced binary tree. You supply two
routines: compare and allocate. The compare routine compares the symbol key
to the node, and the allocate routine allocates virtual memory for the node to be
inserted. LIB$INSERT_TREE first calls the compare routine to find the location
at which the new node is inserted. Then LIB$INSERT_TREE calls the allocate
routine to allocate memory for the new node. Most programmers insert data in
the new node by initializing it within the allocate routine as soon as memory has
been allocated.

You may pass the data to be inserted into the tree using either the symbol
argument alone or both the symbol and user-data arguments. The symbol
argument is required. It may contain all of the data, just the name of the node,
or the address of the data. If you decide to use symbol to pass just the name of
the node, you must use the user-data argument to pass the rest of the data to be
inserted in the new node.

Call Format for a Compare Routine
The call format of a compare routine is as follows:

user-compare-routine symbol ,comparison-node [,user-data]

LIB$INSERT_TREE passes both the symbol and comparison-node arguments
to the compare routine, using the same passing mechanism that was used to pass
them to LIB$INSERT_TREE. The user-data argument is passed in the same
way, but its use is optional.

The user-compare-routine argument in the call to LIB$INSERT_TREE
specifies the compare routine. This argument is required. LIB$INSERT_TREE
calls the compare routine for every node except the first node in the tree.

The value returned by the compare routine is the result of comparing the symbol
key with the current node. The following table interprets the possible values
returned by the compare routine:

Return Value Meaning

Negative The symbol argument is less than the current node.
Zero The symbol argument is equal to the current node.
Positive The symbol argument is greater than the current node.

This is an example of a user-supplied compare routine, written in C.

struct Full_node
{

void* left_link;
void* right_link;
short reserved;
char Text[80];

};

static long Compare_node(char* Key_string,
struct Full_node* Node,
void* Dummy)

lib–343

LIB$ Routines
LIB$INSERT_TREE

/*
** This function compares the string described by Key_string with
** the string contained in the data node Node, and returns 0
** if the strings are equal, -1 if Key_string is < Node, and
** 1 if Key_string > Node.
*/
{

int result;

result = strcmp(Key_string, Node->Text);
if (result < 0)

return -1;
else if (result == 0)

return 0;
else

return 1;
}

Call Format for an Allocate Routine
LIB$INSERT_TREE calls the allocate routine to allocate virtual memory for a
node. The allocate routine then stores the value of user-data in the field of the
allocated node.

The format of the call is as follows:

user-allocation-procedure symbol ,new-node [,user-data]

LIB$INSERT_TREE passes the symbol, new-node, and user-data arguments
to your allocate routine, using the same passing mechanisms that were used to
pass them to LIB$INSERT_TREE. Use of user data is optional.

A node header appears at the beginning of each node. The following figure shows
the structure of a node header.

Left Link

Right Link

Reserved

(4 Bytes)

(4 Bytes)

(2 Bytes)

ZK−1926−GE

Therefore, any node you declare that LIB$INSERT_TREE manipulates must
contain 10 bytes of reserved data at the beginning for the node header.

How a node is structured depends on how you allocate your user data. You can
allocate data in one of two ways:

1. Your data immediately follows the node header. In this case, your allocation
routine must allocate a block equal in size to the sum of your data plus 10
bytes for the node header, as shown in the following figure.

lib–344

LIB$ Routines
LIB$INSERT_TREE

Left Link

Right Link

Reserved

(4 Bytes)

(4 Bytes)

(2 Bytes)

ZK−1927−GE

User Data (Variable)

2. The node contains the 10 bytes of header information and a longword pointer
to the user data, as shown in the following figure.

Left Link

Right Link

Reserved

(4 Bytes)

(4 Bytes)

(4 Bytes)

ZK−1928−GE

(2 Bytes)

Address of Data

Address of Data

The user-allocation-procedure argument in the call to LIB$INSERT_TREE
specifies the allocate routine. This argument is required. LIB$INSERT_TREE
always calls the allocate routine.

Following is an example of a user-supplied allocate routine written in C.

struct Full_node
{

void* left_link;
void* right_link;
short reserved;
char Text[80];

};

static long Alloc_node(char* Key_string,
struct Full_node** Ret_addr, void* Dummy)

{
/*
** Allocate virtual memory for a new node. Key_string
** is the string to be entered into the newly
** allocated node. RET_ADDR will contain the address
** of the allocated memory.
*/
long Status_code;
long Alloc_size = sizeof(struct Full_node);

extern long lib$get_vm();

/*
** Allocate node: size of header, plus the length of our data.
*/
Status_code = lib$get_vm (&Alloc_size, Ret_addr);
if (!(Status_code & 1))

lib$stop(Status_code);

lib–345

LIB$ Routines
LIB$INSERT_TREE

/*
** Store the data in the newly allocated virtual memory.
*/
strcpy((*Ret_addr)->Text, Key_string);
return (Status_code);

}

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory. The user-supplied

allocation routine returned an error.
LIB$_KEYALRINS Routine successfully completed, but a key was

found in the tree. No new key was inserted.

Any other failure status reported by the user allocation procedure.

Example

The following C program shows the use of LIB$INSERT_TREE, LIB$LOOKUP_
TREE, and LIB$TRAVERSE_TREE.

/*
** This program asks the user to enter a series of strings,
** one per line. The user can then query the program to find
** strings that were previously entered. At the end, the entire
** tree is displayed, along with sequence numbers that
** indicate the order in which each element was entered.
**
** This program serves as an example of the use of LIB$INSERT_TREE,
** LIB$LOOKUP_TREE and LIB$TRAVERSE_TREE.
*/

#include <stdio.h>
#include <string.h>
#include <libdef.h>

char Text_line[80];

struct Tree_element /* Define the structure of our */
{ /* record. This record could */

long Seq_num; /* contain many useful data items. */
char Text[80];

};

struct Full_node
{

void* left_link;
void* right_link;
short reserved;
struct Tree_element my_node;

};

struct Tree_element Rec; /* Declare an instance of the record */

extern long lib$insert_tree(); /* Function to insert node */
extern long lib$traverse_tree(); /* Function to walk tree */
extern long lib$lookup_tree(); /* Function to find a node */
extern void lib$stop(); /* Routine to signal fatal error */

lib–346

LIB$ Routines
LIB$INSERT_TREE

static long Compare_node_2(); /* Compare entry (2 arg) */
static long Compare_node_3(); /* Compare entry (3 arg) */
static long Alloc_node(); /* Allocation entry */
static long Print_node(); /* Print entry for walk */
static void Display_Node();

main ()
{

struct Full_node* Tree_head; /* Head for the tree */
struct Full_node* New_node; /* New node after insert */
long Status_code; /* Return status code */
long Counter; /* Sequence number */
long flags = 1;

/*
** Initialize the tree to null
*/
Tree_head = NULL;

printf("Enter one word per line, ^Z to begin searching the tree\n");

/*
** Loop, reading lines of text until the end of the file.
*/
Counter = 0;
printf("> ");
while (gets(Text_line))

{
Counter++;
Rec.Seq_num = Counter;
strcpy(Rec.Text, Text_line);
Status_code = lib$insert_tree (/* Insert the entry into the tree */

&Tree_head, &Rec, &flags,
Compare_node_3, Alloc_node, &New_node);

if (!(Status_code & 1))
lib$stop(Status_code);

printf("> ");
}

/*
** End of file encountered. Begin searching the tree.
*/
printf("\nYou will now be prompted for words to find. ");
printf("Enter one per line.\n");

Rec.Seq_num = -1;

printf("Word to find? ");
while (gets(Text_line))

{
strcpy(Rec.Text, Text_line);
Status_code = lib$lookup_tree (&Tree_head, &Rec,

Compare_node_2, &New_node);
if (Status_code == LIB$_KEYNOTFOU)

printf("The word you entered does not appear in the tree.\n");
else

Display_Node(New_node);
printf("Word to find? ");

}

/*
** The user has finished searching the tree for specific items. It
** is now time to traverse the entire tree.
*/
printf("\n");
printf("The following is a dump of the tree. Notice that the words\n");
printf("are in alphabetical order\n");

lib–347

LIB$ Routines
LIB$INSERT_TREE

Status_code = lib$traverse_tree(&Tree_head, Print_node, 0);
return(Status_code);

}

static long Print_node(struct Full_node* Node, void* Dummy)
{

/*
** Print the string contained in the current node.
*/
printf("%d\t%s\n", Node->my_node.Seq_num, Node->my_node.Text);
return(LIB$_NORMAL);

}

static long Alloc_node(struct Tree_element* Rec,
struct Full_node** Ret_addr, void* Dummy)

{
/*
** Allocate virtual memory for a new node. Rec is the
** data record to be entered into the newly
** allocated node. RET_ADDR will contain the address
** of the allocated memory.
*/
long Status_code;
long Alloc_size = sizeof(struct Full_node);

extern long lib$get_vm();

/*
** Allocate node: size of header, plus the length of our data.
*/
Status_code = lib$get_vm (&Alloc_size, Ret_addr);
if (!(Status_code & 1))

lib$stop(Status_code);

/*
** Store the data in the newly allocated virtual memory.
*/
(*Ret_addr)->my_node.Seq_num = Rec->Seq_num;
strcpy((*Ret_addr)->my_node.Text, Rec->Text);
return (Status_code);

}

static long Compare_node_3(struct Tree_element* Rec, struct Full_node* Node,
void* Dummy)

{
/*
** Call the 2 argument version of the compare routine
*/
return(Compare_node_2 (Rec, Node));

}

static long Compare_node_2(struct Tree_element* Rec, struct Full_node* Node)
{

/*
** This function compares the string described by Key_string with
** the string contained in the data node Node, and returns 0
** if the strings are equal, -1 if Key_string is < Node, and
** 1 if Key_string > Node.
*/
int result;

lib–348

LIB$ Routines
LIB$INSERT_TREE

/*
** Return the result of the comparison.
*/
result = strcmp(Rec->Text, Node->my_node.Text);
if (result < 0)

return -1;
else if (result == 0)

return 0;
else

return 1;
}

static void Display_Node(struct Full_node* Node)
{

/*
** This routine prints the data into the node of the tree
** once LIB$LOOKUP_TREE has been called to find the node.
*/
printf("The sequence number for \"%s\" is %d\n",

Node->my_node.Text, Node->my_node.Seq_num);
}

The output generated by this program is as follows:

$ run tree
Enter one word per line, ^Z to begin searching the tree
> apple
> orange
> peach
> pear
> grapefruit
> lemon
> Ctrl/Z

You will now be prompted for words to find. Enter one per line.

Word to find? lime
The word you entered does not appear in the tree

Word to find? orange
The sequence number for "orange" is 2

Word to find? Ctrl/Z

The following is a dump of the tree. Notice that the words
are in alphabetical order
1 apple
5 grapefruit
6 lemon
2 orange
3 peach
4 pear
$

lib–349

LIB$ Routines
LIB$INSERT_TREE_64 (Alpha and I64 Only)

LIB$INSERT_TREE_64 (Alpha and I64 Only)
Insert Entry in a Balanced Binary Tree

The Insert Entry in a Balanced Binary Tree routine inserts a node in a balanced
binary tree.

Format

LIB$INSERT_TREE_64 treehead ,symbol ,flags ,user-compare-routine ,user-allocation-procedure
,new-node [,user-data]

Returns

OpenVMS usage: cond_value
type: longword (signed)
access: write only
mechanism: by value

Arguments

treehead
OpenVMS usage: address
type: address
access: modify
mechanism: by reference

Tree head for the binary tree. The treehead argument is the address of a
quadword that is this tree head. The initial value of treehead is 0.

symbol
OpenVMS usage: user_arg
type: quadword (unsigned)
access: unspecified
mechanism: unspecified

Key to be inserted.

flags
OpenVMS usage: mask_quadword
type: quadword (unsigned)
access: read only
mechanism: by reference

Control flags. The flags argument is the address of the control flags. Currently
only bit 0 is used.

Bit Description

0 If clear, the address of the existing duplicate entry is returned to the
new-node argument. If set, duplicate entries are inserted.

lib–350

LIB$ Routines
LIB$INSERT_TREE_64 (Alpha and I64 Only)

user-compare-routine
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied compare routine that LIB$INSERT_TREE_64 calls to compare
a symbol with a node. The user-compare-routine argument is required;
LIB$INSERT_TREE_64 calls the compare routine for every node except the
first node in the tree. The value returned by the compare routine indicates the
relationship between the symbol key and the node.

For more information on the compare routine, see Call Format for a Compare
Routine in the Description section.

user-allocation-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied allocate routine that LIB$INSERT_TREE_64 calls to allocate
virtual memory for a node. The user-allocation-procedure argument is
required; LIB$INSERT_TREE_64 always calls the allocate routine.

For more information on the allocate routine, see Call Format for an Allocate
Routine in the Description section.

new-node
OpenVMS usage: address
type: quadword (unsigned)
access: write only
mechanism: by reference

Location where the new key is inserted. The new-node argument is the address
of an unsigned quadword that is the address of the new node.

user-data
OpenVMS usage: user_arg
type: unspecified
access: unspecified
mechanism: by value

User data that LIB$INSERT_TREE_64 passes to the compare and allocate
routines. The user-data argument is optional.

Description

This Description section contains three parts:

• Guidelines for Using LIB$INSERT_TREE_64

• Call Format for a Compare Routine

• Call Format for an Allocate Routine

lib–351

LIB$ Routines
LIB$INSERT_TREE_64 (Alpha and I64 Only)

Guidelines for Using LIB$INSERT_TREE_64
LIB$INSERT_TREE_64 inserts a node in a balanced binary tree. You supply two
routines: compare and allocate. The compare routine compares the symbol key
to the node, and the allocate routine allocates virtual memory for the node to
be inserted. LIB$INSERT_TREE_64 first calls the compare routine to find the
location at which the new node is inserted. Then LIB$INSERT_TREE_64 calls
the allocate routine to allocate memory for the new node. Most programmers
insert data in the new node by initializing it within the allocate routine as soon
as memory has been allocated.

You may pass the data to be inserted into the tree using either the symbol
argument alone or both the symbol and user-data arguments. The symbol
argument is required. It may contain all of the data, just the name of the node,
or the address of the data. If you decide to use symbol to pass just the name of
the node, you must use the user-data argument to pass the rest of the data to be
inserted in the new node.

Call Format for a Compare Routine
The call format of a compare routine is as follows:

user-compare-routine symbol ,comparison-node [,user-data]

LIB$INSERT_TREE_64 passes both the symbol and comparison-node
arguments to the compare routine, using the same passing mechanism that
was used to pass them to LIB$INSERT_TREE_64. The user-data argument is
passed in the same way, but its use is optional.

The user-compare-routine argument in the call to LIB$INSERT_TREE_64
specifies the compare routine. This argument is required. LIB$INSERT_TREE_
64 calls the compare routine for every node except the first node in the tree.

The value returned by the compare routine is the result of comparing the symbol
key with the current node. Following are the possible values returned by the
compare routine:

Return Value Meaning

Negative The symbol argument is less than the current node.
Zero The symbol argument is equal to the current node.
Positive The symbol argument is greater than the current node.

This is an example of a user-supplied compare routine, written in C.

struct Full_node
{

void* left_link;
void* right_link;
short reserved;
char Text[80];

};

static long Compare_node(char* Key_string,
struct Full_node* Node,
void* Dummy)

lib–352

LIB$ Routines
LIB$INSERT_TREE_64 (Alpha and I64 Only)

/*
** This function compares the string described by Key_string with
** the string contained in the data node Node, and returns 0
** if the strings are equal, -1 if Key_string is < Node, and
** 1 if Key_string > Node.
*/
{

int result;

result = strcmp(Key_string, Node->Text);
if (result < 0)

return -1;
else if (result == 0)

return 0;
else

return 1;
}

Call Format for an Allocate Routine
LIB$INSERT_TREE_64 calls the allocate routine to allocate virtual memory for a
node. The allocate routine then stores the value of user-data in the field of the
allocated node.

The format of the call is as follows:

user-allocation-procedure symbol ,new-node [,user-data]

LIB$INSERT_TREE_64 passes the symbol, new-node, and user-data
arguments to your allocate routine, using the same passing mechanisms that
were used to pass them to LIB$INSERT_TREE_64. Use of user data is optional.

A node header appears at the beginning of each node. The following figure shows
the structure of a node header.

Left Link

Right Link

Reserved

(8 Bytes)

(8 Bytes)

(2 Bytes)

ZK−8082A−GE

Therefore, any node you declare that LIB$INSERT_TREE_64 manipulates must
contain 18 bytes of reserved data at the beginning for the node header.

How a node is structured depends on how you allocate your user data. You can
allocate data in one of two ways:

1. Your data immediately follows the node header. In this case, your allocation
routine must allocate a block equal in size to the sum of your data plus 18
bytes for the node header, as shown in the following figure.

lib–353

LIB$ Routines
LIB$INSERT_TREE_64 (Alpha and I64 Only)

Left Link

Right Link

Reserved

(8 Bytes)

(8 Bytes)

(2 Bytes)

ZK−8083A−GE

Unused Data (Variable)

2. The node contains the 18 bytes of header information and a quadword pointer
to the user data as shown in the following figure.

Left Link

Right Link

(8 Bytes)

(8 Bytes)

(8 Bytes)

ZK−8084A−GE

Address of Data (8 Bytes)

Unused (6 Bytes) Reserved
(2 Bytes)

The user-allocation-procedure argument in the call to LIB$INSERT_TREE_64
specifies the allocate routine. This argument is required. LIB$INSERT_TREE_64
always calls the allocate routine.

This is an example of a user-supplied allocate routine written in C.

struct Full_node
{

void* left_link;
void* right_link;
short reserved;
char Text[80];

};

static long Alloc_node(char* Key_string,
struct Full_node** Ret_addr, void* Dummy)

{
/*
** Allocate virtual memory for a new node. Key_string
** is the string to be entered into the newly
** allocated node. RET_ADDR will contain the address
** of the allocated memory.
*/
long Status_code;
__int64 Alloc_size = sizeof(struct Full_node);

extern long LIB$GET_VM_64();

/*
** Allocate node: size of header, plus the length of our data.
*/

lib–354

LIB$ Routines
LIB$INSERT_TREE_64 (Alpha and I64 Only)

Status_code = LIB$GET_VM_64 (&Alloc_size, Ret_addr);
if (!(Status_code & 1))

lib$stop(Status_code);

/*
** Store the data in the newly allocated virtual memory.
*/
strcpy((*Ret_addr)->Text, Key_string);
return (Status_code);

}

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory. The user-supplied

allocation procedure returned an error.
LIB$_KEYALRINS Routine successfully completed, but a key was

found in the tree. No new key was inserted.

Any other failure status reported by the user allocation procedure.

Example

The following C program shows the use of LIB$INSERT_TREE_64,
LIB$LOOKUP_TREE_64, and LIB$TRAVERSE_TREE_64.

/*
** This program asks the user to enter a series of strings,
** one per line. The user can then query the program to find
** strings that were previously entered. At the end, the entire
** tree is displayed, along with sequence numbers that
** indicate the order in which each element was entered.
**
** This program serves as an example of the use of LIB$INSERT_TREE_64,
** LIB$LOOKUP_TREE_64 and LIB$TRAVERSE_TREE_64.
*/

#pragma pointer_size long

#include <stdio.h>
#include <string.h>
#include <libdef.h>

char Text_line[80];

struct Tree_element /* Define the structure of our */
{ /* record. This record could */

long Seq_num; /* contain many useful data items. */
char Text[80];

};

struct Full_node
{

void* left_link;
void* right_link;
short reserved;
struct Tree_element my_node;

};

struct Tree_element Rec; /* Declare an instance of the record */

extern long lib$insert_tree_64(); /* Function to insert node */
extern long lib$traverse_tree_64(); /* Function to walk tree */
extern long lib$lookup_tree_64(); /* Function to find a node */
extern void lib$stop(); /* Routine to signal fatal error */

lib–355

LIB$ Routines
LIB$INSERT_TREE_64 (Alpha and I64 Only)

static long Compare_node_2(); /* Compare entry (2 arg) */
static long Compare_node_3(); /* Compare entry (3 arg) */
static long Alloc_node(); /* Allocation entry */
static long Print_node(); /* Print entry for walk */
static void Display_Node();

main ()
{

struct Full_node* Tree_head; /* Head for the tree */
struct Full_node* New_node; /* New node after insert */
long Status_code; /* Return status code */
long Counter; /* Sequence number */
long flags = 1;

/*
** Initialize the tree to null
*/
Tree_head = NULL;

printf("Enter one word per line, ^Z to begin searching the tree\n");

/*
** Loop, reading lines of text until the end of the file.
*/
Counter = 0;
printf("> ");
while (gets(Text_line))

{
Counter++;
Rec.Seq_num = Counter;
strcpy(Rec.Text, Text_line);
Status_code = lib$insert_tree_64 (/* Insert the entry into the tree */

&Tree_head, &Rec, &flags,
Compare_node_3, Alloc_node, &New_node);

if (!(Status_code & 1))
lib$stop(Status_code);

printf("> ");
}

/*
** End of file encountered. Begin searching the tree.
*/
printf("\nYou will now be prompted for words to find. ");
printf("Enter one per line.\n");

Rec.Seq_num = -1;

printf("Word to find? ");
while (gets(Text_line))

{
strcpy(Rec.Text, Text_line);
Status_code = lib$lookup_tree_64 (&Tree_head, &Rec,

Compare_node_2, &New_node);
if (Status_code == LIB$_KEYNOTFOU)

printf("The word you entered does not appear in the tree.\n");
else

Display_Node(New_node);
printf("Word to find? ");

}

/*
** The user has finished searching the tree for specific items. It
** is now time to traverse the entire tree.
*/
printf("\n");
printf("The following is a dump of the tree. Notice that the words\n");
printf("are in alphabetical order\n");

lib–356

LIB$ Routines
LIB$INSERT_TREE_64 (Alpha and I64 Only)

Status_code = lib$traverse_tree_64(&Tree_head, Print_node, 0);
return(Status_code);

}

static long Print_node(struct Full_node* Node, void* Dummy)
{

/*
** Print the string contained in the current node.
*/
printf("%d\t%s\n", Node->my_node.Seq_num, Node->my_node.Text);
return(LIB$_NORMAL);

}

static long Alloc_node(struct Tree_element* Rec,
struct Full_node** Ret_addr, void* Dummy)

{
/*
** Allocate virtual memory for a new node. Rec is the
** data record to be entered into the newly
** allocated node. RET_ADDR will contain the address
** of the allocated memory.
*/
long Status_code;
__int64 Alloc_size = sizeof(struct Full_node);

extern long lib$get_vm_64();

/*
** Allocate node: size of header, plus the length of our data.
*/
Status_code = lib$get_vm_64 (&Alloc_size, Ret_addr);
if (!(Status_code & 1))

lib$stop(Status_code);

/*
** Store the data in the newly allocated virtual memory.
*/
(*Ret_addr)->my_node.Seq_num = Rec->Seq_num;
strcpy((*Ret_addr)->my_node.Text, Rec->Text);
return (Status_code);

}

static long Compare_node_3(struct Tree_element* Rec, struct Full_node* Node,
void* Dummy)

{
/*
** Call the 2 argument version of the compare routine
*/
return(Compare_node_2 (Rec, Node));

}

static long Compare_node_2(struct Tree_element* Rec, struct Full_node* Node)
{

/*
** This function compares the string described by Key_string with
** the string contained in the data node Node, and returns 0
** if the strings are equal, -1 if Key_string is < Node, and
** 1 if Key_string > Node.
*/
int result;

lib–357

LIB$ Routines
LIB$INSERT_TREE_64 (Alpha and I64 Only)

/*
** Return the result of the comparison.
*/
result = strcmp(Rec->Text, Node->my_node.Text);
if (result < 0)

return -1;
else if (result == 0)

return 0;
else

return 1;
}

static void Display_Node(struct Full_node* Node)
{

/*
** This routine prints the data into the node of the tree
** once LIB$LOOKUP_TREE has been called to find the node.
*/
printf("The sequence number for \"%s\" is %d\n",

Node->my_node.Text, Node->my_node.Seq_num);
}

The output generated by this program is as follows:

$ run tree
Enter one word per line, ^Z to begin searching the tree
> apple
> orange
> peach
> pear
> grapefruit
> lemon
> Ctrl/Z

You will now be prompted for words to find. Enter one per line.

Word to find? lime
The word you entered does not appear in the tree

Word to find? orange
The sequence number for "orange" is 2

Word to find? Ctrl/Z

The following is a dump of the tree. Notice that the words
are in alphabetical order
1 apple
5 grapefruit
6 lemon
2 orange
3 peach
4 pear
$

lib–358

LIB$ Routines
LIB$INSQHI

LIB$INSQHI
Insert Entry at Head of Queue

The Insert Entry at Head of Queue routine inserts a queue entry at the head of
the specified self-relative longword interlocked queue. † LIB$INSQHI makes the
INSQHI instruction available as a callable routine.

Format

LIB$INSQHI entry ,header [,retry-count]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

entry
OpenVMS usage: unspecified
type: unspecified
access: modify
mechanism: by reference, array reference

Entry to be inserted by LIB$INSQHI. The entry argument contains the address
of this signed quadword-aligned array that must be at least 8 bytes long. Bytes
following the first 8 bytes can be used for any purpose by the calling program.

For Alpha and I64 systems, the entry argument must contain a 32-bit sign-
extended address. An illegal operand exception occurs for any other form of
address.

header
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue into which entry is to be inserted. The
header argument contains the address of this signed aligned quadword integer.
The header argument must be initialized to zero before first use of the queue;
zero means an empty queue.

For Alpha systems, the header argument must contain a 32-bit sign-extended
address. An illegal operand exception occurs for any other form of address.

retry-count
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–359

LIB$ Routines
LIB$INSQHI

The number of times the insertion is to be retried in case of secondary-interlock
failure of the queue instruction in a processor-shared memory application. The
retry-count argument is the address of an unsigned longword that contains the
retry count value. A value of 1 causes no retries. The default value is 10.

Description

The queue into which LIB$INSQHI inserts an entry can be in process-private,
processor-private, or processor-shareable memory to implement per-process,
per-processor, or across-processor queues.

Self-Relative Queues
A queue is a doubly linked list. A Run-Time Library routine specifies a queue
entry by its address.

A self-relative queue is a queue in which the links between entries are the
displacements of the current entry’s predecessor and successor. If these links are
longwords, the queue is referred to as a self-relative longword queue.

You can use the LIB$INSQHI, LIB$INSQTI, LIB$REMQHI, and LIB$REMQTI
routines to manage your self-relative longword queue on a VAX or an Alpha or
I64 system. These routines implement the INSQHI, INSQTI, REMQHI, and
REMQTI instructions that allow you to insert and remove an entry at the head or
tail of a self-relative longword queue.

Synchronization
When you insert or remove a queue entry using the self-relative queue routines,
the queue pointers are changed as an atomic operation. This ensures that no
other process can interrupt the operation to insert or remove a queue entry of its
own.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on a
single processor or in a multiprocessor environment. The queue access routines
are also useful in an AST environment; they allow you to add or remove an entry
from a queue without being interrupted by an AST.

If you do not use the self-relative queue routines to insert or remove a queue
entry, you must ensure that the operation cannot be interrupted.

Alignment
Use of the self-relative longword queue routines requires that the queue header
and each of the queue entries be quadword aligned. You can use the Run-
Time Library routine LIB$GET_VM on a VAX, Alpha, or I64 system to allocate
quadword-aligned virtual memory for a queue.

Condition Values Returned

SS$_NORMAL Routine successfully completed. The entry was
added to the front of the queue, and the resulting
queue contains more than one entry.

SS$_ROPRAND Reserved operand fault. Either the entry or the
header is at an address that is not quadword
aligned, or the header address equals the entry
address.

lib–360

LIB$ Routines
LIB$INSQHI

LIB$_ONEENTQUE Routine successfully completed. The entry was
added to the front of the queue, and the resulting
queue contains one entry.

LIB$_SECINTFAI A secondary interlock failure occurred; the
insertion was attempted the number of times
specified by retry-count. This is a severe error.
The queue is not modified. This condition can
occur only when the queue is in memory being
shared between two or more processors.

Examples

1. INTEGER*4 FUNCTION INSERT_Q (QENTRY)
COMMON/QUEUES/QHEADER
INTEGER*4 QENTRY(10), QHEADER(2)
INSERT_Q = LIB$INSQHI (QENTRY, QHEADER)
RETURN
END

This is a Fortran application using processor-shared memory.

2. COM (QUEUES) QENTRY%(9), QHEADER%(1)
EXTERNAL INTEGER FUNCTION LIB$INSQHI
IF LIB$INSQHI (QENTRY%() BY REF, QHEADER%() BY REF) AND 1%

THEN GOTO 1000
.
.
.

1000 REM INSERTED OK

In BASIC and Fortran, queues can be quadword aligned in a named
COMMON block by using a linker option file to specify PSECT alignment.
For instance, to create a COMMON block called QUEUES, use the LINK
command with the FILE/OPTIONS qualifier, where FILE.OPT is a linker
option file containing the following line:

PSECT = QUEUES, QUAD

lib–361

LIB$ Routines
LIB$INSQHIQ (Alpha and I64 Only)

LIB$INSQHIQ (Alpha and I64 Only)
Insert Entry at Head of Queue

The Insert Entry at Head of Queue routine inserts a queue entry at the head of
the specified self-relative quadword interlocked queue. LIB$INSQHIQ makes the
INSQHIQ instruction available as a callable routine.

Format

LIB$INSQHIQ entry ,header [,retry-count]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

entry
OpenVMS usage: unspecified
type: unspecified
access: modify
mechanism: by reference, array reference

Entry to be inserted by LIB$INSQHIQ. The entry argument contains the address
of this signed octaword-aligned array that must be at least 16 bytes long. Bytes
following the first 16 bytes can be used for any purpose by the calling program.

header
OpenVMS usage: octaword_signed
type: octaword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue into which entry is to be inserted. The
header argument contains the address of this signed aligned octaword integer.
The header argument must be initialized to zero before first use of the queue;
zero means an empty queue.

retry-count
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The number of times the insertion is to be retried in case of secondary-interlock
failure of the queue instruction in a processor-shared memory application. The
retry-count argument is the address of an unsigned longword that contains the
retry count value. A value of 1 causes no retries. The default value is 10.

lib–362

LIB$ Routines
LIB$INSQHIQ (Alpha and I64 Only)

Description

The queue into which LIB$INSQHIQ inserts an entry can be in process-private,
processor-private, or processor-shareable memory to implement per-process,
per-processor, or cross-processor queues.

Self-Relative Queues
A queue is a doubly linked list. A Run-Time Library routine specifies a queue
entry by its address.

A self-relative queue is a queue in which the links between entries are the
displacements of the current entry’s predecessor and successor. If these links are
quadwords, the queue is referred to as a self-relative quadword queue.

You can use the LIB$INSQHIQ, LIB$INSQTIQ, LIB$REMQHIQ, and
LIB$REMQTIQ routines to manage your self-relative quadword queue on an
Alpha or I64 system. These routines implement the INSQHIQ, INSQTIQ,
REMQHIQ, and REMQTIQ instructions that allow you to insert and remove
an entry at the head or tail of a self-relative quadword queue.

Synchronization
When you insert or remove a queue entry using the self-relative queue routines,
the queue pointers are changed as an atomic operation. This ensures that no
other process can interrupt the operation to insert or remove a queue entry of its
own.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on a
single processor or in a multiprocessor environment. The queue access routines
are also useful in an AST environment; they allow you to add or remove an entry
from a queue without being interrupted by an AST.

If you do not use the self-relative queue routines to insert or remove a queue
entry, you must ensure that the operation cannot be interrupted.

Alignment
Use of the self-relative quadword queue routines requires that the queue header
and each of the queue entries be octaword aligned. You can use the Run-Time
Library routine LIB$GET_VM_64 to allocate octaword aligned virtual memory for
a queue.

Condition Values Returned

SS$_NORMAL Routine successfully completed. The entry was
added to the front of the queue, and the resulting
queue contains more than one entry.

SS$_ROPRAND Reserved operand fault. Either the entry or the
header is at an address that is not octaword
aligned, or the header address equals the entry
address.

LIB$_ONEENTQUE Routine successfully completed. The entry was
added to the front of the queue, and the resulting
queue contains one entry.

lib–363

LIB$ Routines
LIB$INSQHIQ (Alpha and I64 Only)

LIB$_SECINTFAI A secondary interlock failure occurred; the
insertion was attempted the number of times
specified by retry-count. This is a severe error.
The queue is not modified. This condition can
occur only when the queue is in memory being
shared between two or more processors.

Example

The following Fortran application uses processor-shared memory:

INTEGER*4 FUNCTION INSERT_Q (QENTRY)
COMMON/QUEUES/QHEADER
INTEGER*8 QENTRY(10), QHEADER(2)
INSERT_Q = LIB$INSQHIQ (QENTRY, QHEADER)
RETURN
END

In Fortran, queues can be octaword aligned in a named COMMON block
by using a linker option file to specify PSECT alignment. For instance, to
create a COMMON block called QUEUES, use the LINK command with the
FILE/OPTIONS qualifier, where FILE.OPT is a linker option file containing the
following line:

PSECT = QUEUES, OCTA

lib–364

LIB$ Routines
LIB$INSQTI

LIB$INSQTI
Insert Entry at Tail of Queue

The Insert Entry at Tail of Queue routine inserts a queue entry at the tail of
the specified self-relative longword interlocked queue. † LIB$INSQTI makes the
INSQTI instruction available as a callable routine.

Format

LIB$INSQTI entry ,header [,retry-count]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

entry
OpenVMS usage: unspecified
type: unspecified
access: modify
mechanism: by reference, array reference

Entry to be inserted at the tail of the queue by LIB$INSQTI. The entry argument
contains the address of this signed quadword-aligned array that must be at least
8 bytes long. Bytes following the first 8 bytes can be used for any purpose by the
calling program.

For Alpha and I64 systems, the entry argument must contain a 32-bit sign-
extended address. An illegal operand exception occurs for any other form of
address.

header
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue into which the queue entry is to be inserted.
The header argument contains the address of this signed aligned quadword
integer. The header argument must be initialized to zero before first use of the
queue; zero means an empty queue.

For Alpha and I64 systems, the header argument must contain a 32-bit sign-
extended address. An illegal operand exception occurs for any other form of
address.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–365

LIB$ Routines
LIB$INSQTI

retry-count
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The number of times the insertion is to be retried in case of secondary-interlock
failure of the queue instruction in a processor-shared memory application. The
retry-count argument is the address of a longword which contains the retry
count value. The default value is 10.

Description

The queue into which LIB$INSQTI inserts an entry can be in process-private,
processor-private, or processor-shareable memory to implement per-process,
per-processor, or across-processor queues.

Self-Relative Queues
A queue is a doubly linked list. A Run-Time Library routine specifies a queue
entry by its address.

A self-relative queue is a queue in which the links between entries are the
displacements of the current entry’s predecessor and successor. If these links are
longwords, the queue is referred to as a self-relative longword queue.

You can use the LIB$INSQHI, LIB$INSQTI, LIB$REMQHI, and LIB$REMQTI
routines to manage your self-relative longword queue on a VAX, Alpha, or I64
system. These routines implement the INSQHI, INSQTI, REMQHI, and REMQTI
instructions that allow you to insert and remove an entry at the head or tail of a
self-relative longword queue.

Synchronization
When you insert or remove a queue entry using the self-relative queue routines,
the queue pointers are changed as an atomic operation. This ensures that no
other process can interrupt the operation to insert or remove a queue entry of its
own.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on a
single processor or in a multiprocessor environment. The queue access routines
are also useful in an AST environment; they allow you to add or remove an entry
from a queue without being interrupted by an AST.

If you do not use the self-relative queue routines to insert or remove a queue
entry, you must ensure that the operation cannot be interrupted.

Alignment
Use of the self-relative longword queue routines requires that the queue header
and each of the queue entries be quadword aligned. You can use the Run-
Time Library routine LIB$GET_VM on a VAX, Alpha, or I64 system to allocate
quadword-aligned virtual memory for a queue.

lib–366

LIB$ Routines
LIB$INSQTI

Condition Values Returned

SS$_NORMAL Routine successfully completed. The entry was
added to the tail of the queue: the resulting
queue contains more than one entry.

SS$_ROPRAND Reserved operand fault. Either the entry or the
header is at an address that is not quadword
aligned, or the header address equals the entry
address.

LIB$_ONEENTQUE Routine successfully completed. The entry was
added to the tail of the queue: the resulting
queue contains one entry.

LIB$_SECINTFAI A secondary interlock failure occurred; the
insertion was attempted the number of times
specified by retry-count. This is a severe error.
The queue is not modified. This condition can
occur only when the queue is in memory being
shared between two or more processors.

lib–367

LIB$ Routines
LIB$INSQTIQ (Alpha and I64 Only)

LIB$INSQTIQ (Alpha and I64 Only)
Insert Entry at Tail of Queue

The Insert Entry at Tail of Queue routine inserts a queue entry at the tail of
the specified self-relative quadword interlocked queue. LIB$INSQTIQ makes the
INSQTIQ instruction available as a callable routine.

Format

LIB$INSQTIQ entry ,header [,retry-count]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

entry
OpenVMS usage: unspecified
type: unspecified
access: modify
mechanism: by reference, array reference

Entry to be inserted at the tail of the queue by LIB$INSQTIQ. The entry
argument contains the address of this signed octaword-aligned array that must
be at least 16 bytes long. Bytes following the first 16 bytes can be used for any
purpose by the calling program.

header
OpenVMS usage: octaword_signed
type: octaword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue into which the queue entry is to be inserted.
The header argument contains the address of this signed aligned octaword
integer. The header argument must be initialized to zero before first use of the
queue; zero means an empty queue.

retry-count
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The number of times the insertion is to be retried in case of secondary-interlock
failure of the queue instruction in a processor-shared memory application. The
retry-count argument is the address of a longword that contains the retry count
value. The default value is 10.

lib–368

LIB$ Routines
LIB$INSQTIQ (Alpha and I64 Only)

Description

The queue into which LIB$INSQTIQ inserts an entry can be in process-private,
processor-private, or processor-shareable memory to implement per-process,
per-processor, or across-processor queues.

Self-Relative Queues
A queue is a doubly linked list. A Run-Time Library routine specifies a queue
entry by its address.

A self-relative queue is a queue in which the links between entries are the
displacements of the current entry’s predecessor and successor. If these links are
quadwords, the queue is referred to as a self-relative quadword queue.

You can use the LIB$INSQHIQ, LIB$INSQTIQ, LIB$REMQHIQ, and
LIB$REMQTIQ routines to manage your self-relative quadword queue on an
Alpha or I64 system. These routines implement the INSQHIQ, INSQTIQ,
REMQHIQ, and REMQTIQ instructions that allow you to insert and remove
an entry at the head or tail of a self-relative quadword queue.

Synchronization
When you insert or remove a queue entry using the self-relative queue routines,
the queue pointers are changed as an atomic operation. This ensures that no
other process can interrupt the operation to insert or remove a queue entry of its
own.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on a
single processor or in a multiprocessor environment. The queue access routines
are also useful in an AST environment; they allow you to add or remove an entry
from a queue without being interrupted by an AST.

If you do not use the self-relative queue routines to insert or remove a queue
entry, you must ensure that the operation cannot be interrupted.

Alignment
Use of the self-relative quadword queue routines requires that the queue header
and each of the queue entries be octaword aligned. You can use the Run-Time
Library routine LIB$GET_VM_64 to allocate octaword aligned virtual memory for
a queue.

Condition Values Returned

SS$_NORMAL Routine successfully completed. The entry was
added to the tail of the queue: the resulting
queue contains more than one entry.

SS$_ROPRAND Reserved operand fault. Either the entry or the
header is at an address that is not octaword
aligned, or the header address equals the entry
address.

LIB$_ONEENTQUE Routine successfully completed. The entry was
added to the tail of the queue: the resulting
queue contains one entry.

lib–369

LIB$ Routines
LIB$INSQTIQ (Alpha and I64 Only)

LIB$_SECINTFAI A secondary interlock failure occurred; the
insertion was attempted the number of times
specified by retry-count. This is a severe error.
The queue is not modified. This condition can
occur only when the queue is in memory being
shared between two or more processors.

lib–370

LIB$ Routines
LIB$INSV

LIB$INSV
Insert a Variable Bit Field

The Insert a Variable Bit Field routine replaces the variable bit field specified by
the base, position, and size arguments with bits 0 through (size—1) of the source
field. If the size of the bit field is zero, nothing is inserted. LIB$INSV makes the
VAX INSV instruction available as a callable routine. 1

Format

LIB$INSV longword-integer-source ,position ,size ,base-address

Returns

None.

Arguments

longword-integer-source
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Source field to be inserted by LIB$INSV. The longword-integer-source
argument is the address of a signed longword integer that contains this source
field.

position
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Bit position relative to the base address where insertion of longword-integer-
source is to begin. The position argument is the address of a longword integer
that contains this relative bit position.

size
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field to be inserted by LIB$INSV. The size argument is the address
of an unsigned byte that contains the size of this bit field. The maximum size is
32 bits.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–371

LIB$ Routines
LIB$INSV

base-address
OpenVMS usage: address
type: address
access: read only
mechanism: by value

Field into which LIB$INSV writes the source field. The base-address argument
is an unsigned longword containing the base address of this aligned bit string.

Condition Value Signaled

SS$_ROPRAND A reserved operand fault is signaled if a size
greater than 32 is specified.

Examples

1. INTEGER*4 COND_VALUE
CALL LIB$INSV (4, 0, 3, COND_VALUE)

This example shows how to set bits 0 through 2 of longword COND_VALUE
to the value 4 in Fortran.

2. DECLARE INTEGER COND_VALUE
CALL LIB$INSV (4%, 0%, 3%, COND_VALUE)

This example uses BASIC to set bits 0 through 2 of longword COND_VALUE
to the value 4.

lib–372

LIB$ Routines
LIB$INT_OVER

LIB$INT_OVER
Integer Overflow Detection

The Integer Overflow Detection routine enables or disables integer overflow
detection for the calling routine activation. The previous integer overflow enable
setting is returned. †

This routine is available on OpenVMS Alpha and I64 systems in translated form
and is applicable to translated VAX images only.

Format

LIB$INT_OVER new-setting

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Old integer overflow enable setting (the previous contents of SF$W_PSW[PSW$V_
IV] in the caller’s frame).

Argument

new-setting
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

New integer overflow enable setting. The new-setting argument is the address
of an unsigned longword that contains the new integer overflow enable setting.
Bit 0 set to 1 means enable, bit 0 set to 0 means disable.

Description

The caller’s stack frame will be modified by this routine.

LIB$INT_OVER affects only the current routine activation and does not affect
any of its callers or any routines that it may call. However, the setting remains
in effect for any routines which are subsequently entered through a JSB entry
point.

Condition Values Returned

None.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–373

LIB$ Routines
LIB$INT_OVER

Example

INTOVF: ROUTINE OPTIONS (MAIN);

DECLARE LIB$INT_OVER ENTRY (FIXED BINARY (7)) /* Address of byte for
/* enable/disable
/* setting */

RETURNS (FIXED BINARY (31)); /* Old setting */

DECLARE DISABLE FIXED BINARY (7) INITIAL (0) STATIC READONLY;

DECLARE (A,B) FIXED BINARY (7);

ON FIXEDOVERFLOW PUT SKIP LIST (’Overflow’);

A = 127;
B = A + 2;
PUT LIST (’In MAIN’);

BEGIN;

DECLARE RESULT FIXED BINARY (31);

/* Disable recognition of integer overflow in this block */

RESULT = LIB$INT_OVER (DISABLE);

B = A + 2;
PUT SKIP LIST (’In BEGIN block’);

CALL Q;

Q: routine;
B = A + 2;
PUT LIST (’In Q’);
END Q;

END /* Begin */;

END INTOVF;

This PL/I routine shows how to use LIB$INT_OVER to enable or disable the
detection of integer overflow. Note that in PL/I, integer overflow is always
enabled unless explicitly overridden by a call to this routine. However, disabling
integer overflow is only effective for the block which calls this routine; descendent
blocks are unaffected. The output generated by this PL/I program is as follows:

In MAIN
In BEGIN block
Overflow In Q

lib–374

LIB$ Routines
LIB$LEN

LIB$LEN
Length of String Returned as Longword Value

The Length of String Returned as Longword Value routine returns the length of a
string.

Format

LIB$LEN source-string

Returns

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by value

Length of the source string, extracted and zero-extended to 32 bits.

Argument

source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string whose length is returned by LIB$LEN. The source-string
argument contains the address of a descriptor pointing to this source string.

Description

The BASIC and Fortran intrinsic function LEN generates equivalent in-line code
at run time. Therefore, it is more efficient for BASIC and Fortran users to use
the intrinsic function LEN than to call LIB$LEN.

If you need both the length of the string and the address of its first byte, you
should use LIB$ANALYZE_SDESC or LIB$ANALYZE_SDESC_64.

Condition Values Returned

None.

lib–375

LIB$ Routines
LIB$LOCC

LIB$LOCC
Locate a Character

The Locate a Character routine locates a character in a string by comparing
successive bytes in the string with the character specified. The search continues
until the character is found or the string has no more characters. LIB$LOCC
makes the VAX LOCC instruction available as a callable routine. 1

Format

LIB$LOCC character-string ,source-string

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The relative position from the start of source-string to the first equal character
or zero if no match is found.

Arguments

character-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String whose initial character is used by LIB$LOCC in the search. The
character-string argument contains the address of a descriptor pointing to
this string. Only the first character of character-string is used, and its length
is not checked.

source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String to be searched by LIB$LOCC. The source-string argument is the address
of a descriptor pointing to this character string.

Description

LIB$LOCC returns the position of the first equal character relative to the start
of the source string as an index. An index is the relative position of the first
occurrence of a substring in the source string. If no character matches or if the
string has a length of zero, then a zero is returned, indicating that the character
was not found.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–376

LIB$ Routines
LIB$LOCC

Condition Values Returned

None.

Examples

1. IDENTIFICATION DIVISION.
PROGRAM-ID. LIBLOC.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 SEARCH-STRING PIC X(26)
VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

01 SEARCH-CHAR PIC X.
01 IND-POS PIC 9(9) USAGE IS COMP.
01 DISP-IND PIC 9(9).

ROUTINE DIVISION.

001-MAIN.
MOVE SPACE TO SEARCH-CHAR.
DISPLAY " ".
DISPLAY "ENTER SEARCH CHARACTER: " WITH NO ADVANCING.
ACCEPT SEARCH-CHAR.
CALL "LIB$LOCC"

USING BY DESCRIPTOR SEARCH-CHAR, SEARCH-STRING
GIVING IND-POS.

IF IND-POS = ZERO
DISPLAY

"CHAR ENTERED (" SEARCH-CHAR ") NOT A VALID SEARCH CHAR"
STOP RUN.

MOVE IND-POS TO DISP-IND.
DISPLAY

"SEARCH CHAR (" SEARCH-CHAR ") WAS FOUND IN POSITION "
DISP-IND.

GO TO 001-MAIN.

This COBOL program accepts a character as input and returns as output the
character’s position in a search string. The output generated by this COBOL
program is as follows:

$ RUN LIBLOC
ENTER SEARCH CHARACTER: X
SEARCH CHAR (X) WAS FOUND IN POSITION 000000024

ENTER SEARCH CHARACTER: Y
SEARCH CHAR (Y) WAS FOUND IN POSITION 000000025

ENTER SEARCH CHARACTER: B
SEARCH CHAR (B) WAS FOUND IN POSITION 000000002

ENTER SEARCH CHARACTER: b
CHAR ENTERED (b) NOT A VALID SEARCH CHAR
$

Notice that uppercase and lowercase letters are not considered equal.

lib–377

LIB$ Routines
LIB$LOCC

2. 10 !+
! This is an BASIC program demonstrating the
! use of LIB$LOCC.
!-

EXTERNAL INTEGER FUNCTION LIB$LOCC
I% = 0
CHARSTR$ = ’DAY’
SRCSTR$ = ’ONE DAY AT A TIME’
I% = LIB$LOCC(CHARSTR$, SRCSTR$)
PRINT I%

90 END

This BASIC example also shows the use of LIB$LOCC. The output generated
by this BASIC program is ‘‘5’’.

lib–378

LIB$ Routines
LIB$LOCK_IMAGE

LIB$LOCK_IMAGE
Lock an Image in the Process Working Set (Alpha and I64 Only)

Locks the specified image in the process’s working set.

Format

LIB$LOCK_IMAGE address

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

address
OpenVMS usage: address
type: quadword
access: read only
mechanism: by value

Address of a byte within the image to be locked in the working set. If the address
argument is 0, the current image (which contains the call to LIB$LOCK_IMAGE)
is locked in the working set.

Description

LIB$LOCK_IMAGE locks the specified image in the process’s working set.

This routine is typically used by a privileged user before the program, executing
in kernel mode, raises IPL above IPL 2. Above IPL 2, paging is not allowed by
the system. The program must access only pages valid in the process’s working
set.

Condition Values Returned

SS$_WASSET The specified image is locked in the working set
and had previously been locked in the working
set.

SS$_WASCLR The specified image is locked in the working
set and had previously not been locked in the
working set.

Other status codes returned by sys$lkwset_64.

Examples

New example TBS?

lib–379

LIB$ Routines
LIB$LOOKUP_KEY

LIB$LOOKUP_KEY
Look Up Keyword in Table

The Look Up Keyword in Table routine scans a table of keywords to find one that
matches the keyword or keyword abbreviation specified by search-string.

Format

LIB$LOOKUP_KEY search-string ,key-table-array [,key-value] [,keyword-string] [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

search-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String for which LIB$LOOKUP_KEY will search in the keyword table. The
search-string argument is the address of a descriptor pointing to this string.

key-table-array
OpenVMS usage: unspecified
type: unspecified
access: read only
mechanism: by reference, array reference

Keyword table. The key-table-array argument contains the address of an array
that is this keyword table.

key-value
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Associated value of the keyword found by LIB$LOOKUP_KEY. The key-
value argument contains the address of an unsigned longword into which
LIB$LOOKUP_KEY writes the associated value of the matched keyword.

keyword-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Full keyword string matched. The keyword-string argument contains the
address of a character-string descriptor. LIB$LOOKUP_KEY writes the complete
text of the matched keyword into the character string.

lib–380

LIB$ Routines
LIB$LOOKUP_KEY

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters copied into the character-string pointed to by keyword-
string, not counting padding in the case of a fixed-length string. The resultant-
length argument is the address of an unsigned word integer that contains
the number of characters in the matched keyword that were copied into the
character-string.

Description

LIB$LOOKUP_KEY is intended to help programmers to write utilities that have
command qualifiers with values.

LIB$LOOKUP_KEY locates a matching keyword or keyword abbreviation by
comparing the first n characters of each keyword in the keyword table with the
supplied string, where n is the length of the supplied string.

When a keyword match is found, the following information is optionally returned
to the caller:

• The longword value associated with the matched keyword

• The full keyword string (any descriptor type)

An exact match is found if the length of the keyword found is equal to the length
of the supplied string.

If an exact keyword match is found, no further processing is performed, and a
normal return status is returned to the caller. Otherwise, after a match has been
found, the rest of the keyword table is scanned. If an additional match is found,
a ‘‘not enough characters’’ return status is returned to the caller. If the keyword
table contains a keyword that is an abbreviation of another keyword in the table,
an exact match can occur for short abbreviations.

Figure lib–5 shows the structure of the keyword table, which the calling program
creates for this routine.

Figure lib–5 Keyword Table

Vector

Vector−Count

Address of Keyword String

Associated Keyword Value

Counted−ASCII String

Keyword String

ZK−1976−GE

Vector-count is the number of longwords that follow, and counted-ASCII-
string starts with a byte that is the unsigned count of the number of ASCII
characters that follow.

lib–381

LIB$ Routines
LIB$LOOKUP_KEY

Because of the format of the keyword table, this routine cannot be called easily
from high-level languages. The examples that follow show how to use a macro,
$LIB_KEY_TABLE, to construct a keyword table from MACRO or BLISS. A
separate example shows how a table could be constructed in Fortran.

Use of the $LIB_KEY_TABLE macro results in data that is not position-
independent code (PIC). If your application requires PIC data, you must fill
in the address of the keyword strings at execution time. See the Fortran example
(example 3) for a demonstration of this technique.

Condition Values Returned

SS$_NORMAL Routine successfully completed. A unique
keyword match was found.

LIB$_AMBKEY Multiple keyword match found. Not enough
characters were specified to allow a unique
match.

LIB$_INSVIRMEM Insufficient virtual memory to return keyword
string. This is only possible if keyword-string
is a dynamic string.

LIB$_INVARG Invalid arguments, not enough arguments,
and/or bad keyword table.

LIB$_STRTRU String truncated.
LIB$_UNRKEY The keyword you specified does not appear in the

keyword table you specified.

Examples

1. KEYTABLE:
$LIB_KEY_TABLE < -

<ADD, 1>, -
<DELETE, 2>, -
<EXIT, 3>>

This VAX MACRO fragment defines a keyword table named KEYTABLE
containing the three keywords ADD, DELETE, and EXIT with associated
keyword values of 1, 2, and 3, respectively.

The $LIB_KEY_TABLE macro is supplied in the default macro library
SYS$LIBRARY:STARLET.MLB. Because this library is automatically
searched by the assembler, you do not have to specify it in the DCL command
MACRO.

2. LIBRARY ’SYS$LIBRARY:STARLET.L32’;

OWN
KEYTABLE: $LIB_KEY_TABLE (

(ADD, 1),
(DELETE, 2),
(EXIT, 3));

This BLISS code fragment specifies that SYS$LIBRARY:STARLET.L32 is
to be searched to resolve references. It defines a keyword table named
KEYTABLE containing the three keywords ADD, DELETE, and EXIT with
associated keyword values of 1, 2, and 3, respectively.

lib–382

LIB$ Routines
LIB$LOOKUP_KEY

The $LIB_KEY_TABLE macro is supplied in the BLISS library
SYS$LIBRARY:STARLET.L32 and in the BLISS require file
SYS$LIBRARY:STARLET.REQ. BLISS does not automatically search either of
these files, so you must explicitly cause them to be searched by including the
appropriate LIBRARY or REQUIRE statement in your module. You should
use the precompiled library because it is more efficient for the compiler.

3. PARAMETER (
1 MAXKEYSIZE = 6, ! Maximum keyword size
2 NKEYS = 3) ! Number of keywords
BYTE KEYWORDS (MAXKEYSIZE+1, NKEYS)
INTEGER*4 KEYTABLE (0:NKEYS*2)
DATA KEYWORDS /
1 3,’A’,’D’,’D’,’ ’,’ ’,’ ’, ! Counted ASCII ’ADD’
2 6,’D’,’E’,’L’,’E’,’T’,’E’, ! Counted ASCII ’DELETE’
3 4,’E’,’X’,’I’,’T’,’ ’,’ ’/ ! Counted ASCII ’EXIT’

KEYTABLE(0) = NKEYS*2 ! Number of longwords to follow
KEYTABLE(1) = %LOC(KEYWORDS(1,1)) ! Address of keyword string
KEYTABLE(2) = 1 ! Keyword value for ’ADD’
KEYTABLE(3) = %LOC(KEYWORDS(1,2)) ! Address of keyword string
KEYTABLE(4) = 2 ! Keyword value for ’DELETE’
KEYTABLE(5) = %LOC(KEYWORDS(1,3)) ! Address of keyword string
KEYTABLE(6) = 3 ! Keyword value for ’EXIT’

This Fortran code fragment constructs a keyword table named KEYTABLE
containing the three keywords ADD, DELETE, and EXIT with associated
keyword values of 1, 2, and 3, respectively. This construction method results
in position-independent coded data, although the generated code for the
typical Fortran module contains other non-PIC values.

lib–383

LIB$ Routines
LIB$LOOKUP_TREE

LIB$LOOKUP_TREE
Look Up an Entry in a Balanced Binary Tree

The Look Up an Entry in a Balanced Binary Tree routine looks up an entry in a
balanced binary tree. †

Format

LIB$LOOKUP_TREE treehead ,symbol ,user-compare-routine ,new-node

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

treehead
OpenVMS usage: address
type: address
access: read only
mechanism: by reference

Tree head for the binary tree. The treehead argument is the address of an
unsigned longword that is this tree head.

symbol
OpenVMS usage: user_arg
type: longword (unsigned)
access: unspecified
mechanism: unspecified

Key to be looked up in the binary tree.

user-compare-routine
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied compare routine that LIB$LOOKUP_TREE calls to compare a
symbol with a node. The value returned by the compare routine indicates the
relationship between the symbol key and the current node.

For more information on the compare routine, see Call Format for a Compare
Routine in the Description section.

new-node
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–384

LIB$ Routines
LIB$LOOKUP_TREE

Location where the new symbol was found. The new-node argument is the
address of an unsigned longword that is the new node location.

Description

Call Format for a Compare Routine
The call format of a compare routine is as follows:

user-compare-routine symbol ,comparison-node [,user-data]

LIB$LOOKUP_TREE passes both the symbol and comparison-node arguments
to the compare routine, using the same passing mechanism that was used to pass
them to LIB$LOOKUP_TREE. The user-data argument is passed in the same
way, but its use is optional.

The user-compare-routine argument in the call to LIB$LOOKUP_TREE
specifies the compare routine. This argument is required. LIB$LOOKUP_TREE
calls the compare routine for every node except the first node in the tree.

The value returned by the compare routine is the result of comparing the symbol
key with the current node. The table below lists the possible values returned by
the compare routine:

Return Value Meaning

Negative The symbol argument is less than the current node.
Zero The symbol argument is equal to the current node.
Positive The symbol argument is greater than the current node.

For an example of a user-supplied compare routine written in C, see the
description of LIB$INSERT_TREE.

Condition Values Returned

LIB$_NORMAL Routine successfully completed. The key was
found.

LIB$_KEYNOTFOU Error. The key was not found.

Example

The C example provided in the description of LIB$INSERT_TREE also
demonstrates how to use LIB$LOOKUP_TREE. Refer to that example for
assistance in using this routine.

lib–385

LIB$ Routines
LIB$LOOKUP_TREE_64 (Alpha and I64 Only)

LIB$LOOKUP_TREE_64 (Alpha and I64 Only)
Look Up an Entry in a Balanced Binary Tree

The Look Up an Entry in a Balanced Binary Tree routine looks up an entry in a
balanced binary tree.

Format

LIB$LOOKUP_TREE_64 treehead ,symbol ,user-compare-routine ,new-node

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

treehead
OpenVMS usage: address
type: address
access: read only
mechanism: by reference

Tree head for the binary tree. The treehead argument is the address of an
unsigned quadword that is this tree head.

symbol
OpenVMS usage: user_arg
type: quadword (unsigned)
access: unspecified
mechanism: unspecified

Key to be looked up in the binary tree.

user-compare-routine
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied compare routine that LIB$LOOKUP_TREE_64 calls to compare
a symbol with a node. The value returned by the compare routine indicates the
relationship between the symbol key and the current node.

For more information on the compare routine, see Call Format for a Compare
Routine in the Description section.

new-node
OpenVMS usage: address
type: quadword (unsigned)
access: write only
mechanism: by reference

Location where the new symbol was found. The new-node argument is the
address of an unsigned quadword that is the new node location.

lib–386

LIB$ Routines
LIB$LOOKUP_TREE_64 (Alpha and I64 Only)

Description

Call Format for a Compare Routine
The call format of a compare routine is as follows:

user-compare-routine symbol ,comparison-node [,user-data]

LIB$LOOKUP_TREE_64 passes both the symbol and comparison-node
arguments to the compare routine, using the same passing mechanism that
was used to pass them to LIB$LOOKUP_TREE_64. The user-data argument is
passed in the same way, but its use is optional.

The user-compare-routine argument in the call to LIB$LOOKUP_TREE_64
specifies the compare routine. This argument is required. LIB$LOOKUP_TREE_
64 calls the compare routine for every node except the first node in the tree.

The value returned by the compare routine is the result of comparing the symbol
key with the current node. The following table lists the possible values returned
by the compare routine:

Return Value Meaning

Negative The symbol argument is less than the current node.
Zero The symbol argument is equal to the current node.
Positive The symbol argument is greater than the current node.

For an example of a user-supplied compare routine written in C, see the
description of LIB$INSERT_TREE_64.

Condition Values Returned

LIB$_NORMAL Routine successfully completed. The key was
found.

LIB$_KEYNOTFOU Error. The key was not found.

Example

The C example provided in the description of LIB$INSERT_TREE_64 also
demonstrates how to use LIB$LOOKUP_TREE_64. Refer to that example for
assistance in using this routine.

lib–387

LIB$ Routines
LIB$LP_LINES

LIB$LP_LINES
Lines on Each Printer Page

The Lines on Each Printer Page routine computes the default number of lines on
a printer page. This routine can be used by native-mode OpenVMS utilities that
produce listing files and paginate files.

Format

LIB$LP_LINES

Returns

OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The default number of lines on a physical printer page. If the logical name
translation or conversion to binary fails, a default value of 66 is returned.

Arguments

None.

Description

LIB$LP_LINES computes the default number of lines on a printer page. This
routine can be used by native-mode OpenVMS utilities that produce listing files
and paginate files. The algorithm used by LIB$LP_LINES is:

1. Translate the logical name SYS$LP_LINES.

2. Convert the ASCII value obtained to a binary integer.

3. Verify that the resulting value is in the range [30:255].

4. If any of the prior steps fail, return the default paper size of 66 lines.

You can use LIB$LP_LINES to monitor the current default length of the line
printer page. You can also supply your own default length for the current process.
United States standard paper stock permits 66 lines on each physical page.

If you are writing programs for a utility that formats a listing file to be printed
on a line printer, you can use LIB$LP_LINES to make your utility independent
of the default page length. Your program can use LIB$LP_LINES to obtain the
current length of the page. It can then calculate the number of lines of text on
each page by subtracting the lines used for margins and headings.

lib–388

LIB$ Routines
LIB$LP_LINES

The following is one suggested format:

• Three lines for the top margin

• Three lines for the bottom margin

• Three lines for listing heading information, consisting of:

A language-processor identification line

A source-program identification line

One blank line

Condition Values Returned

None.

Examples

1. lplines = LIB$LP_LINES()
PRINT 10, lplines

10 Format (’ Line printer page = ’,I5,’ lines.’)
end

This Fortran program displays the current default length of the line printer
page.

2. 100 EXTERNAL INTEGER FUNCTION LIB$LP_LINES
200 DECLARE INTEGER LPLINES
300 LPLINES = LIB$LP_LINES
400 PRINT "Line printer page = "; LPLINES
32767 END

This BASIC program displays the current default length of the line printer
page.

3. PROGRAM LINES(OUTPUT);

FUNCTION LIB$LP_LINES : INTEGER;
EXTERN;

BEGIN
WRITELN(’Line printer page = ’,LIB$LP_LINES,’ lines.’);
END.

This Pascal program displays the current default length of the line printer
page.

lib–389

LIB$ Routines
LIB$MATCHC

LIB$MATCHC
Match Characters, Return Relative Position

The Match Characters, Return Relative Position routine searches a source string
for a specified substring and returns an index, which is the relative position of
the first occurrence of a substring in the source string. The relative character
positions returned by LIB$MATCHC are numbered 1, 2, . . . , n. Thus, zero
means that the substring was not found.

Format

LIB$MATCHC sub-string ,source-string

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The relative position of the first character of the substring if found, or zero if not
found.

Arguments

sub-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Substring to be found. The sub-string argument is the address of a descriptor
pointing to this substring.

source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string to be searched by LIB$MATCHC. The source-string argument is
the address of a descriptor pointing to this source string.

Description

LIB$MATCHC searches a source string for a specified substring and returns an
index, which is the relative position of the first occurrence of a substring in the
source string.

The relative character positions returned by LIB$MATCHC are numbered 1,
2, . . . , n. Thus, zero means that the substring was not found.

lib–390

LIB$ Routines
LIB$MATCHC

If the substring has a zero length, LIB$MATCHC returns the value 1, indicating
success, no matter how long the source string is. If the source string has a zero
length and the substring has a nonzero length, zero is returned, indicating that
the substring was not found.

Condition Values Returned

None.

lib–391

LIB$ Routines
LIB$MATCH_COND

LIB$MATCH_COND
Match Condition Values

The Match Condition Values routine checks to see if a given condition value
matches a list of condition values that you supply.

Format

LIB$MATCH_COND match-condition-value ,compare-condition-value ,...

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

A zero, if the input condition value did not match any condition value in the list,
or �� �, for a match between the first argument and the ith argument.

Arguments

match-condition-value
OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

Condition value to be matched. The match-condition-value argument is the
address of an unsigned longword that contains this condition value.

compare-condition-value
OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

The condition values to be compared to match-condition-value. The compare-
condition-value arguments are the addresses of the unsigned longwords that
contain these condition values.

Description

LIB$MATCH_COND checks for a match between the condition value addressed
by match-condition-value and the condition values addressed by the
subsequent arguments. Each argument is the address of a longword containing a
condition value.

LIB$MATCH_COND is provided for programmers who want to match a list of
one or more condition values. It is designed to be used in multipath branch
statements available in most higher-level languages.

LIB$MATCH_COND compares the portion (STS$V_COND_ID) of the condition
value referenced by the first argument to the same portion of the condition value
referenced by the second through Nth arguments. If the facility-specific bit
(STS$V_FAC_SP = bit 15) is clear in match-condition-value (meaning that the
condition value is systemwide rather than facility specific), the facility code field

lib–392

LIB$ Routines
LIB$MATCH_COND

(STS$V_FAC_NO = bits 27:17) is ignored and only the STS$V_MSG_ID fields
(bits 15:3) are compared.

The routine returns a 0 if a match is not found, a 1 if the condition value matches
the first condition value in the list (the second argument), a 2 if it matches the
second condition value (the third argument), and so on. LIB$MATCH_COND
checks for null argument entries in the argument list.

When LIB$MATCH_COND is called with only two arguments, the possible values
for the value returned are true (1) or false (0).

Each condition handler must examine the signal argument vector to determine
which condition is being signaled. If the condition is not one that the handler
knows about, the handler should resignal. A handler should not assume that
only one kind of condition can occur in the routine which established it or in
any routines it calls. However, because a condition value may be modified by an
intervening handler, each handler should only compare that part of the condition
value that distinguishes it from another.

Condition Values Returned

None.

Example

C+
C This Fortran program demonstrates the use of
C LIB$MATCH_COND.
C
C Declare handler routine as external.
C-
EXTERNAL HANDLER

C+
C Declare the handler that will be used.
C-

TYPE *, ’Establishing handler...’
CALL LIB$ESTABLISH (HANDLER)
OPEN (UNIT = 1, NAME = ’MATCH.DAT’, STATUS = ’OLD’)

C+
C Revert to normal error processing.
C-
CALL LIB$REVERT
CLOSE (UNIT = 1)
CALL EXIT
END
C+
C This is the handler routine.
C-
INTEGER*4 FUNCTION HANDLER (SIGARGS, MECHARGS)
INTEGER*4 SIGARGS(*), STATUS
INCLUDE ’($SSDEF)’
INCLUDE ’($FORDEF)’
INCLUDE ’($CHFDEF)’
RECORD /CHFDEF2/ MECHARGS
HANDLER = SS$_CONTINUE
C+
C This handler will type out an error message. In this case the
C message is regarding a file open status.
C-
TYPE *, ’Entering handler...’
STATUS = LIB$MATCH_COND (SIGARGS (2) , FOR$_FILNOTFOU,

1 FOR$_NO_SUCDEV, FOR$_FILNAMSPE, FOR$_OPEFAI)

lib–393

LIB$ Routines
LIB$MATCH_COND

GOTO (100, 200, 300, 400) STATUS
HANDLER = SS$_RESIGNAL
GOTO 1000
100 TYPE *, ’ERROR -- File not found’
GOTO 1000
200 TYPE *, ’ERROR -- No such device’
GOTO 1000
300 TYPE *, ’ERROR -- File name specification’
GOTO 1000
400 TYPE *, ’ERROR -- Open failure’
GOTO 1000
C+
C On OpenVMS Alpha systems use MECHARGS.CHF$IS_MCH_DEPTH
C On OpenVMS VAX systems use MECHARGS.CHF$L_MCH_DEPTH
C-
1000 CALL SYS$UNWIND (MECHARGS.CHF$IS_MCH_DEPTH ,) ! For OpenVMS Alpha
C 1000 CALL SYS$UNWIND (MECHARGS.CHF$L_MCH_DEPTH ,) ! For OpenVMS VAX
TYPE *, ’Returning from handler...’
RETURN
END

This Fortran program uses a computed GOTO to alter the program execution
sequence on a condition value.

If the file called MATCH.DAT does not exist, the following output is returned:

Establishing handler...
Entering handler...
ERROR -- File not found
Returning from handler...

If the file MATCH.DAT does exist, the output returned is as follows:

Establishing handler...

lib–394

LIB$ Routines
LIB$MOVC3

LIB$MOVC3
Move Characters

The Move Characters routine makes the VAX MOVC3 instruction available as a
callable routine. 1 The source item is moved to the destination item. Overlap of
the source and destination items does not affect the result.

Format

LIB$MOVC3 word-integer-length ,source ,destination

Returns

None.

Arguments

word-integer-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Number of bytes to be moved from source to destination by LIB$MOVC3. The
word-integer-length argument is the address of an unsigned word that contains
this number of bytes. The maximum transfer is 65,535 bytes.

source
OpenVMS usage: unspecified
type: unspecified
access: read only
mechanism: by reference

Item to be moved. The source argument is the address of this item.

destination
OpenVMS usage: unspecified
type: unspecified
access: write only
mechanism: by reference

Item into which source will be moved. The destination argument is the address
of this item.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–395

LIB$ Routines
LIB$MOVC3

Description

LIB$MOVC3 is useful for moving large blocks of data, such as arrays, when such
an operation would otherwise have to be performed by a programmed loop.

For more information, see the VAX Architecture Reference Manual or the Alpha
Architecture Reference Manual. See also OTS$MOVE3.

Condition Values Returned

None.

lib–396

LIB$ Routines
LIB$MOVC5

LIB$MOVC5
Move Characters with Fill

The Move Characters with Fill routine makes the VAX MOVC5 instruction
available as a callable routine. 1 The source item is moved to the destination
item. Overlap of the source and destination items does not affect the result.

Format

LIB$MOVC5 word-integer-source-length ,source [,fill] ,word-integer-destination-length ,destination

Returns

None.

Arguments

word-integer-source-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Number of bytes in the source item. The word-integer-source-length
argument is the address of an unsigned word that contains this number of
bytes. The maximum length of source is 65,535 bytes.

source
OpenVMS usage: unspecified
type: unspecified
access: read only
mechanism: by reference

Item to be moved by LIB$MOVC5. The source argument is the address of this
item. If word-integer-source-length is zero, indicating that destination is to
be entirely filled by the fill character, then source is ignored by LIB$MOVC5.

fill
OpenVMS usage: byte_signed
type: byte integer (signed)
access: read only
mechanism: by reference

Character used to pad source to the length of destination. The fill argument
is the address of a signed byte integer that contains this fill character. If
word-integer-destination-length is less than or equal to word-integer-
source-length, fill is unused and may be omitted.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–397

LIB$ Routines
LIB$MOVC5

word-integer-destination-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Length of destination in bytes. The word-integer-destination-length
argument is the address of an unsigned word that contains this number of
bytes. The maximum value of word-integer-destination-length is 65,535
bytes.

destination
OpenVMS usage: unspecified
type: unspecified
access: write only
mechanism: by reference

Item into which source will be moved. The destination argument is the address
of this item.

Description

If the destination item is shorter than the source item, the highest-addressed
bytes of the source are not moved.

For more information, see the VAX Architecture Reference Manual. See also
OTS$MOVE5.

Condition Values Returned

None.

lib–398

LIB$ Routines
LIB$MOVTC

LIB$MOVTC
Move Translated Characters

The Move Translated Characters routine moves the source string, character by
character, to the destination string after translating each character using the
specified translation table. LIB$MOVTC makes the VAX MOVTC instruction
available as a callable routine. 1

Format

LIB$MOVTC source-string ,fill-character ,translation-table ,destination-string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string to be translated and moved by LIB$MOVTC. The source-string
argument is the address of a descriptor pointing to this source string.

fill-character
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Fill character used to pad source-string to the length of destination-string.
The fill-character argument is the address of a descriptor pointing to a string.
The first character of this string is used as the fill character. The length of this
string is not checked and fill-character is not translated.

translation-table
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Translation table used by LIB$MOVTC. The translation-table argument is the
address of a descriptor pointing to the translation table string. The translation
table string is assumed to be 256 characters long.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–399

LIB$ Routines
LIB$MOVTC

You can use any one of the translation tables included in the Description section
that follows, supplied by HP, or you can create your own. Translation tables
supplied by HP have names in the format LIB$AB_xxx_yyy, which represent
the addresses of the 256-byte translation tables and can be accessed as external
(string) variables. If a particular language cannot generate descriptors for
external strings, then you must create them manually. The example following
the Description section shows the creation of a string descriptor for a translation
table using VAX BASIC.

destination-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB$MOVTC writes the translated source-string.
The destination-string argument is the address of a descriptor pointing to this
destination string.

Description

Each character in the source string is used as an index into the translation table.
The byte found is then placed into the destination string. The fill character is
used if the destination string is longer than the source string. If the source string
is longer than the destination string, the source string is truncated. Overlap of
the source and destination strings does not affect execution.

The translation tables used by LIB$MOVTC and LIB$MOVTUC follow. Each
table is preceded by explanatory text.

lib–400

LIB$ Routines
LIB$MOVTC

ASCII to EBCDIC Translation Table

• The numbers on the left represent the low-order bits of the ASCII characters
in hexadecimal notation.

• The numbers across the top represent the high-order bits of the ASCII
characters in hexadecimal notation.

• The numbers in the body of the table represent the equivalent EBCDIC
characters in hexadecimal notation.

Figure lib–6 is the ASCII to EBCDIC translation table.

Figure lib–6 LIB$AB_ASC_EBC

Column Bits 4 − 7

3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F

3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F

3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F

3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F

07
A1
D0
6A
C0
A9
A8
A7
A6
A5
A4
A3
A2
99
98
97

96
95
94
93
92
91
89
88
87
86
85
84
83
82
81
79

6D
5F
5A
E0
4A
E9
E8
E7
E6
E5
E4
E3
E2
D9
D8
D77C

C1
C2
C3
C4
C5
C6
C7
C8
C9
D1
D2
D3
D4
D5
D66F

6E
7E
4C
5E
7A
F9
F8
F7
F6
F5
F4
F3
F2
F1
F040

4F
7F
7B
5B
6C
50
7D
4D
5D
5C
4E
6B
60
4B
611F

1E
1D
1C
27
3F
19
18
26
32
3D
3C
13
12
11
1000

01
02
03
37
2D
2E
2F
16
05
25
0B
0C
0D
0E
0FF

E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

3F 3F 3F 3F 3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F

3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F

3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F

FF
3F
3F
3F
3F
3F
3F
3F

3F
3F

3F
3F
3F
3F
3F
3F

FEDCBA9876543210Bits 0 − 3
Row

ZK−4246−GE

lib–401

LIB$ Routines
LIB$MOVTC

ASCII to EBCDIC Reversible Translation Table

• The numbers on the left represent the low-order bits of the ASCII characters
in hexadecimal notation.

• The numbers across the top represent the high-order bits of the ASCII
characters in hexadecimal notation.

• The numbers in the body of the table represents the equivalent EBCDIC
characters in hexadecimal notation.

Figure lib–7 is the ASCII to EBCDIC reversible translation table.

Figure lib–7 LIB$AB_ASC_EBC_REV

Column Bits 4 − 7

07
A1
D0
6A
C0
A9
A8
A7
A6
A5
A4
A3
A2
99
98
97

96
95
94
93
92
91
89
88
87
86
85
84
83
82
81
79

6D
5F
5A
E0
4A
E9
E8
E7
E6
E5
E4
E3
E2
D9
D8
D77C

C1
C2
C3
C4
C5
C6
C7
C8
C9
D1
D2
D3
D4
D5
D66F

6E
7E
4C
5E
7A
F9
F8
F7
F6
F5
F4
F3
F2
F1
F040

4F
7F
7B
5B
6C
50
7D
4D
5D
5C
4E
6B
60
4B
611F

1E
1D
1C
27
3F
19
18
26
32
3D
3C
13
12
11
1000

01
02
03
37
2D
2E
2F
16
05
25
0B
0C
0D
0E
0FF

E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

FEDCBA9876543210Bits 0 − 3
Row

ZK−4248−GE

1B
0A
09
2C
2B
2A
29
28
17
06
15
24
23
22
21
20

E1
3E
14
04
3B
3A
39
38
08
36
35
34
33
1A
31
30

57
56
55
54
53
52
51
49
48
47
46
45
44
43
42
41 58

59
62
63
64
65
66
67
68
69
70
71
72
73
74
75 9E

9D
9C
9B
9A
90
8F
8E
8D
8C
8B
8A
80
78
77
76 9F

A0
AA
AB
AC
AD
AE
AF
B0
B1
B2
B3
B4
B5
B6
B7 DB

DA
CF
CE
CD
CC
CB
CA
BF
BE
BD
BC
BB
BA
B9
B8 DC

DD
DE
DF
EA
EB
EC
ED
EE
EF
FA
FB
FC
FD
FE
FF

lib–402

LIB$ Routines
LIB$MOVTC

EBCDIC to ASCII Translation Table

• The numbers on the left represent the low-order bits of the EBCDIC
characters in hexadecimal notation.

• The numbers across the top represent the high-order bits of the EBCDIC
characters in hexadecimal notation.

• The numbers in the body of the table represent the equivalent ASCII
characters in hexadecimal notation.

Figure lib–8 is the EBCDIC to ASCII translation table.

Figure lib–8 LIB$AB_EBC_ASC

Column Bits 4 − 7

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

FEDCBA9876543210Bits 0 − 3
Row

ZK−4249−GE

FF
5C
5C
5C
5C
5C
39
38
37
36
35
34
33
32
31
305C

5C
53
54
55
56
57
58
59
5A
5C
5C
5C
5C
5C
5C

7D
4A
4B
4C
4D
4E
4F
50
51
52
5C
5C
5C
5C
5C
5C

7B
41
42
43
44
45

47
46

48
49
5C
5C
5C
5C
5C
5C

5C
5C
5C
5C
5C
5C
5C
5C
5C
5C
5C
5C
5C
5C
5C
5C5C

5C
5C
5C
5C
5C
7A
79
78
77
76
75
74
73
7E
5C

6A
5C

6B
6C
6D
6E
6F
70
71
72
5C
5C
5C
5C
5C
5C5C

5C
5C
5C
5C
5C
69
68
67
66
65
64
63
62
61
5C5C

5C
5C
5C
5C
5C
5C
5C
5C
60
3A
23
40
27
3D
22

2D
2F
5C
5C
5C
5C
5C
5C
5C

3F
3E
5F
25
2C
7C
5C

5E
3B
29
2A
24
5D
5C
5C
5C
5C
5C
5C
5C
5C
5C
2620

5C
5C
5C
5C
5C
5C

5C
5C

5B
5C

2E
3C
28
2B
211A

5C
15
14
5C
5C
5C
5C
04
5C
5C
5C
5C
16
5C
5C5C

5C
5C
5C
5C
0A
17
1B
5C
5C
5C
5C
5C
05
06
071F

1E
1D
1C
5C
5C
19
18
5C
08
5C
5C
13
12
11
1000

01
02
03
5C
09
5C
7F
5C
5C
5C

0F
0E
0D
0C
0B

lib–403

LIB$ Routines
LIB$MOVTC

EBCDIC to ASCII Reversible Translation Table

• The numbers on the left represent the low-order bits of the EBCDIC
characters in hexadecimal notation.

• The numbers across the top represent the high-order bits of the EBCDIC
characters in hexadecimal notation.

• The numbers in the body of the table represent the equivalent ASCII
characters in hexadecimal notation.

Figure lib–9 is the EBCDIC to ASCII reversible translation table.

Figure lib–9 LIB$AB_EBC_ASC_REV

Column Bits 4 − 7

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

FEDCBA9876543210Bits 0 − 3
Row

ZK−4250−GE

1A
9E
15
14
9B
9A
99
98
04
96
95
94
93
16
91
9080

81
82
83
84
0A
17
1B
88
89
8A
8B
8C
05
06
071F

1E
1D
1C
8F
92
19
18
87
08
85
9D
13
12
11
1000

01
02
03
9C
09
86
7F
97
8D
8E

0F
0E
0D
0C
0B

30
31
32
33
34
35
36
37
38
39

FB
FA

FC
FD
FE
FF

5C
9F
53
54
55
56
57
58
59
5A
F4
F5
F6
F7
F8
F9

7D
4A
4B
4C
4D
4E
4F
50
51
52
EE
EF
F0
F1
F2
F3

7B
41
42
43
44
45
46
47
48
49
E8

EA
E9

EB
EC
ED

D8
D9
DA
DB
DC
DD
DE
DF
E0
E1
E2
E3
E4
E5
E6
E7

D1
7E
73
74
75
76
77
78
79
7A
D2
D3
D4
D5
D6
D7

6A
CA

6B
6C
6D
6E
6F
70
71
72
CB
CC
CD
CE
CF
D0

C3
61
62
63
64
65
66
67
68
69
C4
C5
C6
C7
C8
C9

BA
BB
BC
BD
BE
BF

C1
C0

C2
60
3A
23
40
27
3D
223F

3E
5F
25
2C
7C
B9
B8
B7
B6
B5
B4
B3
B2
2F
2D26

A9
AA
AB
AC
AD
AE
AF
B0
B1
5D
24
2A
29
3B
5E21

2B
28
3C
2E
5B
A8
A7
A6
A5
A4
A3
A2
A1
A0
20

lib–404

LIB$ Routines
LIB$MOVTC

Packed Decimal to Trailing Overpunch Numeric Value Translation Table

• The numbers on the left represent the low-order bits of the packed decimal
values in hexadecimal notation.

• The numbers across the top represent the high-order bits of the packed
decimal values in hexadecimal notation.

• The numbers in the body of the table represent the equivalent trailing
overpunch numeric values in hexadecimal notation.

Figure lib–10 is the packed decimal to trailing overpunch numeric value
translation table.

Figure lib–10 LIB$AB_CVTPT_O

Column Bits 4 − 7

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

FEDCBA9876543210Bits 0 − 3
Row

ZK−4251−GE

7B
7B
7D
7B
7D
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B 7B

7B
7B
7B
7B
7B
7B
7B
7B
7B
41
4A
41
4A
41
41

7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
42
4B
42
4B
42
42 43

43

43
4C

4C
43
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B

44
44
4D
44
4D
44
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B

45
45
4E
45
4E
45
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B

46
46
4F
46
4F
46
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B

47
47
50
47
50
47
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B

48
48
51
48
51
48
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B

49
49
52
49
52
49
7B
7B
7B
7B
7B
7B
7B
7B

7B
7B

7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B

7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B

7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B

7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B

7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B

7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B
7B

lib–405

LIB$ Routines
LIB$MOVTC

Packed Decimal to Unsigned Trailing Numeric Value Translation Table

• The numbers on the left represent the low-order bits of the packed decimal
values in hexadecimal notation.

• The numbers across the top represent the high-order bits of the packed
decimal values in hexadecimal notation.

• The numbers in the body of the table represent the equivalent unsigned
trailing numeric values in hexadecimal notation.

Figure lib–11 is the packed decimal to unsigned trailing numeric value translation
table.

Figure lib–11 LIB$AB_CVTPT_U

Column Bits 4 − 7

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

FEDCBA9876543210Bits 0 − 3
Row

ZK−4252−GE

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00

39
39
39
39
39
39
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

38
38
38
38
38
3837

37
37
37
37
37
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

36
36
36
36
36
3635

35
35
35
35
35
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

34
34
34
34
34
3433

33
33
33
33
33
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

32
32
32
32
32
3231

31
31
31
31
31
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

30
30
30
30
30
30

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

lib–406

LIB$ Routines
LIB$MOVTC

Trailing Overpunch Numeric to Packed Decimal Value Translation Table

• The numbers on the left represent the low-order bits of the trailing overpunch
numeric values in hexadecimal notation.

• The numbers across the top represent the high-order bits of the trailing
overpunch numeric values in hexadecimal notation.

• The numbers in the body of the table represent the equivalent packed decimal
values in hexadecimal notation.

Figure lib–12 is the trailing overpunch numeric to packed decimal value
translation table.

Figure lib–12 LIB$AB_CVTTP_O

Column Bits 4 − 7

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

FEDCBA9876543210Bits 0 − 3
Row

ZK−4253−GE

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
0D

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
0000
00

00
00 00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

0C

2C
1C

3C
4C

6C
5C

7C
8C
9C
0D
00
00
00

0C
00

6D
5D
4D
3D
2D
1D
9C
8C
7C
6C
5C
4C
3C
2C
1C
00

00
00
0D
00
0C
00
00
00
00
00
00
00
00
9D
8D
7D

00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
0C
00
0D
00
00 00

00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

lib–407

LIB$ Routines
LIB$MOVTC

Unsigned Numeric to Packed Decimal Value Translation Table

• The numbers on the left represent the low-order bits of the unsigned numeric
values in hexadecimal notation.

• The numbers across the top represent the high-order bits of the unsigned
numeric values in hexadecimal notation.

• The numbers in the body of the table represent the equivalent packed decimal
values in hexadecimal notation.

Figure lib–13 is the unsigned numeric to packed decimal value translation
table.

Figure lib–13 LIB$AB_CVTTP_U

Column Bits 4 − 7

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

FEDCBA9876543210Bits 0 − 3
Row

ZK−4254−GE

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
0000
00

00
00 00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
0000
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
0000
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
0000
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
0000
000C

1C
2C
3C

5C
4C

6C
7C
8C
9C
00
00
00
00
00
0000

00
00
00
00
00
00
00

00
00

00
00

lib–408

LIB$ Routines
LIB$MOVTC

Trailing Overpunch Numeric to Unsigned Numeric Value Translation Table

• The numbers on the left represent the low-order bits of the trailing overpunch
numeric values in hexadecimal notation.

• The numbers across the top represent the high-order bits of the trailing
overpunch numeric values in hexadecimal notation.

• The numbers in the body of the table represent the equivalent unsigned
numeric values in hexadecimal notation.

Figure lib–14 is the trailing overpunch numeric to unsigned numeric value
translation table.

Figure lib–14 LIB$AB_CVT_O_U

Column Bits 4 − 7

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

FEDCBA9876543210Bits 0 − 3
Row

ZK−4255−GE

FF
FE
FD
FC
FB
FA
F9
F8
F7
F6
F5
F4
F3
F2
F1
F0E0

E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EFDF

DE
DD
DC
DB
DA
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

C1
C0

C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CFBF

BE
BD
BC
BB
BA
B9
B8
B7
B6
B5
B4
B3
B2
B1
B0A0

A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF9F

9E
9D
9C
9B
9A
99
98
97
96
95
94
93
92
91
9080

81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F7F

7E
30
7C
30
7A
79
78
77
76
75
74
73
72
71
7060

61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F5F

5E
30
5C
30
5A
59
58
57
56
55
54
53
39
38
3740

31
32
33
34
35
36
37
38
39
31
32
33

35
34

3630
3E
3D
3C
3B
30
39
38
37
36
35
34
33
32
31
3020

30
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F1F

1E
1D
1C
1B
1A
19
18
17
16
15
14
13
12
11
1000

01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F

lib–409

LIB$ Routines
LIB$MOVTC

Unsigned Numeric to Trailing Overpunch Translation Table
Figure lib–15 is indexed by 0 through 9 for the positive overpunches and 10
through 19 for the negative overpunches.

The unsigned binary representation of the least significant digit is moved into R2.
Then, if you require a positive result, the following code results:

MOVC3 LIB$AB_CVT_U_O[R2], #1,R0

If you require a negative result, the following code is generated:

MOVC3 LIB$AV_CVT_U_O + 10[R2], #1,R0

The result is the overpunch representation for the last byte of the negative
number.

Figure lib–15 is the unsigned numeric to trailing overpunch translation table.

Figure lib–15 LIB$AB_CVT_U_O

0 − 9 10 − 19

7B 41 42 43 44 45 46 47 48 49 7D 4A 4B 4C 4D 4E 4F 50 51 52

ZK−4256−GE

lib–410

LIB$ Routines
LIB$MOVTC

Packed Decimal to Zone Numeric Translation Table

• The numbers on the left represent the low-order bits of the packed decimal
values in hexadecimal notation.

• The numbers across the top represent the high-order bits of the packed
decimal values in hexadecimal notation.

• The numbers in the body of the table represent the equivalent zoned numeric
values in hexadecimal notation.

Figure lib–16 is the packed decimal to zone numeric translation table.

Figure lib–16 LIB$AB_CVTPT_Z

Column Bits 4 − 7

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

FEDCBA9876543210Bits 0 − 3
Row

ZK−6414−GE

30
30
30
30
30
30
30

30
30
30
30
30
30
30
30
30
30

30
30
30
30
30
30
30
30
30
30

30
30
30
30
30
30
30

30
30
30
30
30
30
30

30
30
30
30
30
30
30
30
30
30

30
30
30
30
30
30
30
30
30
30

30
30
30
30
30
30
30

30
30
30
30
30
30
30

30
30
30
30
30
30
30
30
30
30

30
30
30
30
30
30
30
30
30
30

30
30
30
30
30
30
3039

39
79
39
79
39
3030
30
30
30
30
30
30
30
30
30

30
30
30
30
30
30
30
30
30
30

38
38
78
38
78
38
3030

37

37
77

77
37
37

30
30
30
30
30
30
30
30
30
30

30
30
30
30
30
30
30
30
30
30

36
36
76
36
76
36
30

35
35
75
35
75
35
3030
30
30
30
30
30
30
30
30
30

30
30
30
30
30
30
30
30
30
30

34
34
74
34
74
34
30

33
33
73
33
73
33
3030
30
30
30
30
30
30
30
30
30

30
30
30
30
30
30
30
30
30
30

32
32
72
32
72
32
30

31
31
71
31
71
31
3030
30
30
30
30
30
30
30
30
3030

30
30
30
30
30
30
30
30
30
30
70
30
70
30
30

lib–411

LIB$ Routines
LIB$MOVTC

Zone to Packed Decimal Translation Table

• The numbers on the left represent the low-order bits of the zoned numeric
values in hexadecimal notation.

• The numbers across the top represent the high-order bits of the zoned
numeric values in hexadecimal notation.

• The numbers in the body of the table represent the equivalent packed decimal
values in hexadecimal notation.

Figure lib–17 is the zone to packed decimal translation table.

Figure lib–17 LIB$AB_CVTTP_Z

Column Bits 4 − 7

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

FEDCBA9876543210Bits 0 − 3
Row

ZK−6415−GE

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
0000
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00
9D
8D
7D
6D
5D
4D
3D
2D
1D
0D0C

1C
2C
3C
4C
5C
6C
7C
8C
9C
00
00
00
00
00
00

lib–412

LIB$ Routines
LIB$MOVTC

ASCII Uppercase Translation Table

• The numbers on the left represent the low-order bits of the ASCII characters
in hexadecimal notation.

• The numbers across the top represent the high-order bits of the ASCII
characters in hexadecimal notation.

• The numbers in the body of the table represent the equivalent uppercase
ASCII characters in hexadecimal notation.

Figure lib–18 is the ASCII uppercase translation table.

Figure lib–18 LIB$AB_UPCASE

Column Bits 4 − 7

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

FEDCBA9876543210Bits 0 − 3
Row

ZK−6416−GE

FF
FE
DD
DC
DB
DA
F9
F8
F7
F6
F5
F4
F3
F2
F1
F0C0

C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CFDF

DE
DD
DC
DB
DA
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

C1
C0

C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CFBF

BE
BD
BC
BB
BA
B9
B8
B7
B6
B5
B4
B3
B2
B1
B0A0

A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF9F

9E
9D
9C
9B
9A
99
98
97
96
95
94
93
92
91
9080

81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F7F

7E
7D
7C
7B
5A
59
58
57
56
55
54
53
52
51
5060

41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F

40
41
42
43
44
45
46
47
48
49
4A
4B
4C

4E
4D

4F3F
3E
3D
3C
3B
3A
39
38
37
36
35
34
33
32
31
3020

21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F1F

1E
1D
1C
1B
1A
19
18
17
16
15
14
13
12
11
1000

01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

lib–413

LIB$ Routines
LIB$MOVTC

ASCII Lowercase Translation Table

• The numbers on the left represent the low-order bits of the ASCII characters
in hexadecimal notation.

• The numbers across the top represent the high-order bits of the ASCII
characters in hexadecimal notation.

• The numbers in the body of the table represent the equivalent lowercase
ASCII characters in hexadecimal notation.

Figure lib–19 is the ASCII lowercase translation table.

Figure lib–19 LIB$AB_LOWERCASE

Column Bits 4 − 7

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

FEDCBA9876543210Bits 0 − 3
Row

ZK−6417−GE

FF
FE
FD
FC
FB
FA
F9
F8
F7
F6
F5
F4
F3
F2
F1
F0E0

E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EFBF

BE
BD
BC
BB
BA
B9
B8
B7
B6
B5
B4
B3
B2
B1
B0A0

A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF9F

9E
9D
9C
9B
9A
99
98
97
96
95
94
93
92
91
9080

81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F7F

7E
7D
7C
7B
7A
79
78
77
76
75
74
73
72
71
7040

61
62
63
64
65
66
67
68
69

3F
3E
3D
3C
3B
3A
39
38
37
36
35
34
33
32
31
3020

21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F1F

1E
1D
1C
1B
1A
19
18
17
16
15
14
13
12
11
1000

01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F 6F

6E
6D
6C
6B
6A
69

7F
7E
7D
7C
7B
7A
79
78
77
76
75
74
73
72
71
70 60

61
62
63

65
64

66
67
68

6F
6E
6D
6C
6B
6A
69

E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF FF

FE
FD
FC
FB
FA
F9
F8
F7
F6
F5
F4
F3
F2
F1
D0

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Routine successfully completed; string truncated.

The destination string could not contain all the
characters.

LIB$_FATERRLIB Fatal internal error.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor.

Example

1 !+
!This BASIC program shows the method
!of creating a descriptor for the appropriate
!translation table in order to call LIB$MOVTC.
!-

OPTION TYPE = EXPLICIT

lib–414

LIB$ Routines
LIB$MOVTC

!+
!Declare the translation table as an
!EXTERNAL LONG variable.
!-

EXTERNAL LONG LIB$AB_ASC_EBC
EXTERNAL LONG FUNCTION LIB$MOVTC
EXTERNAL SUB LIB$STOP
EXTERNAL LONG CONSTANT DSCK_CLASS_S, DSCK_DTYPE_T

!+
!Define a record which models the required
!translation table descriptor.
!-

RECORD STR_TYPE
WORD DSC$W_LENGTH
BYTE DSC$B_DTYPE
BYTE DSC$B_CLASS
LONG DSC$A_POINTER

END RECORD STR_TYPE

DECLARE LONG I, RET_STS
DECLARE STR_TYPE STR_VAR

MAP (FOO) STRING DST = 3%
MAP (FOO) BYTE DST_ARRAY(2)

!+
!Fill the translation table descriptor record.
!Note that the length of the translation table string
!is set to 256, and the pointer receives the address of
!the HP translation table LIB$AB_ASC_EBC.
!-

STR_VAR::DSC$W_LENGTH = 256
STR_VAR::DSC$B_DTYPE = DSC$K_DTYPE_T
STR_VAR::DSC$B_CLASS = DSC$K_CLASS_S
STR_VAR::DSC$A_POINTER = LOC(LIB$AB_ASC_EBC)

RET_STS = LIB$MOVTC("ABC", " ", STR_VAR BY REF, DST)
IF (RET_STS AND 1%) = 0%
THEN

CALL LIB$STOP(RET_STS BY VALUE)
END IF

!+
!Add 256 to the translated value in order to return
!an unsigned value.
!-

PRINT (256 + DST_ARRAY(I)) FOR I = 0% TO 2%

END

The output generated by this BASIC program is as follows:

193
194
195

lib–415

LIB$ Routines
LIB$MOVTUC

LIB$MOVTUC
Move Translated Until Character

The Move Translated Until Character routine moves the source string, character
by character, to the destination string after translating each character using the
specified translation table until the stop character is encountered. LIB$MOVTUC
makes the VAX MOVTUC instruction available as a callable routine. 1

Format

LIB$MOVTUC source-string ,stop-character ,translation-table ,destination-string [,fill-character]

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The relative position in the source string of the character that is translated to the
stop character. Zero is returned if the stop character is not found. This value is
set to –1 if destination-string cannot be allocated.

Arguments

source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string to be translated and moved by LIB$MOVTUC. The source-string
argument is the address of a descriptor pointing to this source string.

stop-character
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Stop character that causes LIB$MOVTUC to stop translating the source string.
The stop-character argument is the address of a descriptor pointing to a string.
The first character of this string is used as the stop character. The length of
this string is not checked. During the translation, LIB$MOVTUC accesses each
character in the source string and uses it as an index into the translation table.
If this translated character is the specified stop character, translation stops, and
stop-character is not translated.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–416

LIB$ Routines
LIB$MOVTUC

translation-table
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Translation table used by LIB$MOVTUC. The translation-table argument is the
address of a descriptor pointing to the translation table string. The translation
table string is assumed to be 256 characters long.

You can use any of the translation tables included in the Description section
of LIB$MOVTC, or you can create your own. When using a translation table
supplied by HP, the names LIB$AB_xxx_yyy represent the addresses of the 256-
byte translation tables, and can be accessed as external (string) variables. If a
particular language cannot generate descriptors for external strings, then they
must be created manually. The example for the routine LIB$MOVTC shows the
creation of a string descriptor for a translation table using VAX BASIC.

destination-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB$MOVTUC writes the translated source-
string. The destination-string argument is the address of a descriptor pointing
to this destination string.

fill-character
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Character used to pad source-string to the length of destination-string. The
fill-character argument is the address of a descriptor pointing to a string. The
first character of this string is used as the fill character. The length of this string
is not checked and fill-character is not translated.

If the fill character is included, the remainder of the destination string (after the
stop character) is filled with the specified fill character. If it is not included, the
remainder of the destination string remains unchanged.

Description

During the translation, LIB$MOVTUC accesses each character in the source
string and uses it as an index into the translation table. If the table entry
contains the specified stop character, the routine is terminated and the relative
position of the source character is returned.

If the source string is longer than the destination string, then the source string is
truncated. If the optional fill character is present, any remaining positions in the
destination string are filled with the fill character. If the source or destination
string is exhausted (before the stop character is found), a zero index is returned.

The results are unpredictable if the source and destination strings overlap and
have different starting addresses.

lib–417

LIB$ Routines
LIB$MOVTUC

See the description of LIB$MOVTC for the translation tables used by
LIB$MOVTC and LIB$MOVTUC. Each translation table is preceded by
explanatory text.

Condition Values Returned

None.

lib–418

LIB$ Routines
LIB$MULT_DELTA_TIME

LIB$MULT_DELTA_TIME
Multiply Delta Time by Scalar

The Multiply Delta Time by Scalar routine multiplies a delta time by a longword
integer scalar.

Format

LIB$MULT_DELTA_TIME multiplier ,delta-time

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

multiplier
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

The value by which LIB$MULT_DELTA_TIME multiplies the delta time. The
multiplier argument is the address of a signed longword containing the integer
scalar. If multiplier is negative, the absolute value of multiplier is used.

delta-time
OpenVMS usage: date_time
type: quadword (unsigned)
access: modify
mechanism: by reference

The delta time to be multiplied. The delta-time argument is the address of
an unsigned quadword containing the number to be multiplied. The initial
delta-time argument must be greater than 0. After LIB$MULT_DELTA_TIME
performs the multiplication, the result is returned to delta-time. (The original
delta-time value is overwritten.)

Description

LIB$MULT_DELTA_TIME multiplies a delta time by a longword integer scalar.
The result of the multiplication is returned to the delta-time argument.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

lib–419

LIB$ Routines
LIB$MULTF_DELTA_TIME

LIB$MULTF_DELTA_TIME
Multiply Delta Time by an F-Floating Scalar

The Multiply Delta Time by an F-Floating Scalar routine multiplies a delta time
by an F-floating scalar.

Format

LIB$MULTF_DELTA_TIME multiplier ,delta-time

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

multiplier
OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by reference

The value by which LIB$MULTF_DELTA_TIME multiplies the delta time. The
multiplier argument is the address of an F-floating value containing the scalar.
If multiplier is negative, the absolute value of multiplier is used.

delta-time
OpenVMS usage: date_time
type: quadword (unsigned)
access: modify
mechanism: by reference

The delta time to be multiplied. The delta-time argument is the address of
an unsigned quadword containing the number to be multiplied. The initial
delta-time argument must be greater than 0. After LIB$MULTF_DELTA_TIME
performs the multiplication, the result is returned to delta-time. (The original
delta-time value is overwritten.)

Description

LIB$MULTF_DELTA_TIME multiplies a delta time by an F-floating scalar. The
result of the multiplication is returned to the delta-time argument.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

lib–420

LIB$ Routines
LIB$MULTS_DELTA_TIME (Alpha and I64 Only)

LIB$MULTS_DELTA_TIME (Alpha and I64 Only)
Multiply Delta Time by an S-Floating Scalar

The Multiply Delta Time by an IEEE S-Floating Scalar routine multiplies a delta
time by an IEEE S-floating scalar.

Format

LIB$MULTS_DELTA_TIME multiplier ,delta-time

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

multiplier
OpenVMS usage: floating_point
type: IEEE S_floating
access: read only
mechanism: by reference

The value by which LIB$MULTS_DELTA_TIME multiplies the delta time. The
multiplier argument is the address of an IEEE S-floating value containing the
scalar. If multiplier is negative, the absolute value of multiplier is used.

delta-time
OpenVMS usage: date_time
type: quadword (unsigned)
access: modify
mechanism: by reference

The delta time to be multiplied. The delta-time argument is the address of
an unsigned quadword containing the number to be multiplied. The initial
delta-time argument must be greater than 0. After LIB$MULTS_DELTA_TIME
performs the multiplication, the result is returned to delta-time. (The original
delta-time value is overwritten.)

Description

LIB$MULTS_DELTA_TIME multiplies a delta time by an IEEE S-floating scalar.
The result of the multiplication is returned to the delta-time argument.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

lib–421

LIB$ Routines
LIB$PARSE_ACCESS_CODE

LIB$PARSE_ACCESS_CODE
Parse Access Encoded Name String

The Parse Access Encoded Name String routine parses and translates a string of
access names into a mask for a particular ownership category.

Format

LIB$PARSE_ACCESS_CODE access-string, [access-names,] ownership-category, access-mask,
[end-position]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

access-string
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

The address of a character-string descriptor pointing to a string of access names.
Each access name is abbreviated to one letter. An example of a valid access string
is RWE. Access names are specific to each of the different object classes. See the
HP OpenVMS Guide to System Security for a complete list of all valid access
names.

access-names
OpenVMS usage: access_names
type: array [0..31] of quadword string descriptor
access: read only
mechanism: by reference

The address of the access name table for the associated object class. For example,
it is the value returned by the LIB$GET_ACCNAM routine in the accnam
longword. This parameter is optional and defaults to the access name table for
the FILE object class.

lib–422

LIB$ Routines
LIB$PARSE_ACCESS_CODE

ownership-category
OpenVMS usage: mask_word
type: word (unsigned)
access: read only
mechanism: by reference

The address of a word that indicates the ownership category the access names
refer to:

Ownership Category Mask Value

System 0000000000001111
Owner 0000000011110000
Group 0000111100000000
World 1111000000000000

access-mask
OpenVMS usage: mask_word
type: word (unsigned)
access: write only
mechanism: by reference

The address of a word into which this routine writes the access mask. In this
mask, a set bit means the access was requested for the specified ownership. Note
that this is the opposite of the standard protection format where a set bit means
no access.

end-position
OpenVMS usage: word_signed
type: word (signed)
access: write only
mechanism: by reference

The number of characters from access-string processed by LIB$PARSE_
ACCESS_CODE. In the case of an error in parsing the access string, the offset to
the offending location is returned.

Description

LIB$PARSE_ACCESS_CODE parses a string of access names and translates
the string into a mask for the requested ownership category. The string is a
concatenated list of 1-letter abbreviations of access names.

This routine works for any protected object class by specifying the correct access
name table. The address of the access name table can be obtained from the
LIB$GET_ACCNAM routine.

This routine is useful for building a protection mask where the ownership names
have already been parsed. Use LIB$PARSE_SOGW_PROT for parsing a string
containing both ownership and access names.

The mask returned has bits set for the access requested for the specified
ownership category. This is opposite the standard protection format where a
set bit in the protection mask means no access.

lib–423

LIB$ Routines
LIB$PARSE_ACCESS_CODE

The number of characters processed is optionally returned. This is useful for
error processing. The end position will be the offset to the character that made
the access category name string invalid.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_IVARG Required parameter missing or a character in

access-string did not represent a valid access
type.

LIB$_WRONGNUMARG Wrong number of arguments.

lib–424

LIB$ Routines
LIB$PARSE_SOGW_PROT

LIB$PARSE_SOGW_PROT
Parse Protection String

The Parse Protection String routine parses and translates a protection string into
a protection mask.

Format

LIB$PARSE_SOGW_PROT protection-string, [access-names], protection-mask, ownership-mask,
[end-position]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

protection-string
OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

The address of a character-string descriptor pointing to the protection string. The
string components are:

• Ownership name — System,Owner,Group,World. Ownership names can be
specified in full or truncated to any number of characters. Matching is case
blind, and spacing is ignored.

• Access name — Access names are always abbreviated to one letter. For
example, access names for files are R (for read), W (for write), E (for execute),
and D (for delete). Any combination can be passed. For example, RWE is a
valid combination. A null access name specification means no access.

• Separators — Access names are separated from ownership names by either
a colon (:) or an equal sign (=). The comma (,) is the list separator. A null
access name specification means no access.

An example of a valid protection string is:

SYSTEM=RWED,OWNER:RWED,GROUP,WORLD:R

access-names
OpenVMS usage: access_names
type: array [0..31] of quadword string descriptor
access: read only
mechanism: by reference

The address of the access name table for the associated object class. For example,
it is the value returned by the LIB$GET_ACCNAM routine in the accnam
longword. This parameter is optional and defaults to the access name table for
the FILE object class.

lib–425

LIB$ Routines
LIB$PARSE_SOGW_PROT

protection-mask
OpenVMS usage: protection
type: word (unsigned)
access: write only
mechanism: by reference

The address of a word into which this routine writes a 16-bit protection mask
translation of the protection string. Each bit set in the mask indicates no access
for the access type it represents.

ownership-mask
OpenVMS usage: mask_word
type: word (unsigned)
access: write only
mechanism: by reference

The address of a word that indicates which ownership names were present in the
protection string.

Ownership Category Mask Value

System 0000000000001111
Owner 0000000011110000
Group 0000111100000000
World 1111000000000000

end-position
OpenVMS usage: word_signed
type: word (signed)
access: write only
mechanism: by reference

The number of characters from protection-string processed by LIB$PARSE_
SOGW_PROT. In the case of an error in parsing the protection string, the offset
to the offending location is returned.

Description

LIB$PARSE_SOGW_PROT parses a protection string and translates the string
into a 16-bit protection mask. LIB$PARSE_SOGW_PROT works for any protected
object class by specifying the correct access name table.

The address of the access name table can be obtained from the LIB$GET_
ACCNAM routine. Note that file access names are valid for any protected object
class.

The number of characters processed is optionally returned. This is useful in error
processing. The end position will be the offset to the character that made the
protection string invalid. Note that the entire protection string must be valid, or
an error is returned.

Several scenarios can cause the protection string to be invalid. The format of the
protection string may be invalid, or the access category abbreviations may not be
valid with respect to the access name tables.

lib–426

LIB$ Routines
LIB$PARSE_SOGW_PROT

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_IVARG Required parameter missing or invalid protection

string.
LIB$_WRONGNUMARG Wrong number of arguments.

lib–427

LIB$ Routines
LIB$PAUSE

LIB$PAUSE
Pause Program Execution

The Pause Program Execution routine suspends program execution and returns
control to the calling command level.

Format

LIB$PAUSE

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

None.

Description

LIB$PAUSE suspends program execution and returns control to the calling
command level. The suspended image may be continued with the CONTINUE
command, or it may be terminated with the EXIT or STOP command. In the
latter case, the image will not return to this routine.

Note that this routine functions only for interactive jobs. If this routine is invoked
in batch mode, it has no effect.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_NOCLI No CLI present. The calling process does not

have a CLI or the CLI does not support the
request. Note that DCL supports this function in
INTERACTIVE mode only.

lib–428

LIB$ Routines
LIB$POLYD

LIB$POLYD
Evaluate Polynomials

The Evaluate Polynomials routine (D-floating values) allows higher-level language
users to evaluate D-floating value polynomials.

D-floating values are not supported in full precision in native OpenVMS Alpha
and I64 programs. They are precise to 56 bits on VAX systems, 53 or 56 bits in
translated VAX images, and 53 bits in native OpenVMS Alpha and I64 programs.

Format

LIB$POLYD polynomial-argument ,degree ,coefficient ,floating-point-result

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

polynomial-argument
OpenVMS usage: floating_point
type: D_floating
access: read only
mechanism: by reference

The address of a D-floating number that is the argument for the polynomial.

degree
OpenVMS usage: word_signed
type: word integer (signed)
access: read only
mechanism: by reference

The address of a signed word integer that is the highest-numbered nonzero
coefficient to participate in the evaluation.

If the degree is 0, the result equals C[0]. The range of the degree is 0 to 31.

coefficient
OpenVMS usage: floating_point
type: D_floating
access: read only
mechanism: by reference, array reference

The address of an array of D-floating coefficients. The coefficient of the highest-
order term of the polynomial is the lowest-addressed element in the array.

floating-point-result
OpenVMS usage: floating_point
type: D_floating
access: write only
mechanism: by reference

lib–429

LIB$ Routines
LIB$POLYD

The address of a floating-point number that is the result of the calculation.
LIB$POLYD writes the address of floating-point-result into a D-floating
number.

Intermediate multiplications are carried out using extended floating-point
fractions (63 bits for POLYD).

Description

LIB$POLYD provides higher-level language users with the capability of
evaluating polynomials.

The evaluation is carried out by Horner’s Method. The result is computed as
follows:

result = C[0]+X*(C[1]+X*(C[2]+...X*(C[D])...))

In the above result D is the degree of the polynomial and X is the argument.

See the VAX Architecture Reference Manual for the detailed description of POLY.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTOVF Floating overflow.
SS$_ROPRAND Reserved operand.

Example

The Fortran and Pascal examples provided in the description of LIB$POLYF
also demonstrate how to use LIB$POLYD. Please refer to those examples for
assistance in using this routine.

lib–430

LIB$ Routines
LIB$POLYF

LIB$POLYF
Evaluate Polynomials

The Evaluate Polynomials routine (F-floating values) allows higher-level language
users to evaluate F-floating polynomials.

Format

LIB$POLYF polynomial-argument ,degree ,coefficient ,floating-point-result

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

polynomial-argument
OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by reference

Argument for the polynomial. The polynomial-argument argument is
the address of a floating-point number that contains this argument. The
polynomial-argument argument is an F-floating number.

degree
OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by reference

Highest-numbered nonzero coefficient to participate in the evaluation. The
degree argument is the address of a signed word integer that contains this
highest-numbered coefficient.

If the degree is 0, the result equals C[0]. The range of the degree is 0 to 31.

coefficient
OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by reference, array reference

The address of an array of floating-point coefficients. The coefficient of the
highest-order term of the polynomial is the lowest addressed element in the
array. The coefficient argument is an array of F-floating numbers.

lib–431

LIB$ Routines
LIB$POLYF

floating-point-result
OpenVMS usage: floating_point
type: F_floating
access: write only
mechanism: by reference

Result of the calculation. The floating-point-result argument is the address of
a floating-point number that contains this result. LIB$POLYF writes the address
of floating-point-result into an F-floating number.

Intermediate multiplications are carried out using extended floating-point
fractions (31 bits for POLYF).

Description

LIB$POLYF provides higher-level language users with the capability of
evaluating polynomials.

The evaluation is carried out by Horner’s Method. The result is computed as
follows:

result = C[0]+X*(C[1]+X*(C[2]+...X*(C[D])...))

In the above result D is the degree of the polynomial and X is the argument.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTOVF Floating overflow.
SS$_ROPRAND Reserved operand.

Examples

1. C+
C This Fortran example demonstrates how to use
C LIB$POLYF.
C-

REAL*4 X,COEFF(5),RESULT
INTEGER*2 DEG

C+
C Compute X^4 + 2*X^3 -X^2 + X - 3 using POLYF.
C Let X = 2.
C The coefficients needed are as follows:
C-

DATA COEFF/1.0,2.0,-1.0,1.0,-3.0/
X = 2.0
DEG = 4 ! DEG has word length.

C+
C Calculate (2)^4 + 2*(2^3) -2^2 + 2 - 3.
C The result should be 27.
C-

RETURN = LIB$POLYF(X,DEG,COEFF,RESULT)
TYPE *,’(2)^4 + 2*(2^3) -2^2 + 2 - 3 = ’,RESULT
END

This Fortran example demonstrates how to call LIB$POLYF. The output
generated by this program is as follows:

lib–432

LIB$ Routines
LIB$POLYF

(2)^4 + 2*(2^3) -2^2 + 2 - 3 = 27.00000

2. PROGRAM POLYF(INPUT,OUTPUT);

{+}
{ This Pascal program demonstrates how to use
{ LIB$POLYF to evaluate a polynomial.
{-}

TYPE
WORD = [WORD] 0..65535;

VAR
COEFF : ARRAY [0..2] OF REAL := (1.0,2.0,2.0);
RESULT : REAL;
RETURNED_STATUS : INTEGER;

[EXTERNAL] FUNCTION LIB$POLYF(
ARG : REAL;
DEGREE : WORD;
COEFF : [REFERENCE] ARRAY [L..U:INTEGER] OF REAL;
VAR RESULT : REAL
) : INTEGER; EXTERNAL;

[EXTERNAL] FUNCTION LIB$STOP(
CONDITION_STATUS : [IMMEDIATE,UNSAFE] UNSIGNED;
FAO_ARGS : [IMMEDIATE,UNSAFE,LIST] UNSIGNED
) : INTEGER; EXTERNAL;

BEGIN

{+}
{ Call LIB$POLYF to evaluate 2(X**2) + 2*X + 1.
{-}

RETURNED_STATUS := LIB$POLYF(1.0,2,COEFF,RESULT);
IF NOT ODD(RETURNED_STATUS)
THEN

LIB$STOP(RETURNED_STATUS);

WRITELN(’F(1.0) = ’,RESULT:5:2);

END.

This example program demonstrates how to call LIB$POLYF from Pascal.
The output generated by this Pascal program is as follows:

$ RUN POLYF
F(1.0) = 5.00

lib–433

LIB$ Routines
LIB$POLYG

LIB$POLYG
Evaluate Polynomials

The Evaluate Polynomials routine (G-floating values) allows higher-level language
users to evaluate G-floating value polynomials.

Format

LIB$POLYG polynomial-argument ,degree ,coefficient ,floating-point-result

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

polynomial-argument
OpenVMS usage: floating_point
type: G_floating
access: read only
mechanism: by reference

Argument for the polynomial. The polynomial-argument argument is
the address of a floating-point number that contains this argument. The
polynomial-argument argument is a G-floating number.

degree
OpenVMS usage: word_signed
type: word integer (signed)
access: read only
mechanism: by reference

Highest-numbered nonzero coefficient to participate in the evaluation. The
degree argument is the address of a signed word integer that contains this
highest-numbered coefficient.

If the degree is 0, the result equals C[0]. The range of the degree is 0 to 31.

coefficient
OpenVMS usage: floating_point
type: G_floating
access: read only
mechanism: by reference, array reference

Floating-point coefficients. The coefficient argument is the address of an
array of floating-point coefficients. The coefficient of the highest-order term of
the polynomial is the lowest addressed element in the array. The coefficient
argument is an array of G-floating numbers.

lib–434

LIB$ Routines
LIB$POLYG

floating-point-result
OpenVMS usage: floating_point
type: G_floating
access: write only
mechanism: by reference

Result of the calculation. The floating-point-result argument is the address of
a floating-point number that contains this result. LIB$POLYG writes the address
of floating-point-result into a G-floating number.

Intermediate multiplications are carried out using extended floating-point
fractions (63 bits for POLYG).

Description

LIB$POLYG provides higher-level language users with the capability of
evaluating polynomials.

The evaluation is carried out by Horner’s Method. The result is computed as
follows:

result = C[0]+X*(C[1]+X*(C[2]+...X*(C[D])...))

In the above result D is the degree of the polynomial and X is the argument.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTOVF Floating overflow.
SS$_ROPRAND Reserved operand.

Example

The Fortran and Pascal examples provided in the description of LIB$POLYF
also demonstrate how to use LIB$POLYG. Please refer to those examples for
assistance in using this routine.

lib–435

LIB$ Routines
LIB$POLYH

LIB$POLYH
Evaluate Polynomials (VAX Only)

On OpenVMS VAX systems, the Evaluate Polynomials routine (H-floating values)
allows higher-level language users to evaluate H-floating value polynomials.

This routine is not available to native OpenVMS Alpha and I64 programs but is
available to translated VAX images.

Format

LIB$POLYH polynomial-argument ,degree ,coefficient ,floating-point-result

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

polynomial-argument
OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Argument for the polynomial. The polynomial-argument argument is
the address of a floating-point number that contains this argument. The
polynomial-argument argument is an H-floating number.

degree
OpenVMS usage: word_signed
type: word integer (signed)
access: read only
mechanism: by reference

Highest-numbered nonzero coefficient to participate in the evaluation. The
degree argument is the address of a signed word integer that contains this
highest-numbered coefficient.

If the degree is 0, the result equals C[0]. The range of the degree is 0 to 31.

coefficient
OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference, array reference

Floating-point coefficients. The coefficient argument is the address of an
array of floating-point coefficients. The coefficient of the highest-order term of
the polynomial is the lowest addressed element in the array. The coefficient
argument is an array of H-floating numbers.

lib–436

LIB$ Routines
LIB$POLYH

floating-point-result
OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Result of the calculation. The floating-point-result argument is the address of
a floating-point number that contains this result. LIB$POLYH writes the address
of floating-point-result into an H-floating number.

Intermediate multiplications are carried out using extended floating-point
fractions (127 bits for POLYH).

Description

LIB$POLYH provides higher-level language users with the capability of
evaluating polynomials.

The evaluation is carried out by Horner’s Method. The result is computed as
follows:

result = C[0]+X*(C[1]+X*(C[2]+...X*(C[D])...))

In the above result D is the degree of the polynomial and X is the argument.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTOVF Floating overflow.
SS$_ROPRAND Reserved operand.

Example

The Fortran and Pascal examples provided in the description of LIB$POLYF
also demonstrate how to use LIB$POLYH. Please refer to those examples for
assistance in using this routine.

lib–437

LIB$ Routines
LIB$POLYS (Alpha and I64 Only)

LIB$POLYS (Alpha and I64 Only)
Evaluate Polynomials

The Evaluate Polynomials routine (IEEE S-floating values) allows higher-level
language users to evaluate IEEE S-floating polynomials.

Format

LIB$POLYS polynomial-argument ,degree ,coefficient ,floating-point-result

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

polynomial-argument
OpenVMS usage: floating_point
type: IEEE S_floating
access: read only
mechanism: by reference

Argument for the polynomial. The polynomial-argument argument is
the address of a floating-point number that contains this argument. The
polynomial-argument argument is an IEEE S-floating number.

degree
OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by reference

Highest-numbered nonzero coefficient to participate in the evaluation. The
degree argument is the address of a signed word integer that contains this
highest-numbered coefficient.

If the degree is 0, the result equals C[0]. The range of the degree is 0 to 31.

coefficient
OpenVMS usage: floating_point
type: IEEE S_floating
access: read only
mechanism: by reference, array reference

The address of an array of floating-point coefficients. The coefficient of the
highest-order term of the polynomial is the lowest addressed element in the
array. The coefficient argument is an array of IEEE S-floating numbers.

lib–438

LIB$ Routines
LIB$POLYS (Alpha and I64 Only)

floating-point-result
OpenVMS usage: floating_point
type: IEEE S_floating
access: write only
mechanism: by reference

Result of the calculation. The floating-point-result argument is the address of
a floating-point number that contains this result. LIB$POLYS writes the address
of floating-point-result into an IEEE S-floating number.

Intermediate multiplications are carried out using extended floating-point
fractions (31 bits for POLYS).

Description

LIB$POLYS provides higher-level language users with the capability of
evaluating polynomials.

The evaluation is carried out by Horner’s Method. The result is computed as
follows:

result = C[0]+X*(C[1]+X*(C[2]+...X*(C[D])...))

In the above result, D is the degree of the polynomial and X is the argument.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTOVF Floating overflow.
SS$_ROPRAND Reserved operand.

Example

/*
** This C example demonstrates how to use LIB$POLYS.
*/

#if !(__IEEE_FLOAT)
#error "Compile module with /FLOAT=IEEE_FLOAT"
#endif

#include <stdio.h>
#include <lib$routines.h>

main ()
{

float x = 2.0;
float result = 0;
float coeff[5] = {1.0, 2.0, -1.0, 1.0, -3.0};
short deg = 4;
int status;

status = lib$polys(&x, °, &coeff, &result);
if ((status & 1) != 1) lib$stop(status);

printf ("(2)^4 + 2*(2^3) -2^2 + 2 - 3 = %f (27.000000)\n",
result);

}

This C example demonstrates how to call LIB$POLYS. The output generated by
this program is as follows:

(2)^4 + 2*(2^3) -2^2 + 2 - 3 = 27.000000 (27.000000)

lib–439

LIB$ Routines
LIB$POLYT (Alpha and I64 Only)

LIB$POLYT (Alpha and I64 Only)
Evaluate Polynomials

The Evaluate Polynomials routine (IEEE T-floating values) allows higher-level
language users to evaluate IEEE T-floating polynomials.

Format

LIB$POLYT polynomial-argument ,degree ,coefficient ,floating-point-result

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

polynomial-argument
OpenVMS usage: floating_point
type: IEEE T_floating
access: read only
mechanism: by reference

Argument for the polynomial. The polynomial-argument argument is
the address of a floating-point number that contains this argument. The
polynomial-argument argument is an IEEE T-floating number.

degree
OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by reference

Highest-numbered nonzero coefficient to participate in the evaluation. The
degree argument is the address of a signed word integer that contains this
highest-numbered coefficient.

If the degree is 0, the result equals C[0]. The range of the degree is 0 to 31.

coefficient
OpenVMS usage: floating_point
type: IEEE T_floating
access: read only
mechanism: by reference, array reference

The address of an array of floating-point coefficients. The coefficient of the
highest-order term of the polynomial is the lowest addressed element in the
array. The coefficient argument is an array of IEEE T-floating numbers.

lib–440

LIB$ Routines
LIB$POLYT (Alpha and I64 Only)

floating-point-result
OpenVMS usage: floating_point
type: IEEE T_floating
access: write only
mechanism: by reference

Result of the calculation. The floating-point-result argument is the address of
a floating-point number that contains this result. LIB$POLYT writes the address
of floating-point-result into an IEEE T-floating number.

Intermediate multiplications are carried out using extended floating-point
fractions (31 bits for POLYT).

Description

LIB$POLYT provides higher-level language users with the capability of
evaluating polynomials.

The evaluation is carried out by Horner’s Method. The result is computed as
follows:

result = C[0]+X*(C[1]+X*(C[2]+...X*(C[D])...))

In the above result, D is the degree of the polynomial and X is the argument.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTOVF Floating overflow.
SS$_ROPRAND Reserved operand.

lib–441

LIB$ Routines
LIB$PUT_COMMON

LIB$PUT_COMMON
Put String to Common

The Put String to Common routine copies the contents of a string into the
common area. The common area is an area of storage that remains defined across
multiple image activations in a process. Optionally, LIB$PUT_COMMON returns
the actual number of characters copied. The maximum number of characters that
can be copied is 252.

Format

LIB$PUT_COMMON source-string [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string to be copied to the common area by LIB$PUT_COMMON. The
source-string argument is the address of a descriptor pointing to this source
string.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters copied by LIB$PUT_COMMON to the common area. The
resultant-length argument is the address of an unsigned word integer that
contains this number of characters. LIB$PUT_COMMON writes this number into
the resultant-length argument.

Description

LIB$PUT_COMMON and LIB$GET_COMMON allow programs to copy strings to
and from the common area. The programs reading and writing the data in the
common area must agree upon its amount and format. The maximum length of
the destination string is defined as follows:

[min(256, the length of the data in the common storage area) - 4]

Thus, the maximum length is 252.

lib–442

LIB$ Routines
LIB$PUT_COMMON

In BASIC and Fortran, you can use these routines to allow a USEROPEN
routine to pass information back to the routine that called it. A USEROPEN
routine cannot write arguments. However, it can call LIB$PUT_COMMON to put
information into the common area. The calling program can then use LIB$GET_
COMMON to retrieve it.

You can also use these routines to pass information between images run
successively, such as chained images run by LIB$RUN_PROGRAM. Since the
common area is unique to each process, do not use LIB$GET_COMMON and
LIB$PUT_COMMON to share information across processes.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error. An internal consistency

check has failed. This usually indicates
an internal error in the Run-Time Library
and should be reported to your HP support
representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

LIB$_STRTRU Successfully completed, but the source string was
truncated.

lib–443

LIB$ Routines
LIB$PUT_INVO_REGISTERS (Alpha and I64 Only)

LIB$PUT_INVO_REGISTERS (Alpha and I64 Only)
Put Invocation Registers

The Put Invocation Registers routine modifies specified values in a procedure’s
invocation context. A procedure’s invocation context consists of the values stored
in the integer and floating-point registers as well as the program counter and the
processor status registers.

LIB$PUT_INVO_REGISTERS updates internal register save areas with the new
values. These values are written to the active register set by the time control
returns to the procedure asociated with the specified invocation handle.

Format

LIB$PUT_INVO_REGISTERS invo_handle, invo_context, invo_mask

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Status value. A value of 1 indicates success. When the initial context represents
the bottom of the call chain, a value of 0 is returned.

Arguments

invo_handle
OpenVMS usage: invo_handle
type: longword (unsigned)
access: read only
mechanism: by value

Handle for the invocation to be updated.

invo_context
OpenVMS usage: invo_context_blk
type: structure
access: read only
mechanism: by reference

Address of an invocation context block that contains the values to be written to
the registers.

Each register that is set in the invo_mask parameter is updated using the value
found in the corresponding IREG or FREG field of the invocation context block.
The program counter and processor status of the given invocation can also be
updated in this way. No other fields of the invocation context block are used.

lib–444

LIB$ Routines
LIB$PUT_INVO_REGISTERS (Alpha and I64 Only)

invo_mask
OpenVMS usage: mask_quadword
type: quadword (unsigned)
access: read only
mechanism: by reference

Address of a 64-bit vector, where each bit corresponds to a register field in
the passed invo_context. Bits 0 through 29 correspond to IREG[0] through
IREG[29], bit 30 corresponds to STACK_POINTER and cannot be changed, bit 31
corresponds to PROGRAM_COUNTER, bits 32 through 62 correspond to FREG[0]
through FREG[30], and bit 63 corresponds to PROCESSOR_STATUS.

Description

LIB$PUT_INVO_REGISTERS updates a given procedure invocation context’s
fields with new register contents.

Note

Only the conventional saved registers (R2 through R15) can be modified
reliably in this way. Any modification to scratch registers may be
overwritten by code in intervening procedure invocations. Any attempt
to modify the control register R29 may result in unpredictable program
behavior. The control register R30 cannot be modified. A value of 0 will
be returned if bit 30 is set.

Therefore, an action such as reading the context of a given procedure
invocation and then updating that context in its entirety may not produce
the desired results, whether or not you have made any modifications.

When using this routine, the caller should plan carefully and should
explicitly modify only those register values that need to be modified.

See the HP OpenVMS Calling Standard manual for additional information.

Condition Values Returned

None.

lib–445

LIB$ Routines
LIB$PUT_OUTPUT

LIB$PUT_OUTPUT
Put Line to SYS$OUTPUT

The Put Line to SYS$OUTPUT routine writes a record to the current controlling
output device, specified by SYS$OUTPUT using the OpenVMS RMS $PUT
service.

Format

LIB$PUT_OUTPUT message-string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

message-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Message string written to the current controlling output device by LIB$PUT_
OUTPUT. The message-string argument is the address of a descriptor pointing
to this message string. RMS handles all formatting, so the message does not need
to include such ASCII formatting instructions as carriage return (CR).

Description

When you log in, OpenVMS operating systems create three files as default I/O
control streams for your process:

• SYS$INPUT, your default input device

• SYS$OUTPUT, your default output device

• SYS$COMMAND, the device that supplies the commands to your process

These files remain open until you log out. They are the interface between your
interactive input and output or batch commands and the OpenVMS software.
Initially, all three are equated with the terminal. However, with the DCL
command ASSIGN, you can change these assignments to obtain information
from a file or put information into a file. SYS$INPUT and SYS$COMMAND
are usually identical, but the input and command streams can be different. For
example, during the execution of an indirect command file from an interactive
terminal, SYS$COMMAND refers to the terminal and SYS$INPUT refers to the
command file.

On the first call to LIB$PUT_OUTPUT, if the output file is not a process-
permanent file, LIB$PUT_OUTPUT opens the output file and positions it at
the end-of-file mark. If no output file exits on the first call, LIB$PUT_OUTPUT
creates a file. The RMS internal stream identifier (ISI) is stored in the routine’s
static storage for subsequent calls.

lib–446

LIB$ Routines
LIB$PUT_OUTPUT

LIB$PUT_OUTPUT uses RMS to format records on output, and RMS records
have implied carriage control. That is, a record normally corresponds to a line of
text. Therefore, if you want explicit carriage control, instead of implied carriage
control, you must supply it yourself within the source string.

LIB$PUT_OUTPUT is the most convenient way for a MACRO or BLISS program
to write information to SYS$OUTPUT.

If you have several shareable images that call LIB$PUT_OUTPUT, and if each
shareable image includes its own copy of LIB$PUT_OUTPUT, your program could
produce multiple output streams and multiple versions of your output file. A
single application should reference one copy of LIB$PUT_OUTPUT.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

Any condition values returned by RMS.

Example

10 !+
! This BASIC program demonstrates how to use
! LIB$PUT_OUTPUT to output a simple message.
!-

MSGSTR$ = ’This is a sample message’
CALL LIB$PUT_OUTPUT(MSGSTR$)

!+
! In this example, the default value of
! SYS$OUTPUT is used. Therefore, the
! output is ’put’ to the terminal screen.
!-

90 END

This BASIC program shows the use of LIB$PUT_OUTPUT. The output generated
by this BASIC example is as follows:

This is a sample message

lib–447

LIB$ Routines
LIB$RADIX_POINT

LIB$RADIX_POINT
Radix Point Symbol

The Radix Point Symbol routine returns the system’s radix point symbol.
This symbol is used inside a digit string to separate the integer part from the
fraction part. This routine works by attempting to translate the logical name
SYS$RADIX_POINT as a process, group, or system logical name.

Format

LIB$RADIX_POINT radix-point-string [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

radix-point-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Radix point string. The radix-point-string argument is the address of a
descriptor pointing to this radix point string.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

The number of characters written into radix-point-string, not counting padding
in the case of a fixed-length string. The resultant-length argument is the
address of an unsigned word that contains this number.

If the radix-point-string argument is the address of a fixed-length string
descriptor, there may not be enough characters in the fixed-length string to
contain the whole radix point string, and the radix point string is truncated.
If the radix point string is truncated to the size specified in a fixed-length
string descriptor, resultant-length is set to this size. Therefore, resultant-
length can always be used by the calling program to access a valid substring of
radix-point-string.

lib–448

LIB$ Routines
LIB$RADIX_POINT

Description

If unable to translate the logical name SYS$RADIX_POINT, LIB$RADIX_POINT
returns the United States radix point symbol (.). If the translation succeeds,
the text produced is returned. Thus, a system manager can define SYS$RADIX_
POINT as a systemwide logical name to provide a default for all users, and an
individual user with a special need can define SYS$RADIX_POINT as a process
logical name to override the default.

LIB$RADIX_POINT is used implicitly by BASIC.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Successfully completed, but the radix point string

was truncated.
LIB$_FATERRLIB Fatal internal error.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor.

lib–449

LIB$ Routines
LIB$REMQHI

LIB$REMQHI
Remove Entry from Head of Queue

The Remove Entry from Head of Queue routine removes an entry from the head
of the specified self-relative longword interlocked queue. † LIB$REMQHI makes
the REMQHI instruction available as a callable routine.

Format

LIB$REMQHI header ,remque-address [,retry-count]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

header
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue from which entry will be removed. The
header argument contains the address of this signed aligned quadword integer.
The header argument must be initialized to zero before first use of the queue;
zero means an empty queue.

On Alpha and I64 systems, the header argument must contain a 32-bit address.
A 64-bit address results in an illegal operand exception.

remque-address
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of the removed entry. The remque-address argument is the address
of an unsigned longword that contains this address. If the queue was empty,
remque-address is set to the address of the header.

On Alpha and I64 systems, the remque-address argument must contain a 32-bit
address. A 64-bit address results in an illegal operand exception.

retry-count
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–450

LIB$ Routines
LIB$REMQHI

The number of times the operation is to be retried in case of secondary-interlock
failure of the queue instruction in a processor-shared memory application. The
retry-count argument is the address of a longword that contains the retry count
value. A value of 1 causes no retries. The default value is 10.

Description

The queue from which LIB$REMQHI removes an entry can be in process-private,
processor-private, or processor-shareable memory to implement per-process,
per-processor, or across-processor queues.

Self-Relative Queues
A queue is a doubly linked list. A Run-Time Library routine specifies a queue
entry by its address.

A self-relative queue is a queue in which the links between entries are the
displacements of the current entry’s predecessor and successor. If these links are
longwords, the queue is referred to as a self-relative longword queue.

You can use the LIB$INSQHI, LIB$INSQTI, LIB$REMQHI, and LIB$REMQTI
routines to manage your self-relative longword queue on a VAX, Alpha, or I64
system. These routines implement the INSQHI, INSQTI, REMQHI, and REMQTI
instructions that allow you to insert and remove an entry at the head or tail of a
self-relative longword queue.

Synchronization
When you insert or remove a queue entry using the self-relative queue routines,
the queue pointers are changed as an atomic operation. This ensures that no
other process can interrupt the operation to insert or remove a queue entry of its
own.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on a
single processor or in a multiprocessor environment. The queue access routines
are also useful in an AST environment; they allow you to add or remove an entry
from a queue without being interrupted by an AST.

If you do not use the self-relative queue routines to insert or remove a queue
entry, you must ensure that the operation cannot be interrupted.

Alignment
Use of the self-relative longword queue routines requires that the queue header
and each of the queue entries be quadword aligned. You can use the Run-
Time Library routine LIB$GET_VM on a VAX, Alpha, or I64 system to allocate
quadword-aligned virtual memory for a queue.

Condition Values Returned

SS$_NORMAL Routine successfully completed. The entry was
removed from the head of the queue, and the
resulting queue contains one or more entries.

SS$_ROPRAND Reserved operand fault. Either the entry or the
header is at an address that is not quadword
aligned, or the header address equals the entry
address.

lib–451

LIB$ Routines
LIB$REMQHI

LIB$_ONEENTQUE Routine successfully completed. The entry was
removed from the head of the queue, and the
resulting queue is empty.

LIB$_QUEWASEMP The queue was empty. The queue is not modified.
LIB$_SECINTFAI A secondary interlock failure occurred; the

insertion was attempted the number of times
specified by retry-count. This is a severe error.
The queue is not modified. This condition can
occur only when the queue is in memory being
shared between two or more processors.

lib–452

LIB$ Routines
LIB$REMQHIQ (Alpha and I64 Only)

LIB$REMQHIQ (Alpha and I64 Only)
Remove Entry from Head of Queue

The Remove Entry from Head of Queue routine removes an entry from the head
of the specified self-relative quadword interlocked queue. LIB$REMQHIQ makes
the REMQHIQ instruction available as a callable routine.

Format

LIB$REMQHIQ header ,remque-address [,retry-count]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

header
OpenVMS usage: octaword_signed
type: octaword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue from which entry will be removed. The
header argument contains the address of this signed aligned octaword integer.
The header argument must be initialized to zero before first use of the queue;
zero means an empty queue.

remque-address
OpenVMS usage: address
type: quadword (unsigned)
access: write only
mechanism: by reference

Address of the removed entry. The remque-address argument is the address
of an unsigned quadword that contains this address. If the queue was empty,
remque-address is set to the address of the header.

retry-count
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The number of times the operation is to be retried in case of secondary-interlock
failure of the queue instruction in a processor-shared memory application. The
retry-count argument is the address of a longword that contains the retry count
value. A value of 1 causes no retries. The default value is 10.

lib–453

LIB$ Routines
LIB$REMQHIQ (Alpha and I64 Only)

Description

The queue from which LIB$REMQHIQ removes an entry can be in process-
private, processor-private, or processor-shareable memory to implement per-
process, per-processor, or across-processor queues.

Self-Relative Queues
A queue is a doubly linked list. A Run-Time Library routine specifies a queue
entry by its address.

A self-relative queue is a queue in which the links between entries are the
displacements of the current entry’s predecessor and successor. If these links are
quadwords, the queue is referred to as a self-relative quadword queue.

You can use the LIB$INSQHIQ, LIB$INSQTIQ, LIB$REMQHIQ, and
LIB$REMQTIQ routines to manage your self-relative quadword queue on an
Alpha or I64 system. These routines implement the INSQHIQ, INSQTIQ,
REMQHIQ, and REMQTIQ instructions that allow you to insert and remove
an entry at the head or tail of a self-relative quadword queue.

Synchronization
When you insert or remove a queue entry using the self-relative queue routines,
the queue pointers are changed as an atomic operation. This ensures that no
other process can interrupt the operation to insert or remove a queue entry of its
own.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on a
single processor or in a multiprocessor environment. The queue access routines
are also useful in an AST environment; they allow you to add or remove an entry
from a queue without being interrupted by an AST.

If you do not use the self-relative queue routines to insert or remove a queue
entry, you must ensure that the operation cannot be interrupted.

Alignment
Use of the self-relative quadword queue routines requires that the queue header
and each of the queue entries be octaword aligned. You can use the Run-Time
Library routine LIB$GET_VM_64 to allocate octaword-aligned virtual memory for
a queue.

Condition Values Returned

SS$_NORMAL Routine successfully completed. The entry was
removed from the head of the queue, and the
resulting queue contains one or more entries.

SS$_ROPRAND Reserved operand fault. Either the entry or the
header is at an address that is not octaword
aligned, or the header address equals the entry
address.

LIB$_ONEENTQUE Routine successfully completed. The entry was
removed from the head of the queue, and the
resulting queue is empty.

LIB$_QUEWASEMP The queue was empty. The queue is not modified.

lib–454

LIB$ Routines
LIB$REMQHIQ (Alpha and I64 Only)

LIB$_SECINTFAI A secondary interlock failure occurred; the
insertion was attempted the number of times
specified by retry-count. This is a severe error.
The queue is not modified. This condition can
occur only when the queue is in memory being
shared between two or more processors.

lib–455

LIB$ Routines
LIB$REMQTI

LIB$REMQTI
Remove Entry from Tail of Queue

The Remove Entry from Tail of Queue routine removes an entry from the tail of
the specified self-relative longword interlocked queue. † LIB$REMQTI makes the
REMQTI instruction available as a callable routine.

Format

LIB$REMQTI header ,remque-address [,retry-count]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

header
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue from which the entry is to be deleted. The
header argument contains the address of this signed aligned quadword integer.
The header argument must be initialized to zero before first use of the queue;
zero means an empty queue.

On Alpha and I64 systems, the header argument must contain a 32-bit sign-
extended address. An illegal operand exception occurs for any other form of
address.

remque-address
OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of the removed entry. The remque-address argument is the address of
a longword that contains this address. If the queue was empty, remque-address
is set to the address of the header.

On Alpha and I64 systems, the remque-address argument must contain a 32-bit
sign-extended address. An illegal operand exception occurs for any other form of
address.

retry-count
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–456

LIB$ Routines
LIB$REMQTI

The number of times the operation is to be retried in case of secondary-interlock
failure of the queue instruction in a processor-shared memory application. The
retry-count argument is the address of a longword that is this retry count value.
A value of 1 causes no retries. The default value is 10.

Description

The queue from which LIB$REMQTI removes an in process-private, processor-
private, or processor-shareable memory to implement per-process, per-processor,
or across-processor queues.

Self-Relative Queues
A queue is a doubly linked list. A Run-Time Library routine specifies a queue
entry by its address.

A self-relative queue is a queue in which the links between entries are the
displacements of the current entry’s predecessor and successor. If these links are
longwords, the queue is referred to as a self-relative longword queue.

You can use the LIB$INSQHI, LIB$INSQTI, LIB$REMQHI, and LIB$REMQTI
routines to manage your self-relative longword queue on a VAX, Alpha, or I64
system. These routines implement the INSQHI, INSQTI, REMQHI, and REMQTI
instructions that allow you to insert and remove an entry at the head or tail of a
self-relative longword queue.

Synchronization
When you insert or remove a queue entry using the self-relative queue routines,
the queue pointers are changed as an atomic operation. This ensures that no
other process can interrupt the operation to insert or remove a queue entry of its
own.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on a
single processor or in a multiprocessor environment. The queue access routines
are also useful in an AST environment; they allow you to add or remove an entry
from a queue without being interrupted by an AST.

If you do not use the self-relative queue routines to insert or remove a queue
entry, you must ensure that the operation cannot be interrupted.

Alignment
Use of the self-relative longword queue routines requires that the queue header
and each of the queue entries be quadword aligned. You can use the Run-
Time Library routine LIB$GET_VM on a VAX, Alpha, or I64 system to allocate
quadword-aligned virtual memory for a queue.

Condition Values Returned

SS$_NORMAL Routine successfully completed. The entry was
removed from the queue tail, and the resulting
queue contains one or more entries.

SS$_ROPRAND Reserved operand fault. Either the entry or the
header is at an address that is not quadword
aligned, or the header address equals the entry
address.

lib–457

LIB$ Routines
LIB$REMQTI

LIB$_ONEENTQUE Routine successfully completed. The entry was
removed from the queue tail, and the resulting
queue is empty.

LIB$_QUEWASEMP Queue was empty. The queue is not modified.
LIB$_SECINTFAI A secondary interlock failure occurred; the

insertion was attempted the number of times
specified by retry-count. This is a severe error.
The queue is not modified. This condition can
occur only when the queue is in memory being
shared between two or more processors.

lib–458

LIB$ Routines
LIB$REMQTIQ (Alpha and I64 Only)

LIB$REMQTIQ (Alpha and I64 Only)
Remove Entry from Tail of Queue

The Remove Entry from Tail of Queue routine removes an entry from the tail of
the specified self-relative quadword interlocked queue. LIB$REMQTIQ makes
the REMQTIQ instruction available as a callable routine.

Format

LIB$REMQTIQ header ,remque-address [,retry-count]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

header
OpenVMS usage: octaword_signed
type: octaword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue from which the entry is to be deleted. The
header argument contains the address of this signed aligned octaword integer.
The header argument must be initialized to zero before first use of the queue;
zero means an empty queue.

remque-address
OpenVMS usage: address
type: quadword (unsigned)
access: write only
mechanism: by reference

Address of the removed entry. The remque-address argument is the address of
a quadword that contains this address. If the queue was empty, remque-address
is set to the address of the header.

retry-count
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The number of times the operation is to be retried in case of secondary-interlock
failure of the queue instruction in a processor-shared memory application. The
retry-count argument is the address of a longword that is this retry count value.
A value of 1 causes no retries. The default value is 10.

lib–459

LIB$ Routines
LIB$REMQTIQ (Alpha and I64 Only)

Description

The queue from which LIB$REMQTIQ removes an entry can be in process-
private, processor-private, or processor-shareable memory to implement per-
process, per-processor, or across-processor queues.

Self-Relative Queues
A queue is a doubly linked list. A Run-Time Library routine specifies a queue
entry by its address.

A self-relative queue is a queue in which the links between entries are the
displacements of the current entry’s predecessor and successor. If these links are
quadwords, the queue is referred to as a self-relative quadword queue.

You can use the LIB$INSQHIQ, LIB$INSQTIQ, LIB$REMQHIQ, and
LIB$REMQTIQ routines to manage your self-relative quadword queue on an
Alpha or I64 system. These routines implement the INSQHIQ, INSQTIQ,
REMQHIQ, and REMQTIQ instructions that allow you to insert and remove
an entry at the head or tail of a self-relative quadword queue.

Synchronization
When you insert or remove a queue entry using the self-relative queue routines,
the queue pointers are changed as an atomic operation. This ensures that no
other process can interrupt the operation to insert or remove a queue entry of its
own.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on a
single processor or in a multiprocessor environment. The queue access routines
are also useful in an AST environment; they allow you to add or remove an entry
from a queue without being interrupted by an AST.

If you do not use the self-relative queue routines to insert or remove a queue
entry, you must ensure that the operation cannot be interrupted.

Alignment
Use of the self-relative quadword queue routines requires that the queue header
and each of the queue entries be octaword aligned. You can use the Run-Time
Library routine LIB$GET_VM_64 to allocate octaword-aligned virtual memory for
a queue.

Condition Values Returned

SS$_NORMAL Routine successfully completed. The entry was
removed from the queue tail, and the resulting
queue contains one or more entries.

SS$_ROPRAND Reserved operand fault. Either the entry or the
header is at an address that is not octaword
aligned, or the header address equals the entry
address.

LIB$_ONEENTQUE Routine successfully completed. The entry was
removed from the queue tail, and the resulting
queue is empty.

LIB$_QUEWASEMP Queue was empty. The queue is not modified.

lib–460

LIB$ Routines
LIB$REMQTIQ (Alpha and I64 Only)

LIB$_SECINTFAI A secondary interlock failure occurred; the
insertion was attempted the number of times
specified by retry-count. This is a severe error.
The queue is not modified. This condition can
occur only when the queue is in memory being
shared between two or more processors.

lib–461

LIB$ Routines
LIB$RENAME_FILE

LIB$RENAME_FILE
Rename One or More Files

The Rename One or More Files routine changes the names of one or more files.
The specification of the files to be renamed can include wildcards.

LIB$RENAME_FILE is similar in function to the DCL command RENAME.

Format

LIB$RENAME_FILE old-filespec ,new-filespec [,default-filespec] [,related-filespec] [,flags]
[,user-success-procedure] [,user-error-procedure] [,user-confirm-procedure]
[,user-specified-argument] [,old-resultant-name] [,new-resultant-name]
[,file-scan-context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

old-filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification of the files to be renamed. The old-filespec argument is the
address of a descriptor pointing to the old file specification. The specification
may include wildcards, in which case each file that matches the specification will
be renamed. If running on Alpha or I64 and flag LIB$M_FIL_LONG_NAMES
is set, the string must not contain more characters than specified by NAML$C_
MAXRSS, otherwise the string must not contain more than 255 characters. Any
string class is supported.

new-filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification for the new file names. The new-filespec argument is the
address of a descriptor pointing to the new file specification.

This specification need not be complete; fields omitted or specified by using the
wildcard character (*) will be filled in from the existing file’s name using the
same rules as for the DCL command RENAME. If running on Alpha or I64
and flag LIB$M_FIL_LONG_NAMES is set, the string must not contain more
characters than specified by NAML$C_MAXRSS, otherwise the string must not
contain more than 255 characters. Any string class is supported.

lib–462

LIB$ Routines
LIB$RENAME_FILE

default-filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Default file specification of the files to be renamed. The default-filespec
argument is the address of a descriptor pointing to the default file specification.

This is an optional argument; if omitted, the default is the null string. See
the OpenVMS Record Management Services Reference Manual for information
on default file specifications. If running on Alpha or I64 and flag LIB$M_FIL_
LONG_NAMES is set, the string must not contain more characters than specified
by NAML$C_MAXRSS, otherwise the string must not contain more than 255
characters. Any string class is supported.

related-filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Related file specification of the files to be renamed. The related-filespec
argument is the address of a descriptor pointing to the related file specification.
This is an optional argument; if omitted, the default is the null string. Any string
class is supported.

Input file parsing is used. (See the OpenVMS Record Management Services
Reference Manual for information on related file specifications and input file
parsing.)

The related file specification is useful when you are processing lists of file
specifications. Unspecified portions of the file specification are inherited from the
last file processed. Any string class is supported. This is an optional argument.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Longword of flag bits designating optional behavior. The flags argument is the
address of an unsigned longword containing the flag bits. This is an optional
argument; if omitted, the default is that all flags are clear.

The bit number and its meaning are as follows:

Bit Symbol Description

0 LIB$M_FIL_CUR_VER If new-filespec does not specify a version number, this
flag controls whether a new version number for the
output file is to be assigned. If this bit is set, the current
version number of the file is used.
If this bit is clear, the file is given a version number 1
higher than any previously existing file of the same file
name and file type. This is the default action.

lib–463

LIB$ Routines
LIB$RENAME_FILE

Bit Symbol Description

If a file already exists with the same file name, type and version number, the error RMS$_FEX
is given. This flag is equivalent to the /NONEW_VERSION qualifier of the DCL command
RENAME.)
1 LIB$M_FIL_INH_SECUR Controls whether the renamed file takes on security

attributes of the new location or keeps its existing
security attributes. If this bit is clear, the attributes
of the renamed file are inherited from the next lower
version of the new file name, if any, the new parent
directory, or both.
If this bit is clear, the file’s security attributes are not
changed; this is the default action.
For more information on file security, see the HP
OpenVMS Guide to System Security. This flag is
equivalent to the /INHERIT_SECURITY qualifier of
the DCL command RENAME.

2 LIB$M_FIL_LONG_NAMES (Alpha and I64 only) Controls whether to accept file
specifications greater than 255 characters in length. If
this bit is set, LIB$RENAME_FILE can process files
specifications with a maximum length of NAML$C_
MAXRSS characters.
If this bit is clear, LIB$RENAME_FILE can process files
names with a maximum length of 255 characters.

user-success-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied success routine that LIB$RENAME_FILE calls after each
successful rename.

For further information on the success routine, see Call Format for a Success
Routine in the Description section.

user-error-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied error routine that LIB$RENAME_FILE calls when it detects
an error. The value returned by the error routine determines whether
LIB$RENAME_FILE processes more files. For further information on the
error routine, see Call Format for an Error Routine in the Description section.

user-confirm-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

lib–464

LIB$ Routines
LIB$RENAME_FILE

User-supplied confirm routine that LIB$RENAME_FILE calls before it renames
a file. The value returned by the confirm routine determines whether or not
LIB$RENAME_FILE renames the file.

The confirm routine can be used to select specific files for renaming based on
criteria such as expiration date, size, and so on.

For further information on the confirm routine, see Call Format for a Confirm
Routine in the Description section.

user-specified-argument
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Value that LIB$RENAME_FILE passes to the success, error, and confirm routines
each time they are called. Whatever mechanism is used to pass user-specified-
argument to LIB$RENAME_FILE is also used to pass it to the user-supplied
routines. This is an optional argument; if omitted, zero is passed by value.

old-resultant-name
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String into which LIB$RENAME_FILE copies the old resultant file specification
of the last file processed. This is an optional argument. If present, it is used
to store the file specification passed to the user-supplied routines instead of a
default class S, type T string. Any string class is supported.

If you are specifying one or more of the action routine arguments, be sure that
the descriptor class used to pass resultant-name is the same as the descriptor
class required by the action routine. For example, VAX Ada requires a class SB
descriptor for string arguments to Ada routines, but will use a class A descriptor
by default when calling external routines. Refer to your language manual to
determine the proper descriptor class to use.

new-resultant-name
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String into which LIB$RENAME_FILE writes the new OpenVMS RMS resultant
file specification of the last file processed. The new-resultant-name argument
is the address of a descriptor pointing to the new name. This is an optional
argument. If present, it is used to store the file specification passed to the
user-supplied routines instead of a class S, type T string. Any string class is
supported.

If you are specifying one or more of the action routine arguments, be sure that
the descriptor class used to pass resultant-name is the same as the descriptor
class required by the action routine. For example, VAX Ada requires a class SB
descriptor for string arguments to Ada routines, but will use a class A descriptor
by default when calling external routines. Refer to your language manual to
determine the proper descriptor class to use.

lib–465

LIB$ Routines
LIB$RENAME_FILE

file-scan-context
OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context for renaming a list of file specifications. The file-scan-context is
the address of a longword that contains this context. You must initialize this
longword to zero before the first of a series of calls to LIB$RENAME_FILE.
LIB$RENAME_FILE uses the file scan context to retain the file context for
multiple input files.

LIB$FILE_SCAN uses this context to retain multiple input file related file
context. This is an optional argument; it need only be specified if you are using
multiple input files, as the DCL command RENAME does. You may deallocate
the context allocated by LIB$FILE_SCAN while processing the LIB$RENAME_
FILE requests by calling LIB$FILE_SCAN_END after all calls to LIB$RENAME_
FILE have been completed. See the description of LIB$FILE_SCAN for a more
detailed description of this argument.

Description

This description is divided into three parts:

• Call Format for a Success Routine

• Call Format for an Error Routine

• Call Format for a Confirm Routine

Call Format for a Success Routine
The success routine is optional; it is called only if the user-success-procedure
argument is specified in the call to LIB$RENAME_FILE.

The calling format of a success routine is as follows:

user-success-procedure old-filespec ,new-filespec [,user-specified-argument]

old-filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: descriptor

RMS resultant file specification of the file before it was renamed. If old-
resultant-name was specified, it is used to pass the string to the success routine.
Otherwise, a class S, type T string is passed. Any string class is supported.

new-filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the newly renamed file. If new-resultant-
name was specified, it is used to pass the string to the success routine.
Otherwise, a class S, type T string is passed. Any string class is supported.

lib–466

LIB$ Routines
LIB$RENAME_FILE

user-specified-argument
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: unspecified

Value of user-specified-argument passed by LIB$RENAME_FILE to the
success routine using the same passing mechanism that was used to pass it
to LIB$RENAME_FILE.

Call Format for an Error Routine
The error routine returns a success/fail value that LIB$RENAME_FILE uses to
determine whether or not more files will be processed if an error is encountered.
The error routine is called only if the user-error-procedure argument was
specified in the call to LIB$RENAME_FILE. If the user-error-procedure
argument was not specified, the default is to continue processing.

The calling format of the error routine is as follows:

user-error-procedure old-filespec ,new-filespec ,rms-sts ,rms-stv ,error-source ,user-specified-argument

old-filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the file being renamed when the error occurred.
If old-resultant-name was specified, it is used to pass the string to the error
routine. Otherwise, a class S, type T string is passed. Any string class is
supported.

new-filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the new file name being used when the error
occurred. If new-resultant-name was specified, it is used to pass the string to
the error routine. Otherwise, a class S, type T string is passed. Any string class
is supported.

rms-sts
OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

Primary condition code (FAB$L_STS) which describes the error that occurred.
The rms-sts argument is the address of an unsigned longword that contains this
primary condition code.

rms-stv
OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

lib–467

LIB$ Routines
LIB$RENAME_FILE

Secondary condition code (FAB$L_STV) which describes the error that occurred.
The rms-stv argument is the address of an unsigned longword that contains this
secondary condition code.

error-source
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Integer code indicating where the error was found. The error-source argument
is the address of a longword containing the error source.

The values of error-source and their meanings are as follows:

0 Error searching for old-filespec
1 Error parsing new-filespec
2 Error renaming file

user-specified-argument
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: unspecified

Value of user-specified-argument that LIB$RENAME_FILE passes to the
error routine using the same passing mechanism that was used to pass it to
LIB$RENAME_FILE.

If the error routine returns a success status (bit 0 set), then LIB$RENAME_FILE
will continue processing files. If the error routine returns a failure status (bit 0
clear), processing ceases immediately and LIB$RENAME_FILE returns with an
error status.

If the user-error-procedure argument is not specified, LIB$RENAME_FILE
will return to its caller the most severe error status encountered while renaming
the files. If the error routine is called for an error, the success status LIB$_
ERRROUCAL is returned.

The error routine is not called for errors related to string copying.

Call Format for a Confirm Routine
The calling format of a confirm routine is as follows:

user-confirm-procedure old-filespec ,new-filespec ,old-fab [,user-specified-argument]

old-filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the file about to be renamed. If old-resultant-
name was specified, it is used to pass the string to the confirm routine.
Otherwise, a class S, type T string is passed. Any string class is supported.

lib–468

LIB$ Routines
LIB$RENAME_FILE

new-filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification which the file will be given. If new-resultant-
name was specified, it is used to pass the string to the confirm routine.
Otherwise, a class S, type T string is passed. Any string class is supported.

old-fab
OpenVMS usage: fab
type: unspecified
access: read only
mechanism: by reference

Address of the RMS FAB that describes the file being renamed. Your program
may perform an RMS $OPEN on the FAB to obtain file attributes it needs to
determine whether the file should be renamed, but must close the file with
$CLOSE before returning to LIB$RENAME_FILE.

(Alpha and I64 only) If the LIB$M_FIL_LONG_NAMES FLAGS is set, the FAB
references a NAML block rather than a NAM block. The NAML block supports
the use of long file specifications with a maximum length of NAML$C_MAXRSS.
See the OpenVMS Record Management Services Reference Manual for information
on NAML blocks.

user-specified-argument
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: unspecified

Value of user-specified-argument passed by LIB$RENAME_FILE to the
confirm routine using the same passing mechanism that was used to pass it
to LIB$RENAME_FILE. This is an optional argument.

If the confirm routine returns a success value (bit 0 set), the file is renamed;
otherwise, the file is not renamed.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_ERRROUCAL Success—error routine called. A file error was

encountered but the error routine was called to
handle the condition.

LIB$_INVARG Invalid argument. The flags argument has one
or more undefined bits set.

LIB$_INVFILSPE Invalid file specification. On VAX, Old-filespec,
new-filespec, or default-filespec contains
more than 255 characters. On Alpha and
I64, Old-filespec, new-filespec, or default-
filespec contains more than NAML$C_MAXRSS
characters.

lib–469

LIB$ Routines
LIB$RENAME_FILE

LIB$_INVSTRDES Invalid string descriptor. One of the string
argument descriptors was not a valid string
descriptor.

LIB$_WRONUMARG Wrong number of arguments. An incorrect
number of arguments was passed to
LIB$RENAME_FILE.

Any condition value returned by LIB$SCOPY_xxx; truncation errors are ignored.

Any condition value returned by RMS. If the user-error-procedure argument
was not specified, this is the most severe of the RMS errors which occurred while
renaming the files.

lib–470

LIB$ Routines
LIB$RESERVE_EF

LIB$RESERVE_EF
Reserve Event Flag

The Reserve Event Flag routine allocates a local event flag number specified by
event-flag-number.

Format

LIB$RESERVE_EF event-flag-number

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

event-flag-number
OpenVMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by reference

Event flag number to be allocated by LIB$RESERVE_EF. The event-flag-
number argument contains the address of a signed longword integer that is this
event flag number.

Description

LIB$RESERVE_EF allocates a specific local event flag. It differs from
LIB$GET_EF, which allocates an arbitrary local event flag, which is the
recommended procedure. Reserving a specific local event flag is not recommended
because another routine may attempt to use the same flag, and the flag will no
longer function as expected.

The following table lists the availability of local event flags.

Number Availability

0 Never used by this routine and always available
1 through 23 Initially reserved; available after being freed by LIB$FREE_EF
24 through 31 Reserved to OpenVMS
32 through 63 Initially free

lib–471

LIB$ Routines
LIB$RESERVE_EF

Note

Beware of running multiple images linked with /NOSYSSHR in the same
process and having more than one image make calls to LIB$RESERVE_
EF. Each image contains its own copy of the event flag bit array that is
designed to be process-wide and synchronize ownership of event flags.
Multiple calls to LIB$GET_EF could cause the same event flag to be
allocated more than once.

See the HP OpenVMS Programming Concepts Manual for more information.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_EF_ALRRES Event flag already reserved.
LIB$_EF_RESSYS Event flag reserved to system. This occurs if

the event flag number is outside the ranges of 1
through 23 and 32 through 63.

Example

PROGRAM RESERVE_EF(INPUT, OUTPUT);

routine LIB$RESERVE_EF(%REF EVENT_FLAG_NUM : INTEGER); EXTERN;
routine LIB$FREE_EF(%REF EVENT_FLAG_NUM : INTEGER); EXTERN;

VAR
FLAG_NUM : INTEGER;

BEGIN
FLAG_NUM := 37;
LIB$RESERVE_EF(FLAG_NUM);
WRITELN(FLAG_NUM);
LIB$FREE_EF(FLAG_NUM);

END.

This Pascal program generates the following output:

37

lib–472

LIB$ Routines
LIB$RESET_VM_ZONE

LIB$RESET_VM_ZONE
Reset Virtual Memory Zone

The Reset Virtual Memory Zone routine frees all blocks of memory that were
previously allocated from a zone in the 32-bit virtual address space. †

Format

LIB$RESET_VM_ZONE zone-id

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

zone-id
OpenVMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id is the address of a longword that contains the
identifier of a zone created by a previous call to LIB$CREATE_VM_ZONE or
LIB$CREATE_USER_VM_ZONE.

Description

LIB$RESET_VM_ZONE frees all the blocks of memory that were previously
allocated from the zone. The memory becomes available to satisfy further
allocation requests for the zone; the memory is not returned to the processwide
32-bit page pool managed by LIB$GET_VM_PAGE. Your program can continue to
use the zone after you call LIB$RESET_VM_ZONE.

Resetting a zone is a much more efficient way to reuse storage than individually
freeing each allocated object in the zone.

It is the caller’s responsibility to ensure that he or she has ‘‘exclusive’’ access to
the zone while the reset operation is being performed. Results are unpredictable
if another thread of control attempts to perform any operation on the zone while
LIB$RESET_VM_ZONE is in progress.

If you specified deallocation filling when you created the zone, LIB$RESET_VM_
ZONE will fill all of the allocated blocks that are freed.

If the zone you are resetting was created using the LIB$CREATE_USER_VM_
ZONE routine, then you must have an appropriate action routine for the reset
operation. That is, in your call to LIB$CREATE_USER_VM_ZONE, you must
have specified a user-reset-procedure.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–473

LIB$ Routines
LIB$RESET_VM_ZONE

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR An invalid zone-id argument.

lib–474

LIB$ Routines
LIB$RESET_VM_ZONE_64 (Alpha and I64 Only)

LIB$RESET_VM_ZONE_64 (Alpha and I64 Only)
Reset Virtual Memory Zone

The Reset Virtual Memory Zone routine frees all blocks of memory that were
previously allocated from a zone in the 64-bit virtual address space.

Format

LIB$RESET_VM_ZONE_64 zone-id

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

zone-id
OpenVMS usage: identifier
type: quadword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id is the address of a quadword that contains the
identifier of a zone created by a previous call to LIB$CREATE_VM_ZONE_64 or
LIB$CREATE_USER_VM_ZONE_64.

Description

LIB$RESET_VM_ZONE_64 frees all the blocks of memory that were previously
allocated from the zone. The memory becomes available to satisfy further
allocation requests for the zone; the memory is not returned to the processwide
64-bit page pool managed by LIB$GET_VM_PAGE_64. Your program can
continue to use the zone after you call LIB$RESET_VM_ZONE_64.

Resetting a zone is a much more efficient way to reuse storage than individually
freeing each allocated object in the zone.

It is the caller’s responsibility to ensure that he or she has ‘‘exclusive’’ access to
the zone while the reset operation is being performed. Results are unpredictable
if another thread of control attempts to perform any operation on the zone while
LIB$RESET_VM_ZONE_64 is in progress.

If you specified deallocation filling when you created the zone, LIB$RESET_VM_
ZONE_64 will fill all of the allocated blocks that are freed.

If the zone you are resetting was created using the LIB$CREATE_USER_VM_
ZONE_64 routine, then you must have an appropriate action routine for the reset
operation. That is, in your call to LIB$CREATE_USER_VM_ZONE_64, you must
have specified a user-reset-procedure.

lib–475

LIB$ Routines
LIB$RESET_VM_ZONE_64 (Alpha and I64 Only)

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR An invalid zone-id argument.

lib–476

LIB$ Routines
LIB$REVERT

LIB$REVERT
Revert to the Handler of the Routine Activator

The Revert to the Handler of the Routine Activator routine deletes the condition
handler established by LIB$ESTABLISH by clearing the address pointing to the
condition handler from the activated routine’s stack frame. †

This routine is not available to native OpenVMS Alpha and I64 programs but is
recognized and handled appropriately by most HP high-level language compilers.

Format

LIB$REVERT

Returns

OpenVMS usage: address
type: address
access: write only
mechanism: by value

Previous contents of SF$A_HANDLER (longword 0) of the caller’s stack frame.
This is the address of the condition handler previously in effect. If no condition
handler was in effect, zero is returned.

Arguments

None.

Description

LIB$REVERT returns the address that it clears from the calling routine’s stack
frame. LIB$REVERT is used only if your routine is to establish and then cancel
a condition handler for a portion of its execution.

LIB$REVERT is provided primarily for use with languages without built-in
error-handling facilities, such as Fortran. Do not use LIB$REVERT from BASIC,
COBOL, Pascal, or PL/I. See the documentation for the language you are using
for information about how that language handles errors.

In VAX MACRO, you merely use the following instruction rather than calling
LIB$REVERT:

CLRL (FP) ; set handler address to 0
; in current stack frame

Condition Values Returned

None.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–477

LIB$ Routines
LIB$RUN_PROGRAM

LIB$RUN_PROGRAM
Run New Program

The Run New Program routine causes the current program to stop running and
begins execution of another program.

Format

LIB$RUN_PROGRAM program-name

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

program-name
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File name of the program to be run in place of the current program. The
program-name argument contains the address of a descriptor pointing to this
file name string.

The maximum length of the file name is 255 characters. The default file type is
.EXE.

Description

LIB$RUN_PROGRAM stops execution of the current program and begins
execution of another program.

• If successful, control does not return to the calling program. Instead, the
$EXIT system service is called, the new program image replaces the old
image in the user process, and the command language interpreter (CLI) gives
control to the new image.

• If unsuccessful, control returns to the command interpreter.

This routine is supported for use with the DCL and MCR CLIs. If an image is
run directly as a subprocess or as a detached process, there is no CLI present to
perform this function. In those cases, the error status LIB$_NOCLI is returned.

LIB$RUN_PROGRAM causes the current image to exit at the point of the
call and directs the CLI, if one is present, to start running another program.
If LIB$RUN_PROGRAM executes successfully, control passes to the second
program; if not, control passes to the CLI. The calling program cannot regain
control. This technique is called chaining.

This routine is provided primarily for compatibility with PDP-11 systems, where
chaining is used to extend the address space of a system.

lib–478

LIB$ Routines
LIB$RUN_PROGRAM

This routine may also be useful in an OpenVMS environment where address
space is severely limited and large images are not possible. For example, you
might use chaining to perform system generation on a small virtual address
space, for a large page file.

With LIB$RUN_PROGRAM, the calling program can pass arguments to the
next program in the chain only by using the common storage area. One way
to do this is for the calling program to call LIB$PUT_COMMON to pass the
information into the common storage area. Then the called program calls
LIB$GET_COMMON to retrieve the data.

In general, this practice is not recommended. There is no convenient way to
specify the order and type of arguments passed into the common storage area;
so programs that pass arguments in this way must know about the format of
the data before it is passed. When you use common storage, it is very difficult to
keep your program modular and AST-reentrant; a method of arbitration must be
designated to define which program can modify common storage and when.

Further, LIB$RUN_PROGRAM cannot be used if no command language
interpreter is present, as in the case of image subprocesses and detached
subprocesses.

If you want control to return to the caller, use LIB$SPAWN instead.

Condition Values Returned

LIB$_INVARG Invalid argument.
LIB$_NOCLI No CLI present to perform function. The calling

process did not have a CLI to perform the
function or the CLI did not support the request
type. Note that an image run as a subprocess or
detached process does not have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an
error status which was not recognized. This
error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL or
MCR CLIs, please report the problem to your HP
support representative.

lib–479

LIB$ Routines
LIB$SCANC

LIB$SCANC
Scan for Characters and Return Relative Position

The Scan for Characters and Return Relative Position routine is used to find
a specified set of characters in the source string. LIB$SCANC makes the VAX
SCANC instruction available as a callable routine. 1

Format

LIB$SCANC source-string ,table-array ,byte-integer-mask

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Relative position in the source string of the character that terminated the
operation, or zero if the terminator character is not found. If the source string
has a zero length, then a zero is returned.

Arguments

source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string used by LIB$SCANC to index into a table. The source-string
argument contains the address of a descriptor pointing to this source string.

table-array
OpenVMS usage: vector_mask_byte
type: byte (unsigned)
access: read only
mechanism: by reference, array reference

Table that LIB$SCANC indexes into and performs a logical AND operation with
the byte-integer-mask byte. The table-array argument contains the address of
an unsigned byte array that is this table.

byte-integer-mask
OpenVMS usage: mask_byte
type: byte (unsigned)
access: read only
mechanism: by reference

Mask on which a logical AND operation is performed with bytes in table-array.
The byte-integer-mask argument contains the address of an unsigned byte that
is this mask.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–480

LIB$ Routines
LIB$SCANC

Description

LIB$SCANC uses successive bytes of the string specified by source-string to
index into a table. The byte selected from the table is the byte on which a logical
AND operation is performed with the mask byte. The operation is terminated
when the result of the AND operation is equal to 1.

Condition Values Returned

None.

lib–481

LIB$ Routines
LIB$SCOPY_DXDX

LIB$SCOPY_DXDX
Copy Source String Passed by Descriptor to Destination

The Copy Source String Passed by Descriptor to Destination routine copies a
source string passed by descriptor to a destination string.

Format

LIB$SCOPY_DXDX source-string ,destination-string

Corresponding JSB Entry Point

LIB$SCOPY_DXDX6

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string to be copied to the destination string by LIB$SCOPY_DXDX. The
source-string argument contains the address of a descriptor pointing to this
source string. The descriptor class can be unspecified, fixed-length, decimal
string, array, noncontiguous array, varying, or dynamic.

destination-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string to which the source string is copied. The destination-string
argument contains the address of a descriptor pointing to this destination string.

lib–482

LIB$ Routines
LIB$SCOPY_DXDX

The following actions occur depending on the class of the destination string’s
descriptor:

Descriptor Class Action

S, Z, SD, A, NCA Copy the source string. If needed, space-fill or truncate
on the right.

D If the area specified by the destination descriptor is
large enough to contain the source string, copy the
source string and set the new length in the destination
descriptor. If the area specified is not large enough,
return the previous space allocation (if any) and then
dynamically allocate the amount of space needed. Copy
the source string and set the new length and address in
the destination descriptor.

VS Copy source string to destination string up to the limit
of the descriptor MAXSTRLEN field with no padding.
Readjust the current length (CURLEN) field to the
actual number of bytes copied.

Description

LIB$SCOPY_DXDX returns all condition values as a status; truncation is a
qualified success condition value (bit 0 set to 1).

In addition, an equivalent JSB entry point is available, with R0 containing the
first argument and R1 containing the second.

Condition Values Returned

SS$_NORMAL Routine successfully completed. All characters in
the input string were copied to the destination
string.

LIB$_STRTRU Routine successfully completed. String
truncated. The destination string could not
contain all of the characters copied from the
source string.

LIB$_FATERRLIB Fatal internal error. An internal consistency
check has failed. This usually indicates
an internal error in the Run-Time Library
and should be reported to your HP support
representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

lib–483

LIB$ Routines
LIB$SCOPY_R_DX

LIB$SCOPY_R_DX
Copy Source String Passed by Reference to Destination String

The Copy Source String Passed by Reference to Destination String routine copies
a source string passed by reference to a destination string, passed by descriptor.

Format

LIB$SCOPY_R_DX word-integer-source-length ,source-string ,destination-string

Corresponding JSB Entry Point

LIB$SCOPY_R_DX6

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

word-integer-source-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Length of the source string in bytes. The word-integer-source-length
argument is the address of an unsigned word that contains the length of the
source string.

source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by reference

Source string to be copied to the destination string by LIB$SCOPY_R_DX. The
source-string argument is the address of this source string.

destination-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string to which the source string is copied. The destination-string
argument contains the address of a descriptor pointing to this destination string.

lib–484

LIB$ Routines
LIB$SCOPY_R_DX

Description

LIB$SCOPY_R_DX copies a source string, passed by reference, to a destination
string, passed by descriptor. It returns the status as a condition value.
Truncation is a qualified success; LIB$SCOPY_R_DX sets bit 0 of the condition
value to 1.

The actions taken by LIB$SCOPY_R_DX depend on the descriptor class of the
destination string. The following table describes these actions for each descriptor
class:

Descriptor Class Action

S, Z, SD, A, NCA Copy the source string. If needed, space fill or truncate on
the right.

D If the area specified by the destination descriptor is large
enough to contain the source string, copy the source string
and set the new length in the destination descriptor.
If the area specified is not large enough, return the previous
space allocation, if any, and then dynamically allocate the
amount of space needed. Copy the source string and set the
new length and address in the destination descriptor.

VS Copy source string to destination string up to the limit
of the decsriptor’s MAXSTRLEN field with no padding.
Readjust the string’s current length (CURLEN) field to the
actual number of bytes copied.

An equivalent JSB entry is available, with R0 being the first argument, R1 the
second, and R2 the third. The length argument is passed in bits 15:0 of R0.

Condition Values Returned

SS$_NORMAL Routine successfully completed. All characters in
the input string were copied to the destination
string.

LIB$_STRTRU Routine successfully completed. String
truncated. The destination string could not
contain all of the characters copied from the
source string.

LIB$_FATERRLIB Fatal internal error. An internal consistency
check has failed. This usually indicates
an internal error in the Run-Time Library
and should be reported to your HP support
representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

lib–485

LIB$ Routines
LIB$SCOPY_R_DX_64 (Alpha and I64 Only)

LIB$SCOPY_R_DX_64 (Alpha and I64 Only)
Copy Source String Passed by Reference to Destination String

The Copy Source String Passed by Reference to Destination String routine copies
a source string passed by reference to a destination string, passed by descriptor.

Format

LIB$SCOPY_R_DX_64 quad-integer-source-length ,source-string ,destination-string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

quad-integer-source-length
OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: read only
mechanism: by reference

Length of the source string in bytes. The quad-integer-source-length argument
is the address of an unsigned quadword that contains the length of the source
string.

source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by reference

Source string to be copied to the destination string by LIB$SCOPY_R_DX_64.
The source-string argument is the address of this source string.

destination-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string to which the source string is copied. The destination-string
argument contains the address of a descriptor pointing to this destination string.

Description

LIB$SCOPY_R_DX_64 copies a source string, passed by reference, to a
destination string, passed by descriptor. It returns the status as a condition
value. Truncation is a qualified success; LIB$SCOPY_R_DX_64 sets bit 0 of the
condition value to 1.

lib–486

LIB$ Routines
LIB$SCOPY_R_DX_64 (Alpha and I64 Only)

The actions taken by LIB$SCOPY_R_DX_64 depend on the descriptor class of the
destination string. The following table describes these actions for each descriptor
class:

Descriptor Class Action

S, Z, SD, A, NCA Copy the source string. If needed, space fill or truncate on
the right.

D If the area specified by the destination descriptor is large
enough to contain the source string, copy the source string
and set the new length in the destination descriptor.
If the area specified is not large enough, return the previous
space allocation, if any, and then dynamically allocate the
amount of space needed. Copy the source string and set the
new length and address in the destination descriptor.

VS Copy source string to destination string up to the limit
of the descriptor’s MAXSTRLEN field with no padding.
Readjust the string’s current length (CURLEN) field to the
actual number of bytes copied.

Condition Values Returned

SS$_NORMAL Routine successfully completed. All characters in
the input string were copied to the destination
string.

LIB$_STRTRU Routine successfully completed. String
truncated. The destination string could not
contain all of the characters copied from the
source string.

LIB$_FATERRLIB Fatal internal error. An internal consistency
check has failed. This usually indicates
an internal error in the Run-Time Library
and should be reported to your HP support
representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

lib–487

LIB$ Routines
LIB$SET_LOGICAL

LIB$SET_LOGICAL
Set Logical Name

The Set Logical Name routine requests the calling process’s command language
interpreter (CLI) to define or redefine a supervisor-mode process logical name. It
provides the same function as the DCL command DEFINE.

Format

LIB$SET_LOGICAL logical-name [,value-string] [,table] [,attributes] [,item-list]

Either the item-list or value-string argument must be specified. If both item-
list and value-string are specified, the value-string argument is ignored.

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

logical-name
OpenVMS usage: logical_name
type: character string
access: read only
mechanism: by descriptor

Logical name to be defined or redefined. The logical-name argument contains
the address of a descriptor pointing to this logical name string. The maximum
length of a logical name is 255 characters. Note that logical names are case
sensitive.

value-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Value to be given to the logical name. The value-string argument contains the
address of a descriptor pointing to this value string. The maximum length of a
logical name value is 255 characters.

If omitted, an item list must be present to specify the values of the logical name.

table
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the table in which to create the logical name. The table argument
contains the address of a descriptor pointing to the logical name table. If no table
is specified, LNM$PROCESS is used as the default.

lib–488

LIB$ Routines
LIB$SET_LOGICAL

attributes
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Logical name or translation attributes. The attributes argument is the address
of a longword bit mask that contains the logical name or translation attributes.

LNM$M_CONFINE and LNM$M_NO_ALIAS are currently available logical
name attributes. See the description of the $CRELNM system service in the
HP OpenVMS System Services Reference Manual: A–GETUAI for definitions of
LNM$M_CONFINE and LNM$M_NO_ALIAS. If omitted, no special logical name
attribute is established.

If no item-list is specified, the translation attributes LNM$M_CONCEALED
and LNM$M_TERMINAL may be specified. See the description of the ASSIGN
command in the HP OpenVMS DCL Dictionary for definitions of these attributes.
If an item-list is specified, it will contain the translation attributes for each
equivalence string in the attribute.

item-list
OpenVMS usage: item_list_3
type: unspecified
access: read only
mechanism: by reference, array reference

Item list describing the equivalence names for this logical name. The item-list
argument contains the address of an array that contains this item list. If item-
list is not specified, the logical name will have only one value, as specified in the
value-string argument. Item codes for use with this item list are included in
libraries supplied by HP in module $LNMDEF.

Either value-string or item-list must be specified. If neither is specified,
the LIB$_INVARG error is produced. If both value-string and item-list are
specified, the value-string argument is ignored.

If item-list is specified, only logical name attributes are permitted. Translation
attributes appear in the item list.

The item-list argument is needed only when you want to create multiple
equivalence strings for a single logical name.

Description

If the optional table argument is defined, the logical name will be placed in the
table specified by the table argument; otherwise, the logical name is placed in
the LNM$PROCESS table.

Unlike the system services $CRELOG and $CRELNM, LIB$SET_LOGICAL does
not require the caller to be executing in supervisor mode to define a supervisor-
mode logical name. Supervisor-mode logical names are not deleted when an
image exits. A program can obtain the current value of any logical name by
calling the system service $TRNLNM. For more information on logical names, see
the HP OpenVMS System Services Reference Manual.

This routine is supported for use with the DCL and MCR CLIs. If an image is
run directly as a subprocess or as a detached process, there is no CLI present to
perform this function. In that case, the error status LIB$_NOCLI is returned.

lib–489

LIB$ Routines
LIB$SET_LOGICAL

This routine does not support the DCL DEFINE and DEASSIGN commands’
special side-effect of opening and closing a process-permanent file if the logical
name SYS$OUTPUT is specified.

See the HP OpenVMS DCL Dictionary for a description of the DEFINE command.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_ACCVIO Access violation. The logical name or its value

could not be read.
SS$_BADPARAM Bad argument.
SS$_BUFFEROVF Routine successfully completed; however, a buffer

overflow occurred.
SS$_INSFMEM Insufficient dynamic memory.
SS$_IVLOGNAM Invalid logical name. The logical name or its

value contained more than 255 characters.
SS$_IVLOGTAB Invalid logical name table.
SS$_NOPRIV No privileges for attempted operation.
SS$_SUPERSEDE Routine successfully completed; the previous

definition of the logical name was replaced.
SS$_TOOMANYLNAM Logical name translation exceeded allowed depth.
LIB$_INVARG Neither the value-string nor the item-list

argument was specified.
LIB$_INVSTRDES Invalid string descriptor.
LIB$_NOCLI No CLI present to perform function. The calling

process did not have a CLI to perform the
function or the CLI did not support the request
type. Note that an image run as a subprocess or
detached process does not have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an
error status which was not recognized. This
error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL
command language interpreter, please report the
problem to your HP support representative.

Example

!+
! Initialize value for logical name MY_LOG
!-
SYMBOL$ = ’MY_LOG’
SETVAL$ = ’OFF’
CALL LIB$SET_LOGICAL (SYMBOL$, SETVAL$)
END

The BASIC program above sets the logical MY_LOG to OFF. This value can be
displayed after the program is run with SHOW LOGICAL as follows:

$ SHOW LOGICAL MY_LOG
"MY_LOG" = "OFF" (LNM$PROCESS_TABLE)

lib–490

LIB$ Routines
LIB$SET_SYMBOL

LIB$SET_SYMBOL
Set Value of CLI Symbol

The Set Value of CLI Symbol routine requests the calling process’s command
language interpreter (CLI) to define or redefine a CLI symbol.

Format

LIB$SET_SYMBOL symbol ,value-string [,table-type-indicator]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

symbol
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the symbol to be defined or modified by LIB$SET_SYMBOL. The
symbol argument is the address of a descriptor pointing to this symbol string. If
you redefine a previously defined CLI symbol, the symbol value is modified to the
new value that you provide.

The symbol name is converted to uppercase and trailing blanks are removed
before use. The symbol argument must begin with a letter, a digit, a dollar sign
($), a hyphen (-), or an underscore (_). The maximum length of symbol is 255
characters.

value-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Value to be given to the symbol. The value-string argument is the address of a
descriptor pointing to this value string.

Trailing blanks are not removed from the value string before use. The maximum
length of value-string is 1024 characters. Integer values are not allowed;
LIB$SET_SYMBOL is intended to set string CLI symbols, not integer CLI
symbols.

lib–491

LIB$ Routines
LIB$SET_SYMBOL

table-type-indicator
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Indicator of the table that will contain the defined symbol. The table-type-
indicator argument is the address of a signed longword integer that is this table
indicator.

If omitted, the local symbol table is used. The following are possible values for
table-type-indicator:

Symbolic Name Value Table Used

LIB$K_CLI_LOCAL_SYM 1 Local symbol table
LIB$K_CLI_GLOBAL_SYM 2 Global symbol table

Description

LIB$SET_SYMBOL requests the calling process’s CLI to define or redefine a CLI
symbol.

CLI symbols created using LIB$SET_SYMBOL may be inaccessible by other
CLI commands. To avoid this situation, make sure that your symbol names are
alphanumeric and that the first character is alphabetic. LIB$SET_SYMBOL is
intended to set string CLI symbols, not integer CLI symbols.

LIB$K_CLI_LOCAL_SYM and LIB$K_CLI_GLOBAL_SYM are defined as
global symbols and in symbol libraries supplied by HP (macro or module name
$LIBCLIDEF).

This routine is supported for use with the DCL CLI. If used with the MCR CLI,
the error status LIB$_NOCLI will be returned. If an image is run directly as
a subprocess or as a detached process, there is no CLI present to perform this
function. In this case, the error status LIB$_NOCLI is returned.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_AMBSYMDEF Ambiguous symbol definition. The symbol name

you want to define is ambiguous when compared
with existing symbol names. This condition
might arise if abbreviated symbols have been
defined previously. See the HP OpenVMS DCL
Dictionary for more information on abbreviated
symbols.

LIB$_FATERRLIB Fatal internal error. An internal consistency
check has failed. This usually indicates
an internal error in the Run-Time Library
and should be reported to your HP support
representative.

lib–492

LIB$ Routines
LIB$SET_SYMBOL

LIB$_INSCLIMEM Insufficient CLI memory. The CLI could not
get enough virtual memory to assign another
symbol. This condition may be caused by having
too many symbols defined; deleting some symbol
definitions may make enough room for the new
symbol.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

LIB$_INVARG Invalid argument. The value of table-type-
indicator was invalid or the length of value-
string was greater than 1024 characters.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

LIB$_INVSYMNAM Invalid symbol name. The length of symbol was
greater than 255 characters or symbol did not
begin with a letter.

LIB$_NOCLI No CLI present to perform function. The calling
process did not have a CLI to perform the
function or the CLI did not support the request
type. Note that an image run as a subprocess or
detached process does not have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an
error status which was not recognized. This
error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL
command language interpreter, please report the
problem to your HP support representative.

Example

!+
! Initialize value and symbol name
!-
SYMBOL$ = ’MY_SYM’
SETVAL$ = ’ON’
CALL LIB$SET_SYMBOL (SYMBOL$, SETVAL$)
END

The BASIC program above sets the symbol MY_SYM to ON. This value can be
displayed after the program is run with SHOW SYMBOL as follows:

$ SHOW SYMBOL MY_SYM
"MY_SYM" = "ON" (LNM$PROCESS_TABLE)

lib–493

LIB$ Routines
LIB$SFREE1_DD

LIB$SFREE1_DD
Free One Dynamic String

The Free One Dynamic String routine returns the dynamically allocated storage
for a dynamic string.

Format

LIB$SFREE1_DD descriptor-address

Corresponding JSB Entry Point

LIB$SFREE1_DD6

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

descriptor-address
OpenVMS usage: descriptor
type: quadword (unsigned)
access: modify
mechanism: by reference

Dynamic descriptor specifying the area to be deallocated. The descriptor-
address argument is the address of an unsigned quadword that is this descriptor.
The descriptor is assumed to be dynamic and its class field is not checked.

Description

Before a routine deallocates a dynamic descriptor, it must use LIB$SFREE1_
DD or LIB$SFREEN_DD to deallocate the string storage space specified by
the dynamic descriptor. Otherwise, string storage is not deallocated and your
program can run out of memory.

This routine deallocates the described string space and flags the descriptor as
describing no string at all. The descriptor’s POINTER and LENGTH fields
contain zero (0).

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error.

lib–494

LIB$ Routines
LIB$SFREEN_DD

LIB$SFREEN_DD
Free One or More Dynamic Strings

The Free One or More Dynamic Strings routine returns one or more dynamic
strings to free storage.

Format

LIB$SFREEN_DD number-of-descriptors ,first-descriptor-array

Corresponding JSB Entry Point

LIB$SFREEN_DD6

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

number-of-descriptors
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Number of adjacent descriptors freed by LIB$SFREEN_DD. The number-of-
descriptors argument contains the address of an unsigned longword that is this
number. The deallocated area is returned to free storage.

first-descriptor-array
OpenVMS usage: descriptor_array
type: quadword (unsigned)
access: modify
mechanism: by reference, array reference

First descriptor of an array of descriptors. The first-descriptor-array argument
contains the address of this first descriptor. The descriptors are assumed to be
dynamic, and their class fields are not checked.

The descriptor array must contain all 32-bit descriptors or all 64-bit descriptors.
They cannot be mixed.

Description

Before a routine that allocates space returns to its caller, it must use
LIB$SFREE1_DD or LIB$SFREEN_DD to deallocate the string storage
space specified by any descriptors located in the stack. Otherwise, space is
not deallocated and your program could run out of virtual memory.

LIB$SFREEN_DD deallocates the described string space and flags each descriptor
as describing no string at all by setting the descriptor’s POINTER and LENGTH
fields to 0 (zero).

lib–495

LIB$ Routines
LIB$SFREEN_DD

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error.

lib–496

LIB$ Routines
LIB$SGET1_DD

LIB$SGET1_DD
Get One Dynamic String

The Get One Dynamic String routine allocates dynamic virtual memory to the
string descriptor you specify.

Format

LIB$SGET1_DD word-integer-length ,descriptor-part

Corresponding JSB Entry Point

LIB$SGET1_DD_R6

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

word-integer-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Number of bytes of dynamic virtual memory to be allocated by LIB$SGET1_DD.
The word-integer-length argument is the address of an unsigned word that
contains this number. The amount of storage allocated may be rounded up
automatically.

descriptor-part
OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: write only
mechanism: by reference

Descriptor of the dynamic string to which LIB$SGET1_DD allocates the dynamic
virtual memory. The descriptor-part argument contains the address of this
descriptor.

The descriptor-part argument must contain the address of a dynamic string
descriptor; LIB$SGET1_DD returns an unpredictable result if any other type of
descriptor is specified by this argument.

The descriptor CLASS field is not checked but is set to dynamic (2). The
LENGTH field is set to word-integer-length, and the POINTER field points to
the string area allocated.

lib–497

LIB$ Routines
LIB$SGET1_DD

Description

LIB$SGET1_DD is similar to LIB$SCOPY_DXDX except that no source string is
copied. You can write anything you want in the allocated area.

If descriptor-part already has dynamic memory allocated to it, but the amount
allocated is less than word-integer-length, that space is deallocated before
LIB$SGET1_DD allocates new space.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error. An internal consistency

check has failed. This usually indicates
an internal error in the Run-Time Library
and should be reported to your HP support
representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

lib–498

LIB$ Routines
LIB$SGET1_DD_64 (Alpha and I64 Only)

LIB$SGET1_DD_64 (Alpha and I64 Only)
Get One Dynamic String

The Get One Dynamic String routine allocates dynamic virtual memory to the
string descriptor you specify.

Format

LIB$SGET1_DD_64 quad-integer-length ,descriptor-part

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

quad-integer-length
OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: read only
mechanism: by reference

Number of bytes of dynamic virtual memory to be allocated by LIB$SGET1_DD_
64. The quad-integer-length argument is the address of an unsigned quadword
that contains this number. The amount of storage allocated can be rounded up
automatically.

descriptor-part
OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: write only
mechanism: by reference

Descriptor of the dynamic string to which LIB$SGET1_DD_64 allocates the
dynamic virtual memory. The descriptor-part argument contains the address of
this descriptor.

The descriptor-part argument must contain the address of a dynamic string
descriptor; LIB$SGET1_DD_64 returns an unpredictable result if any other type
of descriptor is specified by this argument.

The descriptor CLASS field is not checked but is set to dynamic (2). The
LENGTH field is set to quad-integer-length, and the POINTER field points
to the string area allocated.

Description

LIB$SGET1_DD_64 is similar to LIB$SCOPY_DXDX except that no source string
is copied. You can write anything you want in the allocated area.

If descriptor-part already has dynamic memory allocated to it, but the amount
allocated is less than quad-integer-length, that space is deallocated before
LIB$SGET1_DD_64 allocates new space.

lib–499

LIB$ Routines
LIB$SGET1_DD_64 (Alpha and I64 Only)

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error. An internal consistency

check has failed. This usually indicates
an internal error in the Run-Time Library
and should be reported to your HP support
representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

lib–500

LIB$ Routines
LIB$SHOW_TIMER

LIB$SHOW_TIMER
Show Accumulated Times and Counts

The Show Accumulated Times and Counts routine returns times and counts
accumulated since the last call to LIB$INIT_TIMER and displays them on
SYS$OUTPUT. (LIB$INIT_TIMER must be called prior to invoking this routine.)
A user-supplied action routine may change this default behavior.

Format

LIB$SHOW_TIMER [handle-address] [,code] [,user-action-procedure] [,user-argument-value]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

handle-address
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Block of storage containing the value returned by a previous call to LIB$INIT_
TIMER. The handle-address argument is the address of an unsigned longword
integer containing that value.

• If specified, the pointer must be the same value returned by a previous call to
LIB$INIT_TIMER.

• If omitted, LIB$SHOW_TIMER will use a block of memory allocated by
LIB$INIT_TIMER.

• If handle-address is omitted and LIB$INIT_TIMER has not been called
previously, the error LIB$_INVARG is returned. LIB$INIT_TIMER must be
called prior to a call to LIB$SHOW_TIMER.

LIB$SHOW_TIMER assumes that LIB$INIT_TIMER has been previously called,
and that the results of that call are stored either in a block pointed to by
handle-address, or in the memory allocated by LIB$INIT_TIMER.

Note that the handle-address argument is the same as the context argument
used in the LIB$INIT_TIMER call.

code
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Integer specifying the statistic you want; if it is omitted or zero, all five statistics
are returned on one line. The code argument is the address of a signed longword
integer containing the statistic code.

lib–501

LIB$ Routines
LIB$SHOW_TIMER

The following values are allowed for the code argument:

Value Description

1 Elapsed time
2 CPU time
3 Buffered I/O
4 Direct I/O
5 Page faults

user-action-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied action routine called by LIB$SHOW_TIMER. The default action of
LIB$SHOW_TIMER is to write the results to SYS$OUTPUT. An action routine
is useful if you want to write the results to a file or, in general, anywhere other
than SYS$OUTPUT.

The action routine returns either a success or failure condition value; this status
is returned to the calling program as the value of LIB$SHOW_TIMER.

user-argument-value
OpenVMS usage: user-arg
type: longword (unsigned) (on VAX systems)

quadword (unsigned) (on Alpha and I64 systems)
access: read only
mechanism: by value

A value to be passed to the action routine without interpretation. If omitted,
LIB$SHOW_TIMER passes a zero by value to the user routine.

Description

LIB$SHOW_TIMER returns the times and counts accumulated since the last
call to LIB$INIT_TIMER. By default, when neither code nor user-action-
procedure is specified in the call, LIB$SHOW_TIMER writes to SYS$OUTPUT
a line giving the following information:

Shown on Line Description

ELAPSED = dddd hh:mm:ss.cc Elapsed real time
CPU = hhhh:mm:ss.cc Elapsed CPU time
BUFIO = nnnn Count of buffered I/O operations
DIRIO = nnnn Count of direct I/O operations
PAGEFAULTS = nnnn Count of page faults

Any one or all five statistics can be written to SYS$OUTPUT or passed to your
user-supplied action routine for other processing.

lib–502

LIB$ Routines
LIB$SHOW_TIMER

Call Format for an Action Routine
Action routine is a user-supplied routine called by LIB$SHOW_TIMER. The
action routine is used when you want to write results to anywhere other than
SYS$OUTPUT. The action routine is called only when you specify the user-
action-procedure argument in the call to LIB$SHOW_TIMER.

LIB$SHOW_TIMER calls the action routine using this format:

user-action-procedure out-str [,user-argument-value]

out-str
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Fixed-length string containing the statistics requested. The string is formatted
exactly as it would be if written to SYS$OUTPUT. The leading character is
blank.

user-argument-value
OpenVMS usage: user-arg
type: longword (unsigned) (on VAX systems)

quadword (unsigned) (on Alpha and I64 systems)
access: read only
mechanism: by value

A value passed to LIB$SHOW_TIMER. The user argument is passed without
interpretation to the action routine.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. Either code or handle-

address was invalid.

Any condition values returned by LIB$PUT_OUTPUT or your action routine.

Example

PROGRAM SHOW_TIMER(INPUT,OUTPUT);

{+}
{ This Pascal example demonstrates how to use LIB$SHOW_TIMER.
{-}

VAR
RETURNED_STATUS : INTEGER;

[EXTERNAL] FUNCTION LIB$INIT_TIMER(
HANDLE_ADR : [REFERENCE] UNSIGNED := %IMMED 0
) : INTEGER; EXTERNAL;

[EXTERNAL] FUNCTION LIB$SHOW_TIMER(
HANDLE_ADR : [REFERENCE] UNSIGNED := %IMMED 0;
CODE : INTEGER;
[IMMEDIATE,UNBOUND]
ROUTINE ACTION_RTN(OUT_STR : [CLASS_S] PACKED ARRAY [L..U:INTEGER] OF CHAR;

USER_ARG : INTEGER) := %IMMED 0;
USER_ARG : INTEGER := %IMMED 0
) : INTEGER; EXTERNAL;

lib–503

LIB$ Routines
LIB$SHOW_TIMER

[EXTERNAL] FUNCTION LIB$STOP(
CONDITION_STATUS : [IMMEDIATE,UNSAFE] UNSIGNED;
FAO_ARGS : [IMMEDIATE,UNSAFE,LIST] UNSIGNED
) : INTEGER; EXTERNAL;

ROUTINE USER_ACTION_RTN(
OUT_STR : [CLASS_S] PACKED ARRAY [L..U:INTEGER] OF CHAR;
USER_ARG : INTEGER);

BEGIN
WRITELN(’User argument is ’,USER_ARG:1);
WRITELN(OUT_STR);
END;

BEGIN

{+}
{ Call LIB$INIT_TIMER to initialize RTL internal counters.
{-}

RETURNED_STATUS := LIB$INIT_TIMER;
IF NOT ODD(RETURNED_STATUS)
THEN

LIB$STOP(RETURNED_STATUS);

{+}
{ Print a line of text to waste time.
{-}

WRITELN(’Spend time to acquire elapsed real time and page faults’);

{+}
{ Call LIB$SHOW_TIMER to display counters.
{-}

RETURNED_STATUS := LIB$SHOW_TIMER(,0,USER_ACTION_RTN,5);
END.

This Pascal program demonstrates how to call LIB$SHOW_TIMER. The output
generated by this Pascal example is as follows:

$ RUN SHOW_TIMER
Spend time to acquire elapsed real time and page faults
User argument is 5
ELAPSED: 0 00:00:00.44 CPU: 0:00:00.04
BUFIO: 1 DIRIO: 0 FAULTS: 18

lib–504

LIB$ Routines
LIB$SHOW_VM

LIB$SHOW_VM
Show Virtual Memory Statistics

The Show Virtual Memory Statistics routine returns the statistics
accumulated from calls to LIBGET_VM/LIBFREE_VM and LIB$GET_VM_
PAGE/LIB$FREE_VM_PAGE. †

Format

LIB$SHOW_VM [code] [,user-action-procedure] [,user-specified-argument]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

code
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Code specifying any one of the statistics to be written to SYS$OUTPUT or passed
to an action routine for processing. The code argument is the address of a signed
longword integer containing the statistic code. This is an optional argument.
If the statistic code is omitted or is zero, statistics for values 1, 2, and 3 are
returned on one line.

The following values are allowed for the code argument:

Value Statistic

0 Statistics for values 1, 2, and 3 are returned.
1 Number of successful calls to LIB$GET_VM.
2 Number of successful calls to LIB$FREE_VM.
3 Number of bytes allocated by LIB$GET_VM but not yet deallocated by

LIB$FREE_VM.
4 Statistics for values 5, 6, and 7 are returned.
5 Number of calls to LIB$GET_VM_PAGE.
6 Number of calls to LIB$FREE_VM_PAGE.
7 Number of VAX pages or Alpha pagelets allocated by LIB$GET_VM_

PAGE but not yet deallocated by LIB$FREE_VM_PAGE.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–505

LIB$ Routines
LIB$SHOW_VM

user-action-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied action routine called by LIB$SHOW_VM. By default, LIB$SHOW_
VM returns statistics to SYS$OUTPUT. An action routine is useful when
you want to return statistics to a file or, in general, to any place other than
SYS$OUTPUT. The routine returns either a success or failure condition value,
which will be returned as the value of LIB$SHOW_VM.

For more information on the action routine, see Call Format for an Action Routine
in the Description section.

user-specified-argument
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

A 32-bit value to be passed directly to the action routine without interpretation.
That is, the contents of the argument list entry user-specified-argument are
copied to the argument list entry for user-action-procedure.

Description

LIB$SHOW_VM returns the statistics accumulated from calls to LIB$GET_
VM/LIB$FREE_VM and LIB$GET_VM_PAGE/LIB$FREE_VM_PAGE. By default,
with neither code nor user-action-procedure specified in the call, LIB$SHOW_
VM writes a line giving the following information to SYS$OUTPUT:

mmm calls to LIB$GET_VM, nnn calls to LIB$FREE_VM, ppp bytes still allocated

Optionally, any one of six statistics can be output to SYS$OUTPUT and/or the
line of information can be passed to a user-specified ‘‘action routine’’ for processing
different from the default.

Call Format for an Action Routine
The action routine is a user-supplied routine that LIB$SHOW_VM calls if you
specify the user-action-procedure argument in the call to LIB$SHOW_VM.

The call format for an action routine is:

user-action-procedure resultant-string ,user-specified-argument

resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Statistics supplied by LIB$SHOW_VM. The resultant-string argument is
the address of a descriptor pointing to an address into which LIB$SHOW_VM
writes the statistics. The string is formatted exactly as it would be if written
to SYS$OUTPUT. The first character is a blank; carriage-return/line-feed
combinations are not included.

lib–506

LIB$ Routines
LIB$SHOW_VM

user-specified-argument
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

The 32-bit value passed to LIB$SHOW_VM is passed to the action routine
without interpretation. If the user-specified-argument argument is omitted in
the call to LIB$SHOW_VM, a zero is passed by value to the user routine.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid arguments. This can be caused by an

invalid value for code.

Any condition values returned by LIB$PUT_OUTPUT or your action routine.

lib–507

LIB$ Routines
LIB$SHOW_VM_64 (Alpha and I64 Only)

LIB$SHOW_VM_64 (Alpha and I64 Only)
Show Virtual Memory Statistics

The Show Virtual Memory Statistics routine returns the statistics accumulated
from calls to LIBGET_VM_64/LIBFREE_VM_64 and LIB$GET_VM_PAGE_
64/LIB$FREE_VM_PAGE_64.

Format

LIB$SHOW_VM_64 [code] [,user-action-procedure] [,user-specified-argument]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

code
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Code specifying any one of the statistics to be written to SYS$OUTPUT or passed
to an action routine for processing. The code argument is the address of a signed
quadword integer containing the statistic code. This is an optional argument.
If the statistic code is omitted or is zero, statistics for values 1, 2, and 3 are
returned on one line.

The following values are allowed for the code argument:

Value Statistic

0 Statistics for values 1, 2, and 3 are returned.
1 Number of successful calls to LIB$GET_VM_64.
2 Number of successful calls to LIB$FREE_VM_64.
3 Number of bytes allocated by LIB$GET_VM_64 but not yet deallocated

by LIB$FREE_VM_64.
4 Statistics for values 5, 6, and 7 are returned.
5 Number of calls to LIB$GET_VM_PAGE_64.
6 Number of calls to LIB$FREE_VM_PAGE_64.
7 Number of Alpha or I64 pagelets allocated by LIB$GET_VM_PAGE_64

but not yet deallocated by LIB$FREE_VM_PAGE_64.

lib–508

LIB$ Routines
LIB$SHOW_VM_64 (Alpha and I64 Only)

user-action-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied action routine called by LIB$SHOW_VM_64. By default,
LIB$SHOW_VM_64 returns statistics to SYS$OUTPUT. An action routine is
useful when you want to return statistics to a file or, in general, to any place
other than SYS$OUTPUT. The routine returns either a success or failure
condition value, which will be returned as the value of LIB$SHOW_VM_64.

For more information on the action routine, see Call Format for an Action Routine
in the Description section.

user-specified-argument
OpenVMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by value

A 64-bit value to be passed directly to the action routine without interpretation.
That is, the contents of the argument list entry user-specified-argument are
copied to the argument list entry for user-action-procedure.

Description

LIB$SHOW_VM_64 returns the statistics accumulated from calls to LIB$GET_
VM_64/LIB$FREE_VM_64 and LIB$GET_VM_PAGE_64/LIB$FREE_VM_PAGE_
64. By default, with neither code nor user-action-procedure specified in
the call, LIB$SHOW_VM_64 writes a line giving the following information to
SYS$OUTPUT:

mmm calls to LIB$GET_VM_64, nnn calls to LIB$FREE_VM_64, ppp bytes still
allocated

Optionally, any one of six statistics can be output to SYS$OUTPUT and/or the
line of information can be passed to a user-specified ‘‘action routine’’ for processing
different from the default.

Call Format for an Action Routine
The action routine is a user-supplied routine that LIB$SHOW_VM_64 calls if you
specify the user-action-procedure argument in the call to LIB$SHOW_VM_64.

The call format for an action routine is:

user-action-procedure resultant-string ,user-specified-argument

resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Statistics supplied by LIB$SHOW_VM_64. The resultant-string argument
is the address of a descriptor pointing to an address into which LIB$SHOW_
VM_64 writes the statistics. The string is formatted exactly as it would be if
written to SYS$OUTPUT. The first character is a blank; carriage-return/line-feed
combinations are not included.

lib–509

LIB$ Routines
LIB$SHOW_VM_64 (Alpha and I64 Only)

user-specified-argument
OpenVMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by value

The 64-bit value passed to LIB$SHOW_VM_64 is passed to the action routine
without interpretation. If the user-specified-argument argument is omitted in
the call to LIB$SHOW_VM_64, a zero is passed by value to the user routine.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid arguments. This can be caused by an

invalid value for code.

Any condition values returned by LIB$PUT_OUTPUT or your action routine.

lib–510

LIB$ Routines
LIB$SHOW_VM_ZONE

LIB$SHOW_VM_ZONE
Return Information About a Zone

The Return Information About a Zone routine returns formatted information
about a zone in the 32-bit virtual address space, detailing such information as the
zone’s name, characteristics, and areas, and then passes the information to the
specified or default action routine. †

Format

LIB$SHOW_VM_ZONE zone-id [,detail-level] [,user-action-procedure] [,user-arg]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

zone-id
OpenVMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id argument is the address of an unsigned longword
containing this identifier. Use zero to indicate the 32-bit default zone.

detail-level
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

An identifier code specifying the level of detail required by the user. The detail-
level argument is the address of a signed longword containing this code. The
default is minimal information. The following are valid values for detail-level:

0 zone-id and name
1 zone-id, name, algorithm, flags, and size information
2 zone-id, name, algorithm, flags, size information, cache information, and

area summary
3 zone-id, name, algorithm, flags, size information, cache information, area

summary, and queue validation

user-action-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–511

LIB$ Routines
LIB$SHOW_VM_ZONE

Optional user-supplied action routine called by LIB$SHOW_VM_ZONE. By
default, LIB$SHOW_VM_ZONE prints statistics to SYS$OUTPUT by means
of LIB$PUT_OUTPUT. An action routine is useful when you want to return
statistics to a file or, in general, to any location other than SYS$OUTPUT. If
user-action-procedure fails, LIB$SHOW_VM_ZONE terminates and returns a
failure code. Success codes are ignored.

For more information on the action routine, see the Description section.

user-arg
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Optional 32-bit value to be passed directly to the action routine without
interpretation. That is, the contents of the argument list entry user-arg are
copied to the argument list entry for user-action-procedure.

Description

LIB$SHOW_VM_ZONE returns formatted information about the specified zone
and passes it to the action routine. The detail-level argument determines
the degree of detail of the zone information returned, and this information is
formatted into a readable display and passed to either a user action routine or to
LIB$PUT_OUTPUT.

The action routine is a user-supplied routine that LIB$SHOW_VM_ZONE calls if
you specify the action-routine argument in the call to LIB$SHOW_VM_ZONE.
If you do not specify action-routine, the information is passed to LIB$PUT_
OUTPUT for output to SYS$OUTPUT. The call format for an action routine is as
follows:

action-routine string, user-arg

Arguments

string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Information supplied by LIB$SHOW_VM_ZONE. The string argument is the
address of a descriptor pointing to an address into which LIB$SHOW_VM_ZONE
writes the requested information. The string is formatted exactly as it would be
if written to SYS$OUTPUT.

user-arg
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

The 32-bit value passed to LIB$SHOW_VM_ZONE is passed to the action routine
without interpretation. If the user-arg argument is omitted in the call to
LIB$SHOW_VM_ZONE, a zero is passed by value to the user routine.

If no zone-id is specified (0 is passed), the 32-bit default zone is used.

lib–512

LIB$ Routines
LIB$SHOW_VM_ZONE

You must ensure that you have exclusive access to the zone while information is
being displayed. Results are unpredictable and may be inconsistent if another
thread of control modifies the zone while this routine is displaying data or
scanning control blocks.

While scanning the queues and free lists, this routine may detect errors.

If the lookaside list summary discovers a block improperly linked into the list
so that the list appears disjointed, the count of the number of blocks of that
particular size will be displayed as asterisks.

Table lib–7 lists error and warning messages that can be displayed during the
lookaside list and area free list scans. The format is:

**** ERROR -- error description ****
**** WARNING -- warning description ****

Table lib–7 LIB$SHOW_VM_ZONE Error and Warning Messages

Error Message Description

Invalid block size The size of the block is either not large enough
to contain the necessary queue links or is
unreasonably large. The size field has been
corrupted. Therefore, the size of the block is
reduced so the block to be dumped fits within the
area.

Block not owned by zone The current block is not within a section of the
virtual address space controlled by this zone.
It is possibly attempting to free a block not
originally allocated from this zone.

Block extends past the end of
area; truncated

The end of the block is not in the area from
which the block has been allocated. The size field
may have been corrupted. Therefore, the size of
the block is reduced so the block to be dumped
fits within the area.

Block extends into
‘‘unallocated’’ block, truncated

The end of the block extends past the allocated
section of the area. The size field may have been
corrupted. Therefore, the size of the block is
reduced so the block to be dumped fits within the
area.

Current block not completely
accessible

The current block extends into a nonexistent part
of the virtual address space. The size field may
have been corrupted. Therefore, the size of the
block is reduced so the block to be dumped fits
within the area.

Back link does not return to
previous block

The back link in a doubly linked list does not
point to the previous block.

Forward link does not point
to valid address

The forward link of current block points to a
location that is not in the virtual address space.

Free-fill mismatch One of the locations filled when the block was
freed has been modified.

(continued on next page)

lib–513

LIB$ Routines
LIB$SHOW_VM_ZONE

Table lib–7 (Cont.) LIB$SHOW_VM_ZONE Error and Warning Messages

Error Message Description

Boundary tag mismatch One of the boundary tags of the block is not
valid.

Warning Description

Forward link of current block
may not be valid

The back link of the block pointed to by the
forward link of the current block does not point
to the current block.

Block at nnnnnnnn is not
accessible

The block at location nnnnnnnn could not be
accessed and cannot be dumped.

Block truncated to nnnnnnnn
bytes to prevent ACCVIO

The block to be dumped extends into the
inaccessible part of the address space. The
size of the block is reduced so that the block to
be dumped fits within the accessible addresses.

When a block forward link is suspected of pointing to an invalid next block,
the information from the next block is replaced by asterisks. The following is a
sample error display:

**** ERROR -- forward-link does not point to valid address ****

Link Analysis for Current Block:

Previous Current Next
-------- -------- --------

Block adr : 0014B270 0014C200 6B6E754A

Forw link (abs): 0014C200 6B6E754A ********

Block size = 32
Block contents:

00000000 00000000 6B6E754A 00000020 ...Junk........ 00000 0014C200
0014B270 00000008 00000000 00000000p².. 00010 0014C210

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADZONE Invalid zone. Routine was called with a zone-id

that does not represent a valid VM zone.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVARG Invalid argument.
LIB$_INVOPEZON Invalid operation for zone; invalid use of

unspecified user zone action routine.
LIB$_NOTFOU Could not find another VM zone (alternate

success status).
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by the user-formatted output action routine or
LIB$PUT_OUTPUT.

lib–514

LIB$ Routines
LIB$SHOW_VM_ZONE

Examples

1. #include <lib$routines.h>

main()
{

long zone_id = 0;
long detail_level = 1;

LIB$SHOW_VM_ZONE(&zone_id, &detail_level);
}

An example of the output generated by this C program using detail-level 1
is as follows:

Zone Id = 7FB96160, Zone name = "DEFAULT_ZONE"

Algorithm = LIB$K_VM_FIRST_FIT

Flags = 00000020
LIB$M_VM_EXTEND_AREA

Initial size = 124 pages Current size = 0 pages in 0 areas
Extend size = 128 pages Page limit = None

Requests are rounded up to a multiple of 8 bytes,
naturally aligned on 8 byte boundaries

0 bytes have been freed and not yet reallocated

72 bytes are used for zone and area control blocks, or 100.0% overhead

2. #include <descrip.h>
#include <libvmdef.h>
#include <lib$routines.h>
#include <stdlib.h>

main()
{

long zone_id;
long algorithm = LIB$K_VM_QUICK_FIT;
long algorithm_arg = 16;
long flags = LIB$M_VM_FREE_FILL0 | LIB$M_VM_EXTEND_AREA;
long detail_level = 3;
$DESCRIPTOR(zone_name, "Mix of lookaside list and area blocks");
int i;

#define NUM_BLOCKS 250
char *blocks[NUM_BLOCKS];
long sizes[NUM_BLOCKS];

LIB$CREATE_VM_ZONE(&zone_id, &algorithm, &algorithm_arg, &flags,
0, 0, 0, 0, 0, 0, /* Omitted arguments */
&zone_name, 0, 0);

for (i = 0; i < NUM_BLOCKS; i++)
{
sizes[i] = rand() % 300 + 9;
LIB$GET_VM(&sizes[i], &blocks[i], &zone_id);
}

for (i = 0; i < NUM_BLOCKS; i++)
LIB$FREE_VM(&sizes[i], &blocks[i], &zone_id);

LIB$SHOW_VM_ZONE(&zone_id, &detail_level);
}

lib–515

LIB$ Routines
LIB$SHOW_VM_ZONE

An example of the output generated by this C program using detail-level 3
is as follows:

Zone Id = 00045000, Zone name = "Mix of lookaside list and area blocks"

Algorithm = LIB$K_VM_QUICK_FIT with 16 Lookaside Lists ranging from
a minimum blocksize of 8, to a maximum blocksize of 128

Flags = 00000028
LIB$M_VM_FREE_FILL0
LIB$M_VM_EXTEND_AREA

Initial size = 16 pages Current size = 96 pages in 1 area
Extend size = 16 pages Page limit = None

Requests are rounded up to a multiple of 8 bytes,
naturally aligned on 8 byte boundaries

41512 bytes have been freed and not yet reallocated

312 bytes are used for zone and area control blocks, or 0.6% overhead

Quick Fit Lookaside List Summary:

List Block Number of
number size blocks
------ ---------- ----------

2 16 7
3 24 4
4 32 4
5 40 6
6 48 5
7 56 6
8 64 6
9 72 5
10 80 6
11 88 3
12 96 8
13 104 9
14 112 9
15 120 5
16 128 10

Area Summary:

First Last Pages Bytes not yet
address address assigned allocated
-------- -------- ---------- -------------
00045800 000517FF 96 7640

Scanning Lookaside Lists in Zone Control Block
Scanning Free List for Area at 00045800
Number of blocks = 62, Min blocksize = 136, Max blocksize = 3160

lib–516

LIB$ Routines
LIB$SHOW_VM_ZONE_64 (Alpha and I64 Only)

LIB$SHOW_VM_ZONE_64 (Alpha and I64 Only)
Return Information About a Zone

The Return Information About a Zone routine returns formatted information
about a zone in the 64-bit virtual address space, detailing such information as the
zone’s name, characteristics, and areas, and then passes the information to the
specified or default action routine.

Format

LIB$SHOW_VM_ZONE_64 zone-id [,detail-level] [,user-action-procedure] [,user-arg]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

zone-id
OpenVMS usage: identifier
type: quadword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id argument is the address of an unsigned quadword
containing this identifier. Use zero to indicate the 64-bit default zone.

detail-level
OpenVMS usage: quadword_signed
type: quadword (signed)
access: read only
mechanism: by reference

An identifier code specifying the level of detail required by the user. The detail-
level argument is the address of a signed quadword containing this code. The
default is minimal information. The following are valid values for detail-level:

0 zone-id and name
1 zone-id, name, algorithm, flags, and size information
2 zone-id, name, algorithm, flags, size information, cache information, and

area summary
3 zone-id, name, algorithm, flags, size information, cache information, area

summary, and queue validation

user-action-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

Optional user-supplied action routine called by LIB$SHOW_VM_ZONE_64.
By default, LIB$SHOW_VM_ZONE_64 prints statistics to SYS$OUTPUT by

lib–517

LIB$ Routines
LIB$SHOW_VM_ZONE_64 (Alpha and I64 Only)

means of LIB$PUT_OUTPUT. An action routine is useful when you want to
return statistics to a file or, in general, to any location other than SYS$OUTPUT.
If user-action-procedure fails, LIB$SHOW_VM_ZONE_64 terminates and
returns a failure code. Success codes are ignored.

For more information on the action routine, see the Description section.

user-arg
OpenVMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by value

Optional 64-bit value to be passed directly to the action routine without
interpretation. That is, the contents of the argument list entry user-arg are
copied to the argument list entry for user-action-procedure.

Description

LIB$SHOW_VM_ZONE_64 returns formatted information about the specified
zone and passes it to the action routine. The detail-level argument determines
the degree of detail of the zone information returned, and this information is
formatted into a readable display and passed to either a user action routine or to
LIB$PUT_OUTPUT.

The action routine is a user-supplied routine that LIB$SHOW_VM_ZONE_64
calls if you specify the action-routine argument in the call to LIB$SHOW_VM_
ZONE_64. If you do not specify action-routine, the information is passed to
LIB$PUT_OUTPUT for output to SYS$OUTPUT. The call format for an action
routine is as follows:

action-routine string, user-arg

Arguments

string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Information supplied by LIB$SHOW_VM_ZONE_64. The string argument is
the address of a descriptor pointing to an address into which LIB$SHOW_VM_
ZONE_64 writes the requested information. The string is formatted exactly as it
would be if written to SYS$OUTPUT.

user-arg
OpenVMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by value

The 64-bit value passed to LIB$SHOW_VM_ZONE_64 is passed to the action
routine without interpretation. If the user-arg argument is omitted in the call to
LIB$SHOW_VM_ZONE_64, a zero is passed by value to the user routine.

If no zone-id is specified (0 is passed), the 64-bit default zone is used.

lib–518

LIB$ Routines
LIB$SHOW_VM_ZONE_64 (Alpha and I64 Only)

You must ensure that you have exclusive access to the zone while information is
being displayed. Results are unpredictable and may be inconsistent if another
thread of control modifies the zone while this routine is displaying data or
scanning control blocks.

While scanning the queues and free lists, this routine may detect errors.

If the lookaside list summary discovers a block improperly linked into the list
so that the list appears disjointed, the count of the number of blocks of that
particular size will be displayed as asterisks.

Table lib–8 lists error and warning messages that may be displayed during the
lookaside list and area free list scans. The format is as follows:

**** ERROR -- error description ****
**** WARNING -- warning description ****

Table lib–8 LIB$SHOW_VM_ZONE_64 Error and Warning Messages

Error Message Description

Invalid block size The size of the block is either not large enough
to contain the necessary queue links or is
unreasonably large. The size field has been
corrupted. Therefore, the size of the block is
reduced so the block to be dumped fits within the
area.

Block not owned by zone The current block is not within a section of the
virtual address space controlled by this zone. It
may be attempting to free a block not originally
allocated from this zone.

Block extends past the end of
area; truncated

The end of the block is not in the area from
which the block has been allocated. The size field
may have been corrupted. Therefore, the size of
the block is reduced so the block to be dumped
fits within the area.

Block extends into
‘‘unallocated’’ block, truncated

The end of the block extends past the allocated
section of the area. The size field may have been
corrupted. Therefore, the size of the block is
reduced so the block to be dumped fits within the
area.

Current block not completely
accessible

The current block extends into a nonexistent part
of the virtual address space. The size field may
have been corrupted. Therefore, the size of the
block is reduced so the block to be dumped fits
within the area.

Back link does not return to
previous block

The back link in a doubly linked list does not
point to the previous block.

Forward link does not point
to valid address

The forward link of current block points to a
location that is not in the virtual address space.

Free-fill mismatch One of the locations filled when the block was
freed has been modified.

(continued on next page)

lib–519

LIB$ Routines
LIB$SHOW_VM_ZONE_64 (Alpha and I64 Only)

Table lib–8 (Cont.) LIB$SHOW_VM_ZONE_64 Error and Warning Messages

Error Message Description

Boundary tag mismatch One of the boundary tags of the block is not
valid.

Warning Description

Forward link of current block
may not be valid

The back link of the block pointed to by the
forward link of the current block does not point
to the current block.

Block at nnnnnnnn is not
accessible

The block at location nnnnnnnn could not be
accessed and cannot be dumped.

Block truncated to nnnnnnnn
bytes to prevent ACCVIO

The block to be dumped extends into the
inaccessible part of the address space. The
size of the block is reduced so that the block to
be dumped fits within the accessible addresses.

When a block forward link is suspected of pointing to an invalid next block,
the information from the next block is replaced by asterisks. The following is a
sample error display:

**** ERROR -- forward-link does not point to valid address ****

Link Analysis for Current Block:

Previous Current Next
-------- -------- --------

Block adr : 00000001C0000050 00000001C0002040 4B4E556A6B6E754A

Forw link (abs): 00000001C0002040 4B4E556A6B6E754A ****************

Block size = 64

Block contents:

4B4E556A 6B6E754A 00000000 00000040 @.......JunkjUNK 00000 00000001C0002040
00000000 00000000 00000000 00000000 00010 00000001C0002050

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADZONE Invalid zone. Routine was called with a zone-id

that does not represent a valid VM zone.
LIB$_INVARG Invalid argument.
LIB$_INVOPEZON Invalid operation for zone; invalid use of

unspecified user zone action routine.
LIB$_NOTFOU Could not find another VM zone (alternate

success status).
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by the user-formatted output action routine or
LIB$PUT_OUTPUT.

lib–520

LIB$ Routines
LIB$SHOW_VM_ZONE_64 (Alpha and I64 Only)

Examples

1. #include <lib$routines.h>

main()
{

__int64 zone_id = 0;
__int64 detail_level = 1;

LIB$SHOW_VM_ZONE_64(&zone_id, &detail_level);
}

An example of the output generated by this C program using detail-level 1
is as follows:

Zone Id = 0000000000020040, Zone name = "DEFAULT_ZONE"

Algorithm = LIB$K_VM_FIRST_FIT

Flags = 00000020
LIB$M_VM_EXTEND_AREA

Initial size = 124 pages Current size = 0 pages in 0 areas
Extend size = 128 pages Page limit = None

Requests are rounded up to a multiple of 16 bytes,
naturally aligned on 16 byte boundaries

0 bytes have been freed and not yet reallocated

128 bytes are used for zone and area control blocks, or 100.0% overhead

2. #include <descrip.h>
#include <libvmdef.h>
#include <lib$routines.h>
#include <stdlib.h>

#pragma pointer_size(long)

main()
{

__int64 zone_id;
__int64 algorithm = LIB$K_VM_QUICK_FIT;
__int64 algorithm_arg = 16;
__int64 flags = LIB$M_VM_FREE_FILL0 | LIB$M_VM_EXTEND_AREA;
__int64 detail_level = 3;
$DESCRIPTOR(zone_name, "Lookaside list and area blocks");
int i;

#define NUM_BLOCKS 250
char *blocks[NUM_BLOCKS];
__int64 sizes[NUM_BLOCKS];

LIB$CREATE_VM_ZONE_64(&zone_id, &algorithm, &algorithm_arg, &flags,
0, 0, 0, 0, 0, 0, /* Omitted arguments */
&zone_name, 0, 0);

for (i = 0; i < NUM_BLOCKS; i++)
{
sizes[i] = rand() % 400 + 17;
LIB$GET_VM_64(&sizes[i], &blocks[i], &zone_id);
}

for (i = 0; i < NUM_BLOCKS; i++)
LIB$FREE_VM_64(&sizes[i], &blocks[i], &zone_id);

LIB$SHOW_VM_ZONE_64(&zone_id, &detail_level);
}

lib–521

LIB$ Routines
LIB$SHOW_VM_ZONE_64 (Alpha and I64 Only)

An example of the output generated by this C program using detail-level 3
is as follows:

Zone Id = 00000001C0002000, Zone name = "Lookaside list and area blocks"

Algorithm = LIB$K_VM_QUICK_FIT with 16 Lookaside Lists ranging from
a minimum blocksize of 16, to a maximum blocksize of 256

Flags = 00000028
LIB$M_VM_FREE_FILL0
LIB$M_VM_EXTEND_AREA

Initial size = 16 pages Current size = 112 pages in 1 area
Extend size = 16 pages Page limit = None

Requests are rounded up to a multiple of 16 bytes,
naturally aligned on 16 byte boundaries

56992 bytes have been freed and not yet reallocated

576 bytes are used for zone and area control blocks, or 0.9% overhead

Quick Fit Lookaside List Summary:

List Block Number of
number size blocks
------ ---------- ----------

2 32 6
3 48 7
4 64 7
5 80 14
6 96 6
7 112 12
8 128 14
9 144 14
10 160 7
11 176 14
12 192 8
13 208 9
14 224 8
15 240 12
16 256 10

Area Summary:

First Last Pages Bytes not yet
address address assigned allocated
-------- -------- ---------- -------------
00000001C0004000 00000001C0011FFF 112 352

Scanning Lookaside Lists in Zone Control Block
Scanning Free List for Area at 00000001C0004000
Number of blocks = 63, Min blocksize = 272, Max blocksize = 1360

lib–522

LIB$ Routines
LIB$SIGNAL

LIB$SIGNAL
Signal Exception Condition

The Signal Exception Condition routine generates a signal that indicates that an
exception condition has occurred in your program. If a condition handler does not
take corrective action and the condition is severe, then your program will exit.

Format

LIB$SIGNAL condition-value [,condition-argument...] [,condition-value-n [,condition-argument-n...]...]

Returns

None.

Arguments

condition-value
OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

OpenVMS 32-bit condition value. The condition-value argument is an unsigned
longword that contains this condition value.

The HP OpenVMS Programming Concepts Manual explains the format of an
OpenVMS condition value.

condition-argument
OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by value

As many arguments as are required to process the exception specified by
condition-value. Note that these arguments are also used as FAO (formatted
ASCII output) arguments to format a message.

The HP OpenVMS Programming Concepts Manual explains the message format.

condition-value-n
OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

OpenVMS 32-bit condition value. The optional condition-value-n argument
is an unsigned longword that contains this condition value. The calling routine
can specify additional conditions to be processed by specifying condition-
value-2 through condition-value-n, with each condition value followed by any
arguments required to process the condition specified. However, the total number
of arguments in the call to LIB$SIGNAL must not exceed 253.

The HP OpenVMS Programming Concepts Manual explains the format of an
OpenVMS condition value.

lib–523

LIB$ Routines
LIB$SIGNAL

condition-argument-n
OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by value

As many arguments as are required to create the message reporting the exception
specified by condition-value-n.

The HP OpenVMS Programming Concepts Manual explains the message format.

Description

A routine calls LIB$SIGNAL to indicate an exception condition or output a
message rather than return a status code to its caller.

LIB$SIGNAL creates a signal argument vector that contains all the arguments
passed to it, with the PC and PSL (VAX) or PS (Alpha or I64) appended to it.
LIB$SIGNAL also creates a mechanism argument vector that contains the state
of the process at the time of the exception. LIB$SIGNAL then searches for a
condition handler to process the exception condition.

LIB$SIGNAL first examines the primary and secondary exception vectors, then
scans the stack, beginning with the most recent frame, searching for declared
condition handlers. LIB$SIGNAL calls, in succession, each condition handler it
finds, until a condition handler

• Returns a continue code

• Calls system service $UNWIND

• Calls LIB$STOP

LIB$SIGNAL uses each frame’s saved frame pointer (FP) to chain back through
the stack frames. The HP OpenVMS Programming Concepts Manual provides
additional information on this process.

The condition handler can do one of the following:

• Sucessfully process the condition and return a continue code (that is, any
success completion code with bit 0 set to 1). In this case, LIB$SIGNAL
returns to its caller, which should be prepared to continue execution.

• Fail to process the condition. The handler then returns a resignal code (that
is, any completion code with bit 0 set to 0) and LIB$SIGNAL scans the stack
for the next specified handler.

• Dismiss the signal and system service $UNWIND to cause the Condition
Handling Facility (CHF) to perform some call stack cleanup and resume
program execution (at a level specified by the condition handler) up on the
call stack.

LIB$SIGNAL can, as necessary, scan up to 65,536 previous stack frames and
then finally examine the last-chance exception vector. If called, the last-chance
exception handler formats a message based on the condition codes and arguments
contained within the signal argument vector.

lib–524

LIB$ Routines
LIB$SIGNAL

Condition Values Returned

None.

Examples

1. C+
C This Fortran example program demonstrates the use of
C LIB$SIGNAL.
C
C This program defines SS$... signals and then calls LIB$SIGNAL
C passing the access violation code as the argument.
C-

INCLUDE ’($SSDEF)’
CALL LIB$SIGNAL (%VAL(SS$_ACCVIO))
END

In Fortran, this code fragment signals the standard system message ACCESS
VIOLATION.

The output generated by this Fortran program on an OpenVMS Alpha system
is as follows:

%SYSTEM-F-ACCVIO, access violation, reason mask=10, virtual address=03C00020,_
PC=00000000, PS=08000000
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC
D2$MAIN D2$MAIN 683 00000010 00000410

2. ;+
; This VAX MACRO example program demonstrates the use of LIB$SIGNAL
; by forcing an access violation to be signaled.
;-
.EXTRN SS$_ACCVIO ; Declare external symbol
.ENTRY START,0
PUSHL #SS$_ACCVIO ; Condition value symbol

; for access violation
CALLS #1, G^LIB$SIGNAL ; Signal the condition
RET
.END START

.EXTRN SS$_ACCVIO ; Declare external symbol
PUSHL #SS$_ACCVIO ; Condition value symbol

; for access violation
CALLS #1, LIB$SIGNAL ; Signal the condition

This example shows the equivalent VAX MACRO code. The output generated
by this program on a OpenVMS VAX system is as follows:

%SYSTEM-F-ACCVIO, access violation, reason mask=0F, virtual address=03C00000,_
PC=00000000, PSL=00000000
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC
.MAIN. START 0000000F 0000020F

lib–525

LIB$ Routines
LIB$SIGNAL

3. #include <ssdef.h>
#include <lib$routines.h>

main()
{

/*
** lib$signal will append the PC/PS to argument list,
** so pass only first two FAO arguments to lib$signal
*/

lib$signal(SS$_ACCVIO, 4, -559038737); /* Shouldn’t return */
return (SS$_NORMAL); /* Exit if it does */

}

This example shows the equivalent C code. The output generated by this
program on an OpenVMS Alpha system is as follows:

%SYSTEM-F-ACCVIO, access violation, reason mask=04, virtual address=DEADBEEF,
PC=00020034, PS=0000001B
%TRACE-F-TRACEBACK, symbolic stack dump follows
Image Name Module Name Routine Name Line Number rel PC abs PC
LIB$SIGNAL 0 00010034 00020034
LIB$SIGNAL 0 000100A0 000200A0

0 82F01158 82F01158
0 7FF190D0 7FF190D0

4. #include <stdio>
#include <ssdef>
#include <tlib$routines>

/* Condition handler: */
/* */
/* This condition handler will print out the signal array, based on */
/* the argument count in the first element of the array. The error */
/* is resignalled and should be picked up by the last chance condition */
/* handler which will format and print error messages and terminate the */
/* program. */
/* */
int handler (int* sig, int*mech)
{

int i;
printf ("*** Caught signal:\n\n");
for (i = 0; i <= sig[0]; i++)
{

printf (" %08X\n", sig[i]);
}
printf ("\n");
return SS$_RESIGNAL;

}

/* Main program: */
/* */
/* Signal errors: */
/* */
/* SS$_BADPARAM has no arguments */
/* SS$_ACCVIO has 4 arguments, the last two (PC and PS) are */
/* automatically provided by LIB$SIGNAL. */
/* */
main ()
{

lib$establish (handler);
lib$signal (SS$_BADPARAM, SS$_ACCVIO, 2, 0xFACE);

}

This C example demonstrates the use of a condition handler to capture the
signal generated by LIB$SIGNAL. The output is as follows:

lib–526

LIB$ Routines
LIB$SIGNAL

$ CC SIGNAL.C
$ LINK SIGNAL
$ RUN SIGNAL
*** Caught signal:

00000006
00000014
0000000C
00000002
0000FACE
000201A0
0000001B

%SYSTEM-F-BADPARAM, bad parameter value
-SYSTEM-F-ACCVIO, access violation, reason mask=02,
virtual address=000000000000FACE, PC=00000000000201A0, PS=0000001B
%TRACE-F-TRACEBACK, symbolic stack dump follows
image module routine line rel PC abs PC
SIGNAL SIGNAL main 5961 00000000000001A0 00000000000201A0
SIGNAL SIGNAL __main 0 0000000000000050 0000000000020050

0 FFFFFFFF82204914 FFFFFFFF82204914

lib–527

LIB$ Routines
LIB$SIG_TO_RET

LIB$SIG_TO_RET
Signal Converted to a Return Status

The Signal Converted to a Return Status routine converts any signaled condition
value to a value returned as a function. The signaled condition is returned to the
caller of the user routine that established the handler that is calling LIB$SIG_
TO_RET. This routine may be established as or called from a condition handler.

Format

LIB$SIG_TO_RET signal-arguments ,mechanism-arguments

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

signal-arguments
OpenVMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Signal argument vector. The signal-arguments argument contains the address
of an array that is this signal argument vector stack.

See the HP OpenVMS Programming Concepts Manual for a description of the
signal argument vector.

mechanism-arguments
OpenVMS usage: structure
type: unspecified
access: read only
mechanism: by reference

Mechanism arguments vector. The mechanism-arguments argument contains
the address of a structure that is this mechanism argument vector stack.

See the HP OpenVMS Programming Concepts Manual for a description of the
mechanism argument vector.

Description

LIB$SIG_TO_RET is called with the argument list that was passed to a condition
handler by the OpenVMS Condition Handling Facility. The signaled condition
is converted to a value returned to the routine that called the routine that
established the handler. That action is performed by unwinding the stack to the
caller of the establisher of the condition handler. The condition code is returned
as the value in R0. See the HP OpenVMS Programming Concepts Manual for
more information on condition handling.

LIB$SIG_TO_RET causes the stack to be unwound to the caller of the routine
that established the handler which was called by the signal.

lib–528

LIB$ Routines
LIB$SIG_TO_RET

Condition Values Returned

SS$_NORMAL Routine successfully completed; SS$_UNWIND
completed. Otherwise, the error code from SS$_
UNWIND is returned.

Example

C+
C This Fortran example demonstrates how to use LIB$SIG_TO_RET.
C
C This function subroutine inverts each entry in an array. That is,
C a(i,j) becomes 1/a(i,j). The subroutine has been declared as an integer
C function so that the status of the inversion may be returned. The status
C should be success, unless one of the a(i,j) entries is zero. If one of
C the a(i,j) = 0, then 1/a(i,j) is division by zero. This division by zero
C does not cause a division by zero error, rather, the routine will return
C signal a failure.
C-

INTEGER*4 FUNCTION FLIP(A,N)
DIMENSION A(N,N)
EXTERNAL LIB$SIG_TO_RET
CALL LIB$ESTABLISH (LIB$SIG_TO_RET)
FLIP = .TRUE.

C+
C Flip each entry.
C-

DO 1 I = 1, N
DO 1 J = 1, N

1 A(I,J) = 1.0/A(I,J)
RETURN
END

C+
C This is the main code.
C-

INTEGER STATUS, FLIP
REAL ARRAY_1(2,2),ARRAY_2(3,3)
DATA ARRAY_1/1,2,3,4/,ARRAY_2/1,2,3,5,0,5,6,7,2/
CHARACTER*32 TEXT(2),STRING
DATA TEXT(1)/’ This array could be flipped. ’/,

1 TEXT(2)/’ This array could not be flipped.’/

STRING = TEXT(1)
STATUS = FLIP(ARRAY_1,2)
IF (.NOT. STATUS) STRING = TEXT(2)
TYPE ’(a)’, STRING

STRING = TEXT(1)
STATUS = FLIP(ARRAY_2,3)
IF (.NOT. STATUS) STRING = TEXT(2)
TYPE ’(a)’, STRING

END

This Fortran example program inverts each entry in an array. The output
generated by this program is as follows:

This array could be flipped.
This array could not be flipped.

lib–529

LIB$ Routines
LIB$SIG_TO_STOP

LIB$SIG_TO_STOP
Convert a Signaled Condition to a Signaled Stop

The Convert a Signaled Condition to a Signaled Stop routine converts a signaled
condition to a signaled condition that cannot be continued.

Format

LIB$SIG_TO_STOP signal-arguments ,mechanism-arguments

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

signal-arguments
OpenVMS usage: vector_longword_unsigned
type: unspecified
access: modify
mechanism: by reference, array reference

Signal argument vector. The signal-arguments argument contains the address
of an array that is this signal argument vector stack.

See the HP OpenVMS Programming Concepts Manual for a description of the
signal argument vector.

mechanism-arguments
OpenVMS usage: structure
type: unspecified
access: read only
mechanism: by reference

Mechanism argument vector. The mechanism-arguments argument contains
the address of a structure that is this mechanism argument vector stack.

See the HP OpenVMS Programming Concepts Manual for a description of the
mechanism argument vector.

Description

LIB$SIG_TO_STOP causes a signal to appear as though it had been signaled
by a call to LIB$STOP. When a signal is generated by LIB$STOP, the severity
code is forced to SEVERE and control cannot return to the routine that signaled
the condition. LIB$SIG_TO_STOP may be enabled as a condition handler for a
routine or it may be called from a condition handler.

If the condition value in signal-arguments is SS$_UNWIND, then LIB$SIG_
TO_STOP returns the error condition LIB$_INVARG.

lib–530

LIB$ Routines
LIB$SIG_TO_STOP

Condition Values Returned

SS$_NORMAL Routine successfully completed; SS$_UNWIND
completed. Otherwise, the error code from SS$_
UNWIND is returned.

LIB$_INVARG Invalid argument. The condition code in signal-
arguments is SS$_UNWIND.

lib–531

LIB$ Routines
LIB$SIM_TRAP

LIB$SIM_TRAP
Simulate Floating Trap

The Simulate Floating Trap routine converts floating faults to floating traps. It
can be enabled as a condition handler or can be called by one. †

This routine is not available to native OpenVMS Alpha or I64 programs but is
available to translated VAX images.

Format

LIB$SIM_TRAP signal-arguments ,mechanism-arguments

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

signal-arguments
OpenVMS usage: vector_longword_unsigned
type: unspecified
access: modify
mechanism: by reference, array reference

Signal argument vector. The signal-arguments argument contains the address
of an array that is this signal argument vector stack.

See the HP OpenVMS Programming Concepts Manual for a description of the
signal argument vector.

mechanism-arguments
OpenVMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Mechanism argument vector. The mechanism-arguments argument contains
the address of an array that is this mechanism argument vector stack.

See the HP OpenVMS Programming Concepts Manual for a description of the
mechanism argument vector.

Description

LIB$SIM_TRAP converts floating faults to floating traps. It can be enabled as a
condition handler or can be called by one.

LIB$SIM_TRAP intercepts floating overflow, underflow, and divide-by-zero faults.
It simulates the instruction causing the condition up to the point where a fault
should be signaled, then signals the corresponding floating trap.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–532

LIB$ Routines
LIB$SIM_TRAP

Since LIB$SIM_TRAP nullifies the condition handling for the original fault
condition, the final condition signaled by the routine will be from the context of
the instruction itself, rather than from the condition handler. The signaling path
is identical to that of a hardware-generated trap. The signal argument vector
is placed so the last entry in the vector will be the user’s stack pointer at the
completion of the instruction (for a trap), or at the beginning of the instruction
(for a fault).

See the VAX Architecture Reference Manual for more information on faults and
traps.

Condition Values Returned

SS$_RESIGNAL Resignal condition to next handler. The exception
was one that LIB$SIM_TRAP could not handle.

lib–533

LIB$ Routines
LIB$SKPC

LIB$SKPC
Skip Equal Characters

The Skip Equal Characters routine compares each character of a given string
with a given character and returns the relative position of the first nonequal
character as an index. LIB$SKPC makes the VAX SKPC instruction available as
a callable routine. 1

Format

LIB$SKPC character-string ,source-string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

The relative position in the source string of the first unequal character.
LIB$SKPC returns a zero if the source string was of zero length or if every
character in source-string was equal to character-string.

Arguments

character-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String whose initial character is to be used by LIB$SKPC in the comparison. The
character-string argument contains the address of a descriptor pointing to this
string. Only the first character of character-string is used, and the length of
character-string is not checked.

source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String to be searched by LIB$SKPC. The source-string argument contains the
address of a descriptor pointing to this string.

Description

LIB$SKPC compares the initial character of character-string with successive
characters of source-string until it finds an inequality or reaches the end of the
source-string. It returns the relative position of this unequal character as an
index, which is the relative position of the first occurrence of a substring in the
source string.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–534

LIB$ Routines
LIB$SKPC

Condition Values Returned

None.

Example

C+
C This Fortran example program shows the use of LIB$SKPC.
C LIB$SKPC compares each character of a given string with a given character.
C It returns the relative position of the first nonequal character as an index.
C-

I = LIB$SKPC (’ ’, ’ ABC’)
TYPE 1, I

1 FORMAT(’ The blank character matches the’,I2,’nd character in’)
TYPE *,’the string " ABC"’
J = LIB$SKPC (’A’, ’AAA’)
TYPE 2, J

2 FORMAT(’ The character "A" matches the’,I2,’th character in’)
TYPE *,’the string " AAA"’
END

This Fortran example generates the following output:

The blank character matches the 2nd character in
the string " ABC"
The character "A" matches the 0th character in
the string " AAA"

lib–535

LIB$ Routines
LIB$SPANC

LIB$SPANC
Skip Selected Characters

The Skip Selected Characters routine is used to skip a specified set of characters
in the source string. LIB$SPANC makes the VAX SPANC instruction available as
a callable routine. 1

Format

LIB$SPANC source-string ,table-array ,byte-integer-mask

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

The relative position in the source string of the character that terminated the
operation is returned if such a character is found. Otherwise, zero is returned. If
the source string has a zero length, then a zero is returned.

Arguments

source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string used by LIB$SPANC to index into table-array. The source-string
argument contains the address of a descriptor pointing to this source string.

table-array
OpenVMS usage: vector_mask_byte
type: byte (unsigned)
access: read only
mechanism: by reference, array reference

Table that LIB$SPANC indexes into and performs an AND operation with the
byte-integer-mask byte. The table-array argument contains the address of an
unsigned byte array that is this table.

byte-integer-mask
OpenVMS usage: mask_byte
type: byte (unsigned)
access: read only
mechanism: by reference

Mask that an AND operation is performed with bytes in table-array. The byte-
integer-mask argument contains the address of an unsigned byte that is this
mask.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–536

LIB$ Routines
LIB$SPANC

Description

LIB$SPANC uses successive bytes of the string specified by source-string to
index into a table. An AND operation is performed on the byte selected from the
table and the mask byte.

The operation is terminated when the result of the AND operation is zero.

Condition Values Returned

None.

Example

!+
! This Fortran program demonstrates how to use
! LIB$SCANC and STR$UPCASE.
!
! Declare the Run-Time Library routines to be used.
!-

INTEGER*4 STR$UPCASE ! Translate to upper case
INTEGER*4 LIB$SCANC ! Look for characters
INTEGER*4 LIB$SPANC ! Skip over characters

!+
! Declare the alphabet from which "words" are constructed.
!-

CHARACTER*(38) ALPHABET
DATA ALPHABET /’ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789$_’/

!+
! Local variable declarations
!-

INTEGER*4 WORD_COUNT /0/ ! Count of words found
INTEGER*4 WORD_LENGTH /0/ ! Length of a word
INTEGER*4 TOTAL_LENGTH /0/ ! Sum of word lengths
INTEGER*4 START_POS /0/ ! Position of start of word
INTEGER*4 END_POS /0/ ! Position of end of word
REAL*4 AVERAGE_LENGTH /0.0/ ! Average length of words
CHARACTER*80 LINE ! Line to examine for words
BYTE MATCH_TABLE(0:255) /256*0/ ! Match table for scanning

!+
! The routines LIB$SCANC and LIB$SPANC require a table with an entry
! for each possible character. Create a match table from ALPHABET
! with an entry of 1 if the character is in ALPHABET, 0 otherwise.
! MATCH_TABLE has already been initialized to zeros.
!-

DO I = 1, LEN(ALPHABET)
MATCH_TABLE(ICHAR(ALPHABET(I:I))) = 1
END DO

!+
! Loop forever finding words in LINE. When LINE is exhausted,
! indicated by a START_POS of zero, read another one. Upon
! end-of-file, leave the loop and print the statistics.
!-

lib–537

LIB$ Routines
LIB$SPANC

OPEN(UNIT = 1, FILE = ’TEST.DAT’, TYPE = ’OLD’)
DO WHILE (.TRUE.)
DO WHILE (START_POS .EQ. 0) ! Get a new line
READ (1,’(A)’,END=900) LINE ! If EOF, skip to 900
CALL STR$UPCASE (LINE,LINE) ! Convert to upper

! case for matching
START_POS = LIB$SCANC (LINE,MATCH_TABLE,1) ! Find beginning
END DO ! of first word

!+
! START_POS now points to the beginning of a word. Call LIB$SPANC to
! find the first character that is not part of the word. Set
! START_POS to beginning of next word. If LIB$SPANC does not
! find a non-word character, it returns zero.
!-

END_POS =
1 START_POS + LIB$SPANC (LINE(START_POS:), MATCH_TABLE,1) - 1

IF (END_POS .LT. START_POS) THEN ! Word goes to end of line
WORD_LENGTH = (LEN(LINE) + 1) - START_POS
START_POS = 0 ! Indicate line exhausted

ELSE
WORD_LENGTH = END_POS - START_POS
START_POS =

1 END_POS + LIB$SCANC (LINE(END_POS:),MATCH_TABLE,1) - 1
IF (START_POS .LT. END_POS) START_POS = 0 ! No more words on line

END IF

!+
! Update count and length statistics.
!-

WORD_COUNT = WORD_COUNT + 1
TOTAL_LENGTH = TOTAL_LENGTH + WORD_LENGTH
END DO

900 CONTINUE

!+
! Compute average word length and display statistics.
!-

IF (WORD_COUNT .NE. 0)
1 AVERAGE_LENGTH = FLOAT(TOTAL_LENGTH) / FLOAT(WORD_COUNT)
TYPE 901,WORD_COUNT,AVERAGE_LENGTH

901 FORMAT (1X,I10,’ words found, average length was ’,
1 F4.1,’ letters.’)

CLOSE (1)

END

This Fortran program reads text from the default input unit and looks for
words. A word is defined as a string containing only the characters A through Z
(uppercase or lowercase), 0 through 9, and the dollar sign ($) and underscore (_)
symbols. The program reports the total number of words found and their average
length.

lib–538

LIB$ Routines
LIB$SPANC

The program uses three Run-Time Library routines: STR$UPCASE,
LIB$SCANC, and LIB$SPANC.

1. The string is converted to uppercase using STR$UPCASE so that the search
for words will ignore the case of letters.

2. LIB$SCANC searches through the string for one of a set of characters, the set
being specified as nonzero elements in a 256-byte table.

3. Similarly, LIB$SPANC uses the VAX SPANC instruction to search through a
string for a character whose table entry is not zero. 1

The value returned by each routine is the index into the string where the first
matching (or nonmatching) character was found, or zero if no match was found.

The output generated by this Fortran program is as follows:

12 words found, average length was 4.2 letters.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–539

LIB$ Routines
LIB$SPAWN

LIB$SPAWN
Spawn Subprocess

The Spawn Subprocess routine requests the command language interpreter
(CLI) of the calling process to spawn a subprocess for executing CLI commands.
LIB$SPAWN provides the same function as the DCL command SPAWN.

Format

LIB$SPAWN [command-string] [,input-file] [,output-file] [,flags] [,process-name] [,process-id]
[,completion-status-address] [,byte-integer-event-flag-num] [,AST-address]
[,varying-AST-argument] [,prompt-string] [,cli] [,table]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

command-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

CLI command to be executed by the spawned subprocess. The command-string
argument is the address of a descriptor pointing to this CLI command string.
If command-string is omitted, commands are taken from the file specified by
input-file.

input-file
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Equivalence name to be associated with the logical name SYS$INPUT in the
logical name table for the subprocess. The input-file argument is the address
of a descriptor pointing to this equivalence string. If input-file is omitted, the
default is the caller’s SYS$INPUT.

output-file
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Equivalence name to be associated with the logical names SYS$OUTPUT and
SYS$ERROR in the logical name table for the subprocess. The output-file
argument is the address of a descriptor pointing to this equivalence string. If
output-file is omitted, the default is the caller’s SYS$OUTPUT.

lib–540

LIB$ Routines
LIB$SPAWN

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flag bits that designate optional behavior. The flags argument is the address of
an unsigned longword that contains these flag bits. By default, all flags are clear.

These flags are defined as follows:

Bit Symbol Meaning

0 NOWAIT If this bit is set, the calling process continues executing in parallel
with the subprocess. If this bit is clear, the calling process hibernates
until the subprocess completes.

1 NOCLISYM If this bit is set, the spawned subprocess does not inherit CLI symbols
from its caller. If this bit is clear, the subprocess inherits all currently
defined CLI symbols. You may want to specify NOCLISYM to help
prevent commands redefined by symbol assignments from affecting
the spawned commands.

2 NOLOGNAM If this bit is set, the spawned subprocess does not inherit process
logical names from its caller. If this bit is clear, the subprocess
inherits all currently defined process logical names. You may want to
specify NOLOGNAM to help prevent commands redefined by logical
name assignments from affecting the spawned commands.

3 NOKEYPAD If this bit is set, the keypad symbols and state are not passed to the
subprocess. If this bit is not set, the keypad settings are passed to
the subprocess.

4 NOTIFY If this bit is set, a message is broadcast to SYS$OUTPUT when the
subprocess completes or aborts. If this bit is not set, no message is
broadcast. This bit should not be set unless the NOWAIT bit is also
set.

5 NOCONTROL If this bit is set, no carriage-return/line-feed is prefixed to any prompt
string. If this bit is not set, a carriage-return/line-feed is prefixed to
any prompt string specified.

6 TRUSTED If this bit is set, it indicates a SPAWN command on behalf of the
application. If this bit is not set, it indicates that the SPAWN
command originates from user. SPAWN commands originating from
users are disallowed in captive accounts (DCL).

7 AUTHPRIV If this bit is set, the subprocess inherits the caller’s authorized
privileges. If this bit is clear, the spawned processes’ authorized
mask is set equal to the caller’s current (active) privilege mask.

8 SUBSYSTEM If this bit is set, a spawned process inherits protected subsystem IDs
for the duration of LOGINOUT.EXE (used to map the CLI). The IDs
will be removed in the process of transferring control to the CLI (as a
user mode $RUNDWN is performed). If this bit is clear, LOGINOUT
does not execute under the subsystem IDs.

lib–541

LIB$ Routines
LIB$SPAWN

Bits 9 through 31 are reserved for future expansion and must be zero. Symbolic
flag names are defined in libraries supplied by HP in module $CLIDEF. They
are CLIM_NOWAIT, CLIM_NOCLISYM, CLI$M_NOLOGNAM, CLI$M_
NOKEYPAD, CLIM_NOTIFY, CLIM_NOCONTROL, CLI$M_TRUSTED,
CLI$M_AUTHPRIV, and CLI$M_SUBSYSTEM.

process-name
OpenVMS usage: process_name
type: character string
access: read only
mechanism: by descriptor

Name defined for the subprocess. The process-name argument is the address of
a descriptor pointing to this name string. If process-name is omitted, a unique
process name will be generated. If you supply a name and it is not unique,
LIB$SPAWN will return the condition value SS$_DUPLNAM.

The DCL_CTLFLAGS is a bitmask used to alter default behavior for certain
commands on a systemwide basis. Currently, only the low bit of the bitmask
is defined. The low bit controls the default process-name assignment for a
subprocess created using the LIB$SPAWN routine.

Prior to OpenVMS Version 7.3-1, if no process name was supplied, the system
constructed a name by appending _n to the username, where n was the next
available non-duplicate integer for any process currently in the system. For
example, the first spawned process from user SYSTEM would be called SYSTEM_
1, the second, SYSTEM_2, and so on. The next available number was chosen, as
soon as a gap was found.

Beginning in OpenVMS Version 7.3-1, the default constructed process name for
subprocesses has changed. Instead of incrementally searching for the next unique
number, a random number is chosen to append to the username. Therefore, the
first processes that are spawned from user SYSTEM might be SYSTEM_154,
SYSTEM_42, SYSTEM_87, and so on. This procedure results in a very high
probability of finding a unique number on the first try since it is unlikely the
same number is already in use.

However, some applications might rely on the previous method of assigning
subprocess names. The DCL_CTLFLAGS parameter is available to allow you to
configure the system as necessary.

Bit 0 of DCL_CTLFLAGS selects the behavior for assigning default subprocess
names, as explained in the following:

• If clear, the new behavior is used. If the process name is not specified, it will
be the username with a random number suffix. This is the default setting.

• If set, the previous behavior is used. If the process name is not specified, it
will be the username with the next available number suffix.

process-id
OpenVMS usage: process_id
type: longword (unsigned)
access: write only
mechanism: by reference

Process identification of the spawned subprocess. The process-id argument is
the address of an unsigned longword that contains this process identification
value.

lib–542

LIB$ Routines
LIB$SPAWN

This process identification value is meaningful only if the NOWAIT flags bit is
set.

completion-status-address
OpenVMS usage: address
type: address
access: read only
mechanism: by value

The final completion status of the subprocess. The completion-status-address
argument contains the address of the status. The system writes the value of the
final completion status of the subprocess into completion-status-address when
the subprocess completes. If the subprocess returns a status code of 0, the system
writes SS$_NORMAL into this address.

If the NOWAIT flags bit is set, the completion-status-address is updated
asynchronously when the subprocess completes. Use the byte-integer-event-
flag-num or AST-address arguments to determine when the subprocess has
completed. Your program must ensure that the address is still valid when the
value is written.

byte-integer-event-flag-num
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

The number of a local event flag to be set when the spawned subprocess
completes. The byte-integer-event-flag-num argument is the address of an
unsigned byte that contains this event flag number. If byte-integer-event-flag-
num is omitted, no event flag is set.

Specifying byte-integer-event-flag-num is meaningful only if the NOWAIT
flags bit is set.

AST-address
OpenVMS usage: procedure
type: procedure value
access: call without stack unwinding
mechanism: by value

Routine to be called by means of an AST when the subprocess completes.

Specifying AST-address is meaningful only if the NOWAIT flags bit is set.

varying-AST-argument
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

A value to be passed to the AST routine. Typically, the varying-AST-argument
argument is the address of a block of storage the AST routine will use.

Specifying varying-AST-argument is meaningful only if the NOWAIT flags bit
is set and if AST-address has been specified.

lib–543

LIB$ Routines
LIB$SPAWN

prompt-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Prompt string to use in the subprocess. The prompt-string argument is the
address of a descriptor pointing to this prompt string. If prompt-string is
omitted, the subprocess uses the same prompt string that the parent process
uses.

cli
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification for the command language interpreter (CLI) to be run in the
subprocess. The cli argument is the address of this file specification string’s
descriptor. The CLI specified must reside in SYS$SYSTEM with a file type of
.EXE, and it must be installed. No directory or file type may be specified. The cli
argument must be specified in uppercase characters.

If cli is omitted, the subprocess uses the same CLI as the parent process. If cli is
specified, no context is copied to the subprocess.

table
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification for the command tables to be used by the spawned process. The
table argument is the address of this file specification string’s descriptor. The
table specified must reside in SYS$SHARE with a file type of .EXE, and it must
be installed.

If table is omitted, the subprocess uses the same table as the parent process.

Description

The subprocess created by LIB$SPAWN inherits the following attributes from the
caller’s environment:

• Process logical names

• Global and local CLI symbols

• Default device and directory

• Process privileges

• Process nondeductible quotas

• Current command verification setting

The subprocess does not inherit process-permanent files nor routine or image
context.

lib–544

LIB$ Routines
LIB$SPAWN

Though the subprocess inherits the caller’s process privileges as its own process
privileges, the set of authorized privileges in the subprocess is inherited from
the caller’s current privileges. If the calling image is installed with elevated
privileges, these privileges are not available to the the subprocess until a SET
PROCESS/PRIVILEGE command or equivalent $SETPRV call is performed in the
subprocess to enable these privileges.

If the calling image is installed with elevated privileges, it should disable
those privileges around the call to LIB$SPAWN unless the environment of the
subprocess is strictly controlled. Otherwise, there is a possibility of a security
breach due to elevated privileges accidentally being made available to the user.

If neither command-string nor input-file is present, command input is taken
from the parent terminal. If both command-string and input-file are present,
the subprocess first executes command-string and then reads from input-
file. If only command-string is specified, the command is executed, and the
subprocess is terminated. If input-file is specified, the subprocess is terminated
by either a LOGOUT command or an end-of-file.

The subprocess does not inherit process-permanent files nor routine or image
context. No LOGIN.COM file is executed.

Unless the NOWAIT flags bit is set, the caller’s process is put into hibernation
until the subprocess finishes. Because the caller’s process hibernates in
supervisor mode, any user-mode ASTs queued for delivery to the caller are
not delivered until the caller reawakes. Control can also be restored to the caller
by means of an ATTACH command or by a suitable call to LIB$ATTACH from the
subprocess.

This routine is supported for use only with the DCL command language
interpreter. If used when the current CLI is MCR, the error status LIB$_
NOCLI is returned.

If an image is run directly as a subprocess or as a detached process, there is
no CLI present to perform this function. In such cases, the error status LIB$_
NOCLI is returned.

Programs depending on embedded DCL commands may not function properly
when run under other command language interpreters that may be supported by
future versions of OpenVMS operating systems.

See the HP OpenVMS DCL Dictionary for a complete description of the SPAWN
command.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_ACCVIO Access violation. One of the string arguments to

LIB$SPAWN could not be read, or completion-
status-address could not be written.

SS$_DUPLNAM Duplicate process name. If the argument
process-name was specified, it duplicated an
existing process name. If process-name was
omitted, LIB$SPAWN was unable to create a
unique name for the subprocess.

lib–545

LIB$ Routines
LIB$SPAWN

fac$_xxx Other error trying to create subprocess.
LIB$_INVARG Invalid argument. The optional argument flags

was specified, and a bit other than bits 0 through
8 was set.

LIB$_INVSTRDES Invalid string descriptor. One of the string
arguments had an invalid descriptor.

LIB$_NOCLI No CLI present to perform function. The calling
process did not have a CLI to perform the
function, or the CLI did not support the request
type. Note that an image run as a subprocess or
detached process does not have a CLI.

If an error is encountered during subprocess creation, the status value for that
error is returned by LIB$SPAWN.

Example

ISTAT=LIB$SPAWN(,,,CLI$M_NOKEYPAD,,,,,,,’> ’)
IF (.NOT. ISTAT) CALL LIB$STOP(%VAL(ISTAT))

This Fortran fragment shows a call to LIB$SPAWN from within a Fortran
program. A subprocess is spawned taking input from SYS$INPUT and giving
output to SYS$OUTPUT. The keypad state is not passed to the subprocess. A
prompt string of ‘‘> ’’ is specified for the subprocess.

lib–546

LIB$ Routines
LIB$STAT_TIMER

LIB$STAT_TIMER
Statistics, Return Accumulated Times and Counts

The Statistics, Return Accumulated Times and Counts routine returns to its
caller one of five available statistics accumulated since the last call to LIB$INIT_
TIMER. Unlike LIB$SHOW_TIMER, which formats the values for output,
LIB$STAT_TIMER returns the value as an unsigned longword or quadword.

Format

LIB$STAT_TIMER code ,value-argument [,handle-address]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

code
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

The address of a signed longword integer that contains a code to specify the
statistic to be returned. The code specification must be an integer from 1 to 5.

The following values are allowed for code:

Value Statistic Returned

1 Elapsed real time (quadword, in system time format)
2 Elapsed CPU time (longword, in 10 millisecond increments)
3 Count of buffered I/O operations (longword)
4 Count of direct I/O operations (longword)
5 Count of page faults (longword)

value-argument
OpenVMS usage: user_arg
type: unspecified
access: write only
mechanism: by reference

The statistic returned by LIB$STAT_TIMER. The value-argument argument
contains the address of a longword or quadword that is this statistic. All statistics
are longword integers except elapsed real time, which is a quadword.

See the HP OpenVMS System Services Reference Manual for more details on the
system time format.

lib–547

LIB$ Routines
LIB$STAT_TIMER

handle-address
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Pointer to a block of storage. The optional handle-address argument contains
the address of an unsigned longword that is this pointer.

If handle-address is specified, LIB$STAT_TIMER assumes that LIB$INIT_
TIMER has been called with the same value of handle-address. Handle-
address is an optional argument. If it is not specified, LIB$STAT_TIMER uses
internal storage.

Description

Only one of the five statistics is returned by each call to LIB$STAT_TIMER. The
elapsed time is returned in the system quadword format. Therefore the receiving
area should be eight bytes long. All other returned values are longwords.

LIB$SHOW_TIMER and LIB$STAT_TIMER are relatively simple tools for testing
the performance of a new application. Note that LIB$INIT_TIMER must be
called prior to any calls to LIB$SHOW_TIMER or LIB$STAT_TIMER.

To obtain more detailed information, use LIB$GETJPI (Get Job/Process
Information) or the system service $GETTIM.

The following summary shows the differences between LIB$SHOW_TIMER and
LIB$STAT_TIMER:

Code Statistic
Format for
LIB$SHOW_TIMER

Format for
LIB$STAT_TIMER

1 Elapsed real time hhhh:mm:ss.cc Quadword in system
time format

2 Elapsed CPU time hhhh:mm:ss.cc Longword in
10-millisecond
increments

3 Count of buffered I/O
operations

nnnn Longword

4 Count of direct I/O
operations

nnnn Longword

5 Count of page faults nnnn Longword

When you call LIB$INIT_TIMER, you must use the optional handle-address
argument only if you want to keep several sets of statistics simultaneously. This
argument points to a block in heap storage where the statistics are to be stored.

You need to call LIB$FREE_TIMER only if you have specified handle-address
in LIB$INIT_TIMER and you want to deallocate all heap storage resources. In
most cases, the implicit deallocation at program exit time will be sufficient.

lib–548

LIB$ Routines
LIB$STAT_TIMER

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. Either code or handle-

address is invalid.

Example

PROGRAM STAT_TIMER(INPUT,OUTPUT);

{+}
{ This Pascal example program demonstrates the use of
{ LIB$STAT_TIMER.
{-}

TYPE
BYTE = [BYTE] 0..255;
WORD = [WORD] 0..65535;
QUADWORD_SYSTEM_TIME = [QUAD] RECORD

FIRST_LONGWORD : UNSIGNED;
SECOND_LONGWORD : UNSIGNED;

END;

VAR
ELAPSED_REAL_TIME : QUADWORD_SYSTEM_TIME;
ELAPSED_STRING : VARYING [32] OF CHAR;
PAGE_FAULT_COUNT : UNSIGNED;
RETURNED_STATUS : UNSIGNED;

[EXTERNAL] FUNCTION LIB$INIT_TIMER(
HANDLE_ADR : [REFERENCE] UNSIGNED := %IMMED 0
) : INTEGER; EXTERNAL;

[EXTERNAL] FUNCTION LIB$STAT_TIMER(
CODE : INTEGER;
VALUE : [UNSAFE,REFERENCE] PACKED ARRAY [L..U:INTEGER] OF BYTE;
HANDLE_ADR : [REFERENCE] UNSIGNED := %IMMED 0
) : INTEGER; EXTERNAL;

[EXTERNAL] FUNCTION LIB$STOP(
CONDITION_STATUS : [IMMEDIATE,UNSAFE] UNSIGNED;
FAO_ARGS : [IMMEDIATE,UNSAFE,LIST] UNSIGNED
) : INTEGER; EXTERNAL;

[EXTERNAL] FUNCTION LIB$SYS_ASCTIM(
OUT_LEN : [REFERENCE] WORD := %IMMED 0;
VAR DST_STR : PACKED ARRAY [L..U:INTEGER] OF CHAR;
USER_TIME : QUADWORD_SYSTEM_TIME := %IMMED 0;
CNV_FLG : UNSIGNED := %IMMED 0
) : INTEGER; EXTERNAL;

BEGIN

{+}
{ Call LIB$INIT_TIMER to initialize RTL internal counters.
{-}

RETURNED_STATUS := LIB$INIT_TIMER;
IF NOT ODD(RETURNED_STATUS)
THEN

LIB$STOP(RETURNED_STATUS);

{+}
{ Print a line of text to waste time.
{-}

WRITELN(’Spend time to acquire elapsed real time and page faults’);

lib–549

LIB$ Routines
LIB$STAT_TIMER

{+}
{ Call LIB$STAT_TIMER to retrieve statistics values.
{-}

RETURNED_STATUS := LIB$STAT_TIMER(1,ELAPSED_REAL_TIME);
IF NOT ODD(RETURNED_STATUS)
THEN

LIB$STOP(RETURNED_STATUS);

RETURNED_STATUS := LIB$STAT_TIMER(5,PAGE_FAULT_COUNT);
IF NOT ODD(RETURNED_STATUS)
THEN

LIB$STOP(RETURNED_STATUS);

{+}
{ Print the statistics retrieved from LIB$STAT_TIMER.
{-}

WRITELN(’Page fault count is ’,PAGE_FAULT_COUNT:1);

RETURNED_STATUS := LIB$SYS_ASCTIM(
ELAPSED_STRING.LENGTH,
ELAPSED_STRING.BODY,
ELAPSED_REAL_TIME,
1);

IF NOT ODD(RETURNED_STATUS)
THEN

LIB$STOP(RETURNED_STATUS);

WRITELN(’Elapsed real time is ’,ELAPSED_STRING);

END.

This Pascal program demonstrates the use of LIB$STAT_TIMER. The output
generated by this program is as follows:

Spend time to acquire elapsed real time and page faults
Page fault count is 22
Elapsed real time is 00:00:00.61

lib–550

LIB$ Routines
LIB$STAT_VM

LIB$STAT_VM
Return Virtual Memory Statistics

The Return Virtual Memory Statistics routine returns to its caller one of six
statistics available from calls to LIBGET_VM/LIBFREE_VM and LIB$GET_
VM_PAGE/LIB$FREE_VM_PAGE. † Unlike LIB$SHOW_VM, which formats the
values for output and displays them on SYS$OUTPUT, LIB$STAT_VM returns
the statistic in the value-argument argument. Only one of the statistics is
returned by each call to LIB$STAT_VM.

Format

LIB$STAT_VM code ,value-argument

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

code
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Code specifying which statistic is to be returned. The code argument contains
the address of a signed longword integer that is this code.

Code Statistic

1 Number of successful calls to LIB$GET_VM
2 Number of successful calls to LIB$FREE_VM
3 Number of bytes allocated by LIB$GET_VM but not yet deallocated by

LIB$FREE_VM
5 Number of calls to LIB$GET_VM_PAGE
6 Number of calls to LIB$FREE_VM_PAGE
7 Number of VAX pages or Alpha pagelets allocated by LIB$GET_VM_

PAGE but not yet deallocated by LIB$FREE_VM_PAGE

Note that it is invalid to omit code or to give a code of 0 or 4.

value-argument
OpenVMS usage: user_arg
type: longword (unsigned)
access: write only
mechanism: by reference

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–551

LIB$ Routines
LIB$STAT_VM

Value of the statistic returned by LIB$STAT_VM. The value-argument
argument contains the address of an unsigned longword integer that is this
value.

Description

LIB$STAT_VM returns to its caller one of six available statistics. Unlike
LIB$SHOW_VM, which formats the values for output, LIB$STAT_VM returns
the value to a location specified as an argument.

Only one of the six statistics can be returned by one call to LIB$STAT_VM. The
argument code must be one of six values described for LIB$SHOW_VM. A code
value of 0 or 4 is invalid.

Unlike LIB$SHOW_VM, which produces ASCII values for output, LIB$STAT_VM
returns the value in binary form to a location specified as an argument.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. The value of code was not

one of the values allowed by LIB$STAT_VM.

lib–552

LIB$ Routines
LIB$STAT_VM_64 (Alpha and I64 Only)

LIB$STAT_VM_64 (Alpha and I64 Only)
Return Virtual Memory Statistics

The Return Virtual Memory Statistics routine returns to its caller one of six
statistics available from calls to LIB$GET_VM_64 and LIB$FREE_VM_64,
as well as LIB$GET_VM_PAGE_64 and LIB$FREE_VM_PAGE_64. Unlike
LIB$SHOW_VM_64, which formats the values for output and displays them on
SYS$OUTPUT, LIB$STAT_VM_64 returns the statistic in the value-argument
argument. Only one of the statistics is returned by each call to LIB$STAT_VM_
64.

Format

LIB$STAT_VM_64 code ,value-argument

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

code
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Code specifying which statistic is to be returned. The code argument contains
the address of a signed quadword integer that is this code.

Code Statistic

1 Number of successful calls to LIB$GET_VM_64
2 Number of successful calls to LIB$FREE_VM_64
3 Number of bytes allocated by LIB$GET_VM_64 but not yet deallocated

by LIB$FREE_VM_64
5 Number of calls to LIB$GET_VM_PAGE_64
6 Number of calls to LIB$FREE_VM_PAGE_64
7 Number of Alpha or I64 pagelets allocated by LIB$GET_VM_PAGE_64

but not yet deallocated by LIB$FREE_VM_PAGE_64

Note that it is invalid to omit code or to give a code of 0 or 4.

value-argument
OpenVMS usage: user_arg
type: quadword (unsigned)
access: write only
mechanism: by reference

lib–553

LIB$ Routines
LIB$STAT_VM_64 (Alpha and I64 Only)

Value of the statistic returned by LIB$STAT_VM_64. The value-argument
argument contains the address of an unsigned quadword integer that is this
value.

Description

LIB$STAT_VM_64 returns to its caller one of six available statistics. Unlike
LIB$SHOW_VM_64, which formats the values for output, LIB$STAT_VM_64
returns the value to a location specified as an argument.

Only one of the six statistics can be returned by one call to LIB$STAT_VM_64.
The code argument must be one of six values described for LIB$SHOW_VM_64.
A code value of 0 or 4 is invalid.

Unlike LIB$SHOW_VM_64, which produces ASCII values for output, LIB$STAT_
VM_64 returns the value in binary form to a location specified as an argument.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. The value of code was not

one of the values allowed by LIB$STAT_VM_64.

lib–554

LIB$ Routines
LIB$STOP

LIB$STOP
Stop Execution and Signal the Condition

The Stop Execution and Signal the Condition routine generates a signal that
indicates that an exception condition has occurred in your program. Exception
conditions signaled by LIB$STOP cannot be continued from the point of the
signal.

Format

LIB$STOP condition-value [,number-of-arguments] [,FAO-argument...]

Returns

LIB$STOP generates a signal and stops execution of the calling program. No
condition values are returned.

Arguments

condition-value
OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

OpenVMS 32-bit condition value. The condition-value argument is an unsigned
longword that contains this condition value.

The HP OpenVMS Programming Concepts Manual explains the format of a
condition value.

number-of-arguments
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Number of FAO arguments associated with condition-value. The optional
number-of-arguments argument is a signed longword integer that contains this
number. If omitted or specified as zero, no FAO arguments follow.

FAO-argument
OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by value

Optional FAO (formatted ASCII output) argument that is associated with the
specified condition value.

The HP OpenVMS Programming Concepts Manual explains the message format.

lib–555

LIB$ Routines
LIB$STOP

Description

LIB$STOP is called whenever your program must indicate an exception condition
because it is impossible to continue execution or return a status code to the
calling program.

LIB$STOP scans the stack frame by frame, starting with the most recent frame,
calling each established handler (see the HP OpenVMS Programming Concepts
Manual). LIB$STOP guarantees that control will not return to the caller.

The LIB$STOP argument list, the Program Counter (PC) and Processor Status
Longword (PSL on OpenVMS VAX systems, PS on OpenVMS Alpha and I64
systems) of the caller are appended to build the signal argument vector.

The severity of condition-value is forced to SEVERE before each call to a
handler.

If any handler attempts to continue by returning a success completion code,
the error message ATTEMPT TO CONTINUE FROM STOP is printed and your
program exits.

If the handler called by LIB$STOP in turn calls system service $UNWIND,
control will not return to LIB$STOP’s caller, thus changing the program flow.
A handler can also modify the saved copy of R0/R1 in the mechanism vector,
changing registers R0 and R1 after the stack has been unwound. If a handler
does neither of these things, then all registers including R0/R1 and the hardware
condition codes are preserved. 1

The only way a handler can prevent the image from exiting after a call to
LIB$STOP is to unwind the stack using the $UNWIND system service.

Condition Values Returned

None.

Example

10 EXTERNAL LONG FUNCTION LIB$RESERVE_EF
DECLARE LONG RET_STATUS

RET_STATUS = LIB$RESERVE_EF(2%)
IF (RET_STATUS AND 1%) = 0% THEN

CALL LIB$STOP(RET_STATUS BY VALUE)
END IF

PRINT "Event flag 2 reserved successfully"

END

This BASIC example program uses LIB$STOP to stop executing if an error is
signaled. This BASIC program tries to reserve an event flag that is not accessible
to user programs, thus ensuring that an error will be signaled.

The output generated by this BASIC program is as follows:

%LIB-F-EF_ALRRES, event flag already reserved
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC
2822XBLST$MAIN 2822XBLST$MAIN 6 00000044 00000644

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

lib–556

LIB$ Routines
LIB$SUBX

LIB$SUBX
Multiple-Precision Binary Subtraction

The Multiple-Precision Binary Subtraction routine performs subtraction on signed
two’s complement integers of arbitrary length.

Format

LIB$SUBX minuend-array ,subtrahend-array ,difference-array [,array-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

minuend-array
OpenVMS usage: vector_longword_signed
type: unspecified
access: read only
mechanism: by reference, array reference

Minuend; a multiple-precision, signed two’s complement integer. The minuend-
array argument is the address of an array of signed longword integers that
contains the minuend.

subtrahend-array
OpenVMS usage: vector_longword_signed
type: unspecified
access: read only
mechanism: by reference, array reference

Subtrahend; a multiple-precision, signed two’s complement integer. The
subtrahend-array argument is the address of an array of signed longword
integers that contains the subtrahend.

difference-array
OpenVMS usage: vector_longword_signed
type: unspecified
access: write only
mechanism: by reference, array reference

Difference; a multiple-precision, signed two’s complement integer result. The
difference-array argument is the address of an array of signed longword
integers that contains the difference.

array-length
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

lib–557

LIB$ Routines
LIB$SUBX

Length in longwords of the arrays to be operated on by LIB$SUBX. The array-
length argument contains the address of a signed longword integer that is this
length. The array-length argument must not be negative. The default length is
2 units.

Description

LIB$SUBX performs subtraction on signed two’s complement integers of arbitrary
length. The integers are located in arrays of longwords. The higher addresses
contain the higher-precision parts of the values. The highest-addressed longword
contains the sign and 31 bits of precision. The remaining longwords contain 32
bits of precision in each. The number of longwords to be operated on is given by
the optional argument, array-length. The default length is 2, which corresponds
to the OpenVMS quadword data type.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_INTOVF Integer overflow. The result is correct, except

that the sign bit is lost.
LIB$_INVARG Invalid argument. Length is negative. The

output array is unchanged.

Example

C+
C This Fortran example program demonstrates the use of LIB$SUBX.
C-

INTEGER A(2),B(2),C(2),RETURN
C+
C Let "A" have the value 72057594037927937 = ’1000000000000001’x.
C Let "B" have the value 4294967295 = ’00000000FFFFFFFF’x.
C-

A(1) = ’00000001’x
A(2) = ’10000000’x
B(1) = ’FFFFFFFF’x
B(2) = ’00000000’x

C+
C Then "A" - "B" is 72057589742960642.
C-

RETURN = LIB$SUBX(A,B,C)
TYPE *,’ ’
TYPE *,’Let A = 72057594037927937 and B = 4294967295.’
TYPE *,’Then C = A - B = 72057589742960642.’
TYPE 2,C(2),C(1)

2 FORMAT(’ 72057589742960642 is represented as ’,1H’,Z8,Z8,3H’x.)
TYPE *, 51HThat is, C(2) = ’0FFFFFFF’x and C(1) = ’00000002’x.
END

This Fortran example demonstrates how to call LIB$SUBX. The output generated
by this program is as follows:

Let A = 72057594037927937 and B = 4294967295.
Then C = A - B = 72057589742960642.
72057589742960642 is represented as ’ FFFFFFF 2’x.
That is, C(2) = ’0FFFFFFF’x and C(1) = ’00000002’x.

lib–558

LIB$ Routines
LIB$SUB_TIMES

LIB$SUB_TIMES
Subtract Two Quadword Times

The Subtract Two Quadword Times routine subtracts two OpenVMS internal-
time-format times.

Format

LIB$SUB_TIMES time1 ,time2 ,resultant-time

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

time1
OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

First time, from which LIB$SUB_TIMES subtracts the second time. The time1
argument is the address of an unsigned quadword containing this time. The
time1 argument must represent a later or equal time or a longer or equal time
interval than time2. The time1 argument may be either absolute time or delta
time as long as time2 is of the same type. If time1 and time2 are of different
types, time1 must be the absolute time.

time2
OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Second time, which LIB$SUB_TIMES subtracts from the first time. The time2
argument is the address of an unsigned quadword containing this time. The
time2 argument must represent an earlier or equal time or a shorter or equal
time interval than time1. The time2 argument may be either absolute time
or delta time as long as time1 is of the same type. If time2 and time1 are of
different types, time2 must be the delta time.

resultant-time
OpenVMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

The result of subtracting time2 from time1. The resultant-time argument is
the address of an unsigned quadword containing the result. If both time1 and
time2 are delta times, then resultant-time is a delta time. If both time1 and
time2 are absolute times, then resultant-time is a delta time. If time1 is an

lib–559

LIB$ Routines
LIB$SUB_TIMES

absolute time and time2 is a delta time, then resultant-time is an absolute
time.

Description

LIB$SUB_TIMES subtracts two OpenVMS internal times. The second time,
specified by time2, is subtracted from time1. The following table shows the only
combinations of times you can subtract:

Time1 Time2 Subtraction Resultant-Time

delta delta ������ ����� delta
absolute absolute ������ ����� delta
absolute delta ������ ����� absolute

Delta time values cannot be a zero and always reflect ime in the future. Binary
format number will always be negative. Therefore, if time1 and time2 are
equal, resultant-time cannot be 0. Instead, resultant-time is represented by
.1 of one microsecond (the smallest interval of time recognized by the OpenVMS
operating system). This interval is shown as ‘‘0 00:00:00.00’’ when formatted by
the standard techniques.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_INVARGORD Invalid ordering of arguments.
LIB$_IVTIME Invalid time.
LIB$_NEGTIM Negative time computed.
LIB$_WRONUMARG Incorrect number of arguments.

lib–560

LIB$ Routines
LIB$SYS_ASCTIM

LIB$SYS_ASCTIM
Invoke $ASCTIM to Convert Binary Time to ASCII String

The Invoke $ASCTIM to Convert Binary Time to ASCII String routine calls the
system service $ASCTIM to convert a binary date and time value, returning the
ASCII string using the semantics of the caller’s string.

Format

LIB$SYS_ASCTIM [resultant-length] ,time-string [,user-time] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of bytes written into time-string, not counting padding in the case of a
fixed-length string. The resultant-length argument contains the address of an
unsigned word integer that is this number.

If the input string is truncated to the size specified in the time-string descriptor,
resultant-length is set to this size. Therefore, resultant-length can always be
used by the calling program to access a valid substring of time-string.

time-string
OpenVMS usage: time_name
type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB$SYS_ASCTIM writes the ASCII time string.
The time-string argument contains the address of a descriptor pointing to the
destination string.

user-time
OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Value that LIB$SYS_ASCTIM converts to ASCII string form. The user-time
argument contains the address of a signed quadword integer that is this value.

If 0 or no address is specified, the current system date and time are returned. A
positive value represents an absolute time. A negative value represents a delta
time. Delta times must be less than 10,000 days.

lib–561

LIB$ Routines
LIB$SYS_ASCTIM

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Conversion indicator specifying which date and time fields LIB$SYS_ASCTIM
should return. The flags argument is the address of an unsigned bit mask that
contains this conversion indicator.

A value of 1 causes only the hour, minute, second, and hundredths of a second
to be returned, depending on the length of the buffer. A value of 0 (the default)
causes the full date and time to be returned, depending on the length of the
buffer.

The results of specifying some possible combinations for the values of the flags
and time-string arguments are shown below:

Time Value
Time-String
Length

Flags
Value Information Returned

Absolute 23 0 Date and time
Absolute 12 0 Date
Absolute 11 1 Time
Delta 16 0 Days and time
Delta 11 1 Time

The flags argument is passed to LIB$SYS_ASCTIM by reference and is changed
to value for use by $ASCTIM.

Description

See the HP OpenVMS System Services Reference Manual: A–GETUAI for a
complete description of $ASCTIM.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_IVTIME The specified delta time is greater than or equal

to 10,000 days.
LIB$_FATERRLIB Fatal internal error. An internal consistency

check has failed. This usually indicates
an internal error in the Run-Time Library
and should be reported to your HP support
representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

LIB$_STRTRU Routine successfully completed, but the source
string was truncated on copy.

lib–562

LIB$ Routines
LIB$SYS_FAO

LIB$SYS_FAO
Invoke $FAO System Service to Format Output

The Invoke $FAO System Service to Format Output routine calls the $FAO
system service, returning a string in the semantics you provide. If called with
other than a fixed-length string for output, the length of the resultant string is
limited to 256 bytes and truncation occurs.

Format

LIB$SYS_FAO character-string, [resultant-length] ,resultant-string [,directive-argument ,...]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

character-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

ASCII control string, consisting of the fixed text of the output string and FAO
directives. The character-string argument contains the address of a descriptor
pointing to this control string.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the output string. The resultant-length argument contains the
address of an unsigned word integer that is this length.

resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Fully formatted output string returned by LIB$SYS_FAO. The resultant-string
argument contains the address of a descriptor pointing to this output string.

lib–563

LIB$ Routines
LIB$SYS_FAO

directive-argument
OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: unspecified

Directive argument contained in longwords. Depending on the directive, a
directive-argument argument can be a value to be converted, the address of the
string to be inserted, or a length or argument count. The passing mechanism for
each of these arguments should be the one expected by the $FAO system service.

Description

See the HP OpenVMS System Services Reference Manual: A–GETUAI for a
complete description of $FAO.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_BADPARAM An invalid directive was specified in the FAO

control string.
SS$_BUFFEROVF Successfully completed, but the formatted output

string overflowed the output buffer and was
truncated.

LIB$_STRTRU Success, but the source string was truncated on
copy.

LIB$_INSVIRMEM Insufficient virtual memory to allocate dynamic
string.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

lib–564

LIB$ Routines
LIB$SYS_FAOL

LIB$SYS_FAOL
Invoke $FAOL System Service to Format Output

The Invoke $FAOL System Service to Format Output routine calls the $FAOL
system service, returning the string in the semantics you provide. If called with
other than a fixed-length string for output, the length of the resultant string is
limited to 256 bytes and truncation occurs.

Format

LIB$SYS_FAOL character-string [,resultant-length] ,resultant-string ,directive-argument-address

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

character-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

ASCII control string, consisting of the fixed text of the output string and FAO
directives. The character-string argument contains the address of a descriptor
pointing to this control string.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the output string. The resultant-length argument contains the
address of an unsigned word integer that is this length.

resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Fully formatted output string returned by LIB$SYS_FAOL. The resultant-string
argument contains the address of a descriptor pointing to this output string.

lib–565

LIB$ Routines
LIB$SYS_FAOL

directive-argument-address
OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: unspecified

Directive arguments. The directive-argument-address arguments are
contained in an array of unsigned longword directive arguments. Depending
on the directive, a directive-argument-address argument can be a value to be
converted, the address of the string to be inserted, or a length or argument count.
The passing mechanism for each of these arguments should be the one expected
by the $FAOL system service.

Description

See the HP OpenVMS System Services Reference Manual: A–GETUAI for a
complete description of $FAOL.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_BADPARAM An invalid directive was specified in the FAO

control string.
SS$_BUFFEROVF Successfully completed, but the formatted output

string overflowed the output buffer and was
truncated.

LIB$_INSVIRMEM Insufficient virtual memory to allocate dynamic
string.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

LIB$_STRTRU Success, but the source string was truncated on
copy.

lib–566

LIB$ Routines
LIB$SYS_FAOL_64 (Alpha and I64 Only)

LIB$SYS_FAOL_64 (Alpha and I64 Only)
Invoke $FAOL_64 System Service to Format Output

The Invoke $FAOL_64 System Service to Format Output routine calls the
$FAOL_64 system service, returning the string in the semantics you provide. If
called with other than a fixed-length string for output, the length of the resultant
string is limited to 256 bytes and truncation occurs.

Format

LIB$SYS_FAOL_64 character-string [,resultant-length] ,resultant-string ,directive-argument-address

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

character-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

ASCII control string, consisting of the fixed text of the output string and FAO
directives. The character-string argument contains the address of a descriptor
pointing to this control string.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the output string. The resultant-length argument contains the
address of an unsigned word integer that is this length.

resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Fully formatted output string returned by LIB$SYS_FAOL_64. The resultant-
string argument contains the address of a descriptor pointing to this output
string.

lib–567

LIB$ Routines
LIB$SYS_FAOL_64 (Alpha and I64 Only)

directive-argument-address
OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: unspecified

Directive arguments. The directive-argument-address arguments are
contained in an array of unsigned quadword directive arguments. Depending
on the directive, a directive-argument-address argument can be a value to be
converted, the address of the string to be inserted, or a length or argument count.
The passing mechanism for each of these arguments should be the one expected
by the $FAOL_64 system service.

Description

See the HP OpenVMS System Services Reference Manual: A–GETUAI for a
complete description of $FAOL_64.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_BADPARAM An invalid directive was specified in the FAO

control string.
SS$_BUFFEROVF Successfully completed, but the formatted output

string overflowed the output buffer and was
truncated.

LIB$_INSVIRMEM Insufficient virtual memory to allocate dynamic
string.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

LIB$_STRTRU Success, but the source string was truncated on
copy.

lib–568

LIB$ Routines
LIB$SYS_GETMSG

LIB$SYS_GETMSG
Invoke $GETMSG System Service to Get Message Text

The Invoke $GETMSG System Service to Get Message Text routine calls the
system service $GETMSG and returns a message string into destination-string
using the semantics of the caller’s string.

Format

LIB$SYS_GETMSG message-id [,message-length] ,destination-string [,flags] [,unsigned-resultant-array]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

message-id
OpenVMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Message identification to be retrieved by LIB$SYS_GETMSG. The message-id
argument contains the address of an unsigned longword integer that is this
message identification.

message-length
OpenVMS usage: word_unsigned
type: word integer (unsigned)
access: write only
mechanism: by reference

Number of characters written into destination-string, not counting padding in
the case of a fixed-length string. The message-length argument contains the
address of an unsigned word integer that is this number.

If the input string is truncated to the size specified in the destination-string
descriptor, message-length is set to this size. Therefore, message-length can
always be used by the calling program to access a valid substring of destination-
string.

destination-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string. The destination-string argument contains the address of
a descriptor pointing to this destination string. LIB$SYS_GETMSG writes the
message that has been returned by $GETMSG into destination-string.

lib–569

LIB$ Routines
LIB$SYS_GETMSG

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Four flag bits for message content. The flags argument is the address of an
unsigned longword that contains these flag bits. The default value is a longword
with bits 0 through 3 set to 1. The flags argument is passed to LIB$SYS_
GETMSG by reference and changed to value for use by $GETMSG.

The following table lists the bit numbers, their values, and corresponding
descriptions:

Bit Value Description

0 1 Include text of message.
0 Do not include text of message.

1 1 Include message identifier.
0 Do not include message identifier.

2 1 Include severity indicator.
0 Do not include severity indicator.

3 1 Include facility name.
0 Do not include facility name.

unsigned-resultant-array
OpenVMS usage: unspecified
type: unspecified
access: write only
mechanism: by reference, array reference

A 4-byte array to receive message-specific information. The unsigned-resultant-
array argument contains the address of this array.

The contents of this 4-byte array are as follows:

Byte Contents

0 Reserved
1 Count of FAO arguments
2 User value
3 Reserved

Description

LIB$SYS_GETMSG calls the $GETMSG system service and returns a message
string using the semantics of the caller’s string. Note that, in order to retrieve a
message string for a LIB$ facility message, you must include the file $LIBDEF in
your program.

See the HP OpenVMS System Services Reference Manual: A–GETUAI for a more
complete description of $GETMSG.

lib–570

LIB$ Routines
LIB$SYS_GETMSG

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_BUFFEROVF Successfully completed, but the resultant

string overflowed the buffer provided and was
truncated.

SS$_MSGNOTFND Successfully completed, but the message code
does not have an associated message on file.

LIB$_STRTRU Successfully completed, but the source string was
truncated on copy.

LIB$_FATERRLIB Fatal internal error.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor.

lib–571

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

LIB$TPARSE/LIB$TABLE_PARSE
Table-Driven Finite-State Parser

The Table-Driven Finite-State Parser ‡ routine is a general-purpose, table-driven
parser implemented as a finite-state automaton, with extensions that make
it suitable for a wide range of applications. It parses a string and returns a
message indicating whether or not the input string is valid.

LIB$T[ABLE_]PARSE is called with the address of an argument block, the
address of a state table, and the address of a keyword table. The input string is
specified as part of the argument block.

The LIB$ facility supports the following two versions of the Table-Driven Finite-
State Parser:

LIB$TPARSE Available on VAX systems.
LIB$TPARSE is available on Alpha and I64 systems
in translated form. In this form, it is applicable to
translated VAX images only.

LIB$TABLE_PARSE Available on VAX, Alpha, and I64 systems.

LIB$TPARSE and LIB$TABLE_PARSE differ mainly in the way they pass
arguments to action routines.

The term LIB$T[ABLE_]PARSE is used here to describe concepts that apply to
both LIB$TPARSE and LIB$TABLE_PARSE.

Format

LIB$TPARSE/LIB$TABLE_PARSE argument-block ,state-table ,key-table

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

argument-block
OpenVMS usage: unspecified
type: unspecified
access: modify
mechanism: by reference

LIB$T[ABLE_]PARSE argument block. The argument-block argument contains
the address of this argument block.

The LIB$T[ABLE_]PARSE argument block contains information about the
state of the parse operation. It is a means of communication between
LIB$T[ABLE_]PARSE and the user’s program. It is passed as an argument
to all action routines.

‡ No support for arguments passed by 64-bit address reference or the use of 64-bit
descriptors is planned for LIB$TPARSE. On Alpha and I64 systems, LIB$TABLE_
PARSE supports arguments passed by 64-bit address reference and the use of 64-bit
descriptors.

lib–572

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

You must declare and initialize the argument block. Section 1.4 describes the
argument block in detail. Section 2.2 illustrates the coding for an argument block
declaration and discusses its initialization.

LIB$T[ABLE_]PARSE supports the following argument blocks:

• A 32-bit argument block that accommodates longword addresses, values, and
input tokens on VAX, Alpha, and I64 systems.

On Alpha and I64 systems, this argument block also accommodates a numeric
token whose binary representation is less than or equal to 2**64.

• A 64-bit argument block that accommodates quadword addresses, values, and
input tokens on Alpha and I64 systems.

state-table
OpenVMS usage: unspecified
type: unspecified
access: read only
mechanism: by reference

Starting state in the state table. The state-table argument is the address of
this starting state. Usually, the name appearing as the first argument of the
$INIT_STATE macro is used.

You must define the state table for your parser. LIB$T[ABLE_]PARSE provides
macros in the MACRO and BLISS languages for this purpose. Section 1.3
describes these macros.

key-table
OpenVMS usage: unspecified
type: unspecified
access: read only
mechanism: by reference

Keyword table. The key-table argument is the address of this keyword table.
This name must be the same as that which appears as the second argument of
the $INIT_STATE macro.

You must only assign a name to the keyword table. The LIB$T[ABLE_]PARSE
macros allocate and define the table. See Section 4 for more information about
the keyword table.

Description

The following sections explain in detail how LIB$T[ABLE_]PARSE works and
how to call it from both the MACRO assembly language and high-level languages:

1. How LIB$T[ABLE_]PARSE Works — Describes the data structures used by
LIB$T[ABLE_]PARSE and how LIB$T[ABLE_]PARSE operates on them.

2. Coding and Using a Simple State Table — Explains how to construct and use
a simple state table.

3. Using Advanced LIB$T[ABLE_]PARSE Features — Explains how to use
subexpressions, abbreviations, action routines, and other advanced features.

4. Data Representation — Includes information for the low-level-language
programmer, such as the binary representation of state table data.

lib–573

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

1 How LIB$T[ABLE_]PARSE Works
LIB$T[ABLE_]PARSE analyzes an input string according to a set of states and
transitions presented in a state table you define. It determines whether the input
string is valid according to the rules you define for the input language.

There are three parts to any parsing operation:

• The set of symbol types, or alphabet, from which you can choose the
vocabulary of your language.

You specify a symbol type for each transition you define. The symbol type
specifies what constitutes a matching substring from the input string.

LIB$T[ABLE_]PARSE recognizes the ASCII character set and provides
symbolic names for the most common combinations of ASCII characters,
such as alphabetic and alphanumeric strings, OpenVMS symbols, and
numbers. See Section 1.2 for a list of the symbol types that comprise the
LIB$T[ABLE_]PARSE alphabet.

• The rules that govern how the alphabet is used—in other words, the
language’s grammar.

You specify the rules for a language in a state table. A LIB$T[ABLE_]PARSE
state table lists the possible states for your language. Each state consists of a
list of the transitions to other states and the operations to be performed when
a transition is executed (see Section 1.3).

• The string to be parsed.

The argument block specifies the input string. It also contains additional
information about the state of the parse—how much of the string has not
been interpreted, what the current token is, and so forth (see Section 1.4).

1.1 Overview
Before discussing the alphabet, the state table, and the argument block in detail,
this section provides an overview of how these three parts work together.

1.1.1 Evaluating the Input String
LIB$T[ABLE_]PARSE evaluates the input string from left to right as it
transitions from state to state. For a particular transition in a particular state,
it evaluates the beginning of the unprocessed part of the input string against the
symbol type you specify for the transition to determine whether there is a match.

LIB$T[ABLE_]PARSE compares each character of the remaining input string,
from left to right, against the transition’s symbol type until it encounters a
character in the input string that does not match. It takes the substring that
matches the symbol type and stores a pointer to it in the argument block as the
current token. In this way, any character in the input string that does not belong
to the symbol type’s constituent character set effectively becomes a separator.

If LIB$T[ABLE_]PARSE finds a match, it executes the transition.

If the input string does not match, LIB$T[ABLE_]PARSE attempts to match the
next transition. It performs the comparison using the transitions in the order in
which you define them for the state.

lib–574

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

1.1.2 Executing a Transition
When LIB$T[ABLE_]PARSE finds a match with a transition, it performs the
following steps:

1. Stores a pointer to the current token in the argument block. If the token
matches one of the numeric symbol types, it also stores the token’s binary
representation in the argument block.

2. Calls the action routine, if any, specified by the transition and passes it the
argument block and any additional user-specified arguments.

You can use an action routine to reject a transition. In this case,
LIB$T[ABLE_]PARSE performs none of the following steps. See Section
3.1 for more information.

3. Performs one of the following operations:

• Stores the mask, if any, specified by the transition in the location specified
by the transition.

• Stores the value of token in the program location specified by the
transition.

4. Transfers control to the specified state, if any, or to the next state in the state
table.

1.1.3 Exiting LIB$T[ABLE_]PARSE
LIB$T[ABLE_]PARSE continues to match and execute transitions from state to
state until one of the following occurs:

• For a valid match, it executes a user-specified transition to TPA$_EXIT at
main level. It returns the value SS$_NORMAL.

• A transition requests that LIB$T[ABLE_]PARSE consider the string invalid
by specifying a transition to TPA$_FAIL at main level (rather than at the
level of a subexpression). LIB$T[ABLE_]PARSE returns with the value LIB$_
SYNTAXERR.

You can also request a transition to TPA$_FAIL from an action routine. The
action routine can provide an alternate failure status.

• An error occurs at the main level. The error can be:

– A syntax error. All transitions in the current state fail to match
the remaining input string. LIB$T[ABLE_]PARSE returns LIB$_
SYNTAXERR or an alternate failure status returned by an action routine.

– A state table format error. One of your state table entries is invalid.
LIB$T[ABLE_]PARSE returns LIB$_INVTYPE.

Note

LIB$T[ABLE_]PARSE generates no signals and establishes no condition
handler; action routines can signal through LIB$T[ABLE_]PARSE back to
the calling program.

When LIB$T[ABLE_]PARSE cannot successfully parse the entire string, it
defines the current token, as follows, and stores it in the argument block before
returning:

• If LIB$T[ABLE_]PARSE fails to match a transition in the current state,
it attempts to define the current token as the beginning of the remaining

lib–575

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

input string. You can incorporate this token in an error message or use it to
determine the logical flow of your program.

LIB$T[ABLE_]PARSE attempts to match the characters from the beginning
of the remaining input string, one at a time, against the TPA$_SYMBOL
alphabet symbol type until it encounters a character that does not match.
The TPA$_SYMBOL symbol type consists of all the characters of the standard
OpenVMS symbol constituent set.

– If LIB$T[ABLE_]PARSE successfully matches one or more consecutive
characters from the input string against TPA$_SYMBOL, then the
substring that matched TPA$_SYMBOL becomes the current token.

– If the first character of the remaining input string does not match TPA$_
SYMBOL, the first character becomes the current token.

• If LIB$T[ABLE_]PARSE matches the symbol type for a transition that
specifies TPA$_FAIL as the next state, it leaves the token that matched the
transition as the current token.

1.2 Alphabet of LIB$T[ABLE_]PARSE
The LIB$T[ABLE_]PARSE alphabet consists of a set of symbol types defined in
Table lib–9. This alphabet includes strings made up of elements of the ASCII
character set. It provides all the basic building blocks needed for constructing
a grammar using the ASCII character set. The alphabet also includes symbol
types that represent the more complex constructions found in programming and
command language grammar.

Use the symbols types that comprise the LIB$T[ABLE_]PARSE alphabet to define
a vocabulary and grammar for your language. For each transition you define, you
specify one of the alphabet symbol types. LIB$T[ABLE_]PARSE compares the
characters at the beginning of the remaining input string with this symbol type of
each of the possible transitions. If LIB$T[ABLE_]PARSE finds a match, it enters
the state specified by that transition.

Table lib–9 The Alphabet of LIB$T[ABLE_]PARSE

Symbol Type Characters Matched

’x’ The particular ASCII character. In a state table,
it is expressed by enclosing the character in single
quotation marks. The character can be any member
of the 8-bit ASCII code set. LIB$T[ABLE_]PARSE
does not consider uppercase and lowercase alphabetic
characters and codes with different values in bit 7 to
be equivalent.

TPA$_ANY Any single character.
TPA$_ALPHA Any alphabetic character, which includes the DEC

multinational character set.
TPA$_DIGIT Any numeric character, that is, 0 through 9.

(continued on next page)

lib–576

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Table lib–9 (Cont.) The Alphabet of LIB$T[ABLE_]PARSE

Symbol Type Characters Matched

TPA$_STRING Any string of one or more alphanumeric characters,
that is, uppercase or lowercase A through Z, and the
numeric characters 0 through 9. The string can be
any length. It is bounded on the right by the first
nonalphanumeric character or by the end of the string.

TPA$_SYMBOL Any string of one or more through characters of the
standard OpenVMS symbol constituent set, that is,
uppercase and lowercase A through Z and all DEC
multinational characters, in addition to the dollar sign
($) and the underscore (_). The string is bounded
on the right by some character not in the symbol
constituent set (usually a blank) or by the end of the
string.

’keyword’ The string of characters enclosed in single quotation
marks. A keyword can consist of one or more
characters of the OpenVMS symbol constituent set,
that is, uppercase and lowercase A through Z, the
numeric characters 0 through 9, the dollar sign ($),
and the underscore (_). Uppercase and lowercase
alphabetics are treated as different characters.
A state table can contain up to 220 keywords. The
keyword is bounded on the right by a character not in
the symbol constituent set or by the end of the string.
Keywords that are one character in length are
expressed in the form ’x*’ to distinguish them
from the single-character symbol (’x’). They must
be differentiated because they are not the same in
operation. For example, in the input string AB+C, the
single character ’A’ would match the first character
of this string, whereas the keyword ’A*’ would not,
because B in the string is in the symbol constituent
set.

TPA$_BLANK Any string of one or more blanks and/or tabs.
TPA$_OCTAL Any octal number (that is, any string of one or more

numeric characters 0 through 7) whose magnitude is
less than 232 for a 32-bit argument block or less than
264 for a 64-bit argument block.

TPA$_DECIMAL Any decimal number (that is, any string of one or more
numeric characters 0 through 9) whose magnitude is
less than 232 for a 32-bit argument block or less than
264 for a 64-bit argument block.

TPA$_HEX Any hexadecimal number (that is, any string of one
or more numeric characters 0 through 9, A through F)
whose magnitude is less than 232 for a 32-bit argument
block or less than 264 for a 64-bit argument block.

(continued on next page)

lib–577

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Table lib–9 (Cont.) The Alphabet of LIB$T[ABLE_]PARSE

Symbol Type Characters Matched

‡TPA$_OCTAL_64 Any octal number (that is, any string of one or more
numeric characters 0 through 7) whose magnitude is
less than 264.

‡TPA$_DECIMAL_64 Any decimal number (that is, any string of one or more
numeric characters 0 through 9) whose magnitude is
less than 264.

‡TPA$_HEX_64 Any hexadecimal number (that is, any string of one
or more numeric characters 0 through 9, A through F)
whose magnitude is less than 264.

TPA$_FILESPEC Any string that constitutes a valid OpenVMS file
specification. The string is bounded on the right by
the first character that either is not a file specification
constituent character or would cause the string to
violate the syntax rules of a file specification.

TPA$_NODE Matches a full node specification including the double
colon (::).

TPA$_NODE_ACS Matches a primary node specification including the
access control string, if any, but not the double colon
(::).

TPA$_NODE_
PRIMARY

Matches a primary node specification excluding both
the access control string, if any, and the double colon
(::).

TPA$_UIC Any string that constitutes a valid OpenVMS
numerical UIC specification, bounded by square
brackets or angle brackets. The binary value of the
UIC, converted in octal radix, is placed in the argument
block. The wildcard character (*) is permitted in the
group and/or member fields; its presence results in that
field being set to its largest possible value in the binary
representation.

TPA$_IDENT Any string that constitutes a valid OpenVMS identifier.
Identifiers may be given as numerical UICs according
to the rules for TPA$_UIC, or as alphabetic identifier
names that appear in the system’s rights database.
The binary value of the identifier, converted in either
octal or hexadecimal radix or by lookup in the system
rights database, is placed in the argument block.
Identifiers can be entered in any of the following forms:

[n,m] <n,m>
[name1,name2] <name1,name2>
[name] <name>
name
%Xhex-valueYou can use a wildcard (*) in place of

any occurence of number or name in an identifier form.

‡Alpha and I64 specific

(continued on next page)

lib–578

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Table lib–9 (Cont.) The Alphabet of LIB$T[ABLE_]PARSE

Symbol Type Characters Matched

TPA$_LAMBDA The empty string (always matches). As it executes the
transition, LIB$T[ABLE_]PARSE does not remove
any characters from the input string. LAMBDA
transitions are useful in getting action routines called
under otherwise awkward circumstances, providing
unconditional GOTOs to link portions of a state table
together, and providing default actions in certain cases.

TPA$_EOS The end of the input string.
state label The label of a state that functions as a subexpression.

A subexpression is analogous to a subroutine within
the state table.
The subexpression facility permits complex syntactic
constructs that appear in many places in grammar to
appear only once in the state table. It also permits a
degree of nondeterministic or pushdown parsing with
a parser that is otherwise deterministic and finite-
state. See Section 3.5 for detailed information about
subexpressions and examples of their use.

Note

By default, LIB$T[ABLE_]PARSE treats blanks (defined to be either
spaces or tabs), as though they belong to no symbol type constituent
set. Effectively, this makes the blank a separator. LIB$T[ABLE_]PARSE
begins its next comparison with the first nonblank character following the
blanks. To have LIB$T[ABLE_]PARSE evaluate a blank as it would any
other character in the input string, set the TPA$V_BLANKS flag in the
argument block. Section 3.2 provides an example of the use of this flag.

1.3 State Tables
This section describes state table generation and the macros used to construct
state tables. Section 2 explains how to use these macros.

The state table must be set up using either MACRO or BLISS. Everything else,
including any action routines, can be coded in the language of your choice. Simply
compile the state table separately, then link it with your program.

The body of the state table consists of one or more states, each of which defines
one or more transitions to the same or other states. The order of the states and
the order of the transitions for each state are important:

• If a transition does not specify a target state, LIB$T[ABLE_]PARSE
transitions to the next state after the current state in the state table.

• For a given state, LIB$T[ABLE_]PARSE evaluates the input string against
the transitions in the order in which they are defined and executes the first
transition it matches.

– If a state defines more than one transition with symbol types that match
overlapping sets of tokens, the order of transition definitions within the
state is significant. For example, the characters 123 followed by a comma

lib–579

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

(,) could match TPA$_DECIMAL, TPA$_OCTAL, TPA$_STRING, or one
of several other symbol types.

– It is best to order transitions in order of increasing generality of their
symbol types. For example, the TPA$_SYMBOL symbol type matches
all keyword strings. In general, LIB$T[ABLE_]PARSE never executes a
keyword transition that follows a TPA$_SYMBOL transition. The symbol
types, in order of increasing generality, are as follows:

’keyword’
’x’
TPA$_EOS
TPA$_ALPHA
TPA$_DIGIT
TPA$_BLANK
TPA$_OCTAL
TPA$_OCTAL_64 (Alpha and I64 only)
TPA$_DECIMAL
TPA$_DECIMAL_64 (Alpha and I64 only)
TPA$_HEX
TPA$_HEX_64 (Alpha and I64 only)
TPA$_STRING
TPA$_SYMBOL
TPA$_UIC
TPA$_IDENT
TPA$_NODE_PRIMARY
TPA$_NODE_ACS
TPA$_NODE
TPA$_FILESPEC
TPA$_ANY
TPA$_LAMBDA

Note

The list of symbol types does not include subexpression calls, because the
generality of these calls depends on the symbol types recognized within
the subexpression. If you use action routines to reject certain transitions,
you can change the order in which that symbol type is placed in this
order. In any case, LIB$T[ABLE_]PARSE executes the first transition
listed in a state that you permit to match the leftmost portion of the
remaining input string.

1.3.1 MACRO State Table Generation Macro Calls
The OpenVMS system MACRO library contains a set of assembler macros that
allow convenient and readable coding of a LIB$T[ABLE_]PARSE state table.
These macros generate symbol definitions and tables. They do not produce any
executable code or routine calls.

There are four MACRO state table generation macros:

• $INIT_STATE—Initializes the LIB$T[ABLE_]PARSE macros and declares the
beginning of a state table (see Section 1.3.1.1)

• $STATE—Defines a state (see Section 1.3.1.2)

• $TRAN—Defines a state transition (see Section 1.3.1.3)

lib–580

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

• $END_STATE—Ends the state table (see Section 1.3.1.4)

A state table begins with a call to $INIT_STATE and ends with a call to $END_
STATE. Within the state table, define each state by a call to $STATE immediately
followed by as many calls to $TRAN as you need to define the transitions from
that state.

1.3.1.1 $INIT_STATE—Initializes the LIB$T[ABLE_]PARSE Macros
The $INIT_STATE macro declares the beginning of a state table. It initializes
the internals of the table generator macros and declares the locations of the state
table and the keyword table:

• The state table is the structure containing the definitions of the states and
the transitions between them. LIB$T[ABLE_]PARSE builds the state table as
it processes the $STATE and $TRAN macros you use to define the table.

• The keyword table contains the text of the keywords used in the state table.
LIB$T[ABLE_]PARSE builds the keyword table as it processes the calls to
$TRAN for each state.

Section 4 provides specific information on the allocation and binary
representations of the state table and the keyword table. This information
may be useful in debugging your program.

$INIT_STATE state-table ,key-table

state-table
The name assigned to the state table. LIB$T[ABLE_]PARSE equates this label to
the start of the first state in the state table.

key-table
The name assigned to the keyword table. LIB$T[ABLE_]PARSE equates this
label to the start of the keyword table.

You must supply both the address of the state table and the address of the
keyword table in the call to LIB$T[ABLE_]PARSE to perform a parse. The
$INIT_STATE macro can appear more than once in a program. Each occurrence
defines a separate state table. No part of any state table can refer to part of any
other state table.

1.3.1.2 $STATE—Defines a State
The $STATE macro declares the beginning of a state.

$STATE [label]

label
An optional label for the state. LIB$T[ABLE_]PARSE equates the label, if
present, to the starting address of the state.

1.3.1.3 $TRAN—Defines a State Transition
The $TRAN macro defines a transition from the state in which it is defined to
some other (or to the same) state. The arguments of the macro define, among
other things, the symbol type that causes the transition to be executed, the state
to which to transfer, and the action routine to call, if any. The transition defined
by a $TRAN macro belongs to the state defined by the last preceding $STATE
macro.

$TRAN type [,label] [,action] [,mask] [,msk-adr] [,argument]

lib–581

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

type
The symbol type, taken from the LIB$T[ABLE_]PARSE alphabet, that is
recognized by this transition. The transition is taken if the characters from
the beginning of the remaining input string match the specified symbol type.

If the transition calls a subexpression to determine a match, the symbol type
syntax includes the state label of the subexpression to be called. It is indicated
with the MACRO expression !label. See Section 3.5 for information about
subexpressions.

label
The optional target state of this transition. If present, it must be the label
assigned to some state in the state table. If no label argument is present,
LIB$T[ABLE_]PARSE transfers control to the state immediately following the
current state in the state table.

LIB$T[ABLE_]PARSE defines two expressions you can also specify as the target
state in the label argument:

• TPA$_EXIT — The parsing operation in progress terminates with a success
status.

• TPA$_FAIL — The parsing operation stops with a failure status, as if a
syntax error had occurred.

action
The optional address of a user-supplied action routine. If this argument is
present, LIB$T[ABLE_]PARSE calls the named action routine before it executes
the transition. Section 3.1 describes the calling sequence of action routines and
the information available to them.

Because the action routine address is self-relative, it cannot be in a shared image
separate from the state table.

mask
An optional 32-bit mask value used with the msk-adr argument.

When LIB$T[ABLE_]PARSE executes the transition, it performs an inclusive
OR operation using the mask value and the contents of msk-adr and stores the
result in msk-adr.

You can associate one or more bits in mask with a particular transition and
set those bits. When LIB$T[ABLE_]PARSE returns, you can check the bits in
msk-adr to determine which transitions were executed. You can also use an
action routine to check the bit and ensure that a transition is executed only once.

If the mask argument is present, the msk-adr argument must also be present.

msk-adr
The msk-adr argument provides two mutually exclusive capabilities depending
on whether the mask argument is present:

• If mask is present, msk-adr is the address of a longword associated with the
preceding mask argument. LIB$T[ABLE_]PARSE performs the inclusive OR
operation on the contents of this address and the mask argument and stores
the result in msk-adr.

Initialize the contents of msk-adr to zero before calling
LIB$T[ABLE_]PARSE.

lib–582

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

• If mask is not present, you can use msk-adr to specify the address of a
location where LIB$T[ABLE_]PARSE stores information about the matching
token. No OR operation is performed. This capability lets a program extract
the most commonly needed information from the input string without using
action routines.

The kind of information that LIB$T[ABLE_]PARSE stores in the location you
specify as the msk-adr argument depends on the symbol type specified for
the type argument and on the argument block, as follows:

– If the symbol type is TPA$_DECIMAL, TPA$_OCTAL, or TPA$_HEX,
LIB$T[ABLE_]PARSE stores the binary representation of the matching
number as an unsigned longword for a 32-bit argument block and as an
unsigned quadword for a 64-bit argument block.

– If the symbol type is TPA$_DECIMAL_64, TPA$_OCTAL_64, or TPA$_
HEX_64, LIB$T[ABLE_]PARSE stores the binary representation of the
matching number as an unsigned quadword for both 32-bit and 64-bit
argument blocks.

– If the symbol type is ’x’, TPA$_ANY, TPA$_ALPHA, or TPA$_DIGIT,
LIB$T[ABLE_]PARSE stores the 8-bit matching character as an unsigned
byte.

– If the symbol is of any other type, you must specify msk-adr as the
address of a 32-bit or 64-bit string descriptor, as appropriate, that you
allocate in your program. LIB$T[ABLE_]PARSE assumes a 32-bit or
64-bit descriptor if the argument block with which you called it is 32-bit
or 64-bit, respectively.

For a 32-bit descriptor, LIB$T[ABLE_]PARSE stores the length of the
token in the first 32 bits (longword) of the descriptor. It stores a pointer
to the token in the second longword. This pointer is the address of the
token in the input string.

For a 64-bit descriptor, LIB$T[ABLE_]PARSE stores the length of
the token in the second quadword of the descriptor and stores the
address of the token in the input string in the third quadword. On entry,
LIB$T[ABLE_]PARSE writes the fields of the first quadword as follows:

DSC64$B_CLASS = DSC64$K_CLASS_S
DSC64$B_DTYPE = DSC64$K_DTYPE_T
DSC64$L_MBMO = –1
DSC64$W_MBO = +1

Using msk-adr makes your parsing program nonmodular. The resulting
program, which contains this state table, includes code that is not position
independent.

Because the address specified by msk-adr is self-relative, it cannot be in a shared
image separate from the state table.

argument
An optional 32-bit value that LIB$T[ABLE_]PARSE passes to the action routine
without interpretation. This argument can be an identifier number, an address,
or any other information your action routine needs. It allows a single action
routine to serve many transitions for which similar, but slightly varying, actions
must be performed.

lib–583

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Because LIB$T[ABLE_]PARSE does not know the form or meaning of argument
the value is stored in its absolute form. If you use argument to pass an address,
you must store the address in its absolute form rather than as a self-relative
pointer. In this case the resulting program, which contains this state table, is
nonmodular. That is, it includes code that is not position independent.

1.3.1.4 $END_STATE—Ends the State Table
The $END_STATE macro declares the end of the state table. It is mandatory, in
order to permit the orderly cleanup of the LIB$T[ABLE_]PARSE macro system.
The $END_STATE macro has no arguments. You code it as follows:

$END_STATE

1.3.2 BLISS State Table Generation Macro Calls
The SYS$LIBRARY:TPAMAC.L32 and SYS$LIBRARY:TPAMAC.L64 files each
contain a set of BLISS macros that allow convenient and readable coding of
LIB$T[ABLE_]PARSE state tables in BLISS.

Use one of the following BLISS state table generation macros:

• $INIT_STATE—Initializes the macros (see Section 1.3.2.1)

• $STATE—Defines a state and its transitions (see Section 1.3.2.2)

To make the macros available to the program, include the following declaration in
the module containing the state tables:

LIBRARY ’SYS$LIBRARY:TPAMAC’;

The BLISS compiler you use, BLISS-32 or BLISS-64, chooses the corresponding
SYS$LIBRARY:TPAMAC file.

The BLISS table generation macros contain no BEGIN or END statements. This
allows $STATE macros to refer to each other. They generate all storage with
OWN declarations. This means that the macros modify PSECT declarations
for OWN and GLOBAL storage. Thus if other data declarations follow the
state table declarations, they may not have the correct attributes. You cannot
simply surround the state table with BEGIN/END, because this constitutes an
expression. No declarations of any kind, including ROUTINE declarations, can
follow an expression.

Use one of the following techniques to include LIB$T[ABLE_]PARSE a state table
in a BLISS module:

• Follow the state table with explicit redeclarations of the OWN and GLOBAL
PSECTs. Example 3 illustrates this technique.

• Place the state table in a separate module. The high-level language examples
in the next section use this technique.

• Place the state table between BEGIN and END statements after the
declarations within a routine body.

• Place the state table between BEGIN and END statements at the end of a
module.

In all cases you must define all action routines, masks, addresses, and arguments
with suitable declarations (which can be FORWARD or EXTERNAL). The
LIB$T[ABLE_]PARSE macros handle the necessary FORWARD declarations for
forward references to labels within the state table.

lib–584

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

1.3.2.1 $INIT_STATE—Initializes the LIB$T[ABLE_]PARSE Macros
The $INIT_STATE macro initializes the LIB$T[ABLE_]PARSE macro system in
the same manner it does for MACRO.

$INIT_STATE (state-table, key-table);

state-table
The name assigned to the state table. LIB$T[ABLE_]PARSE equates this label to
the start of the first state in the state table.

key-table
The name assigned to the keyword table. LIB$T[ABLE_]PARSE equates this
label to the start of the keyword table.

Both names are declared as global vectors of length zero. As with the MACRO
state table generation macros, you can invoke $INIT_STATE more than once to
declare several state tables within a single module.

1.3.2.2 $STATE—Declares a State and Its Transitions
In BLISS, you use the $STATE macro to declare a state in its entirety, including
its transitions.

$STATE ([label],
(transition),
(transition),
(transition)

.

.

.
);

label
Optional address of the start of the state. The compiler declares label as a
local vector of length zero. Note that the comma following the optional label is
mandatory.

transition
Each transition appears within parentheses in the same form as the transition
argument list for the MACRO $TRAN macro.

type [,label] [,action] [,mask] [,msk-adr] [,argument]

The arguments of each transition are expressed in exactly the same format as
in the MACRO macros, with the exception of the subexpression symbol type. In
BLISS, this symbol type has the form (label).

Note that the transitions are not specified as keyword macros. Therefore, you
must use commas to indicate arguments you have skipped.

1.4 LIB$T[ABLE_]PARSE Argument Block
LIB$T[ABLE_]PARSE finds the input string through the argument block. This
argument block is the impure database upon which LIB$T[ABLE_]PARSE
operates. That is, it is a set of variable data that can be written as well
as read. It contains information about the string to be parsed, option
flags for LIB$T[ABLE_]PARSE, and data about the current token. If
LIB$T[ABLE_]PARSE calls an action routine, it passes the argument block
to the action routine. This permits the action routine efficient reference to
relevant data.

lib–585

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

1.4.1 Choosing an Argument Block
LIB$T[ABLE_]PARSE provides an argument block for 32-bit operations on VAX,
Alpha, and I64 systems. It also provides an argument block for 64-bit operations
on Alpha and I64 systems.

1.4.1.1 32-Bit Argument Block
The 32-bit LIB$T[ABLE_]PARSE argument block accommodates longword
addresses and values as well as input tokens whose binary representations
require no more than 32 bits.

On Alpha and I64 systems, the LIB$T[ABLE_]PARSE 32-bit argument block can
also accommodate a numeric input token whose binary representation requires
up to 64 bits.

LIB$T[ABLE_]PARSE defines the first 9 longwords of the 32-bit argument block
as shown in Figure lib–20. You must pass an argument block of at least this
length as the first argument to LIB$T[ABLE_]PARSE. You can add fields to the
end of the argument block as a means of passing user-defined data to action
routines.

The TPA$K_LENGTH0 symbol represents the number of bytes (36) in the basic
32-bit argument block. You can use this symbol to determine the start of any
user-defined fields you add to the argument block.

Table lib–10 describes the argument block fields.

Figure lib–20 LIB$T[ABLE_]PARSE 32-Bit Argument Block

ZK−1929−GE

Unused

TPA$L__PARAM

TPA$L__NUMBER

TPA$B__CHAR

TPA$L__TOKENPTR

TPA$L__TOKENCNT

TPA$L__STRINGPTR

TPA$L__STRINGCNT

TPA$L__OPTIONS

TPA$L__COUNT

User defined fields

TPA$Q_NUMBER

1.4.1.2 64-Bit Argument Block (Alpha Only)

The 64-bit LIB$T[ABLE_]PARSE argument block accommodates quadword
addresses and values as well as input tokens whose binary representations
require no more than 64 bits.

LIB$T[ABLE_]PARSE defines the first 10 words of the 64-bit argument block as
shown in Figure lib–21. You can add fields to the end of the argument block as a
means of passing data to action routines.

lib–586

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

The TPA64$K_LENGTH0 symbol represents the number of bytes (80) in the basic
64-bit argument block. You can use this symbol to determine the start of any
user-defined fields you add to the argument block.

Table lib–10 describes the argument block fields.

Figure lib–21 LIB$T[ABLE_]PARSE 64-Bit Argument Block (Alpha and I64 Only)

ZK−8085A−GE

TPA$L_OPTIONS TPA64$L_COUNT

TPA64$Q_STRINGDESC

TPA64$Q_STRINGCNT

TPA64$Q_STRINGPTR

TPA64$Q_TOKENDESC

TPA64$Q_TOKENCNT

TPA64$Q_TOKENPTR

Unused TPA64$B_CHAR

TPA64$Q_NUMBER

TPA64$Q_PARAM

User defined fields

1.4.2 Symbolic Names for Argument Block Fields
The fields in each type of argument block have symbolic names. Figure lib–20
and Figure lib–21 show some of these symbolic names. This section tells you how
to access these names in some of the most commonly used languages:

• MACRO assembly language — MACRO language programs can define both
the 32-bit and 64-bit argument block names by invoking the macro $TPADEF
(automatically loaded from the system macro library). The field names define
the byte offset of the field from the start of the argument block. This includes
the bit fields ($V_names). In addition, bit mask values ($M_names) are
available for the bit fields.

• BLISS — The field names are also available to BLISS programs
from the system macro SYS$LIBRARY:STARLET.L32 and
SYS$LIBRARY:STARLET.L64 libraries. Each name (except for the $M_
names) is defined as a fixed-reference macro that operates on a byte-based
block. The $M_names are defined as literals.

• C — The same field names are available to C programs from the tpadef.h
file. For the 32-bit and 64-bit argument blocks, the names are defined as
elements of the tpadef and tpa64def structures, respectively.

See Section 2.2 for an example of an argument block declaration.

lib–587

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

1.4.3 32-Bit and 64-Bit Argument Block Fields
Table lib–10 describes the fields of the 32-bit and 64-bit argument blocks.

Note that most fields have two symbols and one description. The symbol that
begins with the prefix TPA$ is used with a 32-bit argument block, while the
symbol that begins with the prefix TPA64$ is used with a 64-bit argument block.
To prevent cumbersome explanations, Table lib–10 uses only the main part of a
field name, without the prefix used in the actual code, when referring to a field
for both the 32-bit and 64-bit argument blocks. For example, the options field
is referred to as OPTIONS rather than specifying both TPA$L_OPTIONS and
TPA64$L_OPTIONS. The complete field name is used only when referring to a
field for one particular form of argument block.

Table lib–10 LIB$T[ABLE_]PARSE Argument Block Fields

Symbol Description

TPA$L_COUNT
TPA64$L_COUNT

A longword containing the value of TPA$K_COUNT0
for 32-bit argument blocks or TPA64$K_COUNT0 for
64-bit argument blocks. TPA$K_COUNT0 is defined
to be 8. TPA64$K_COUNT0 is defined to be –1.
If the value contained in this longword is greater
than or equal to 8, LIB$T[ABLE_]PARSE treats
the argument block as a 32-bit argument block. If
the value is –1, LIB$T[ABLE_]PARSE treats the
argument block as a 64-bit argument block.
For LIB$TPARSE (VAX only), a longword containing
the number of longwords that make up the rest of
the argument block. This longword functions as the
argument count when the argument block becomes
the argument list to an action routine. This field
must contain a value that is greater than or equal to
the value of TPA$K_COUNT0, whose numeric value
is 8.

(continued on next page)

lib–588

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Table lib–10 (Cont.) LIB$T[ABLE_]PARSE Argument Block Fields

Symbol Description

TPA$L_OPTIONS
TPA64$L_OPTIONS

Contains various flag bits and other options. The
defined flags are as follows:

• TPA$V_BLANKS, TPA64$V_BLANKS1 —
Setting this bit causes LIB$T[ABLE_]PARSE
to process blanks and tabs explicitly, rather than
treating them as separators. See Section 3.2 for
information about processing blanks.

• TPA$V_ABBRFM, TPA64$V_ABBRFM1 —
Setting this bit allows keywords to be abbreviated
to any length. If an abbreviated keyword string
is ambiguous, the first eligible transition listed in
the state matches it.

• TPA$V_ABBREV, TPA64$V_ABBREV1 — Setting
this bit allows keywords to be abbreviated to the
shortest length that is unambiguous in that state.
See the Abbreviating Keywords section.

• TPA$V_AMBIG, TPA64$V_AMBIG1 —
LIB$T[ABLE_]PARSE sets this bit when it
has detected an ambiguous keyword string in the
current state.

The OPTIONS field also contains the following option:

TPA$B_MCOUNT, TPA64$B_MCOUNT — This
byte contains the minimum number of characters
allowed for the abbreviation of a keyword. If
its value is zero, abbreviations are not allowed.
Preventing ambiguity is the responsibility of
the state table designer. If the ABBRFM or
ABBREV flag is set, LIB$T[ABLE_]PARSE
ignores MCOUNT. MCOUNT is the high byte
of the OPTIONS field.

TPA64$Q_STRINGDESC For a 64-bit argument block, the three quadwords
starting with TPA64$Q_STRINGDESC form an
embedded 64-bit descriptor for the input string.2

On entry, LIB$T[ABLE_]PARSE writes the fields of
TPA64$Q_STRINGDESC as follows:

DSC64$B_CLASS = DSC64$K_CLASS_S
DSC64$B_DTYPE = DSC64$K_DTYPE_T
DSC64$L_MBMO = –1
DSC64$W_MBO = +1

1LIB$T[ABLE_]PARSE defines bit masks TPAM_BLANKS, TPAM_ABBRFM, TPA$M_ABBREV,
and TPA$M_AMBIG for use by languages such as MACRO. These bit masks correspond to the location
of the $V_ fields in the OPTIONS field.
2See the HP OpenVMS Calling Standard manual for information about string descriptor fields.

(continued on next page)

lib–589

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Table lib–10 (Cont.) LIB$T[ABLE_]PARSE Argument Block Fields

Symbol Description

TPA$L_STRINGCNT
TPA64$Q_STRINGCNT

Contains the number of characters remaining in the
input string.
For a 32-bit argument block, TPA$L_STRINGCNT
and TPA$L_STRINGPTR form an embedded 32-bit
descriptor for the input string.2

For both 32-bit and 64-bit argument blocks:

• You must initialize the STRINGCNT and
STRINGPTR fields to describe the input string.
Use LIB$ANALYZE_SDESC or LIB$ANALYZE_
SDESC_64 to read the string length and address
from the string’s descriptor and write them in
STRINGCNT and STRINGPTR, respectively.

• Before LIB$T[ABLE_]PARSE calls an
action routine, it modifies STRINGCNT and
STRINGPTR to describe the remainder of the
input string.

• When LIB$T[ABLE_]PARSE returns,
STRINGCNT and STRINGPTR describe
the portion of the input string that
LIB$T[ABLE_]PARSE did not process. This
occurs whether LIB$T[ABLE_]PARSE returns
success or failure.

TPA$L_STRINGPTR
TPA64$Q_STRINGPTR

Contains the address of the remainder of the string
being parsed.

TPA64$Q_TOKENDESC For a 64-bit argument block, the three quadwords
starting with TPA64$Q_TOKENDESC form an
embedded 64-bit descriptor for the current token.2

On entry, LIB$T[ABLE_]PARSE writes the fields of
TPA64$Q_TOKENDESC as follows:

DSC64$B_CLASS = DSC64$K_CLASS_S
DSC64$B_DTYPE = DSC64$K_DTYPE_T
DSC64$L_MBMO = –1
DSC64$W_MBO = +1

TPA$L_TOKENCNT
TPA64$Q_TOKENCNT

Contains the number of characters in the current
token.
For a 32-bit argument block, TPA$L_TOKENCNT
and TPA$L_TOKENPTR form an embedded 32-bit
descriptor for the input token.2

For both 32-bit and 64-bit argument blocks,
LIB$T[ABLE_]PARSE updates TOKENCNT and
TOKENPTR, to reflect the current token.

2See the HP OpenVMS Calling Standard manual for information about string descriptor fields.

(continued on next page)

lib–590

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Table lib–10 (Cont.) LIB$T[ABLE_]PARSE Argument Block Fields

Symbol Description

TPA$L_TOKENPTR
TPA64$Q_TOKENPTR

Contains the address of the current token.

TPA$B_CHAR3

TPA64$B_CHAR3
Contains the character matched by one of the single-
character symbol types: ’x’, TPA$_ANY, TPA$_
ALPHA, or TPA$_DIGIT.

TPA$L_NUMBER3

TPA64$Q_NUMBER3
Contains the binary representation of a numeric
token that matches TPA$_OCTAL, TPA$_DECIMAL,
TPA$_HEX, TPA$_UIC, or TPA$_IDENT. For a 64-
bit argument block, it can also contain the binary
representation of a numeric token that matches
TPA$_DECIMAL_64, TPA$_OCTAL_64, or TPA$_
HEX_64.

(Alpha and I64 specific)
TPA$Q_NUMBER3

For a 32-bit argument block on an Alpha system,
contains the binary representation of a numeric token
that matches TPA$_DECIMAL_64, TPA$_OCTAL_64,
or TPA$_HEX_64. LIB$T[ABLE_]PARSE coverts the
numeric token in the appropriate radix before storing
it in the TPA$Q_NUMBER field.
In the 32-bit argument block, TPA$Q_NUMBER
overlays TPA$L_NUMBER and the longword in
which TPA$B_CHAR resides.

TPA$L_PARAM
TPA64$Q_PARAM

Contains the optional 32-bit argument supplied by
the state transition in its argument argument.
For a 64-bit argument block, LIB$T[ABLE_]PARSE
sign-extends the argument value before storing it in
TPA64$Q_PARAM.

3LIB$T[ABLE_]PARSE modifies TPA$Q_NUMBER prior to calling an action routine from a transition
whose symbol type is listed in the TPA$Q_NUMBER Description column. It does not modify this field
while executing a transition that specifies any other symbol type.

2 Coding and Using a Simple State Table
LIB$T[ABLE_]PARSE can parse programming languages, command languages,
or any other grammar for which a deterministic parser is the best choice.

To code a program to use LIB$T[ABLE_]PARSE, perform the following steps:

1. Set up state tables to implement the language’s grammar (See Section 2.1)

2. Define the argument block and other common variables (See Section 2.2)

3. Include the call to LIB$T[ABLE_]PARSE in the main program (See Section
2.3)

This section provides examples that demonstrate the use of LIB$T[ABLE_]PARSE
to perform these three steps. The examples parse the command language of a
simple report management utility. This hypothetical utility allows a user to
perform the following activities:

• Obtain a list of available reports (SHOW command).

• Read reports on the terminal (READ command).

• Print reports (PRINT command).

lib–591

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

• Store new reports (FILE command).

The examples use the BASIC programming language for everything except the
state and keyword tables, which are coded in BLISS.

This simple state table program does not use any action routines or other
arguments. See Section 3 for information about how to use these features of
LIB$T[ABLE_]PARSE.

2.1 Setting Up a State Table
A state table associates the parser’s alphabet with a set of possible transitions.

It is often helpful to create a graphical representation of a state table before
attempting to code it. The following section illustrates two possible approaches.

2.1.1 Diagramming the Transitions
One way to set up these tables is to start from a transition diagram of the
language you want to parse. (If you do not know how to construct a transition
diagram, you might find it helpful to read an introductory text about compiler
design and construction before you start.) Each circle represents a state in the
state table. Each arrow, labeled with an input option, represents a transition out
of one state to another state or within the same state.

Figure lib–22 shows a transition diagram for the hypothetical utility described in
this section.

Figure lib–22 Transition Diagram for a Hypothetical Utility

Start
Keyword

State1

Report Name

End of String

ZK−1933−GE

Exit

Error

OtherOther

Another technique for developing a state table starts with a tabular diagram
in which the first column is the starting state, the second column identifies the
input token, or keyword, and the third gives the resultant state.

Figure lib–23 is a tabular diagram of the utility that appears in Figure lib–22.

lib–592

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Figure lib–23 Tabular Diagram of a Hypothetical Utility

Starting State Input Resulting State

ZK−1980−GE

Other

SHOW

End of String

FILE
READ

Report Name

PRINT

Start

State1

Other

State1
State1
State1
State1
Error

State1
Exit
Error

In this case, each unique entry in the Starting State or Resulting State column
represents a state in the state table. Each entry in the Input column represents a
possible transition out of the state in the Starting State column to a state in the
Resulting State column.

2.1.2 Coding a State Table
For both MACRO and BLISS, you begin the state table with an $INIT_STATE
macro. If you use MACRO to define your state table, then:

• Use the $STATE macro to define each state.

• Follow each $STATE macro with one instance of the $TRAN macro for each
transition from this state to another state or within the same state.

If you use BLISS to define the state table, then:

• Use the $STATE macro to define each state and its associated transitions.

Note

The order in which you define the states is important. If you do not
specify a target state for a transition, LIB$T[ABLE_]PARSE transfers
control to the next state in the state table.

The following MACRO and BLISS examples code the state table for
the hypothetical utility diagrammed in Figure lib–22 and Figure lib–23.
Note that neither of these state tables includes the error state, because
LIB$T[ABLE_]PARSE automatically generates an error if the input token
does not match a transition in the current state. To provide a transition to your
own error state, code the last transition in the state with the TPA$_LAMBDA
symbol type and specify a transition to your error state. The TPA$_LAMBDA
symbol type matches any input token.

The state table, coded using MACRO, for this simple language looks like this:

.TITLE simplelang

.ident ’v1’

;+
; Define the LIB$TABLE_PARSE control symbols
;-

$TPADEF

$INIT_STATE SIMPLE_LANGUAGE_TABLE, SIMPLE_KEYWORD_TABLE

lib–593

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

$STATE START
$TRAN ’PRINT’, STATE1
$TRAN ’READ’, STATE1
$TRAN ’FILE’, STATE1
$TRAN ’SHOW’, STATE1

$STATE STATE1
$TRAN TPA$_STRING, STATE1
$TRAN TPA$_EOS, TPA$_EXIT

$END_STATE

.END

Using the BLISS macros yields the following state table definition:

MODULE simple_statetable =

BEGIN

!+
! These libraries contain the macros and other definitions
! needed to generate the state tables.
!-

LIBRARY ’SYS$LIBRARY:STARLET’;
LIBRARY ’SYS$LIBRARY:TPAMAC’;
!+
! UFD_STATE is the name you are giving the state table.
! UFD_KEY names the keyword table.
! Be sure to use the same name in the call to LIB$T[ABLE_]PARSE.
!-

$INIT_STATE (UFD_STATE, UFD_KEY);
!+
! Read the command name (to the first blank in the command).
! Each string is a keyword; you are limited to 220 keywords
! per state table.
!-

$STATE (START, !Be careful of your punctuation here.
(’CREATE’,STATE1), ! Each transition is surrounded by
(’FILE’,STATE1), ! parentheses; each entry except the
(’PRINT’,STATE1), ! last is followed by a comma.
(’READ’,STATE1)
);

$STATE (STATE1,
(TPA$_STRING, STATE1), ! If there is more than one report name
(TPA$_EOS, TPA$_EXIT) ! specified, go back and process it.
); ! exit when done.

END

ELUDOM ! End of module CREATE_TABLE

Assemble or compile this module as you would any other program module.

2.2 Defining the Argument Block
After you have set up the state tables, you need to declare the
LIB$T[ABLE_]PARSE argument block in such a way that both your program
and LIB$T[ABLE_]PARSE can use it. This means the data must be defined in
an area common to the calling program and the program module containing the
state table definitions.

In most programming languages you will use a combination of EXTERNAL
statements and common data definitions to create and access a separate data
PSECT. If you do not know what mechanisms the language you are using
provides, consult the documentation for that language.

lib–594

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

The following example shows the LIB$T[ABLE_]PARSE argument block defined
for use in a BASIC program.

!LIB$T[ABLE_]PARSE requires that TPA$K_COUNT0 be eight.

DECLARE INTEGER CONSTANT TPA$K_COUNT0 = 8, &
BTPA$L_COUNT = 0, &
BTPA$L_OPTIONS=1, &
BTPA$L_STRINGCNT=2, &
BTPA$L_STRINGPTR=3, &
BTPA$L_TOKENCNT=4, &
BTPA$L_TOKENPTR=5, &
BTPA$B_CHAR=6, &
BTPA$L_NUMBER=7, &
BTPA$L_PARAM=8

!+
! The LIB$T[ABLE_]PARSE argument block.
!-

MAP (TPARSE_BLOCK) LONG TPARSE_ARRAY (TPA$K_COUNT0)

!+
! Redefining the map allows you to use the standard
! LIB$T[ABLE_]PARSE symbolic names. TPA$L_STRINGCNT,
! for example, references the same storage location
! as TPARSE_ARRAY(2) and TPARSE_ARRAY(BTPA$L_STRINGCNT).
!-
MAP (TPARSE_BLOCK) LONG &

TPA$L_COUNT , &
TPA$L_OPTIONS, &
TPA$L_STRINGCNT, &
TPA$L_STRINGPTR, &
TPA$L_TOKENCNT, &
TPA$L_TOKENPTR, &
TPA$B_CHAR, &
TPA$L_NUMBER, &
TPA$L_PARAM

Before your program can call LIB$T[ABLE_]PARSE, it must place the necessary
information in the argument block.

The example utility does not need to set any flags because it uses the
LIB$T[ABLE_]PARSE defaults for options such as blanks processing and
abbreviations. However, it must put the address and length of the string to
be parsed into the TPA$L_STRINGCNT and TPA$L_STRINGPTR fields.

The address and the length of the string to be parsed are available in the
descriptor of the input string (called COMMAND_LINE in the following program).
However, BASIC, like most high-level languages, does not allow you to look at
the descriptors of your strings. Instead, you can use LIB$ANALYZE_SDESC
or LIB$ANALYZE_SDESC_64 to read the length and address from the string
descriptor and place them in the argument block.

lib–595

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

2.3 Coding the Call to LIB$T[ABLE_]PARSE
The following example demonstrates calling LIB$T[ABLE_PARSE from a high-
level language (BLISS). This program uses the BLISS state table described in
Section 2.1.2.

5 %TITLE "BLISS Program to Call LIB$T[ABLE_]PARSE

OPTION TYPE=EXPLICIT

!+
! COMMAND_LINE is the string to receive the input
! command from the terminal.
! ERROR_MSG_TEXT is the system error message
! returned from LIB$SYS_GETMSG
! (used in the error handling routine)
!-
DECLARE STRING COMMAND_LINE, ERROR_MSG_TEXT

!+
! RET_STATUS receives the status from the system calls.
! SAVE_STATUS is used when an error occurs
! and the error handling routine calls
! LIB$SYS_GETMSG to obtain the error text.
!-
DECLARE LONG RET_STATUS, SAVE_STATUS

!+
! UFD_STATE is the address of the state table.
! UFD_KEY is the address of the key table.
! Both addresses are set up by the macros in module
! SIMPLE_STATETABLE32.
!-

EXTERNAL LONG UFD_STATE, UFD_KEY

!+
! To allow us to compare returned statuses more easily.
!-

EXTERNAL INTEGER CONSTANT SS$_NORMAL, &
LIB$_SYNTAXERR, &
LIB$_INVTYPE

!+
! This program calls the following Run-Time Library
! routines:
!
! LIB$T[ABLE_]PARSE to parse the input string
!
! LIB$ANALYZE_SDESC to get the length and starting
! address of the command string and place them
! in the LIB$T[ABLE_]PARSE argument block.
!
! LIB$SYS_GETMSG to find the facility, severity, and text
! of any system errors that occur
! during program execution.
!-

EXTERNAL LONG FUNCTION LIB$TABLE_PARSE, &
LIB$ANALYZE_SDESC, &
LIB$SYS_GETMSG

lib–596

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

!+
20 ! This file defines the argument block that is passed

! to LIB$T[ABLE_]PARSE. It also defines subscripts that
! make it easier to access the array.
!
! Keeping the argument block definitions in a separate
! file makes them easier to modify and lets other
! programs use the same definitions.
!-

%INCLUDE "SIMPLE_TPARSE_BLOCK"

50 ON ERROR GOTO ERROR_HANDLER

60 !+
! LIB$T[ABLE_]PARSE requires that TPA$L_COUNT, the
! first field in the argument block, have a value
! of TPA$K_COUNT0, whose value is 8.
!-

TPA$L_COUNT = TPA$K_COUNT0

75 !+
! Prompt at the terminal for the user’s action.
! A real utility should provide a friendlier,
! clearer interface.
!-

GET_INPUT: PRINT "Your options are: " , " READ report "
PRINT , " FILE report "
PRINT , " PRINT report "
PRINT , " CREATE report "
PRINT
INPUT "What would you like to do"; COMMAND_LINE

!+
! Get the length and starting address of the command line
! and place them in the LIB$T[ABLE_]PARSE argument block. Note
! that LIB$ANALYZE_SDESC stores the length as a word.
!-

RET_STATUS = LIB$ANALYZE_SDESC (COMMAND_LINE BY DESC, &
TPARSE_ARRAY (BTPA$L_STRINGCNT) BY REF, &
TPARSE_ARRAY (BTPA$L_STRINGPTR) BY REF)

IF RET_STATUS <> SS$_NORMAL THEN
GOTO ERROR_HANDLER

END IF

100 !+
! Call LIB$T[ABLE_]PARSE to process the input string.
!
! Note that LIB$T[ABLE_]PARSE expects to receive its arguments
! by reference, while BASIC’s default for arrays and
! strings is by descriptor. Therefore the BY REF
! clauses are required. Without them, LIB$T[ABLE_]PARSE
! cannot find the input string
! and the parse will always fail.
!-

RET_STATUS = LIB$TABLE_PARSE (TPARSE_ARRAY () BY REF, &
UFD_STATE BY REF, &
UFD_KEY BY REF)

!+
! This simple program provides no information except that
! a valid command was entered. The next section discusses
! techniques for gathering more information.
!-

lib–597

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

IF RET_STATUS = SS$_NORMAL

!+
! For now, exit on success.
!-

THEN PRINT "Parse successful"
GOTO 9999

!+
! If the parse failed, give the user a chance to try again.
!-

ELSE IF RET_STATUS = LIB$_SYNTAXERR THEN
PRINT "You did not enter a valid command."
PRINT "Please try again."
GOTO GET_INPUT

!+
! If a more serious error occurred, inform the user
! and exit.

!-

ELSE
Goto ERROR_HANDLER

END IF
END IF

500 ERROR_HANDLER: SAVE_STATUS = RET_STATUS

RET_STATUS = LIB$SYS_GETMSG (SAVE_STATUS,,ERROR_MSG_TEXT)
PRINT "Something went wrong."
PRINT ERL, ERROR_MSG_TEXT
RESUME 9999

9999 END

Compile this program as you would any other BASIC program.

When both the state tables and the main program have been compiled, link them
together to form a single executable image, as follows:

$ LINK SIMPLANG,SIMPLANG_STATETABLE

3 Using Advanced LIB$T[ABLE_]PARSE Features
The LIB$T[ABLE_]PARSE call in the previous program tells you that the
command the user entered was valid, but nothing else—not even which command
was entered. A program usually needs more information than this.

The following sections describe some of the more complicated ways to process
input strings or to gather extra information for your program, including:

• Action routines (see 3.1)

• Blanks in the input string (see 3.2)

• Special characters in the input string (see 3.3)

• Abbreviated keywords (see 3.4)

• Subexpressions (see 3.5)

• Modular use of LIB$T[ABLE_]PARSE (see 3.6)

lib–598

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

3.1 Using Action Routines
After LIB$T[ABLE_]PARSE finds a match between a transition and the leading
portion of the input string, it determines if the transition that made the match
specified an action routine. If it did, LIB$T[ABLE_]PARSE stores the value of the
transition’s argument longword, if any, in the argument block PARAM field and
calls the action routine.

• If the action routine returns success, LIB$T[ABLE_]PARSE processes the
mask or msk-adr arguments, if any, and continues to execute the transition
as it would if there was no action routine.

• If the action routine returns failure, LIB$T[ABLE_]PARSE does not execute
the transition and continues attempting to match successive transitions.

3.1.1 Passing Data to an Action Routine
An action routine has only one argument, the argument block. You can pass
additional data to the action routine using:

• The transition’s optional argument argument

• Fields you add to the end of the argument block

LIB$TABLE_PARSE and LIB$TPARSE use different linkages for passing the
argument block to the action routine:

• LIB$TABLE_PARSE uses the standard calling mechanism and passes the
argument block, by reference, as the only argument to the action routine.

Therefore, for OpenVMS systems, action routines are written as:

ROUTINE TEST(TPARSE_ARGUMENT_BLOCK : REF BLOCK[, BYTE]) =
BEGIN

TPARSE_ARGUMENT_BLOCK[TPA$V_ABBREV] = 1

END;

• On VAX systems, LIB$TPARSE uses a nonstandard linkage that establishes
the address of the argument block as the routine’s actual argument pointer.
Therefore an action routine can reference fields in the argument block by
their symbolic offsets relative to the AP (argument pointer) register.

For example:

ROUTINE TEST =
BEGIN

BUILTIN
AP;

BIND
TPARSE_ARGUMENT_BLOCK = AP : REF BLOCK[, BYTE];

TPARSE_ARGUMENT_BLOCK[TPA$V_ABBREV] = 1

END;

3.1.2 Action Routine Return Values
The action routine returns a value to LIB$T[ABLE_]PARSE in R0 that controls
execution of the current state transition. If the action routine returns success
(low bit set in R0) then LIB$T[ABLE_]PARSE proceeds with the execution of
the state transition. If the action routine returns failure (low bit clear in R0),
LIB$T[ABLE_]PARSE rejects the transition that was being processed and acts
as if the symbol type of that transition had not matched. It proceeds to evaluate
other transitions in that state for eligibility.

lib–599

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Note

Prior to calling an action routine, LIB$T[ABLE_]PARSE sets the low bit
of R0 to make it easier for the action routine to return success.

If an action routine returns a nonzero failure status to LIB$T[ABLE_]PARSE and
no subsequent transitions in that state match, LIB$T[ABLE_]PARSE will return
the status of the action routine, rather than the status LIB$_SYNTAXERR. In
longword-valued functions in high-level languages, this value is returned in R0.

3.1.3 Using an Action Routine to Reject a Transition
An action routine can intentionally return a failure status to force
LIB$T[ABLE_]PARSE to reject a transition. This allows you to implement
symbol types specific to particular applications. To recognize a specialized symbol
type, code a state transition using a LIB$T[ABLE_]PARSE symbol type that
describes a superset of the desired set of possible tokens. The associated action
routine then performs the additional discrimination necessary and returns
success or failure to LIB$T[ABLE_]PARSE, which then accordingly executes or
fails to execute the transition.

A pure finite-state machine, for instance, has difficulty recognizing strings that
are shorter than some maximum length or accepting numeric values confined to
some particular range.

3.2 Blanks in the Input String
The default mode of operation in LIB$T[ABLE_]PARSE is to treat blanks as
separators. That is, they can appear between any two tokens in the string being
parsed without being called for by transitions in the state table. Because blanks
are significant in some situations, LIB$T[ABLE_]PARSE processes blanks if you
have set the bit TPA$V_BLANKS in the options longword of the argument block.
The following input string shows the difference in operation:

ABC DEF

LIB$T[ABLE_]PARSE recognizes the string by the following sequences of state
transitions, depending on the state of the blanks control flag. The following
examples illustrate processing with and without TPA$V_BLANKS set:

lib–600

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

• TPA$V_BLANKS set:

$STATE
$TRAN TPA$_STRING

$STATE
$TRAN TPA$_BLANK

$STATE
$TRAN TPA$_STRING

• TPA$V_BLANKS clear:

$STATE
$TRAN TPA$_STRING

$STATE
$TRAN TPA$_STRING

Your action routines can set or clear TPA$V_BLANKS as LIB$T[ABLE_]PARSE
enters or leaves sections of the state table in which blanks are significant.
LIB$T[ABLE_]PARSE always checks the blanks control flag as it enters a state.
If the flag is clear, it removes any space or tab characters present at the front of
the input string before it proceeds to evaluate transitions. Note that when the
TPA$V_BLANKS flag is clear, the TPA$_BLANK symbol type will never match.
If TPA$V_BLANKS is set, you must explicitly process blanks.

3.3 Special Characters in the Input String
Not all members of the ASCII character set can be entered directly in the state
table definitions. Examples include the single quotation mark and all control
characters.

In MACRO state tables, such characters can be specified as the symbol type
with any assembler expression that is equivalent to the ASCII code of the
desired character, not including the single quotes. For example, you could code a
transition to match a backspace character as follows:

BACKSPACE = 8
.
.
.

$TRAN BACKSPACE, ...

MACRO places extra restrictions on the use of a comma in arguments to macros;
often they must be surrounded by one or more angle brackets. Using a symbolic
name for the comma will avoid such difficulties.

To build a transition matching such a single character in a BLISS state table, you
can use the %CHAR lexical function as follows:

LITERAL BACKSPACE = 8;
.
.
.

$STATE (label,
(%CHAR (BACKSPACE), ...)
);

lib–601

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

3.4 Abbreviating Keywords
The default mode of LIB$T[ABLE_]PARSE is exact match. All keywords in the
input string must exactly match their spelling, length and case in the state
table. However, many languages (command languages in particular) allow
you to abbreviate keywords. For this reason, LIB$T[ABLE_]PARSE has three
abbreviation facilities to permit the recognition of abbreviated keywords when
the state table lists only the full spellings. All three are controlled by flags and
options defined in the argument block OPTIONS field. Table lib–11 describes
these flags.

Table lib–11 Keyword Abbreviation Flags

Flag Description

TPA$B_MCOUNT
TPA64$B_MCOUNT

By setting a value in the MCOUNT argument block
field, the calling program or action routine specifies a
minimum number of characters from the abbreviated
keyword that must be present for a match to occur. For
example, setting the byte to the value 4 would allow
the keyword DEASSIGN to appear in an input string as
DEAS, DEASS, DEASSI, DEASSIG, or DEASSIGN.
LIB$T[ABLE_]PARSE checks all the characters of the
keyword string. Incorrect spellings beyond the minimum
abbreviation are not permitted.

TPA$V_ABBRFM
TPA64$V_ABBRFM

If you set the ABBRFM flag in the argument block
OPTIONS field, LIB$T[ABLE_]PARSE recognizes any
leftmost substring of a keyword as a match for that
keyword. LIB$T[ABLE_]PARSE does not check for
ambiguity; it matches the first keyword listed in the
state table of which the input token is a subset.
For proper recognition of ambiguous keywords, the
keywords in each state must be arranged in alphabetical
order by the ASCII collating sequence as follows:

Dollar sign ($)
Numerics
Uppercase alphabetics
Underscore (_)
Lowercase alphabetics

(continued on next page)

lib–602

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Table lib–11 (Cont.) Keyword Abbreviation Flags

Flag Description

TPA$V_ABBREV
TPA64$V_ABBREV

If you set the ABBREV flag in the argument block
OPTIONS field, LIB$T[ABLE_]PARSE recognizes any
abbreviation of a keyword as long as it is unambiguous
among the keywords in that state.
If LIB$T[ABLE_]PARSE finds that the front of the input
string contains an ambiguous keyword string, it sets
the AMBIG flag in the OPTIONS field and refuses to
recognize any keyword transitions in that state. (It
still accepts other symbol types.) The AMBIG flag can
be checked by an action routine that is called when
coming out of that state, or by the calling program
if LIB$T[ABLE_]PARSE returns with a syntax error
status. LIB$T[ABLE_]PARSE clears the flag when it
enters the next state.

If both the ABBRFM and ABBREV flags are set, ABBRFM takes precedence.

Note

Using a keyword abbreviation option can permit short abbreviations or
ambiguity, which restricts the extensibility of a language. Adding a new
keyword can make a formerly valid abbreviation ambiguous.

3.5 Using Subexpressions
LIB$T[ABLE_]PARSE subexpressions are analogous to subroutines within the
state table. You can use subexpressions as you would use subroutines in any
program:

• To avoid replication of complex expressions.

• For a limited form of pushdown parsing, in which the state table contains
recursively nested subexpressions.

• For nondeterministic parsing, that is, parsing in which you need some
number of states of look-ahead. To do this, place each path of look-ahead
in a separate subexpression and call the subexpressions in the transitions
of the state that needs the look-ahead. When a look-ahead path fails, the
subexpression failure mechanism causes LIB$T[ABLE_]PARSE to back out
and try another path.

A subexpression call is indicated with the MACRO expression !label or the
BLISS expression (label) as the transition type argument. Transfer of control
to a subexpression causes LIB$T[ABLE_]PARSE to call itself recursively, using
the same argument block and keyword table as the original call, and using the
specified state label as a starting state.

The following statement is an example of a $TRAN macro that calls a
subexpression:

$TRAN !Q_STRING,,,,Q_DESCRIPTOR

In this example, Q_STRING is the label of another state, a subexpression, in the
same state table.

lib–603

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

When LIB$T[ABLE_]PARSE evaluates a transition that transfers control to a
subexpression, it evaluates the subexpression’s transitions and processes the
remaining input string.

• If the subexpression succeeds, it returns success to LIB$T[ABLE_]PARSE by
executing a transition to TPA$_EXIT. LIB$T[ABLE_]PARSE thus considers
the calling transition to have made a match. It calls that transition’s action
routine, if any, and executes the transition.

• If the subexpression fails, LIB$T[ABLE_]PARSE considers the calling
transition to have no match. It backs up the input string, leaving it as it was
at the start of the subexpression, and continues processing by evaluating the
remaining transitions in the calling state.

3.5.1 Using Action Routines and Storing Data in a Subexpression
Be careful when designing subexpressions whose transitions provide action
routines or use the mask and msk-adr arguments. As LIB$T[ABLE_]PARSE
processes the state transitions of a subexpression, it calls the specified action
routines and stores the mask and msk-adr. If the subexpression fails,
LIB$T[ABLE_]PARSE backs up the input string and resumes processing in
the calling state. However, any effect that an action routine has had on the
caller’s database cannot be undone.

If subexpressions are used only as state table subroutines, there is usually no
harm done, because when a subexpression fails in this mode, the parse generally
fails. This is not true of pushdown or nondeterministic parsing. In applications
where you expect subexpressions to fail, design action routines to store results
in temporary storage. You can then make these results permanent at the main
level, where the flow of control is deterministic.

3.5.2 An Example: Parsing a Quoted String
The following example is an excerpt of a state table that parses a string quoted
by an arbitrary character. The table interprets the first character that appears as
a quote character. Many text editors and some programming languages contain
this sort of construction.

LIB$T[ABLE_]PARSE processes a transition that invokes a subexpression as it
would any other transition:

• If the subexpression returns success by executing a transition to TPA$_
EXIT, LIB$T[ABLE_]PARSE considers the calling transition to have a
match. It updates Q_DESCRIPTOR to describe the substring parsed by the
subexpression and executes the transition to the next state in the state table.

• If the subexpression returns failure by executing a transition to TPA$_FAIL,
LIB$T[ABLE_]PARSE considers the calling transition to have no match. It
restores the input string as it was when the subexpression was called and
continues by evaluating the next transition in the state.

lib–604

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

;+
; Main level state table. The first transition accepts and
; stores the quoting character.
;-

$STATE STRING
$TRAN TPA$_ANY,,,,Q_CHAR

;+
; Call the subexpression to accept the quoted string and store
; the string descriptor. Note that the descriptor spans all
; the characters accepted by the subexpression.
;-

$STATE
$TRAN !Q_STRING,,,,Q_DESCRIPTOR
$TRAN TPA$_LAMBDA,TPA$_FAIL

;+
; Accept the trailing quote character, left behind by the
; subexpression
;-

$STATE
$TRAN TPA$_ANY,NEXT

;+
; Subexpression to scan the quoted string. The second transition
; matches until it is rejected by the action routine. The subexpression
; should never encounter the end of string before the final quoting
; character.
;-

$STATE Q_STRING
$TRAN TPA$_EOS,TPA$_FAIL
$TRAN TPA$_ANY,Q_STRING,TEST_Q
$TRAN TPA$_LAMBDA,TPA$_EXIT

;+
; The following MACRO subroutine compares the current character
; with the quoting character and returns failure if it matches.
;-

TEST_Q: .WORD 0 ; null entry mask
CMPB TPA$B_CHAR(AP),Q_CHAR ; check the character
BNEQ 10$; note R0 is already 1
CLRL R0 ; match - reject transition

10$: RET

3.5.3 An Example: Parsing a Complex Grammar
The following example is an excerpt from a state table that shows how to use
subexpressions to parse a complex grammar. The state table accepts a number
followed by a keyword qualifier. Depending on the keyword, the table interprets
the number as decimal, octal, or hexadecimal. The state table accepts strings
such as the following:

10/OCTAL
32768/DECIMAL
77AF/HEX

This sort of grammar is difficult to parse with a deterministic finite-state
machine. Using a subexpression look-ahead of two states permits a simpler
expression of the state tables.

;+
; Main state table entry. Accept a number of some type and store
; its value at the location NUMBER.
;-

$STATE
$TRAN !OCT_NUM,NEXT,,,NUMBER
$TRAN !DEC_NUM,NEXT,,,NUMBER
$TRAN !HEX_NUM,NEXT,,,NUMBER

lib–605

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

;+
; Subexpressions to accept an octal number followed by the OCTAL
; qualifier.
;-

$STATE OCT_NUM
$TRAN TPA$_OCTAL
$STATE
$TRAN ’/’
$STATE
$TRAN ’OCTAL’,TPA$_EXIT

;+
; Subexpression to accept a decimal number followed by the DECIMAL
; qualifier.
;-

$STATE DEC_NUM
$TRAN TPA$_DECIMAL
$STATE
$TRAN ’/’
$STATE
$TRAN ’DECIMAL’,TPA$_EXIT

;+
; Subexpression to accept a hex number followed by the HEX
; qualifier.
;-

$STATE HEX_NUM
$TRAN TPA$_HEX
$STATE
$TRAN ’/’
$STATE
$TRAN ’HEX’,TPA$_EXIT

Note that the transitions that follow a match with a numeric token do not
disturb the NUMBER field in the argument block. This allows the main level
subexpression call to retrieve it when the subexpression returns.

3.6 LIB$T[ABLE_]PARSE and Modularity
To use LIB$T[ABLE_]PARSE in a modular and shareable fashion:

• Avoid using OWN storage. Instead, allocate the argument block on the stack
or the heap.

• Do not use the msk-adr argument.

• Do not use the argument argument as an address. If additional context is
needed, allocate it at the end of the argument block.

• Use action routines to control flags such as TPA$V_BLANKS. The MACRO
example at the end of the LIB$TPARSE/LIB$TABLE_PARSE section shows
such an action routine, though the program itself is not modular.

4 Data Representation
This section describes the binary representation and allocation of a
LIB$T[ABLE_]PARSE state table and a keyword table. While this information
is not required to use LIB$T[ABLE_]PARSE, it may be useful in debugging your
program.

4.1 State Table Representation
Each state consists of its transitions concatenated in memory.
LIB$T[ABLE_]PARSE equates the state label to the address of the first byte
of the first transition. A marker in the last transition identifies the end of the
state. The LIB$T[ABLE_]PARSE table macros build the state table in the PSECT
_LIB$STATE$.

lib–606

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Each transition in a state consists of 2 to 23 bytes containing the arguments
of the transition. The state table generation macros do not allocate storage for
arguments not specified in the transition macro. This allows simple transitions
to be represented efficiently. For example, the following transition, which simply
accepts the character ‘‘?’’ and falls through to the next state, is represented in
two bytes:

$TRAN ’?’

In this section, pointers described as self-relative are signed displacements
from the address following the end of the pointer (this is identical to branch
displacements in the OpenVMS VAX instruction set).

Table lib–12 describes the elements of a state transition in the order in which
they appear, if present, in the transition. If a transition does not include a specific
option, no bytes are assigned to the option within the transition.

lib–607

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Table lib–12 Binary Representation of a LIB$T[ABLE_]PARSE State Transition

Transition Element
No. of
Bytes Description

Symbol type 1 The first byte of a transition always contains the binary coding
of the symbol type accepted by this transition. Flag bit 0 in the
flags byte controls the interpretation of the type byte. If the
flag is clear, the type byte represents a single character (the ’x’
construct). If the flag bit is set, the type byte is one of the other
type codes (keyword, number, and so on). The following table
lists the symbol types accepted by LIB$T[ABLE_]PARSE:

Symbol Type Binary Encoding

’x’ ASCII code of the
character (8 bits)

’keyword’ The keyword index (0 to
219)

TPA$_DECIMAL_64 (Alpha and I64
only)

228

TPA$_OCTAL_64 (Alpha and I64
only)

229

TPA$_HEX_64 (Alpha and I64 only) 230
TPA$_NODE_ACS 231
TPA$_NODE_PRIMARY 232
TPA$_NODE 233
TPA$_FILESPEC 234
TPA$_UIC 235
TPA$_IDENT 236
TPA$_ANY 237
TPA$_ALPHA 238
TPA$_DIGIT 239
TPA$_STRING 240
TPA$_SYMBOL 241
TPA$_BLANK 242
TPA$_DECIMAL 243
TPA$_OCTAL 244
TPA$_HEX 245
TPA$_LAMBDA 246
TPA$_EOS 247
TPA$_SUBEXPR 248 (subexpression call)

(Other codes are
reserved for expansion)

(continued on next page)

lib–608

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Table lib–12 (Cont.) Binary Representation of a LIB$T[ABLE_]PARSE State Transition

Transition Element
No. of
Bytes Description

Use of the TPA$_FILESPEC, TPA$_NODE, TPA$_NODE_
PRIMARY, or TPA$_NODE_ACS symbol type results in
calls to the $FILESCAN system service. Use of the symbol
type TPA$_IDENT results in calls to the $ASCTOID system
service. If your application of LIB$T[ABLE_]PARSE runs in an
environment other than OpenVMS user mode, you must carefully
evaluate whether use of these services is consistent with your
environment.

First flags byte 1 This byte contains the following bits, which specify the options of
the transition. It is always present.

Bit Description

0 Set if the type byte is not a single character.
1 Set if the second flags byte is present.
2 Set if this is the last transition in the state.
3 Set if a subexpression pointer is present.
4 Set if an explicit target state is present.
5 Set if the mask longword is present.
6 Set if the msk-adr longword is present.
7 Set if an action routine address is present.

Second flags byte 1 This byte is present if any of its flag bits is set. It contains an
additional flag describing the transition. It is used as follows:

Bit Description

0 Set if the action routine argument is present.

Subexpression
pointer

2 This word is present in transitions that are subexpression calls.
It is a 16-bit signed self-relative pointer to the starting state of
the subexpression.

Argument longword 4 This longword field contains the 32-bit action routine argument,
when specified.

Action routine
address

4 This longword contains a self-relative pointer to the action
routine, when specified.

Bit mask 4 This longword contains the mask argument, when specified.
(continued on next page)

lib–609

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Table lib–12 (Cont.) Binary Representation of a LIB$T[ABLE_]PARSE State Transition

Transition Element
No. of
Bytes Description

Mask address 4 This longword, when specified, contains a self-relative pointer
through which the mask, or data that depends on the symbol
type, is to be stored. Because the pointer is self-relative, when
it points to an absolute location, the state table is not PIC
(position-independent code).

Transition target 2 This word, when specified, contains the address of the target
state of the transition. The address is stored as a 16-bit signed
self-relative pointer. The final state TPA$_EXIT is coded as a
word whose value is –1; the failure state TPA$_FAIL is coded as
a word whose value is –2.

4.2 Keyword Table Representation
The keyword table is a vector of 16-bit signed pointers that address locations
in the keyword string area, relative to the start of the keyword vector. It is the
structure to which the $INIT_STATE macro equates its second argument.

The LIB$T[ABLE_]PARSE macros assign an index number to each keyword. The
index number is stored in the symbol type byte in the transition; it locates the
associated keyword vector entry. The keyword strings are stored in the order
encountered in the state table. Each keyword string is terminated by a byte
containing the value –1. Between the keywords of adjacent states is an additional
–1 byte to stop the ambiguous keyword scan.

To ensure that the keyword vector is adjacent to the keyword string area, the
keyword vector is located in PSECT _LIB$KEY0$ and the keyword strings and
stored in PSECT _LIB$KEY1$.

Your program should not use any of the three PSECTs used by
LIB$T[ABLE_]PARSE (_LIB$STATE$, _LIB$KEY0$, and _LIB$KEY1$). The
PSECTs _LIB$KEY0$ and _LIB$KEY1$ refer to each other using 16-bit
displacements, so user PSECTs inserted between them can cause truncation
errors from the linker.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$T[ABLE_]PARSE has executed a transition
to TPA$_EXIT at main level, not within a
subexpression.

LIB$_SYNTAXERR Parse completed with syntax error.
LIB$T[ABLE_]PARSE has encountered a state
at main level in which none of the transitions
match the input string, or in which a transition
to TPA$_FAIL was executed.

LIB$_INVTYPE State table error. LIB$T[ABLE_]PARSE has
encountered an invalid entry in the state table.

lib–610

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Other If an action routine returns a failure status
other than zero, and the parse consequently
fails, LIB$T[ABLE_]PARSE returns the status
returned by the action routine.

Examples

Example 1a
The following DEC C program accepts and parses the command line of a
CREATE/DIRECTORY command using LIB$TABLE_PARSE. It uses the state
table defined in Example 1b.

/*
** This DEC C program accepts and parses the command line of a CREATE/DIRECTORY
** command. This program uses the LIB$GET_FOREIGN call to acquire the command
** line from the CLI and parse it with LIB$TABLE_PARSE, leaving the necessary
** information in its global data base. The command line is of
** the following format:
**
** CREATE/DIR DEVICE:[MARANTZ.ACCOUNT.OLD]
** /OWNER_UIC=[2437,25]
** /ENTRIES=100
** /PROTECTION=(SYSTEM:R,OWNER:RWED,GROUP:R,WORLD:R)
**
** The three qualifiers are optional. Alternatively, the command
** may take the form:
**
** CREATE/DIR DEVICE:[202,31]
**
** using any of the optional qualifiers.
**
** The source for this program can be found in:
**
** SYS$EXAMPLES:LIB$TABLE_PARSE_DEMO.COM
**
*/

/*
** Specify the required header files
*/

include <tpadef.h>
include <descrip.h>
include <starlet.h>
include <lib$routines.h>

/*
** Specify macro definitions
*/

define max_name_count 8
define max_token_size 9
define uic_string_size 6
define command_buffer_size 256

/*
** Specify persistent data that’s local to this module
*/

lib–611

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

static
union

uic_union {
__int32 bits;
struct {
char first;
char second;
} bytes;

struct {
__int16 first;
__int16 second;
} words;

}
file_owner; /* Actual file owner UIC */

static
int

name_count; /* Number of directory names */

static
char

uic_string[uic_string_size + 1]; /* Buffer for string */

static
struct
dsc$descriptor_s
name_vector[max_name_count]; /* Vector of descriptors */

/*
** Specify persistent data that’s global to this module.
** This data is referenced externally by the state table definitions.
*/

union
uic_union
uic_group, /* Tempt for UIC group */
uic_member; /* Tempt for UIC member */

int
parser_flags, /* Keyword flags */
entry_count, /* Space to preallocate */
file_protect; /* Directory file protection */

struct
dsc$descriptor_s
device_string = /* Device string descriptor */
{ 0, DSCK_DTYPE_T, DSCK_CLASS_S, (char *) 0 };

/*
** Specify the user action routines.
**
** Please note that if it were LIB$TPARSE being called, the user action
** routines would have to be coded as follows:
**
** int user_action_routine(__int32 psuedo_ap)
** {
** struct tpadef
** *tparse_block = (tpadef *) (&psuedo_ap - 1);
** printf("Parameter value: %d\n",
** tparse_block->tpa$l_param
**);
** }
*/

/*
** Shut off explicit blank processing after passing the command name.
*/

lib–612

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

int blanks_off(struct tpadef *tparse_block) {
tparse_block->tpa$v_blanks = 0;
return(1);
}

/*
** Check the UIC for legal value range.
*/

int check_uic(struct tpadef *tparse_block) {
if ((uic_group.words.second != 0) ||

(uic_member.words.second != 0)
)

return(0);

file_owner.words.first = uic_member.words.first;
file_owner.words.second = uic_group.words.first;

return(1);
}

/*
** Store a directory name component.
*/

int store_name(struct tpadef *tparse_block) {
if ((name_count >= max_name_count) ||

(tparse_block->tpa$l_tokencnt > max_token_size)
)

return(0);

name_vector[name_count].dsc$w_length = tparse_block->tpa$l_tokencnt;
name_vector[name_count].dsc$b_dtype = DSC$K_DTYPE_T;
name_vector[name_count].dsc$b_class = DSC$K_CLASS_S;
name_vector[name_count++].dsc$a_pointer = tparse_block->tpa$l_tokenptr;

return(1);
}

/*
** Convert a UIC into its equivalent directory file name.
*/

int make_uic(struct tpadef *tparse_block) {

$DESCRIPTOR(control_string, "!OB!OB");
$DESCRIPTOR(dirname, uic_string);

if ((uic_group.bytes.second != ’\0’) ||
(uic_member.bytes.second != ’\0’)
)

return(0);

sys$fao(&control_string,
&dirname.dsc$w_length,
&dirname,
uic_group.bytes.first,
uic_member.bytes.first
);

return(1);
}

/*
** The main program section starts here.
*/

main() {

lib–613

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

/*
** This program creates a directory. It gets the command
** line from the CLI and parses it with LIB$TABLE_PARSE.
*/

extern
char

ufd_state,
ufd_key;

char
command_buffer[command_buffer_size + 1];

int
status;

$DESCRIPTOR(prompt, "Command> ");
$DESCRIPTOR(command_descriptor, command_buffer);

struct
tpadef
tparse_block = { TPA$K_COUNT0, /* Longword count */

TPA$M_ABBREV /* Allow abbreviation */
|

TPA$M_BLANKS /* Process spaces explicitly */
};

status = lib$get_foreign(&command_descriptor,
&prompt,
&command_descriptor.dsc$w_length
);

if ((status & 1) == 0)
return(status);

/*
** Copy the input string descriptor into the control block
** and then call LIB$TABLE_PARSE. Note that impure storage is assumed
** to be zero.
*/

tparse_block.tpa$l_stringcnt = command_descriptor.dsc$w_length;
tparse_block.tpa$l_stringptr = command_descriptor.dsc$a_pointer;

return(status = lib$table_parse(&tparse_block, &ufd_state, &ufd_key));

}

lib–614

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Example 1b
The following MACRO assembly language program module defines the state
tables for the preceding sample program.

.TITLE CREATE_DIR_TABLES - Create Directory File (tables)
.IDENT "X-1"

;+
;
; This module defines the state tables for the preceding
; sample program, which accepts and parses the command line of the
; CREATE/DIRECTORY command. The command line has the following format:
;
; CREATE/DIR DEVICE:[MARANTZ.ACCOUNT.OLD]
; /OWNER_UIC=[2437,25]
; /ENTRIES=100
; /PROTECTION=(SYSTEM:R,OWNER:RWED,GROUP:R,WORLD:R)
;
; The three qualifiers are optional. Alternatively, the command
; may take the form
;
; CREATE/DIR DEVICE:[202,31]
;
; using any of the optional qualifiers.
;
;-

;+
;
; Global data, control blocks, etc.
;
;-

.PSECT IMPURE,WRT,NOEXE
;+
; Define control block offsets
;-

$CLIDEF
$TPADEF

.EXTRN BLANKS_OFF, - ; No explicit blank processing
CHECK_UIC, - ; Validate and assemble UIC
STORE_NAME, - ; Store next directory name
MAKE_UIC ; Make UIC into directory name

;+
; Define parser flag bits for flags longword
;-

UIC_FLAG = 1 ; /UIC seen
ENTRIES_FLAG = 2 ; /ENTRIES seen
PROT_FLAG = 4 ; /PROTECTION seen

.SBTTL Parser State Table

;+
; Assign values for protection flags to be used when parsing protection
; string.
;-

lib–615

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

SYSTEM_READ_FLAG = ^X0001
SYSTEM_WRITE_FLAG = ^X0002
SYSTEM_EXECUTE_FLAG = ^X0004
SYSTEM_DELETE_FLAG = ^X0008
OWNER_READ_FLAG = ^X0010
OWNER_WRITE_FLAG = ^X0020
OWNER_EXECUTE_FLAG = ^X0040
OWNER_DELETE_FLAG = ^X0080
GROUP_READ_FLAG = ^X0100
GROUP_WRITE_FLAG = ^X0200
GROUP_EXECUTE_FLAG = ^X0400
GROUP_DELETE_FLAG = ^X0800
WORLD_READ_FLAG = ^X1000
WORLD_WRITE_FLAG = ^X2000
WORLD_EXECUTE_FLAG = ^X4000
WORLD_DELETE_FLAG = ^X8000

$INIT_STATE UFD_STATE,UFD_KEY

;+
; Read over the command name (to the first blank in the command).
;-

$STATE START
$TRAN TPA$_BLANK,,BLANKS_OFF
$TRAN TPA$_ANY,START

;+
; Read device name string and trailing colon.
;-

$STATE
$TRAN TPA$_SYMBOL,,,,DEVICE_STRING

$STATE
$TRAN ’:’

;+
; Read directory string, which is either a UIC string or a general
; directory string.
;-

$STATE
$TRAN !UIC,,MAKE_UIC
$TRAN !NAME

;+
; Scan for options until end of line is reached
;-

$STATE OPTIONS
$TRAN ’/’
$TRAN TPA$_EOS,TPA$_EXIT

$STATE
$TRAN ’OWNER_UIC’,PARSE_UIC,,UIC_FLAG,PARSER_FLAGS
$TRAN ’ENTRIES’,PARSE_ENTRIES,,ENTRIES_FLAG,PARSER_FLAGS
$TRAN ’PROTECTION’,PARSE_PROT,,PROT_FLAG,PARSER_FLAGS

;+
; Get file owner UIC.
;-

$STATE PARSE_UIC
$TRAN ’:’
$TRAN ’=’

$STATE
$TRAN !UIC,OPTIONS

lib–616

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

;+
; Get number of directory entries.
;-

$STATE PARSE_ENTRIES
$TRAN ’:’
$TRAN ’=’

$STATE
$TRAN TPA$_DECIMAL,OPTIONS,,,ENTRY_COUNT

;+
; Get directory file protection. Note that the bit masks generate the
; protection in complement form. It will be uncomplemented by the main
; program.
;-

$STATE PARSE_PROT
$TRAN ’:’
$TRAN ’=’

$STATE
$TRAN ’(’

$STATE NEXT_PRO
$TRAN ’SYSTEM’, SYPR
$TRAN ’OWNER’, OWPR
$TRAN ’GROUP’, GRPR
$TRAN ’WORLD’, WOPR

$STATE SYPR
$TRAN ’:’
$TRAN ’=’

$STATE SYPRO
$TRAN ’R’,SYPRO,,SYSTEM_READ_FLAG,FILE_PROTECT
$TRAN ’W’,SYPRO,,SYSTEM_WRITE_FLAG,FILE_PROTECT
$TRAN ’E’,SYPRO,,SYSTEM_EXECUTE_FLAG,FILE_PROTECT
$TRAN ’D’,SYPRO,,SYSTEM_DELETE_FLAG,FILE_PROTECT
$TRAN TPA$_LAMBDA,ENDPRO

$STATE OWPR
$TRAN ’:’
$TRAN ’=’

$STATE OWPRO
$TRAN ’R’,OWPRO,,OWNER_READ_FLAG,FILE_PROTECT
$TRAN ’W’,OWPRO,,OWNER_WRITE_FLAG,FILE_PROTECT
$TRAN ’E’,OWPRO,,OWNER_EXECUTE_FLAG,FILE_PROTECT
$TRAN ’D’,OWPRO,,OWNER_DELETE_FLAG,FILE_PROTECT
$TRAN TPA$_LAMBDA,ENDPRO

$STATE GRPR
$TRAN ’:’
$TRAN ’=’

$STATE GRPRO
$TRAN ’R’,GRPRO,,GROUP_READ_FLAG,FILE_PROTECT
$TRAN ’W’,GRPRO,,GROUP_WRITE_FLAG,FILE_PROTECT
$TRAN ’E’,GRPRO,,GROUP_EXECUTE_FLAG,FILE_PROTECT
$TRAN ’D’,GRPRO,,GROUP_DELETE_FLAG,FILE_PROTECT
$TRAN TPA$_LAMBDA,ENDPRO

$STATE WOPR
$TRAN ’:’
$TRAN ’=’

lib–617

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

$STATE WOPRO
$TRAN ’R’,WOPRO,,WORLD_READ_FLAG,FILE_PROTECT
$TRAN ’W’,WOPRO,,WORLD_WRITE_FLAG,FILE_PROTECT
$TRAN ’E’,WOPRO,,WORLD_EXECUTE_FLAG,FILE_PROTECT
$TRAN ’D’,WOPRO,,WORLD_DELETE_FLAG,FILE_PROTECT
$TRAN TPA$_LAMBDA,ENDPRO

$STATE ENDPRO
$TRAN <’,’>,NEXT_PRO
$TRAN ’)’,OPTIONS

;+
; Subexpression to parse a UIC string.
;-

$STATE UIC
$TRAN ’[’

$STATE
$TRAN TPA$_OCTAL,,,,UIC_GROUP

$STATE
$TRAN <’,’> ; The comma character must be

; surrounded by angle brackets
; because MACRO restricts the use
; of commas in arguments to macros.

$STATE
$TRAN TPA$_OCTAL,,,,UIC_MEMBER

$STATE
$TRAN ’]’,TPA$_EXIT,CHECK_UIC

;+
; Subexpression to parse a general directory string
;-

$STATE NAME
$TRAN ’[’

$STATE NAMEO
$TRAN TPA$_STRING,,STORE_NAME

$STATE
$TRAN ’.’,NAMEO
$TRAN ’]’,TPA$_EXIT
$END_STATE

.END

lib–618

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Example 2
The following OpenVMS BLISS program accepts and parses the command line of
a CREATE/DIRECTORY command using LIB$TPARSE.

MODULE CREATE_DIR (! Create directory file
IDENT = ’X0000’,
MAIN = CREATE_DIR) =

BEGIN

!+
! This OpenVMS BLISS program accepts and parses the command line
! of a CREATE/DIRECTORY command. This program uses the
! LIB$GET_FOREIGN call to acquire the command line from
! the CLI and parse it with LIB$TPARSE, leaving the necessary
! information in its global data base. The command line is of
! the following format:
!
! CREATE/DIR DEVICE:[MARANTZ.ACCOUNT.OLD]
! /UIC=[2437,25]
! /ENTRIES=100
! /PROTECTION=(SYSTEM:R,OWNER:RWED,GROUP:R,WORLD:R)
!
! The three qualifiers are optional. Alternatively, the command
! may take the form
!
! CREATE/DIR DEVICE:[202,31]
!
! using any of the optional qualifiers.
!-

!+
! Global data, control blocks, etc.
!-

LIBRARY ’SYS$LIBRARY:STARLET’;
LIBRARY ’SYS$LIBRARY:TPAMAC.L32’;

!+
! Macro to make the LIB$TPARSE control block addressable as a block
! through the argument pointer.
!-

MACRO
TPARSE_ARGS =

BUILTIN AP;
MAP AP : REF BLOCK [,BYTE];
%;

!+
! Declare routines in this module.
!-

FORWARD ROUTINE
CREATE_DIR, ! Mail program
BLANKS_OFF, ! No explicit blank processing
CHECK_UIC, ! Validate and assemble UIC
STORE_NAME, ! Store next directory name
MAKE_UIC; ! Make UIC into directory name

!+
! Define parser flag bits for flags longword.
!-

lib–619

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

LITERAL
UIC_FLAG = 0, ! /UIC seen
ENTRIES_FLAG = 1, ! /ENTRIES seen
PROT_FLAG = 2; ! /PROTECTION seen

OWN
!+
! This is the LIB$GET_FOREIGN descriptor block to get the command line.
!-

COMMAND_DESC : BLOCK [DSC$K_S_BLN, BYTE],
COMMAND_BUFF : VECTOR [256, BYTE],

!+
! This is the LIB$TPARSE argument block.
!-

TPARSE_BLOCK : BLOCK [TPA$K_LENGTH0, BYTE]
INITIAL (TPA$K_COUNT0, ! Longword count

TPA$M_ABBREV ! Allow abbreviation
OR TPA$M_BLANKS), ! Process spaces explicitly

!+
! Parser global data:
!-

PARSER_FLAGS : BITVECTOR [32], ! Keyword flags
DEVICE_STRING : VECTOR [2], ! Device string descriptor
ENTRY_COUNT, ! Space to preallocate
FILE_PROTECT, ! Directory file protection
UIC_GROUP, ! Temp for UIC group
UIC_MEMBER, ! Temp for UIC member
FILE_OWNER, ! Actual file owner UIC
NAME_COUNT, ! Number of directory names
UIC_STRING : VECTOR [6, BYTE], ! Buffer for string

NAME_VECTOR : BLOCKVECTOR [0, 2], ! Vector of descriptors

DIRNAME1 : VECTOR [2], ! Name descriptor 1
DIRNAME2 : VECTOR [2], ! Name descriptor 2
DIRNAME3 : VECTOR [2], ! Name descriptor 3
DIRNAME4 : VECTOR [2], ! Name descriptor 4
DIRNAME5 : VECTOR [2], ! Name descriptor 5
DIRNAME6 : VECTOR [2], ! Name descriptor 6
DIRNAME7 : VECTOR [2], ! Name descriptor 7
DIRNAME8 : VECTOR [2]; ! Name descriptor 8

!+
! Structure macro to reference the descriptor fields in the vector of
! descriptors.
!-

MACRO
STRING_COUNT = 0, 0, 32, 0%, ! Count field
STRING_ADDR = 1, 0, 32, 0%; ! Address field

!+
! LIB$TPARSE state table to parse the command line
!-

$INIT_STATE (UFD_STATE, UFD_KEY);

!+
! Read over the command name (to the first blank in the command).
!-

lib–620

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

$STATE (START,
(TPA$_BLANK, , BLANKS_OFF),
(TPA$_ANY, START)
);

!+
! Read device name string and trailing colon.
!-

$STATE (,
(TPA$_SYMBOL,,,, DEVICE_STRING)
);

$STATE (,
(’:’)
);

!+
! Read directory string, which is either a UIC string or a general
! directory string.
!-

$STATE (,
((UIC),, MAKE_UIC),
((NAME))
);

!+
! Scan for options until end of line is reached.
!-

$STATE (OPTIONS,
(’/’),
(TPA$_EOS, TPA$_EXIT)
);

$STATE (,
(’UIC’, PARSE_UIC,, 1^UIC_FLAG, PARSER_FLAGS),
(’ENTRIES’, PARSE_ENTRIES,, 1^ENTRIES_FLAG, PARSER_FLAGS),
(’PROTECTION’, PARSE_PROT,, 1^PROT_FLAG, PARSER_FLAGS)
);

!+
! Get file owner UIC.
!-

$STATE (PARSE_UIC,
(’:’),
(’=’)
);

$STATE (,
((UIC), OPTIONS)
);

!+
! Get number of directory entries.
!-

$STATE (PARSE_ENTRIES,
(’:’),
(’=’)

);

$STATE (,
(TPA$_DECIMAL, OPTIONS,,, ENTRY_COUNT)
);

lib–621

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

!+
! Get directory file protection. Note that the bit masks generate the
! protection in complement form. It will be uncomplemented by the main
! program.
!-

$STATE (PARSE_PROT,
(’:’),
(’=’)
);

$STATE (,
(’(’)
);

$STATE (NEXT_PRO,
(’SYSTEM’, SYPR),
(’OWNER’, OWPR),
(’GROUP’, GRPR),
(’WORLD’, WOPR)
);

$STATE (SYPR,
(’:’),
(’=’)
);

$STATE (SYPR0,
(’R’, SYPR0,, %X’0001’, FILE_PROTECT),
(’W’, SYPR0,, %X’0002’, FILE_PROTECT),
(’E’, SYPR0,, %X’0004’, FILE_PROTECT),
(’D’, SYPR0,, %X’0008’, FILE_PROTECT),
(TPA$_LAMBDA, ENDPRO)
);

$STATE (OWPR,
(’:’),
(’=’)
);

$STATE (OWPR0,
(’R’, OWPR0,, %X’0010’, FILE_PROTECT),
(’W’, OWPR0,, %X’0020’, FILE_PROTECT),
(’E’, OWPR0,, %X’0040’, FILE_PROTECT),
(’D’, OWPR0,, %X’0080’, FILE_PROTECT),
(TPA$_LAMBDA, ENDPRO)
);

$STATE (GRPR,
(’:’),
(’=’)
);

$STATE (GRPR0,
(’R’, GRPR0,, %X’0100’, FILE_PROTECT),
(’W’, GRPR0,, %X’0200’, FILE_PROTECT),
(’E’, GRPR0,, %X’0400’, FILE_PROTECT),
(’D’, GRPR0,, %X’0800’, FILE_PROTECT),
(TPA$_LAMBDA, ENDPRO)
);

$STATE (WOPR,
(’:’),
(’=’)
);

lib–622

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

$STATE (WOPR0,
(’R’, WOPR0,, %X’1000’, FILE_PROTECT),
(’W’, WOPR0,, %X’2000’, FILE_PROTECT),
(’E’, WOPR0,, %X’4000’, FILE_PROTECT),
(’D’, WOPR0,, %X’8000’, FILE_PROTECT),
(TPA$_LAMBDA, ENDPRO)
);

$STATE (ENDPRO,
(’, ’, NEXT_PRO),
(’)’, OPTIONS)
);

!+
! Subexpression to parse a UIC string.
!-

$STATE (UIC,

(’[’)
);

$STATE (,
(TPA$_OCTAL,,,, UIC_GROUP)
);

$STATE (,
(’, ’)
);

$STATE (,
(TPA$_OCTAL,,,, UIC_MEMBER)
);

$STATE (,
(’]’, TPA$_EXIT, CHECK_UIC)
);

!+
! Subexpression to parse a general directory string
!-

$STATE (NAME,
(’[’)
);

$STATE (NAME0,
(TPA$_STRING,, STORE_NAME)
);

$STATE (,
(’.’, NAME0),
(’]’, TPA$_EXIT)
);

PSECT OWN = OWN;
PSECT GLOBAL = $GLOBAL$;

GLOBAL ROUTINE CREATE_DIR (START_ADDR, CLI_CALLBACK) =

BEGIN

!+
! This program creates a directory. It gets the command

! line from the CLI and parses it with LIB$TPARSE.
!-

LOCAL
STATUS, ! Status from LIB$TPARSE
OUT_LEN : WORD; ! length of returned command line

EXTERNAL
SS$_NORMAL;

lib–623

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

EXTERNAL ROUTINE
LIB$GET_FOREIGN : ADDRESSING_MODE (GENERAL),
LIB$TPARSE : ADDRESSING_MODE (GENERAL);

COMMAND_DESC [DSC$W_LENGTH] = 256;
COMMAND_DESC [DSC$B_DTYPE] = DSC$K_DTYPE_T;
COMMAND_DESC [DSC$B_CLASS] = DSC$K_CLASS_S;
COMMAND_DESC [DSC$A_POINTER] = COMMAND_BUFF;

STATUS = LIB$GET_FOREIGN (COMMAND_DESC,
%ASCID’COMMAND: ’,
OUT_LEN
);

IF NOT .STATUS
THEN
SIGNAL (STATUS);

!+
! Copy the input string descriptor into the LIB$TPARSE control block
! and call LIB$TPARSE. Note that impure storage is assumed to be zero.
!-

TPARSE_BLOCK[TPA$L_STRINGCNT] = .OUT_LEN;
TPARSE_BLOCK[TPA$L_STRINGPTR] = .COMMAND_DESC[DSC$A_POINTER];

STATUS = LIB$TPARSE (TPARSE_BLOCK, UFD_STATE, UFD_KEY);
IF NOT .STATUS
THEN

RETURN 0;
RETURN SS$_NORMAL
END; ! End of routine CREATE_DIR

!+

! Parser action routines
!-

!+
! Shut off explicit blank processing after passing the command name.
!-

ROUTINE BLANKS_OFF =
BEGIN
TPARSE_ARGS;

AP[TPA$V_BLANKS] = 0;
1
END;

!+
! Check the UIC for legal value range.
!-

ROUTINE CHECK_UIC =
BEGIN
TPARSE_ARGS;

IF .UIC_GROUP<16,16> NEQ 0
OR .UIC_MEMBER<16,16> NEQ 0
THEN RETURN 0;

FILE_OWNER<0,16> = .UIC_MEMBER;
FILE_OWNER<16,16> = .UIC_GROUP;
1
END;

!+
! Store a directory name component.
!-

lib–624

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

ROUTINE STORE_NAME =
BEGIN
TPARSE_ARGS;

IF .NAME_COUNT GEQU 8
OR .AP[TPA$L_TOKENCNT] GTRU 9
THEN RETURN 0;
NAME_COUNT = .NAME_COUNT + 1;
NAME_VECTOR [.NAME_COUNT, STRING_COUNT] = .AP[TPA$L_TOKENCNT];

NAME_VECTOR [.NAME_COUNT, STRING_ADDR] = .AP[TPA$L_TOKENPTR];
1
END;

!+
! Convert a UIC into its equivalent directory file name.
!-

ROUTINE MAKE_UIC =
BEGIN
TPARSE_ARGS;

IF .UIC_GROUP<8,8> NEQ 0
OR .UIC_MEMBER<8,8> NEQ 0
THEN RETURN 0;
DIRNAME1[0] = 0;
DIRNAME1[1] = UIC_STRING;
$FAOL (CTRSTR = UPLIT (6, UPLIT BYTE (’!OB!OB’)),

OUTBUF = DIRNAME1,
PRMLST = UIC_GROUP
);

1
END;

END
ELUDOM ! End of module CREATE_DIR

lib–625

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

Example 3
The following MACRO assembly language program accepts and parses the
command line of a CREATE/DIRECTORY command using LIB$TPARSE. It
also defines the state table for the parser.

.TITLE CREATE_DIR - Create Directory File
.IDENT "X0000"

;+
;
; This is a sample OpenVMS MACRO program that accepts and parses the command
; line of the CREATE/DIRECTORY command. This program contains the OpenVMS
; call to acquire the command line from the command interpreter
; and parse it with LIB$TPARSE, leaving the necessary information in
; its global data base. The command line has the following format:
;
; CREATE/DIR DEVICE:[MARANTZ.ACCOUNT.OLD]
; /OWNER_UIC=[2437,25]
; /ENTRIES=100
; /PROTECTION=(SYSTEM:R,OWNER:RWED,GROUP:R,WORLD:R)
;

; The three qualifiers are optional. Alternatively, the command
; may take the form
;
; CREATE/DIR DEVICE:[202,31]
;
; using any of the optional qualifiers.
;
;-

;+
;
; Global data, control blocks, etc.
;
;-

.PSECT IMPURE,WRT,NOEXE
;+
; Define control block offsets
;-

$CLIDEF
$TPADEF

;+
; Define parser flag bits for flags longword
;-

UIC_FLAG = 1 ; /UIC seen
ENTRIES_FLAG = 2 ; /ENTRIES seen
PROT_FLAG = 4 ; /PROTECTION seen

;+
; LIB$GET_FOREIGN string descriptors to get the line to be parsed
;-

STRING_LEN = 256
STRING_DESC:

.WORD STRING_LEN

.BYTE DSC$K_DTYPE_T

.BYTE DSC$K_CLASS_S

.ADDRESS STRING_AREA
STRING_AREA:

.BLKB STRING_LEN
PROMPT_DESC:

.WORD PROMPT_LEN

.BYTE DSC$K_DTYPE_T

.BYTE DSC$K_CLASS_S

.ADDRESS PROMPT

lib–626

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

PROMPT:
.ASCII /qualifiers: /

PROMPT_LEN = .-PROMPT

;+
; TPARSE argument block
;-

TPARSE_BLOCK:
.LONG TPA$K_COUNT0 ; Longword count
.LONG TPA$M_ABBREV!- ; Allow abbreviation

TPA$M_BLANKS ; Process spaces explicitly
.BLKB TPA$K_LENGTH0-8 ; Remainder set at run time

;+
; Parser global data
;-

RET_LEN: .BLKW 1 ; LENGTH OF RETURNED COMMAND LINE
PARSER_FLAGS: .BLKL 1 ; Keyword flags
DEVICE_STRING: .BLKL 2 ; Device string descriptor
ENTRY_COUNT: .BLKL 1 ; Space to preallocate
FILE_PROTECT: .BLKL 1 ; Directory file protection
UIC_GROUP: .BLKL 1 ; Temp for UIC group
UIC_MEMBER: .BLKL 1 ; Temp for UIC member
UIC_STRING: .BLKB 6 ; String to receive converted UIC
FILE_OWNER: .BLKL 1 ; Actual file owner UIC
NAME_COUNT: .BLKL 1 ; Number of directory names
DIRNAME1: .BLKL 2 ; Name descriptor 1
DIRNAME2: .BLKL 2 ; Name descriptor 2
DIRNAME3: .BLKL 2 ; Name descriptor 3
DIRNAME4: .BLKL 2 ; Name descriptor 4
DIRNAME5: .BLKL 2 ; Name descriptor 5
DIRNAME6: .BLKL 2 ; Name descriptor 6
DIRNAME7: .BLKL 2 ; Name descriptor 7
DIRNAME8: .BLKL 2 ; Name descriptor 8

.SBTTL Main Program
;+
; This program gets the CREATE/DIRECTORY command line from
; the command interpreter and parses it.
;-

.PSECT CODE,EXE,NOWRT
CREATE_DIR::

.WORD ^M<R2,R3,R4,R5> ; Save registers

;+
; Call the command interpreter to obtain the command line.
;-

PUSHAW RET_LEN
PUSHAQ PROMPT_DESC
PUSHAQ STRING_DESC
CALLS #3,G^LIB$GET_FOREIGN ; Call to get command line
BLBC R0, SYNTAX_ERR

;+
; Copy the input string descriptor into the TPARSE control block
; and call LIB$TPARSE. Note that impure storage is assumed to be zero.
;-

MOVZWL RET_LEN, TPARSE_BLOCK+TPA$L_STRINGCNT
MOVAL STRING_AREA, TPARSE_BLOCK+TPA$L_STRINGPTR
PUSHAL UFD_KEY
PUSHAL UFD_STATE
PUSHAL TPARSE_BLOCK
CALLS #3,G^LIB$TPARSE
BLBC R0,SYNTAX_ERR

lib–627

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

;+
; Parsing is complete.
;
; You can include here code to process the string just parsed, to call
; another program to process the command, or to return control to
; a calling program, if any.
;-

SYNTAX_ERR:

;+
; Code to handle parsing errors.
;-

RET

.SBTTL Parser State Table

;+
; Assign values for protection flags to be used when parsing protection
; string.
;-

SYSTEM_READ_FLAG = ^X0001
SYSTEM_WRITE_FLAG = ^X0002
SYSTEM_EXECUTE_FLAG = ^X0004
SYSTEM_DELETE_FLAG = ^X0008
OWNER_READ_FLAG = ^X0010
OWNER_WRITE_FLAG = ^X0020
OWNER_EXECUTE_FLAG = ^X0040
OWNER_DELETE_FLAG = ^X0080
GROUP_READ_FLAG = ^X0100
GROUP_WRITE_FLAG = ^X0200
GROUP_EXECUTE_FLAG = ^X0400
GROUP_DELETE_FLAG = ^X0800
WORLD_READ_FLAG = ^X1000
WORLD_WRITE_FLAG = ^X2000
WORLD_EXECUTE_FLAG = ^X4000
WORLD_DELETE_FLAG = ^X8000

$INIT_STATE UFD_STATE,UFD_KEY

;+
; Read over the command name (to the first blank in the command).
;-

$STATE START
$TRAN TPA$_BLANK,,BLANKS_OFF
$TRAN TPA$_ANY,START

;+
; Read device name string and trailing colon.
;-

$STATE
$TRAN TPA$_SYMBOL,,,,DEVICE_STRING

$STATE
$TRAN ’:’

;+
; Read directory string, which is either a UIC string or a general
; directory string.
;-

$STATE
$TRAN !UIC,,MAKE_UIC
$TRAN !NAME

;+
; Scan for options until end of line is reached
;-

lib–628

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

$STATE OPTIONS
$TRAN ’/’
$TRAN TPA$_EOS,TPA$_EXIT

$STATE
$TRAN ’OWNER_UIC’,PARSE_UIC,,UIC_FLAG,PARSER_FLAGS
$TRAN ’ENTRIES’,PARSE_ENTRIES,,ENTRIES_FLAG,PARSER_FLAGS
$TRAN ’PROTECTION’,PARSE_PROT,,PROT_FLAG,PARSER_FLAGS

;+
; Get file owner UIC.
;-

$STATE PARSE_UIC
$TRAN ’:’
$TRAN ’=’

$STATE
$TRAN !UIC,OPTIONS

;+
; Get number of directory entries.
;-

$STATE PARSE_ENTRIES
$TRAN ’:’
$TRAN ’=’

$STATE
$TRAN TPA$_DECIMAL,OPTIONS,,,ENTRY_COUNT

;+
; Get directory file protection. Note that the bit masks generate the
; protection in complement form. It will be uncomplemented by the main
; program.
;-

$STATE PARSE_PROT
$TRAN ’:’
$TRAN ’=’

$STATE
$TRAN ’(’

$STATE NEXT_PRO
$TRAN ’SYSTEM’, SYPR

$TRAN ’OWNER’, OWPR
$TRAN ’GROUP’, GRPR
$TRAN ’WORLD’, WOPR

$STATE SYPR
$TRAN ’:’
$TRAN ’=’

$STATE SYPRO
$TRAN ’R’,SYPRO,,SYSTEM_READ_FLAG,FILE_PROTECT
$TRAN ’W’,SYPRO,,SYSTEM_WRITE_FLAG,FILE_PROTECT
$TRAN ’E’,SYPRO,,SYSTEM_EXECUTE_FLAG,FILE_PROTECT
$TRAN ’D’,SYPRO,,SYSTEM_DELETE_FLAG,FILE_PROTECT
$TRAN TPA$_LAMBDA,ENDPRO

$STATE OWPR
$TRAN ’:’
$TRAN ’=’

$STATE OWPRO
$TRAN ’R’,OWPRO,,OWNER_READ_FLAG,FILE_PROTECT
$TRAN ’W’,OWPRO,,OWNER_WRITE_FLAG,FILE_PROTECT
$TRAN ’E’,OWPRO,,OWNER_EXECUTE_FLAG,FILE_PROTECT
$TRAN ’D’,OWPRO,,OWNER_DELETE_FLAG,FILE_PROTECT
$TRAN TPA$_LAMBDA,ENDPRO

lib–629

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

$STATE GRPR
$TRAN ’:’
$TRAN ’=’

$STATE GRPRO
$TRAN ’R’,GRPRO,,GROUP_READ_FLAG,FILE_PROTECT
$TRAN ’W’,GRPRO,,GROUP_WRITE_FLAG,FILE_PROTECT
$TRAN ’E’,GRPRO,,GROUP_EXECUTE_FLAG,FILE_PROTECT
$TRAN ’D’,GRPRO,,GROUP_DELETE_FLAG,FILE_PROTECT
$TRAN TPA$_LAMBDA,ENDPRO

$STATE WOPR
$TRAN ’:’
$TRAN ’=’

$STATE WOPRO
$TRAN ’R’,WOPRO,,WORLD_READ_FLAG,FILE_PROTECT
$TRAN ’W’,WOPRO,,WORLD_WRITE_FLAG,FILE_PROTECT
$TRAN ’E’,WOPRO,,WORLD_EXECUTE_FLAG,FILE_PROTECT

$TRAN ’D’,WOPRO,,WORLD_DELETE_FLAG,FILE_PROTECT
$TRAN TPA$_LAMBDA,ENDPRO

$STATE ENDPRO
$TRAN <’,’>,NEXT_PRO
$TRAN ’)’,OPTIONS

;+
; Subexpression to parse a UIC string.
;-

$STATE UIC
$TRAN ’[’

$STATE
$TRAN TPA$_OCTAL,,,,UIC_GROUP

$STATE
$TRAN <’,’> ; The comma character must be

; surrounded by angle brackets
; because MACRO restricts the use
; of commas in arguments to macros.

$STATE
$TRAN TPA$_OCTAL,,,,UIC_MEMBER

$STATE
$TRAN ’]’,TPA$_EXIT,CHECK_UIC

;+
; Subexpression to parse a general directory string
;-

$STATE NAME
$TRAN ’[’

$STATE NAMEO
$TRAN TPA$_STRING,,STORE_NAME

$STATE
$TRAN ’.’,NAMEO
$TRAN ’]’,TPA$_EXIT
$END_STATE

.SBTTL Parser Action Routines

.PSECT CODE,EXE,NOWRT

;+
; Shut off explicit blank processing after passing the command name.
;-

lib–630

LIB$ Routines
LIB$TPARSE/LIB$TABLE_PARSE

BLANKS_OFF:
.WORD 0 ; No registers saved (or used)
BBCC #TPAV_BLANKS,TPAL_OPTIONS(AP),10$

10$: RET

;+
; Check the UIC for legal value range.
;-

CHECK_UIC:
.WORD 0 ; No registers saved (or used)
TSTW UIC_GROUP+2 ; UIC components are 16 bits
BNEQ 10$
TSTW UIC_MEMBER+2
BNEQ 10$
MOVW UIC_GROUP,FILE_OWNER+2 ; Store actual UIC
MOVW UIC_MEMBER,FILE_OWNER ; after checking
RET

10$: CLRL R0 ; Value out of range - fail
RET ; the transition

;+
; Store a directory name component.
;-

STORE_NAME:
.WORD 0 ; No registers saved (or used)
MOVL NAME_COUNT,R1 ; Get count of names so far
CMPL R1,#8 ; Maximum of 8 permitted
BGEQU 10$
INCL NAME_COUNT ; Count this name
MOVAQ DIRNAME1[R1],R1 ; Address of next descriptor
MOVQ TPA$L_TOKENCNT(AP),(R1) ; Store the descriptor
CMPL (R1),#9 ; Check the length of the name
BGTRU 10$; Maximum is 9
RET

10$: CLRL R0 ; Error in directory name
RET

;+

; Convert a UIC into its equivalent directory file name.
;-

MAKE_UIC:
.WORD 0 ; No registers saved (or used)
TSTB UIC_GROUP+1 ; Check UIC for byte values,
BNEQ 10$; because UIC type directories
TSTB UIC_MEMBER+1 ; are restricted to this form
BNEQ 10$
MOVL #6,DIRNAME1 ; Directory name is 6 bytes
MOVAL UIC_STRING,DIRNAME1+4 ; Point to string buffer
$FAOL CTRSTR=FAO_STRING,- ; Convert UIC to octal string

OUTBUF=DIRNAME1,-
PRMLST=UIC_GROUP

RET
10$: CLRL R0 ; Range error - fail it

RET
FAO_STRING: .LONG STRING_END-STRING_START
STRING_START: .ASCII ’!OB!OB’
STRING_END:

.END CREATE_DIR

lib–631

LIB$ Routines
LIB$TRAVERSE_TREE

LIB$TRAVERSE_TREE
Traverse a Balanced Binary Tree

The Traverse a Balanced Binary Tree routine calls an action routine for each node
in a binary tree. †

Format

LIB$TRAVERSE_TREE treehead ,user-action-procedure [,user-data-address]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

treehead
OpenVMS usage: address
type: address
access: read only
mechanism: by reference

Tree head of the binary tree. The treehead argument is the address of an
unsigned longword that is the tree head in the binary tree traversal.

user-action-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied action routine called by LIB$TRAVERSE_TREE for each node in
the tree. The user-action-procedure argument must return a success status for
LIB$TRAVERSE_TREE to continue traversal.

For more information, see Call Format for an Action Routine in the Description
section.

user-data-address
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by reference

User data that LIB$TRAVERSE_TREE passes to your action routine. The
user-data-address argument contains the address of this user data. This is an
optional argument; the default value is 0.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–632

LIB$ Routines
LIB$TRAVERSE_TREE

Description

LIB$TRAVERSE_TREE calls a user-supplied action routine for each node to
traverse a balanced binary tree.

Call Format for an Action Routine
The format of the call is as follows:

user-action-procedure node ,user-data-address

LIB$TRAVERSE_TREE passes the node and user-data-address arguments to
your action routine by reference.

This action routine is defined by you to fit your own purposes. A common use
of an action routine here is to print the contents of each node during the tree
traversal.

The following is one example of a user-supplied action routine.

struct Full_node
{

void* left_link;
void* right_link;
short reserved;
char Text[80];

};

static long Print_Node(struct Full_node* Node, void* dummy)
{
/*
** Print the string contained in the current node
*/

printf("%s\n", Node->Text);
return LIB$_NORMAL;

}

Condition Values Returned

LIB$_NORMAL Routine successfully completed.

Any condition value returned by your action routine.

Example

The C example provided in the description of LIB$INSERT_TREE also
demonstrates the use of LIB$TRAVERSE_TREE. Refer to that example for
assistance in using this routine.

lib–633

LIB$ Routines
LIB$TRAVERSE_TREE_64 (Alpha and I64 Only)

LIB$TRAVERSE_TREE_64 (Alpha and I64 Only)
Traverse a Balanced Binary Tree

The Traverse a Balanced Binary Tree routine calls an action routine for each node
in a binary tree.

Format

LIB$TRAVERSE_TREE_64 treehead ,user-action-procedure [,user-data-address]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

treehead
OpenVMS usage: address
type: address
access: read only
mechanism: by reference

Tree head of the binary tree. The treehead argument is the address of an
unsigned quadword that is the tree head in the binary tree traversal.

user-action-procedure
OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied action routine called by LIB$TRAVERSE_TREE_64 for each node
in the tree. The user-action-procedure argument must return a success status
for LIB$TRAVERSE_TREE_64 to continue traversal.

For more information, see Call Format for an Action Routine in the Description
section.

user-data-address
OpenVMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by reference

User data that LIB$TRAVERSE_TREE_64 passes to your action routine. The
user-data-address argument contains the address of this user data. This is an
optional argument; the default value is 0.

lib–634

LIB$ Routines
LIB$TRAVERSE_TREE_64 (Alpha and I64 Only)

Description

LIB$TRAVERSE_TREE_64 calls a user-supplied action routine for each node to
traverse a balanced binary tree.

Call Format for an Action Routine
The format of the call is as follows:

user-action-procedure node ,user-data-address

LIB$TRAVERSE_TREE_64 passes the node and user-data-address arguments
to your action routine by reference.

This action routine is defined by you to fit your own purposes. A common use
of an action routine here is to print the contents of each node during the tree
traversal.

The following is one example of a user-supplied action routine.

struct Full_node
{

void* left_link;
void* right_link;
short reserved;
char Text[80];

};

static long Print_Node(struct Full_node* Node, void* dummy)
{
/*
** Print the string contained in the current node
*/

printf("%s\n", Node->Text);
return LIB$_NORMAL;

}

Condition Values Returned

LIB$_NORMAL Routine successfully completed.

Any condition value returned by your action routine.

Example

The C example provided in the description of LIB$INSERT_TREE_64 also
demonstrates the use of LIB$TRAVERSE_TREE_64. Refer to that example for
assistance in using this routine.

lib–635

LIB$ Routines
LIB$TRA_ASC_EBC

LIB$TRA_ASC_EBC
Translate ASCII to EBCDIC

The Translate ASCII to EBCDIC routine translates an ASCII string to an
EBCDIC string.

Format

LIB$TRA_ASC_EBC source-string ,byte-integer-dest-string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string (ASCII) to be translated by LIB$TRA_ASC_EBC. The source-
string argument contains the address of a descriptor pointing to this source
string.

byte-integer-dest-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string (EBCDIC). The byte-integer-dest-string argument contains
the address of a descriptor pointing to this destination string.

Description

LIB$TRA_ASC_EBC translates an ASCII string to an EBCDIC string. If the
destination string is a fixed-length string, its length must match the length of the
input string. The length of both the source and destination strings is limited to
65,535 characters. No filling is done.

A similar operation can be accomplished by specifying the ASCII to EBCDIC
translation table, LIB$AB_ASC_EBC, in a routine using LIB$MOVTC, but no
testing for untranslatable characters is done under those circumstances.

The LIB$TRA_ASC_EBC routine uses the ASCII to EBCDIC translation table.

lib–636

LIB$ Routines
LIB$TRA_ASC_EBC

ASCII to EBCDIC Translation Table

• The numbers on the left represent the low-order bits of the ASCII characters
in hexadecimal notation.

• The numbers across the top represent the high-order bits of the ASCII
characters in hexadecimal notation.

• The numbers in the body of the table represent the equivalent EBCDIC
characters in hexadecimal notation.

Figure lib–24 is the ASCII to EBCDIC translation table.

Figure lib–24 LIB$AB_ASC_EBC

Column Bits 4 − 7

3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F

3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F

3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F

3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F

07
A1
D0
6A
C0
A9
A8
A7
A6
A5
A4
A3
A2
99
98
97

96
95
94
93
92
91
89
88
87
86
85
84
83
82
81
79

6D
5F
5A
E0
4A
E9
E8
E7
E6
E5
E4
E3
E2
D9
D8
D77C

C1
C2
C3
C4
C5
C6
C7
C8
C9
D1
D2
D3
D4
D5
D66F

6E
7E
4C
5E
7A
F9
F8
F7
F6
F5
F4
F3
F2
F1
F040

4F
7F
7B
5B
6C
50
7D
4D
5D
5C
4E
6B
60
4B
611F

1E
1D
1C
27
3F
19
18
26
32
3D
3C
13
12
11
1000

01
02
03
37
2D
2E
2F
16
05
25
0B
0C
0D
0E
0FF

E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

3F 3F 3F 3F 3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F

3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F

3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F
3F

FF
3F
3F
3F
3F
3F
3F
3F

3F
3F

3F
3F
3F
3F
3F
3F

FEDCBA9876543210Bits 0 − 3
Row

ZK−4246−GE

All ASCII graphics are translated to their equivalent EBCDIC graphics except for
the graphics noted in Table lib–13.

Table lib–13 ASCII Graphics Not Translated to EBCDIC Equivalent by
LIB$TRA_ASC_EBC

ASCII Graphic EBCDIC Graphic

[(left square bracket) ¢ (cents sign)
! (exclamation point) | (short vertical bar)
^ (circumflex) � (logical not)
] (right square bracket) ! (exclamation point)

lib–637

LIB$ Routines
LIB$TRA_ASC_EBC

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG If the destination string is a fixed-length string

and its length is not the same as the source
string length, or if the length of the input string
is greater than 65,535 characters, no translation
is attempted.

LIB$_INVCHA One or more occurrences of an untranslatable
character have been detected during the
translation.

Example

This COBOL program uses LIB$TRA_ASC_EBC to translate an ASCII string to
EBCDIC. If successful, it then uses LIB$MOVTC to translate the EBCDIC string
back to ASCII.

IDENTIFICATION DIVISION.
PROGRAM-ID. TRANS.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 INPUT-STRING PIC X(4).
01 EBCDIC-STRING PIC X(4).
01 OUT-STRING PIC X(4).
01 FILL-CHAR PIC X VALUE "@".
01 SS-STATUS PIC S9(9) COMP.
88 SS-NORMAL VALUE 01.

01 EBCDIC-TABLE.
05 FILLER PIC X(16) VALUE "@@@@@@@@@@@@@@@@".
05 FILLER PIC X(16) VALUE "@@@@@@@@@@@@@@@@".
05 FILLER PIC X(16) VALUE "@@@@@@@@@@@@@@@@".
05 FILLER PIC X(16) VALUE "@@@@@@@@@@@@@@@@".
05 FILLER PIC X(16) VALUE " @@@@@@@@@@.<(+|".
05 FILLER PIC X(16) VALUE "&@@@@@@@@@!$*);@".
05 FILLER PIC X(16) VALUE "-/@@@@@@@@@,%_>?".
05 FILLER PIC X(16) VALUE "@@@@@@@@@@:#@’=""".
05 FILLER PIC X(16) VALUE "@abcdefghi@@@@@@".
05 FILLER PIC X(16) VALUE "@jklmnopqr@@@@@@".
05 FILLER PIC X(16) VALUE "@@stuvwxyz@@@@@@".
05 FILLER PIC X(16) VALUE "@@@@@@@@@@@@@@@@".
05 FILLER PIC X(16) VALUE "@ABCDEFGHI@@@@@@".
05 FILLER PIC X(16) VALUE "!JKLMNOPQR@@@@@@".
05 FILLER PIC X(16) VALUE "@@STUVWXYZ@@@@@@".
05 FILLER PIC X(16) VALUE "0123456789@@@@@@".

ROUTINE DIVISION.

001-MAIN.
DISPLAY " ".
DISPLAY "ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC: "

WITH NO ADVANCING.
ACCEPT INPUT-STRING

AT END STOP RUN.
IF INPUT-STRING = "EXIT" OR "exit" OR " "

STOP RUN.

lib–638

LIB$ Routines
LIB$TRA_ASC_EBC

CALL "LIB$TRA_ASC_EBC"
USING BY DESCRIPTOR INPUT-STRING, EBCDIC-STRING
GIVING SS-STATUS.

IF SS-NORMAL
CALL "LIB$MOVTC"

USING BY DESCRIPTOR EBCDIC-STRING,
FILL-CHAR,
EBCDIC-TABLE,
OUT-STRING,

GIVING SS-STATUS
IF SS-NORMAL

DISPLAY "ASCII ENTERED WAS: " INPUT-STRING
DISPLAY "EBCDIC TRANSLATED IS: " OUT-STRING

ELSE
DISPLAY "*** LIB$MOVTC TRANSLATION UNSUCCESSFUL ***"
ELSE

DISPLAY "*** LIB$TRA_ASC_EBC TRANSLATION UNSUCCESSFUL ***".
GO TO 001-MAIN.

To exit from this program, you must press Ctrl/Z. The output generated by this
COBOL program is as follows:

$ RUN TRANS

ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC: abdc
ASCII ENTERED WAS: abdc
EBCDIC TRANSLATED IS: abdc

ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC: ~=b&
ASCII ENTERED WAS: ~=b&
EBCDIC TRANSLATED IS: @=b&

ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC: 8^%$
ASCII ENTERED WAS: 8^%$
EBCDIC TRANSLATED IS: 8@%$

ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC:
/x\}
ASCII ENTERED WAS: /x\}
EBCDIC TRANSLATED IS: /x@!

ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC: Ctrl/Z

lib–639

LIB$ Routines
LIB$TRA_EBC_ASC

LIB$TRA_EBC_ASC
Translate EBCDIC to ASCII

The Translate EBCDIC to ASCII routine translates an EBCDIC string to an
ASCII string.

Format

LIB$TRA_EBC_ASC byte-integer-source-string ,destination-string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

Arguments

byte-integer-source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String (EBCDIC) to be translated by LIB$TRA_EBC_ASC. The byte-integer-
source-string argument contains the address of a descriptor pointing to this
source string.

destination-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string (ASCII). The destination-string argument contains the
address of the descriptor of this destination string.

The LIB$TRA_EBC_ASC routine uses the EBCDIC to ASCII translation table,
LIB$AB_EBC_ASC.

Description

LIB$TRA_EBC_ASC translates an EBCDIC string to an ASCII string. If the
destination string is a fixed-length string, its length must match the length of the
input string. The length of both the source and destination strings is limited to
65,535 characters. No filling is done.

A similar operation can be accomplished by specifying the EBCDIC to ASCII
translation table, LIB$AB_EBC_ASC, in a routine using LIB$MOVTC, but no
testing for untranslatable characters is done under these circumstances.

lib–640

LIB$ Routines
LIB$TRA_EBC_ASC

The LIB$TRA_EBC_ASC routine uses the EBCDIC to ASCII translation shown
in Figure lib–25.

Figure lib–25 LIB$AB_EBC_ASC

Column Bits 4 − 7

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

FEDCBA9876543210Bits 0 − 3
Row

ZK−4249−GE

FF
5C
5C
5C
5C
5C
39
38
37
36
35
34
33
32
31
305C

5C
53
54
55
56
57
58
59
5A
5C
5C
5C
5C
5C
5C

7D
4A
4B
4C
4D
4E
4F
50
51
52
5C
5C
5C
5C
5C
5C

7B
41
42
43
44
45

47
46

48
49
5C
5C
5C
5C
5C
5C

5C
5C
5C
5C
5C
5C
5C
5C
5C
5C
5C
5C
5C
5C
5C
5C5C

5C
5C
5C
5C
5C
7A
79
78
77
76
75
74
73
7E
5C

6A
5C

6B
6C
6D
6E
6F
70
71
72
5C
5C
5C
5C
5C
5C5C

5C
5C
5C
5C
5C
69
68
67
66
65
64
63
62
61
5C5C

5C
5C
5C
5C
5C
5C
5C
5C
60
3A
23
40
27
3D
22

2D
2F
5C
5C
5C
5C
5C
5C
5C

3F
3E
5F
25
2C
7C
5C

5E
3B
29
2A
24
5D
5C
5C
5C
5C
5C
5C
5C
5C
5C
2620

5C
5C
5C
5C
5C
5C

5C
5C

5B
5C

2E
3C
28
2B
211A

5C
15
14
5C
5C
5C
5C
04
5C
5C
5C
5C
16
5C
5C5C

5C
5C
5C
5C
0A
17
1B
5C
5C
5C
5C
5C
05
06
071F

1E
1D
1C
5C
5C
19
18
5C
08
5C
5C
13
12
11
1000

01
02
03
5C
09
5C
7F
5C
5C
5C

0F
0E
0D
0C
0B

EBCDIC to ASCII Translation Table

• The numbers on the left represent the low-order bits of the EBCDIC
characters in hexadecimal notation.

• The numbers across the top represent the high-order bits of the EBCDIC
characters in hexadecimal notation.

• The numbers in the body of the table represent the equivalent ASCII
characters in hexadecimal notation.

All EBCDIC graphics are translated to their equivalent ASCII graphic except for
the graphics noted in Table lib–14.

Table lib–14 EBCDIC Graphics Not Translated to ASCII Equivalent by
LIB$TRA_EBC_ASC

EBCDIC Graphic ASCII Graphic

¢ (cents sign) [(left square bracket)
| (short vertical bar) ! (exclamation point)
� (logical not) ^ (circumflex)
! (exclamation point)] (right square bracket)

lib–641

LIB$ Routines
LIB$TRA_EBC_ASC

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG If the destination string is a fixed-length string

and its length is not the same as the source
string length, or if the length of the input string
is greater than 65,535 characters, no translation
is attempted.

LIB$_INVCHA One or more occurrences of an untranslatable
character have been detected during the
translation.

lib–642

LIB$ Routines
LIB$TRIM_FILESPEC

LIB$TRIM_FILESPEC
Fit Long File Specification into Fixed Field

The Fit Long File Specification into Fixed Field routine takes a file specification,
such as an OpenVMS RMS resultant name string, and shortens it (if necessary)
so that it fits into a field of fixed width.

Format

LIB$TRIM_FILESPEC old-filespec ,new-filespec [,word-integer-width] [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

old-filespec
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification to be trimmed. The old-filespec argument contains the address
of a descriptor pointing to this file specification string.

The file specification should be an RMS resultant name string.

new-filespec
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Trimmed file specification. The new-filespec argument contains the address
of a descriptor pointing to this trimmed file specification string. LIB$TRIM_
FILESPEC writes the trimmed file specification into new-filespec.

word-integer-width
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Maximum field width desired. The word-integer-width argument is the address
of an unsigned word that contains this maximum field width.

If omitted, the current length of new-filespec is used. If new-filespec is not a
fixed-length string, you should specify word-integer-width to ensure that the
desired width is used.

lib–643

LIB$ Routines
LIB$TRIM_FILESPEC

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the trimmed file specification, not including any blank padding or
truncated characters. The resultant-length argument is the address of an
unsigned word that contains this length. This is an optional argument.

Description

This routine trims file specifications in a consistent, predictable manner to fit in a
fixed-length field using the same algorithm that HP software uses.

LIB$TRIM_FILESPEC allows compilers and other utilities which need to display
file specifications in fixed-length fields, such as listing headers, to display file
specifications in a consistent fashion.

If necessary to make the file specification fit into the specified field width,
LIB$TRIM_FILESPEC removes portions of the file specification in this order:

1. Node (including access control)

2. Device

3. Directory

4. Version

5. Type

If, after removing all these fields, the file name is still longer than the field width,
the file name is truncated and the alternate success status LIB$_STRTRU is
returned.

LIB$TRIM_FILESPEC supports any string class for the old-filespec and
new-filespec string arguments.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Success, but the output string was truncated.

Significant characters of the trimmed file
specification were truncated.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition values returned by LIB$SCOPY_R_DX, or the $FILESCAN system
service.

lib–644

LIB$ Routines
LIB$TRIM_FILESPEC

Example

PROGRAM TRIM_FILESPEC(INPUT,OUTPUT);

{+}
{ This PASCAL example program demonstrates the
{ use of LIB$TRIM_FILESPEC.
{-}

TYPE
WORD = [WORD] 0..65535;

VAR
INPUT_FILESPEC : VARYING [255] OF CHAR;
OUTPUT_FILESPEC : VARYING [32] OF CHAR;
RETURNED_STATUS : INTEGER;

[EXTERNAL] FUNCTION LIB$TRIM_FILESPEC(
IN_FILE : VARYING [LEN1] OF CHAR;
VAR OUT_FILE : VARYING [LEN2] OF CHAR;
WIDTH : WORD := %IMMED 0;
OUT_LEN : [REFERENCE] WORD := %IMMED 0
) : INTEGER; EXTERNAL;

[EXTERNAL] FUNCTION LIB$STOP(
CONDITION_STATUS : [IMMEDIATE,UNSAFE] UNSIGNED;
FAO_ARGS : [IMMEDIATE,UNSAFE,LIST] UNSIGNED
) : INTEGER; EXTERNAL;

BEGIN

{+}
{ Start with a large INPUT_FILESPEC.
{-}

INPUT_FILESPEC := ’DISK$NAME:[DIRECTORY1.DIRECTORY2]FILENAME.EXTENSION;1’;

{+}
{ Use LIB$TRIM_FILESPEC to shorten it to fit a smaller variable.
{-}

RETURNED_STATUS := LIB$TRIM_FILESPEC(
INPUT_FILESPEC,
OUTPUT_FILESPEC,
SIZE(OUTPUT_FILESPEC.BODY));

IF NOT ODD(RETURNED_STATUS)
THEN

LIB$STOP(RETURNED_STATUS);

{+}
{ Print out the original file name along with the
{ shortened file name.
{-}

WRITELN(’Original file specification ’,INPUT_FILESPEC);
WRITELN(’Shortened file specification ’,OUTPUT_FILESPEC);

END.

This Pascal example program demonstrates the use of LIB$TRIM_FILESPEC.
The output generated by this program is as follows:

Original file specification DISK$NAME:[DIRECTORY1.DIRECTORY2]FILENAME.EXTENSION;1
Shortened file specification FILENAME.EXTENSION;1

lib–645

LIB$ Routines
LIB$TRIM_FULLNAME

LIB$TRIM_FULLNAME
Trim a Full Name to Fit into a Desired Output Field

The Trim a Full Name to Fit into a Desired Output Field routine trims a
full name to fit into a desired output field. The trimming preserves the most
significant part of the full name. †

Format

LIB$TRIM_FULLNAME fullname, trimmed-nodename [,output-width] [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

fullname
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Full name to be trimmed. The fullname argument contains the address of a
descriptor pointing to this full name string.

The error LIB$_INVARG is returned if fullname contains an invalid full name,
points to a null string, or contains more than 1024 characters. The error LIB$_
INVSTRDES is returned if fullname is an invalid descriptor.

trimmed-nodename
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Trimmed node name. The trimmed-nodename argument contains the
address of a descriptor pointing to the trimmed node-name string. LIB$TRIM_
FULLNAME writes the trimmed node name into the buffer pointed to by
trimmed-nodename.

The error LIB$_INVSTRDES is returned if trimmed-nodename is an invalid
descriptor.

The length field of the trimmed-nodename descriptor is not updated unless
trimmed-nodename is a dynamic descriptor with a length less than the
resultant trimmed node name. Refer to the OpenVMS RTL String Manipulation
(STR$) Manual for dynamic string descriptor usage.

The trimmed-nodename argument contains an unusable result when
LIB$TRIM_FULLNAME returns in error.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–646

LIB$ Routines
LIB$TRIM_FULLNAME

output-width
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Field width desired for the trimmed node name. The output-width argument is
the address of an unsigned word that contains this field width in bytes.

If output-width is omitted, the current length of trimmed-nodename is used.
If trimmed-nodename is not a fixed-length string, specify output-width to
ensure that the desired width is used.

If the lengths of both trimmed-nodename and output-width are specified, the
length in output-width is used. In this case, if the current length of trimmed-
nodename is smaller than the length of output-width, the output trimmed
node name is truncated at the end, and the alternate successful status LIB$_
STRTRU is returned.

resultant-length
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the trimmed node name. The resultant-length argument is the
address of an unsigned word that contains this length in bytes.

The resultant-length argument contains an unusable result when LIB$TRIM_
FULLNAME returns in error.

Description

This routine trims a full name to the length that fits the desired output field. It
allows applications to trim long full names for displaying in a fixed-length field,
such as listing headers, in a consistent manner.

Full names are validated. Valid full names are defined as full names expanded
from using LIB$EXPAND_NODENAME. A node name must be expanded to a full
name using LIB$EXPAND_NODENAME before calling LIB$TRIM_FULLNAME.
The error LIB$_INVARG is returned if the input full name is invalid.

If the length of fullname is less than or equal to the desired output width,
no trimming is performed, and fullname is returned in trimmed-nodename.
Trailing blanks are padded if necessary.

Trimming is performed when the length of fullname is larger than the desired
output width. The alternate successful status LIB$_STRTRU is returned.

The trimmed node name contains the significant part of the full name. This
allows the most important information of a full name to be retained for display
purposes. The significant part of a full name is determined by the underlying
network services.

In a DECnet environment, trimming a DECnet-Plus full name results in the error
condition LIB$_INVARG.

lib–647

LIB$ Routines
LIB$TRIM_FULLNAME

If a usable short form of a node name is desired for display purposes, call
LIB$COMPRESS_NODENAME first. If LIB$COMPRESS_NODENAME returns
LIB$_STRTRU, LIB$TRIM_FULLNAME can then be used to return the trimmed
node name.

LIB$TRIM_FULLNAME adds padding spaces to the end of the output buffer
if the trimmed node name is shorter than the size of the output buffer. The
argument resultant-length, if supplied, is set to the length of the trimmed node
name, excluding any padding spaces.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Routine successfully completed. Characters are

truncated in the output buffer pointed to by
trimmed-nodename.

LIB$_INVARG Invalid argument:

• fullname is invalid.

• fullname points to a null string.

• The length of the input full name is more
than 1024 characters.

• The trimmed DECnet-Plus for OpenVMS
node name is invalid in a DECnet for
OpenVMS environment.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by LIB$SCOPY_R_DX, or the $IPC DECnet service.

Examples

The following table gives some examples of the results of using LIB$TRIM_
FULLNAME:

Full Name Size of Output Field Trimmed Node Name

NODE 3 NOD
NODE 8 NODE
DEC:.FOO.NODE 5 .NODE
DEC:.FOO.NODE 8 FOO.NODE
DEC:.FOO.NODE 20 DEC:.FOO.NODE

lib–648

LIB$ Routines
LIB$UNLOCK_IMAGE (Alpha and I64 Only)

LIB$UNLOCK_IMAGE (Alpha and I64 Only)
Unlock an Image from Process Working Set

Unlocks the specified image in the process’s working set.

Format

LIB$UNLOCK_IMAGE address

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

address
OpenVMS usage: address
type: quadword
access: read only
mechanism: by value

Address of a byte within the image to be unlocked in the working set. If
the address argument is 0, the current image (which contains the call to
LIB$UNLOCK_IMAGE) is unlocked in the working set.

Description

LIB$UNLOCK_IMAGE unlocks the specified image in the process’s working set.

This routine is typically used by a privileged user after the program, executing
in kernel mode, lowers IPL to 0 or 2. Above IPL 2, paging is not allowed by the
system. The program must access only pages valid in the process’s working set.
LIB$LOCK_IMAGE is used to lock the image in the working set.

Condition Values Returned

SS$_WASSET The specified image is unlocked in the working
set and had previously been locked in the
working set.

SS$_WASCLR The specified image is unlocked in the working
set and had previously not been locked in the
working set.

Other status codes returned by sys$lkwset_64.

lib–649

LIB$ Routines
LIB$VERIFY_VM_ZONE

LIB$VERIFY_VM_ZONE
Verify a Zone

The Verify a Zone routine performs verification of a 32-bit zone. †

Format

LIB$VERIFY_VM_ZONE zone-id

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

zone-id
OpenVMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Zone identifier of the zone to be verified. The zone-id argument is the address
of an unsigned longword that contains this zone identifier. A value of 0 indicates
the 32-bit default zone.

Description

LIB$VERIFY_VM_ZONE verifies a zone. LIB$VERIFY_VM_ZONE performs
verification of the zone header and scans all of the queues and lists maintained
in the zone header; this includes the lookaside lists and the free lists. If the
zone was created with LIB$M_VM_FREE_FILL0 or LIB$M_VM_FREE_FILL1,
LIB$VERIFY_VM_ZONE also checks the contents of the free blocks.

As soon as an error is encountered, processing stops. If LIB$_BADZONE is
returned, use the routine LIB$SHOW_VM_ZONE to dump the zone information.

You must have exclusive access to the zone while the verification is proceeding.
Results are unpredictable if another thread of control modifies the zone while this
routine is analyzing control data or scanning control blocks.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADZONE Invalid zone.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVARG Invalid or null argument.
LIB$_WRONUMARG Wrong number of arguments.

† No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

lib–650

LIB$ Routines
LIB$VERIFY_VM_ZONE_64 (Alpha and I64 Only)

LIB$VERIFY_VM_ZONE_64 (Alpha and I64 Only)
Verify a Zone

The Verify a Zone routine performs verification of a 64-bit zone.

Format

LIB$VERIFY_VM_ZONE_64 zone-id

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument

zone-id
OpenVMS usage: identifier
type: quadword (unsigned)
access: read only
mechanism: by reference

Zone identifier of the zone to be verified. The zone-id argument is the address of
an unsigned quadword that contains this zone identifier. A value of 0 indicates
the 64-bit default zone.

Description

LIB$VERIFY_VM_ZONE_64 verifies a zone. LIB$VERIFY_VM_ZONE_64
performs verification of the zone header and scans all of the queues and lists
maintained in the zone header; this includes the lookaside lists and the free
lists. If the zone was created with the LIB$M_VM_FREE_FILL0 or LIB$M_VM_
FREE_FILL1 algorithm, LIB$VERIFY_VM_ZONE_64 also checks the contents of
the free blocks.

As soon as an error is encountered, processing stops. If LIB$_BADZONE
is returned, use the routine LIB$SHOW_VM_ZONE_64 to dump the zone
information.

You must have exclusive access to the zone while the verification is proceeding.
Results are unpredictable if another thread of control modifies the zone while this
routine is analyzing control data or scanning control blocks.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADZONE Invalid zone.
LIB$_INVARG Invalid or null argument.
LIB$_WRONUMARG Wrong number of arguments.

lib–651

LIB$ Routines
LIB$WAIT

LIB$WAIT
Wait a Specified Period of Time

The Wait a Specified Period of Time routine places the current process into
hibernation for the number of seconds specified in its argument.

Format

LIB$WAIT seconds [,flags] [,float-type]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

seconds
OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by reference

The number of seconds to wait. The seconds argument contains the address of
an F-floating number that is this number.

The value is rounded to the nearest hundredth-second before use. Seconds must
be between 0.0 and 100,000.0.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Control flags. The flags argument is the address of a longword integer that
contains the control flags. The following flag is defined:

Bit Value Description

0 LIB$K_NOWAKE LIB$WAIT will not wake in the case of an
interrupt.

This is an optional argument. If omitted, the default is 0, and LIB$WAIT will
wake in the case of an interrupt.

float-type
OpenVMS usage: longword-unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

lib–652

LIB$ Routines
LIB$WAIT

Float type. The float-type argument is the address of a longword integer that
determines the floating-point type of the seconds argument. Use one of the
following symbols:

Symbol Value Floating-Point Type

LIB$K_VAX_F 0 F_floating
LIB$K_VAX_D 1 D_floating
LIB$K_VAX_G 2 G_floating
LIB$K_VAX_H 3 H_floating
LIB$K_IEEE_S 4 IEEE_S_floating
LIB$K_IEEE_T 5 IEEE_T_floating

This is an optional argument. If omitted, the default is F_floating. F_floating is
the required float-type when LIB$WAIT is called from a module written in a
language that prototypes functions.

Description

LIB$WAIT rounds the value specified by seconds to the nearest hundredth-
second, uses the $SCHDWK system service to schedule a wakeup for that
interval, and then issues the $HIBER system service to hibernate until the
wakeup occurs.

Because of other system activity, the length of time that the process actually
waits may be somewhat longer than what was specified by seconds.

The process hibernates in the caller’s access mode; therefore, asynchronous
system traps (ASTs) may be delivered while the process is hibernating. However,
if the process hibernates at AST level, further ASTs can not be delivered.

When the LIB$K_NOWAIT control flag is used, LIB$WAIT makes use of the
$SETIMR system service to schedule the wakeup, and then issues a $SYNCH
system service call to check for the completion status. In this case, LIB$WAIT
will not be interrupted by $WAKE. Use LIB$K_NOWAKE when it is necessary
for the wait to be completed without interruption.

Note

The NOWAKE option makes use of the $SETIMR and $SYNCH system
services. Because use of these services requires that an AST be delivered,
you should not use LIB$WAIT with the LIB$K_NOWAKE control flag at
AST level.

See the HP OpenVMS System Services Reference Manual for more information.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. The value of seconds was

less than 0 or greater than 100,000.0

lib–653

LIB$ Routines
LIB$WAIT

LIB$_WRONUMARG Wrong number of arguments. An incorrect
number of arguments was passed to LIB$WAIT.

Any condition values returned by the $SCHDWK or SETIMR system services, or
by the RTL routine LIB$CVT_FTOF.

Example

IDENTIFICATION DIVISION.
PROGRAM-ID. T3.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 WAIT-TIME COMP-1.
01 FLOAT-TYPE PIC 9(5) COMP VALUE 0.
PROCEDURE DIVISION.
p0. MOVE 10 TO WAIT-TIME.

CALL "LIB$WAIT"
USING BY REFERENCE WAIT_TIME, OMITTED,

BY REFERENCE FLOAT-TYPE.
STOP RUN.

This COBOL program demonstrates the use of LIB$WAIT on both OpenVMS
VAX and OpenVMS Alpha and I64 systems. When run, the process performs a 10
second wait.

lib–654

Part III
CVT$ Reference Section

This part provides a detailed discussion of the routines provided by the OpenVMS
RTL (CVT$) facility.

CVT$ Routine
CVT$CONVERT_FLOAT

CVT$CONVERT_FLOAT
Convert Floating-Point Data Type

The Convert Floating-Point Data Type routine provides a simplified options-
interface for converting a floating-point data type to another supported floating-
point data type.

Format

CVT$CONVERT_FLOAT input_value, input_type_code, output_value, output_type_code, options

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

input_value
OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by reference

The address of a data area containing a floating-point number that is to be
converted. The input_value argument may contain floating-point data in
F_Floating, D_Floating, G_Floating, H_Floating, IEEE_S_Floating, IEEE_T_
Floating, IEEE_X_Floating, IBM_Long_Floating, IBM_Short_Floating, or CRAY_
Floating format. The value of the input_type_code argument determines the
format and size of the input_value argument.

input_type_code
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The value of a longword bit mask specifying the type of floating-point data being
passed in the input_value argument. Valid type codes are:

input_type_code Format Size in Bytes

CVT$K_VAX_F F_Floating 4
CVT$K_VAX_D D_Floating 8
CVT$K_VAX_G G_Floating 8
CVT$K_VAX_H H_Floating 16
CVT$K_IEEE_S IEEE_S_Floating 4
CVT$K_IEEE_T IEEE_T_Floating 8
CVT$K_IEEE_X IEEE_X_Floating 16

cvt–3

CVT$ Routine
CVT$CONVERT_FLOAT

input_type_code Format Size in Bytes

CVT$K_IBM_LONG IBM_Long_Floating 8
CVT$K_IBM_SHORT IBM_Short_Floating 4
CVT$K_CRAY CRAY_Floating 8

Declarations for the input_type_code argument are in the $CVTDEF module
found in the system symbol libraries.

output_value
OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

The address of a data area that receives the converted floating-point number.
The output_value argument can contain floating-point data in F_Floating,
D_Floating, G_Floating, H_Floating, IEEE_S_Floating, IEEE_T_Floating, IEEE_
X_Floating, IBM_Long_Floating, IBM_Short_Floating, or CRAY_Floating format.
The value of the output_type_code argument determines the size and format of
the data placed into the output_value argument.

output_type_code
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The value of a longword bit mask specifying the type of floating-point data that
the input_value argument will be converted into and returned in the output_
value argument. Valid type codes are:

output_type_code Format Size in Bytes

CVT$K_VAX_F F_Floating 4
CVT$K_VAX_D D_Floating 8
CVT$K_VAX_G G_Floating 8
CVT$K_VAX_H H_Floating 16
CVT$K_IEEE_S IEEE_S_Floating 4
CVT$K_IEEE_T IEEE_T_Floating 8
CVT$K_IEEE_X IEEE_X_Floating 16
CVT$K_IBM_LONG IBM_Long_Floating 8
CVT$K_IBM_SHORT IBM_Short_Floating 4
CVT$K_CRAY CRAY_Floating 8

Declarations for the output_type_code argument are in the $CVTDEF module
found in the system symbol libraries.

cvt–4

CVT$ Routine
CVT$CONVERT_FLOAT

options
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Conversion option specifier. The options argument is the address of a longword
bit mask in which each option bit set causes the corresponding option to be used
during the conversion.

The following options can be specified using the options argument:

Option Description

CVT$M_ROUND_TO_NEAREST The default rounding option for
conversions to IEEE data types. This
IEEE Std. 754 rounding mode results in
the representable output value nearest
to the infinitely precise result. If the two
nearest representable values are equally
near, the one whose least significant bit is
0 is the result.

CVT$M_VAX_ROUNDING The default rounding option for
conversions to non-IEEE data types.
Performs "traditional" style rounding.
This mode results in the representable
output value nearest to the infinitely
precise result. If the two nearest
representable values are equally near,
the output value is the closest to either
positive infinity or negative infinity,
depending on the sign of the input value.

CVT$M_TRUNCATE Round the output value toward zero
(truncate).

CVT$M_ROUND_TO_POS Round the output value toward positive
infinity.

CVT$M_ROUND_TO_NEG Round the output value toward negative
infinity.

CVT$M_BIG_ENDIAN Interprets IEEE data types as Big
Endian.

CVT$M_ERR_UNDERFLOW Report underflow conditions as errors.

Declarations for the options argument are in the $CVTDEF module found in the
system symbol libraries.

Description

CVT$CONVERT_FLOAT is a general-purpose, floating-point conversion routine
that converts any input_type_code floating-point data type into any output_
type_code floating-point data type. The conversion is subject to the options
specified in the options argument.

cvt–5

CVT$ Routine
CVT$CONVERT_FLOAT

Note

OpenVMS compilers do not support arithmetic operations for all of the
above floating-point data types. Additional floating-point data types are
supported by this routine for data conversion purposes only.

Condition Values Returned

CVT$_NORMAL Normal successful completion.
CVT$_INPCONERR Input conversion error.
CVT$_INVINPTYP Invalid input type code.
CVT$_INVOPT Invalid option argument.
CVT$_INVOUTTYP Invalid output type code.
CVT$_INVVAL Input value was an invalid number or NaN.
CVT$_NEGINF Input value was negative infinity.
CVT$_OUTCONERR Output conversion error.
CVT$_OVERFLOW Overflow detected during conversion.
CVT$_POSINF Input value was positive infinity.
CVT$_UNDERFLOW Underflow detected during conversion.

Return status values are in the $CVTMSG module found in the system symbol
libraries.

Example

/*
** ===
**
** Example of CVT$CONVERT_FLOAT
**
** ---
**
** This example program reads IEEE T floating-point numbers from an
** input file, converts them to VAX D floating-point numbers and
** writes the result to an output file.
**
** The input and output file names can be specified as the first and
** second arguments on the command line as follows:
**
** $ EXAMPLE IEEE_T_INPUT_FILE.DAT VAX_D_OUTPUT_FILE.DAT
**
** If the input or output files are not included on the command
** line then the program prompts the user for them.
**
** ===
*/
#include <stdio.h>

unsigned long CVT$CONVERT_FLOAT(void *input_value,
unsigned long input_type,
void *output_value,
unsigned long output_type,
unsigned long options);

cvt–6

CVT$ Routine
CVT$CONVERT_FLOAT

globalvalue CVT$K_VAX_D;
globalvalue CVT$K_IEEE_T;
globalvalue CVT$M_ROUND_TO_NEAREST;
globalvalue CVT$_NORMAL;

main(int argc, char *argv[])

{

double D_Float_number;
unsigned long IEEE_Double_number[2];
unsigned long options;
char in_filename[80];
char out_filename[80];
FILE *in_file, *out_file;
unsigned long ret_status;

/*
** Find out where we are going to get the data from.
** First look at the first argument of the command line.
** If nothing is there, then attempt to use IEEE_T_IN.DAT.
** ===
*/
if (argc == 1)
{
printf("Enter input data file: [IEEE_T_IN.DAT]: ");
if (gets(in_filename) == NULL)
exit(1);

if (strlen(in_filename) == 0)
strcpy(in_filename, "IEEE_T_IN.DAT");

}
else

strcpy(in_filename, argv[1]);

/*
** Find out where we are going to put the output data.
** First look at the second argument of the command line.
** If nothing is there, then put it in VAX_D_OUT.DAT
** ===
*/
if (argc <= 2)
{
printf("Enter output data file: [VAX_D_OUT.DAT]: ");
if (gets(out_filename) == NULL)
exit(1);

if (strlen(out_filename) == 0)
strcpy(out_filename, "VAX_D_OUT.DAT");

}
else

strcpy(out_filename, argv[2]);

/*
** Open the input and output files.
** ---
*/
if ((in_file = fopen(in_filename, "r")) == NULL)
{
fprintf(stderr, "%s couldn’t open file %s\n", argv[0], in_filename);
exit(1);

}

out_file = fopen(out_filename, "wb");

options = CVT$M_ROUND_TO_NEAREST;
ret_status = CVT$_NORMAL;

cvt–7

CVT$ Routine
CVT$CONVERT_FLOAT

/*
** Read in each number from the file, convert it, and write it to
** the output file.
** ===
*/
while ((fread (&IEEE_Double_number[0],

sizeof(IEEE_Double_number),
1,
in_file) == 1) &&

(ret_status == CVT$_NORMAL))
{
ret_status = CVT$CONVERT_FLOAT(&IEEE_Double_number[0], CVT$K_IEEE_T,

&D_Float_number, CVT$K_VAX_D,
options);

if (ret_status == CVT$NORMAL)
{
fwrite(&D_Float_number, sizeof(D_Float_number), 1, out_file);
printf("Converted data: %lf.\n", D_Float_number);

}
}
fclose(in_file);
fclose(out_file);

if (ret_status == CVT$_NORMAL)
exit(1);

else
exit(ret_status);

}

cvt–8

CVT$ Routine
CVT$FTOF

CVT$FTOF
Convert Floating-Point Data Type

The Convert Floating-Point Data Type routine converts floating-point data types
to other supported floating-point data types and allows additional control over the
converted results. CVT$FTOF functionality is also available on other platforms
supported by HP.

Format

status = CVT$FTOF input_value, input_type_code, output_value, output_type_code, options

Returns

OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by value

The status return value is an unsigned longword bit mask containing the
condition codes raised by the function. CVT$FTOF returns CVT$K_NORMAL;
otherwise, it sets one or more recoverable and unrecoverable conditions. Use the
following condition names to determine which conditions are set:

Condition Name Condition (always reported by default)

CVT$K_NORMAL Normal successful completion.
CVT$M_INVALID_INPUT_TYPE Invalid input type code.
CVT$M_INVALID_OUTPUT_TYPE Invalid output type code.
CVT$M_INVALID_OPTION Invalid option argument.

Condition Name
Condition (reported only if the CVT$M_
REPORT_ALL option is selected)

CVT$M_RESULT_INFINITE Conversion produced an infinite
result.1

CVT$M_RESULT_DENORMALIZED Conversion produced a
denormalized result.1

CVT$M_RESULT_OVERFLOW_RANGE Conversion yielded an exponent
greater than 60000 (8).2

CVT$M_RESULT_UNDERFLOW_RANGE Conversion yielded an exponent
less than 20000 (8).2

CVT$M_RESULT_UNNORMALIZED Conversion produced an
unnormalized result.3

1For IEEE data type conversions.
2For CRAY data type conversions.
3For IBM data type conversions.

cvt–9

CVT$ Routine
CVT$FTOF

Condition Name
Condition (reported only if the CVT$M_
REPORT_ALL option is selected)

CVT$M_RESULT_INVALID Conversion result is either ROP
(reserved operand), NaN (not a
number), or closest equivalent.
CRAY and IBM data types return
0.4

CVT$M_RESULT_OVERFLOW Conversion resulted in overflow.4

CVT$M_RESULT_UNDERFLOW Conversion resulted in underflow.4

CVT$M_RESULT_INEXACT Conversion resulted in a loss of
precision.4

4For all data type conversions.

Return status values are in the $CVTDEF module in the system symbol libraries.

Arguments

input_value
OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by reference

The address of a data area containing a floating-point number to be converted.
The number can be floating-point data in one of the following formats:

F_Floating Big_Endian_IEEE_S_Floating
D_Floating Big_Endian_IEEE_T_Floating
G_Floating Big_Endian_IEEE_X_Floating
H_Floating IBM_Long_Floating
IEEE_S_Floating IBM_Short_Floating
IEEE_T_Floating CRAY_Floating_Single
IEEE_X_Floating

The value of the input_type_code argument determines the format and size of
the input_value argument.

input_type_code
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The value of a longword bit mask specifying the type of floating-point data being
passed in the input_value argument. Valid type codes are:

Input_type_code Format Size in Bytes

CVT$K_VAX_F F_Floating 4
CVT$K_VAX_D D_Floating 8
CVT$K_VAX_G G_Floating 8

cvt–10

CVT$ Routine
CVT$FTOF

Input_type_code Format Size in Bytes

CVT$K_VAX_H H_Floating 16
CVT$K_IEEE_S IEEE_S_Floating 4
CVT$K_IEEE_T IEEE_T_Floating 8
CVT$K_IEEE_X IEEE_X_Floating 16
CVT$K_BIG_ENDIAN_IEEE_S Big_Endian_IEEE_S_Floating 4
CVT$K_BIG_ENDIAN_IEEE_T Big_Endian_IEEE_T_Floating 8
CVT$K_BIG_ENDIAN_IEEE_X Big_Endian_IEEE_X_Floating 16
CVT$K_IBM_LONG IBM_Long_Floating 8
CVT$K_IBM_SHORT IBM_Short_Floating 4
CVT$K_CRAY_SINGLE CRAY_Floating 8

Declarations for the input_type_code argument are in the $CVTDEF module
found in the system symbol libraries.

output_value
OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

The address of a data area that receives the converted floating-point number.
The number can be floating-point data in F_Floating, D_Floating, G_Floating,
H_Floating, IEEE_S_Floating, IEEE_T_Floating, IEEE_X_Floating, Big_Endian_
IEEE_S_Floating, Big_Endian_IEEE_T_Floating, Big_Endian_IEEE_X_Floating,
IBM_Long_Floating, IBM_Short_Floating, or CRAY_Floating_Single format. The
value of the output_type_code argument determines the size and format of the
converted floating-point number.

output_type_code
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The value of a longword bit mask specifying the type of floating-point data that
the input_value argument will be converted into and returned in the output_
value argument. Valid type codes are:

Output_type_code Format Size in Bytes

CVT$K_VAX_F F_Floating 4
CVT$K_VAX_D D_Floating 8
CVT$K_VAX_G G_Floating 8
CVT$K_VAX_H H_Floating 16
CVT$K_IEEE_S IEEE_S_Floating 4
CVT$K_IEEE_T IEEE_T_Floating 8
CVT$K_IEEE_X IEEE_X_Floating 16
CVT$K_BIG_ENDIAN_IEEE_S Big_Endian_IEEE_S_Floating 4

cvt–11

CVT$ Routine
CVT$FTOF

Output_type_code Format Size in Bytes

CVT$K_BIG_ENDIAN_IEEE_T Big_Endian_IEEE_T_Floating 8
CVT$K_BIG_ENDIAN_IEEE_X Big_Endian_IEEE_X_Floating 16
CVT$K_IBM_LONG IBM_Long_Floating 8
CVT$K_IBM_SHORT IBM_Short_Floating 4
CVT$K_CRAY_SINGLE CRAY_Floating 8

Declarations for the output_type_code argument are in the $CVTDEF module
found in the system symbol libraries.

options
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Conversion option specifier. The options argument is the address of a longword
bit mask in which each option bit set causes the corresponding option to be used
during the conversion. Provide a zero (0) value to the options argument to
select default behavior or choose one or more options (status condition option,
rounding options, "FORCE" options, CRAY and IBM options) from the following
tables. Specify only the options that apply to your conversion. A conflicting or
incompatible options argument is reported as an error (CVT$M_INVALID_
OPTION).

Applicable
Conversion Option Description

Status Condition Option

All CVT$M_REPORT_ALL Report all applicable status conditions as the
default. The reporting of recoverable status
conditions is disabled by default when this
option is not used.

Rounding Options

All CVT$M_ROUND_TO_NEAREST The default rounding option for conversions
to IEEE data types. This IEEE Std. 754
rounding mode results in the representable
output value nearest to the infinitely precise
result. If the two nearest representable
values are equally near, the one whose least
significant bit is 0 is the result.

cvt–12

CVT$ Routine
CVT$FTOF

Applicable
Conversion Option Description

Rounding Options

All CVT$M_BIASED_ROUNDING The default rounding option for conversions
to non-IEEE data types. Performs
"traditional" style rounding. This mode
results in the representable output value
nearest to the infinitely precise result. If
the two nearest representable values are
equally near, the output value is the closest
to either positive infinity or negative infinity
depending on the sign of the input value.

All CVT$M_ROUND_TO_ZERO Round the output value toward zero
(truncate).

All CVT$M_ROUND_TO_POS Round the output value toward positive
infinity.

All CVT$M_ROUND_TO_NEG Round the output value toward negative
infinity.

"FORCE" Options

All CVT$M_FORCE_ALL_SPECIAL_
VALUES

Apply all applicable "FORCE" options for the
current conversion.

IEEE CVT$M_FORCE_DENORM_TO_
ZERO1

Force a denormalized IEEE output value to
zero.

IEEE CVT$M_FORCE_INF_TO_MAX_
FLOAT1

Force a positive IEEE infinite output value to
+max_float and force a negative IEEE infinite
output value to –max_float.

IEEE or
VAX

CVT$M_FORCE_INVALID_TO_
ZERO2

Force an invalid IEEE NaN (not a number)
output value or a VAX ROP (reserved
operand) output value to zero.

CRAY Format Conversion Options

CRAY CVT$M_ALLOW_OVRFLW_
RANGE_VALUES

Allow an input/output exponent value >
60000 (8).

CRAY CVT$M_ALLOW_UDRFLW_
RANGE_VALUES

Allow an input/output exponent value <
20000 (8).

IBM Format Conversion Option

IBM CVT$M_ALLOW_
UNNORMALIZED_VALUES

Allow unnormalized input arguments. Allow
an unnormalized output value for a small
value that would normalize to zero.

1This option is valid only for conversions to IEEE output values.
2This option is valid only for conversions to IEEE or VAX output values.

The maximum representable floating-point values (max_float) for the IEEE_S_
Floating, IEEE_T_Floating, IEEE_X_Floating, Big_Endian_IEEE_S_Floating,
Big_Endian_IEEE_T_Floating, and Big_Endian_IEEE_X_Floating formats are:

cvt–13

CVT$ Routine
CVT$FTOF

Data
Type Value for: max_float

S Decimal: 3.402823e38
T Decimal: 1.797693134862316e308
X Decimal: 1.189731495357231765085759326628007016196477e4932

Declarations for the options argument are in the $CVTDEF module found in the
system symbol libraries.

Description

CVT$FTOF functionality is available on all HP platforms and is the floating-point
conversion routine of choice for portability. When compared with the standard
CVT$CONVERT_FLOAT routine, CVT$FTOF includes additional functionality
and increased performance.

CVT$FTOF is a general-purpose floating-point conversion routine that converts
any input_type_code floating-point data type into any output_type_code
floating-point data type. The conversion is subject to the options specified in the
options argument.

Note

OpenVMS compilers do not support arithmetic operations for all of the
floating-point data types described here. Additional floating-point data
types are supported by this routine for data conversion purposes only.

cvt–14

Index

A
Addition

quadword times, lib–8
two’s complement, lib–5

ASCII character set
EBCDIC translation from, lib–401, lib–636
EBCDIC translation to, lib–403, lib–640

$ASCTIM system service
RTL jacket routine, lib–561

ASTs (asynchronous system traps)
progress check, lib–17

B
Binary numbers, multiple precision, lib–5
Binary subtraction, lib–557
Binary tree

balanced, lib–341, lib–350
Bit fields

replace field, lib–371
return sign extended to longword, lib–178

C
CALLG (Call Routine with General Argument

List) instruction, RTL routine to access,
lib–28, lib–29

Character sets
translation of, lib–399

Character string routines, lib–30
CLI symbols

deleting, lib–143
getting value of, lib–287
RTL routines, lib–143, lib–287, lib–491
setting value of, lib–491

Condition handlers
establishing, lib–173

Condition values, lib–392
Conversions

general
descriptor to descriptor, lib–88

numeric text to binary, lib–101 to lib–103
of data type

descriptor to descriptor, lib–88

Converting
floating-point data types, cvt–3, cvt–9

CVT$CONVERT_FLOAT routine, cvt–3
CVT$FTOF routine, cvt–9
Cyclic redundancy check, lib–41, lib–43

D
Data types

conversion of
descriptor to descriptor, lib–88

Date/Time routines
LIB$CONVERT_DATE_STRING, lib–37
LIB$DATE_TIME, lib–105
LIB$DAY, lib–107
LIB$DAY_OF_WEEK, lib–109
LIB$FORMAT_DATE_TIME, lib–212
LIB$GET_DATE_FORMAT, lib–261
LIB$GET_MAXIMUM_DATE_LENGTH,

lib–283
LIB$INIT_DATE_TIME_CONTEXT, lib–335

Decimal overflow detection, lib–130
Decimal text, converting to binary, lib–101,

lib–103
DECnet

full name routines
LIB$BUILD_NODESPEC routine, lib–25
LIB$COMPARE_NODENAME routine,

lib–32
LIB$COMPRESS_NODENAME routine,

lib–34
LIB$EXPAND_NODENAME routine,

lib–175
LIB$FIT_NODENAME routine, lib–205
LIB$GET_FULLNAME_OFFSET routine,

lib–268
LIB$GET_HOSTNAME routine, lib–270
LIB$TRIM_FULLNAME routine, lib–646

DECnet for OpenVMS
full name routines

LIB$COMPARE_NODENAME routine,
lib–32, lib–34, lib–175, lib–205, lib–268,
lib–270, lib–646

DECnet-Plus for OpenVMS
full name routines

LIB$BUILD_NODESPEC routine, lib–25

Index–1

DECnet-Plus for OpenVMS
full name routines (cont’d)

LIB$COMPARE_NODENAME routine,
lib–32

LIB$COMPRESS_NODENAME routine,
lib–34

LIB$EXPAND_NODENAME routine,
lib–175

LIB$FIT_NODENAME routine, lib–205
LIB$GET_FULLNAME_OFFSET routine,

lib–268
LIB$GET_HOSTNAME routine, lib–270
LIB$TRIM_FULLNAME routine, lib–646

Descriptors
analysis of, lib–10

Directories
creating, lib–46

Division, extended precision, lib–155
Dynamic length strings

allocating, lib–497 to lib–499
deallocating, lib–494, lib–495

E
EBCDIC character set

ASCII translation from, lib–403, lib–640
ASCII translation to, lib–401, lib–636

EDIV (Extended Divide) instructions, RTL routine
to access, lib–155

EMODD instructions, RTL routine to access,
lib–157

EMODF instructions, RTL routine to access,
lib–159

EMODG instructions, RTL routine to access,
lib–161

EMODH instructions, RTL routine to access,
lib–163

EMODS instructions, RTL routine to access,
lib–165

EMODT instructions, RTL routine to access,
lib–167

EMUL (Extended Multiply) instructions, RTL
routine to access, lib–169

Event flags
reserve, lib–471
RTL routine to free, lib–218
status, lib–263

F
$FAOL system service

RTL jacket routine for, lib–565
$FAOL_64 system service

RTL jacket routine for, lib–567
$FAO system service

RTL jacket routine for, lib–563

Faults, fix floating reserved operands, lib–208
FFx instructions, RTL routine to access, lib–183
Floating-point number conversions, cvt–3

Big_Endian_IEEE_S_Floating, cvt–9
Big_Endian_IEEE_T_Floating, cvt–9
Big_Endian_IEEE_X_Floating, cvt–9
Cray_Floating, cvt–9
D_Floating, cvt–9
F_Floating, cvt–9
G_Floating, cvt–9
H_Floating, cvt–9
IBM_Long_Floating, cvt–9
IBM_Short_Floating, cvt–9
IEEE_S_Floating, cvt–9
IEEE_T_Floating, cvt–9
IEEE_X_Floating, cvt–9

Floating-point underflow detection, lib–210
Full name routines

See DECnet full name routines

G
$GETDVI system service

RTL jacket routine for, lib–231
$GETJPI system service

RTL jacket routine for, lib–237
$GETMSG system service

RTL jacket routine for, lib–569
$GETQUI system service

RTL jacket routine for, lib–242
$GETSYI system service

RTL jacket routine for, lib–247

H
Hexadecimal text, converting to binary, lib–101,

lib–103
Hibernation

LIB$WAIT, lib–652

I
Integer overflow, lib–373
Invocation context

access routines, lib–260, lib–276, lib–277,
lib–285, lib–286, lib–301, lib–303, lib–304,
lib–310, lib–312, lib–313, lib–318, lib–322,
lib–323, lib–444

functions, lib–260, lib–276, lib–277, lib–285,
lib–286, lib–301, lib–303, lib–304, lib–310,
lib–312, lib–313, lib–318, lib–322, lib–323,
lib–444

obtaining handle, lib–277
updating, lib–323, lib–444

Invocation handle
access routines, lib–305, lib–314
functions, lib–305, lib–314

Index–2

K
Keywords, in keyword table, lib–380

L
Language, user’s choice of natural, lib–292
LIB$ADAWI routine, lib–3
LIB$ADDX routine, lib–5
LIB$ADD_TIMES routine, lib–8
LIB$ANALYZE_SDESC routine, lib–10
LIB$ANALYZE_SDESC_64 routine, lib–12
LIB$ASN_WTH_MBX routine, lib–14
LIB$AST_IN_PROG routine, lib–17
LIB$ATTACH routine, lib–19
LIB$BBCCI routine, lib–21
LIB$BBSSI routine, lib–23
LIB$BUILD_NODESPEC routine, lib–25
LIB$CALLG routine, lib–28
LIB$CALLG_64 routine, lib–29
LIB$CHAR routine, lib–30
LIB$COMPARE_NODENAME routine, lib–32
LIB$COMPRESS_NODENAME routine, lib–34
LIB$CONVERT_DATE_STRING routine, lib–37
LIB$CRC routine, lib–41
LIB$CRC_TABLE routine, lib–43
LIB$CREATE_DIR routine, lib–46
LIB$CREATE_USER_VM_ZONE routine, lib–50
LIB$CREATE_USER_VM_ZONE_64 routine,

lib–54
LIB$CREATE_VM_ZONE routine, lib–57
LIB$CREATE_VM_ZONE_64 routine, lib–63
LIB$CRF_INS_KEY routine, lib–69
LIB$CRF_INS_REF routine, lib–71
LIB$CRF_OUTPUT routine, lib–74
LIB$CURRENCY routine, lib–78
LIB$CVTF_FROM_INTERNAL_TIME routine,

lib–80
LIB$CVTF_TO_INTERNAL_TIME routine, lib–84
LIB$CVTS_FROM_INTERNAL_TIME routine,

lib–82
LIB$CVTS_TO_INTERNAL_TIME routine, lib–86
LIB$CVT_DTB routine, lib–101, lib–103
LIB$CVT_DX_DX routine, lib–88
LIB$CVT_FROM_INTERNAL_TIME routine,

lib–94
LIB$CVT_HTB routine, lib–101, lib–103
LIB$CVT_OTB routine, lib–101, lib–103
LIB$CVT_TO_INTERNAL_TIME routine, lib–97
LIB$CVT_VECTIM routine, lib–99
LIB$DATE_TIME routine, lib–105
LIB$DAY routine, lib–107
LIB$DAY_OF_WEEK routine, lib–109
LIB$DECODE_FAULT routine, lib–111
LIB$DEC_OVER routine, lib–130

LIB$DELETE_FILE routine, lib–132
LIB$DELETE_LOGICAL routine, lib–141
LIB$DELETE_SYMBOL routine, lib–143
LIB$DELETE_VM_ZONE routine, lib–145
LIB$DELETE_VM_ZONE_64 routine, lib–147
LIB$DIGIT_SEP routine, lib–149
LIB$DISABLE_CTRL routine, lib–151
LIB$DO_COMMAND routine, lib–153
LIB$DT_FORMAT, lib–213 to lib–214
LIB$DT_INPUT_FORMAT, lib–39, lib–261
LIB$EDIV routine, lib–155
LIB$EMODD routine, lib–157
LIB$EMODF routine, lib–159
LIB$EMODG routine, lib–161
LIB$EMODH routine, lib–163
LIB$EMODS routine, lib–165
LIB$EMODT routine, lib–167
LIB$EMUL routine, lib–169
LIB$ENABLE_CTRL routine, lib–171
LIB$ESTABLISH routine, lib–173
LIB$EXPAND_NODENAME routine, lib–175
LIB$EXTV routine, lib–178
LIB$EXTZV routine, lib–181
LIB$FFC routine, lib–183
LIB$FFS routine, lib–183
LIB$FID_TO_NAME routine, lib–185
LIB$FILE_SCAN routine, lib–188
LIB$FILE_SCAN_END routine, lib–190
LIB$FIND_FILE routine, lib–192
LIB$FIND_FILE_END routine, lib–196
LIB$FIND_IMAGE_SYMBOL routine, lib–197
LIB$FIND_VM_ZONE routine, lib–201
LIB$FIND_VM_ZONE_64 routine, lib–203
LIB$FIT_NODENAME routine, lib–205
LIB$FIXUP_FLT routine, lib–208
LIB$FLT_UNDER routine, lib–210
LIB$FORMAT_DATE_TIME routine, lib–212
LIB$FORMAT_SOGW_PROT routine, lib–215
LIB$FREE_DATE_TIME_CONTEXT routine,

lib–217
LIB$FREE_EF routine, lib–218
LIB$FREE_LUN routine, lib–219
LIB$FREE_TIMER routine, lib–220
LIB$FREE_VM routine, lib–221
LIB$FREE_VM_64 routine, lib–224
LIB$FREE_VM_PAGE routine, lib–227
LIB$FREE_VM_PAGE_64 routine, lib–229
LIB$GETDVI routine, lib–231
LIB$GETJPI routine, lib–237
LIB$GETQUI routine, lib–242
LIB$GETSYI routine, lib–247
LIB$GET_ACCNAM routine, lib–251
LIB$GET_ACCNAM_BY_CONTEXT routine,

lib–253
LIB$GET_COMMAND routine, lib–255
LIB$GET_COMMON routine, lib–258

Index–3

LIB$GET_CURR_INVO_CONTEXT routine,
lib–260

LIB$GET_DATE_FORMAT routine, lib–261
LIB$GET_EF routine, lib–263
LIB$GET_FOREIGN routine, lib–265
LIB$GET_FULLNAME_OFFSET routine, lib–268
LIB$GET_HOSTNAME routine, lib–270
LIB$GET_INPUT routine, lib–273
LIB$GET_INVO_CONTEXT routine, lib–276
LIB$GET_INVO_HANDLE routine, lib–277
LIB$GET_LOGICAL routine, lib–278
LIB$GET_LUN routine, lib–281
LIB$GET_MAXIMUM_DATE_LENGTH routine,

lib–283
LIB$GET_PREV_INVO_CONTEXT routine,

lib–285
LIB$GET_PREV_INVO_HANDLE routine,

lib–286
LIB$GET_SYMBOL routine, lib–287
LIB$GET_USERS_LANGUAGE routine, lib–292
LIB$GET_VM routine, lib–293
LIB$GET_VM_64 routine, lib–295
LIB$GET_VM_PAGE routine, lib–297
LIB$GET_VM_PAGE_64 routine, lib–299
LIB$I64_CREATE_INVO_CONTEXT routine,

lib–301
LIB$I64_FREE_INVO_CONTEXT routine,

lib–303
LIB$I64_GET_CURR_INVO_CONTEXT routine,

lib–304
LIB$I64_GET_CURR_INVO_HANDLE routine,

lib–305
LIB$I64_GET_FR routine, lib–306
LIB$I64_GET_GR routine, lib–308
LIB$I64_GET_INVO_CONTEXT routine, lib–310
LIB$I64_GET_INVO_HANDLE routine, lib–312
LIB$I64_GET_PREV_INVO_CONTEXT routine,

lib–313
LIB$I64_GET_PREV_INVO_HANDLE routine,

lib–314
LIB$I64_GET_UNWIND_HANDLER_FV routine,

lib–315
LIB$I64_GET_UNWIND_LSDA routine, lib–316
LIB$I64_GET_UNWIND_OSSD routine, lib–317
LIB$I64_INIT_INVO_CONTEXT routine, lib–318
LIB$I64_IS_AST_DISPATCH_FRAME routine,

lib–320
LIB$I64_IS_EXC_DISPATCH_FRAME routine,

lib–321
LIB$I64_PUT_INVO_REGISTERS routine,

lib–323
LIB$I64_REV_INVO_END routine, lib–322
LIB$I64_SET_FR routine, lib–326
LIB$I64_SET_GR routine, lib–328
LIB$I64_SET_PC routine, lib–330
LIB$ICHAR routine, lib–331

LIB$INDEX routine, lib–333
LIB$INIT_DATE_TIME_CONTEXT routine,

lib–335
LIB$INIT_TIMER routine, lib–339
LIB$INSERT_TREE routine, lib–341
LIB$INSERT_TREE_64 routine, lib–350
LIB$INSQHIQ routine, lib–362
LIB$INSQHI routine, lib–359
LIB$INSQTIQ routine, lib–368
LIB$INSQTI routine, lib–365
LIB$INSV routine, lib–371
LIB$INT_OVER routine, lib–373
LIB$LEN routine, lib–375
LIB$LOCC routine, lib–376
LIB$LOCK_IMAGE routine, lib–379
LIB$LOOKUP_KEY routine, lib–380
LIB$LOOKUP_TREE routine, lib–384
LIB$LOOKUP_TREE_64 routine, lib–386
LIB$LP_LINES routine, lib–388
LIB$MATCHC routine, lib–390
LIB$MATCH_COND routine, lib–392
LIB$MOVC3 routine, lib–395
LIB$MOVC5 routine, lib–397
LIB$MOVTC routine, lib–399
LIB$MOVTUC routine, lib–416
LIB$MULTF_DELTA_TIME routine, lib–420
LIB$MULTS_DELTA_TIME routine, lib–421
LIB$MULT_DELTA_TIME routine, lib–419
LIB$PARSE_ACCESS_CODE routine, lib–422
LIB$PARSE_SOGW_PROT routine, lib–425
LIB$PAUSE routine, lib–428
LIB$POLYD routine, lib–429
LIB$POLYF routine, lib–431
LIB$POLYG routine, lib–434
LIB$POLYH routine, lib–436
LIB$POLYS routine, lib–438
LIB$POLYT routine, lib–440
LIB$PUT_COMMON routine, lib–442
LIB$PUT_INVO_REGISTERS routine, lib–444
LIB$PUT_OUTPUT routine, lib–446
LIB$RADIX_POINT routine, lib–448
LIB$REMQHIQ routine, lib–453
LIB$REMQHI routine, lib–450
LIB$REMQTIQ routine, lib–459
LIB$REMQTI routine, lib–456
LIB$RENAME_FILE routine, lib–462
LIB$RESERVE_EF routine, lib–471
LIB$RESET_VM_ZONE routine, lib–473
LIB$RESET_VM_ZONE_64 routine, lib–475
LIB$REVERT routine, lib–477
LIB$RUN_PROGRAM routine, lib–478
LIB$SCANC routine, lib–480
LIB$SCOPY_DXDX routine, lib–482
LIB$SCOPY_R_DX routine, lib–484
LIB$SCOPY_R_DX_64 routine, lib–486
LIB$SET_LOGICAL routine, lib–488

Index–4

LIB$SET_SYMBOL routine, lib–491
LIB$SFREE1_DD routine, lib–494
LIB$SFREEN_DD routine, lib–495
LIB$SGET1_DD routine, lib–497
LIB$SGET1_DD_64 routine, lib–499
LIB$SHOW_TIMER routine, lib–501
LIB$SHOW_VM routine, lib–505
LIB$SHOW_VM_64 routine, lib–508
LIB$SHOW_VM_ZONE routine, lib–511
LIB$SHOW_VM_ZONE_64 routine, lib–517
LIB$SIGNAL routine, lib–523
LIB$SIG_TO_RET routine, lib–528
LIB$SIG_TO_STOP routine, lib–530
LIB$SIM_TRAP routine, lib–532
LIB$SKPC routine, lib–534
LIB$SPANC routine, lib–536
LIB$SPAWN routine, lib–540
LIB$STAT_TIMER routine, lib–547
LIB$STAT_VM routine, lib–551
LIB$STAT_VM_64 routine, lib–553
LIB$STOP routine, lib–555
LIB$SUBX routine, lib–557
LIB$SUB_TIMES routine, lib–559
LIB$SYS_ASCTIM routine, lib–561
LIB$SYS_FAOL routine, lib–565
LIB$SYS_FAOL_64 routine, lib–567
LIB$SYS_FAO routine, lib–563
LIB$SYS_GETMSG routine, lib–569
LIB$TABLE_PARSE routine, lib–572
LIB$TPARSE routine, lib–572
LIB$TRAVERSE_TREE routine, lib–632
LIB$TRAVERSE_TREE_64 routine, lib–634
LIB$TRA_ASC_EBC routine, lib–636
LIB$TRA_EBC_ASC routine, lib–640
LIB$TRIM_FILESPEC routine, lib–643
LIB$TRIM_FULLNAME routine, lib–646
LIB$UNLOCK_IMAGE routine, lib–649
LIB$VERIFY_VM_ZONE routine, lib–650
LIB$VERIFY_VM_ZONE_64 routine, lib–651
LIB$WAIT routine, lib–652
Logical names, lib–278, lib–488

deleting, lib–141
RTL routines, lib–141

Logical unit numbers
allocator, lib–281
RTL routine to free, lib–219

M
Mailboxes, lib–14
MATCHC (Match Characters) instruction, RTL

routine to access, lib–390
max_float boundary value, cvt–14
Memory

allocation
for dynamic length strings, lib–497,

lib–499

Memory
allocation (cont’d)

freeing dynamic length strings, lib–494,
lib–495

MOVC3 (Move Character 3 Operand) instruction,
RTL routine to access, lib–395

MOVC5 (Move Character 5 Operand) instruction,
RTL routine to access, lib–397

Multiplication, lib–157, lib–159, lib–161, lib–163,
lib–165, lib–167, lib–169

N
NBDS (numeric byte data string), lib–89
Node names

See DECnet full name routines

O
Octal text, converting to binary, lib–101, lib–103
Overflow detection

integer, lib–373

P
Pause program execution, lib–428
Polynomials

evaluating, lib–429, lib–431, lib–434, lib–436,
lib–438, lib–440

Q
Queue information, getting, lib–242
Queues

inserting an entry, lib–359 to lib–368
removing an entry, lib–450 to lib–459

R
Radix point symbol, returning the system’s,

lib–448
Reserved operands, fix floating-point faults,

lib–208
Run-time library routines

conversion, 1–10
CVT$, 1–10
library, 1–1
translated, 1–9

S
SCANC (SCAN Characters) instruction, RTL

routine to access, lib–480
Shareable images, activating, lib–197
Sign-extended longword fields, lib–178
Spawning a subprocess, lib–540

Index–5

String descriptors, lib–10, lib–12
Strings

copying by descriptor, lib–482
copying by reference, lib–484 to lib–486
dynamic length

allocating, lib–497 to lib–499
deallocating, lib–494, lib–495

position of substring in, lib–333
skipping characters in, lib–537

Subtraction
quadword times, lib–559
two’s complement, lib–558

Symbols
See also CLI symbols

SYS$LANGUAGE logical name, lib–39 to lib–40,
lib–213 to lib–214

Systemwide information, getting, lib–247

T
Time conversion routine, lib–94

F_Floating value, lib–80
S_Floating value, lib–82

Translation
of character sets, lib–399

Tree, balanced binary, lib–341, lib–350

V
Virtual memory statistics

returning, lib–551, lib–553
showing, lib–505, lib–508

Index–6

